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Abstract

In a production plant for complex assembled products there could be up to several hundred robots used for handling and joining

operations. Thus, improvements in robot motion can have a huge impact on equipment utilization and energy consumption. By

combining recent algorithms for collision free numerical optimal control and for optimal sequencing, we are able to cut down

on energy consumption without sacrificing cycle time. The algorithm has been successfully applied to several industrial cases

demonstrating that the proposed method can be used effectively in practical applications to find fast and energy efficient solutions.
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1. Introduction

By using Computer Aided Engineering (CAE), phys-

ical prototypes can be replaced by simulation, new prod-

ucts can be introduced faster, the efficiency of the pro-

duction system can be optimized using mathematical

methods and algorithms, and it can be done by simu-

lation experts and production engineers in a safe and

healthy environment.

The automotive industry is an example of an equip-

ment and energy intensive manufacturing, where up to

28% of the vehicle life cycle energy is spent during pro-

duction ([1]). For example, a typical automotive car

body consists of about 300 sheet metal parts, joined

by about 4000 welds. Typical joining methods are spot

welding, arc welding, gluing and stud welding. In car

body assembly plants, the welds are distributed to sev-

eral hundred industrial welding robots, which are orga-
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nized in up to 100 stations. The body shop is indeed in-

vestment intense, with the robots as the main consumer

of energy ([1]). In [2] it is highlighted how utiliza-

tion affects different aspects of sustainable production,

the link between utilization and productivity, as well as

practical considerations when improving utilization in

manufacturing industry. Therefore from a sustainability

perspective it is highly motivated to develop new soft-

ware methods and algorithms for further improvement

of equipment utilization and energy efficiency of robo-

tized manufacturing systems.

In [3] it is shown that the balancing of weld work load

between the executing stations and robots has a signifi-

cant influence on achievable production rate and equip-

ment utilization. Robot line balancing is a complex

problem, where a number of welding robots in a num-

ber of stations are available to execute an overall weld

load. Each weld is to be assigned to a specific station

and robot, such that the line cycle time is minimized.

Line balancing efficiency depends on station load bal-

ancing, robot welding sequencing, path planning and
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effectiveness of robot coordination for collision free ex-

ecution within each other’s working envelopes. Robot

coordination impairs cycle time by inserting waiting po-

sitions and signals into the original paths. At Volvo Cars

it has been proven that by using automatic path planning

and line balancing instead of standard off-line program-

ming the cycle time in welding lines can be improved

by as much as 25%. The next step for improving the

automatic path planning and line balancing is to include

detailed optimization of motion profiles between welds.

This choice is also from an energy efficiency aspect mo-

tivated. Meike and Ribickis [1] investigated different

strategies to operate robots in an energy efficient way.

Motion profile optimization was one of the strategies

pointed out among others such as automatic shut-down

and start-up, reusing braking energy, and brake manage-

ment.

Global methods for optimal control are in general

only applicable to systems of relatively few degrees of

freedom or to problems with a special structure, see [4]

for an example of such a problem. Most often one has to

resort to local methods in order to handle more general

problems. That is the path taken in this work where we

will be using a direct transcription method called Dis-

crete Mechanics and Optimal Control (DMOC), please

refer to [5] for details on direct transcription methods

in general and [6] for the DMOC method in particular.

Direct transcription methods have been applied to solve

optimal control problems for industrial robots before,

for example by [7]. In this paper we combine recent ad-

vances in sequencing and collision free optimal control

of industrial robots to create an efficient algorithm for

automatic robotic path planning. In order to compute

the travel cost between two locations our algorithm first

uses a path planner to create an initial collision free path

between the locations. The path is then refined using lo-

cal numerical optimal control techniques to minimize

our cost function. This minimum travel cost between

nodes and the cost of visiting the nodes are then used by

the sequencer in order to find the best possible sequence

to complete the entire operation. Collision avoidance

is incorporated into the optimal control problem, in the

same way as in [8], by approximating the geometry in

configuration space rather than R
3 making the size of

the resulting optimization problem independent of the

complexity of the geometry which contrasts most exist-

ing methods, for example [9] and [10].

2. Method

Here we describe the main steps of our algorithm.

The sequencing problem is described in 2.1. In sec-

tion 2.2 we describe how to formulate the optimal con-

trol problem associated with the costs used by the se-

quencer, section 2.3 shows how to discretize and solve

this problem, and in section 2.4 we provide details on

how to incorporate collision avoidance in the optimal

control problem.

2.1. Sequencing
In automotive applications, robots are usually as-

signed a number M of tasks, consisting of welding and

sealing operations, for example. Each task can be done

in several ways, and they can be performed in differ-

ent orders. Thus, minimizing the cycle time requires

choosing a robot configuration for each task and de-

ciding the order in which the robot performs the tasks.

The problem can be modeled as a Generalized Travel-

ing Salesman Problem (GTSP), which, in this work, is

solved exactly for instances up to M = 20, and by ef-

ficient heuristics for larger problems. The exact algo-

rithm is a straightforward generalization of the dynamic

programming approach described in [11] for solving

the TSP. When this approach is not suitable, an algo-

rithm based on metaheuristics and local search tech-

niques is used: tour improving operations include 3-opt

exchanges, double bridge and others, see [12].

Moreover, it is necessary to find collision-free paths

between the chosen configurations for consecutive

tasks. This is the most expensive part from the com-

putational point of view, therefore a lazy approach is

adopted in order to minimize the number of path plan-

ning queries needed. The overall method starts by com-

puting a lower bound for all the robot paths. Thereafter,

it iteratively finds a minimum cost sequence of tasks,

computes collision free motions, and updates the costs

of these paths. The algorithm terminates when the time

limit is reached or when the required optimality gap is

achieved. This approach is very efficient and can be nat-

urally extended in order to deal with other measures of

optimality, as the ones considering energy and robot dy-

namics. However, a crucial issue for good performance

is the tightness of the lower bounds. When the func-

tion to be minimized is the time, good lower bounds are

easy to compute, for example by considering the max-

imum speed of the joints and paths computed by linear

interpolation in the robot configuration space. In this

work, anyway, extensions to minimum energy bounds

are not straightforward, therefore we approximate the

paths costs by providing estimations that take into ac-

count static energy consumptions at the start and end

configurations for a given path. These costs are not nec-

essarily strict lower bounds but lead to high convergence

rate and good overall quality.
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2.2. Optimal Control

The problem we want to solve can be formulated as

an optimal control problem where we want to minimize

a cost functional

J = Φ(x(ts), ts, x(t f ), t f ) +

∫ t f

ts

L(x(t), u(t), t)dt (1a)

while satisfying the constraints

ẋ(t) = f (x(t), u(t), t) (1b)

g(x(t), u(t), t) ≥ 0 (1c)

H(x(ts), ts, x(t f ), t f ) = 0 (1d)

for t ∈ [ts, t f ].

Here the state vector is x(t) = [q(t)T , q̇(t)T ]T ∈ R
2n

where q(t) belongs to the configuration space i.e. in our

robot case q is the vector of joint angles, and the control

signal u(t) ∈ Rn is the vector of actuator torques applied

at the joints. The cost functional to be minimized in (1a)

contains two terms, the function Φ(x(ts), ts, x(t f ), t f )

which accounts for costs associated with the initial and

terminal state, and the integral of the cost Lagrangian

L(x, u, t) which describes costs incurred along the tra-

jectory. In our problems Φ(x(ts), ts, x(t f ), t f ) is typi-

cally just the duration, t f − ts, and the cost Lagrangian

is a measure of the power consumption, modeled by a

quadratic function L(x, u, t) = xT Qx + uT Ru where Q
and R are symmetric positive semi definite matrices.

The differential equations (1b) are called the state

equations and describe the dynamics of the system. The

path constraints on the state and control to be fulfilled

along the trajectory are included in (1c) while (1d) con-

tains the boundary conditions. Note that (1c) can in-

clude both equality and inequality constraints.

Using the Lagrange-d’Alembert principle we can

write our dynamics (1b) as the forced Euler-Lagrange

equation

∂L
∂q

(q(t), q̇(t)) +
d
dt

(
∂L
∂q̇

(q(t), q̇(t))
)

+ fL(q(t), q̇(t), u(t)) = 0

where L is the Lagrangian of the mechanical system and

fL is the external force acting on the system.

Using this we can write the optimal control problem

in configuration variables as minimize

J = Φ(q(ts), q̇(ts), ts, q(t f ), q̇(t f ), t f )

+

∫ t f

ts

L(q(t), q̇(t), u(t), t)dt

such that

∂L
∂q

(q(t), q̇(t)) +
d
dt

(
∂L
∂q̇

(q(t), q̇(t))
)

+ fL(q(t), q̇(t), u(t)) = 0

g(q(t), q̇(t), u(t), t) ≥ 0

H(q(ts), q̇(ts), ts, q(t f ), q̇(t f ), t f ) = 0

for t ∈ [ts, t f ].

2.3. Discrete Mechanics and Optimal Control

If we divide the time interval [ts, t f ] into N equidis-

tant sub-intervals of duration h, we can formulate a cor-

responding discrete optimal control problem. Here we

will define our discrete joint trajectory to lie on the N+1

grid points while our control is defined on the interval

midpoints.

Following [13] we formulate a discrete Lagrangian

for our system using the midpoint rule

Ld(qk, qk+1) = hL
(qk + qk+1

2
,

qk+1 − qk

h

)

If we now apply the discrete Lagrange-d’Alembert

principle to the action of the system we end up with the

following forced discrete Euler Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1)

+ f +d (qk−1, qk, uk− 1
2
) + f −d (qk, qk+1, uk+ 1

2
) = 0

for k = 1 . . .N − 1, where D1Ld and D2Ld are the slot

derivatives with respect to the first and second argument

and f +d and f −d are the left and right discrete forces de-

fined as

f +d (qk, qk+1, uk+ 1
2
) = f −d (qk, qk+1, uk+ 1

2
)

=
h
2

fL

(qk + qk+1

2
,

qk+1 − qk

h
, uk+ 1

2

)

please refer to [6] about different choices of discrete

forces. Using the discrete Legendre transformation we

get the boundary conditions

D2L(q0, q̇0) + D1Ld(q0, q1) + f −d (q0, q1, u 1
2
) = 0

and

− D2L(qN , q̇N) + D2Ld(qN−1, qN)

+ f +d (qN−1, qN , uN− 1
2
) = 0

for the initial and final joint velocities, q̇0 and q̇N .
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Now we can formulate our discrete optimal control

problem as minimize

Φ(q0, q̇0, t0, qN , q̇N , tN)

+

N−1∑
i=0

hL
(qi + qi+1

2
,

qi+1 − qi

h
, ui+ 1

2
,

ti + ti+1

2

)

subject to

D2L(q0, q̇0) + D1Ld(q0, q1) + f −d (q0, q1, u 1
2
) = 0

D2Ld(qk−1, qk) + D1Ld(qk, qk+1)

+ f +d (qk−1, qk, uk− 1
2
) + f −d (qk, qk+1, uk+ 1

2
) = 0

− D2L(qN , q̇N) + D2Ld(qN−1, qN)

+ f +d (qN−1, qN , uN− 1
2
) = 0

g
(qk + qk+1

2
,

qk+1 − qk

h
, uk+ 1

2
,

tk + tk+1

2

)
≥ 0

H(q0, q̇0, t0, qN , q̇N , tN) = 0

tk+1 = tk + h

h ≥ 0

In our application we will assume that we can control

our joint torques directly, in this case the discrete forces

are

f +d (qk, qk+1, uk+ 1
2
) = f −d (qk, qk+1, uk+ 1

2
)

=
h
2

fL

(qk + qk+1

2
,

qk+1 − qk

h
, uk+ 1

2

)
=

h
2

uk+ 1
2

for k = 0 . . .N − 1.

In the discrete setting our bounds on the angles, ve-

locities and torques become

qlower ≤ qi ≤ qupper, i = 0 . . .N
q̇lower ≤ q̇0 ≤ q̇upper

q̇lower ≤ qi+1−qi
h ≤ q̇upper, i = 0 . . .N − 1

q̇lower ≤ q̇N+1 ≤ q̇upper

ulower ≤ ui+ 1
2
≤ uupper, i = 0 . . .N − 1

The variables in our NLP-problem are the initial and

final joint velocities, q̇0, q̇N+1, the joint trajectory qi and

times ti for i = 0 . . .N, and ui+ 1
2

for i = 0 . . .N −1. Note

that since we use equidistant time steps it suffices to use

t0 and tN as time variables. In our implementation we

use t0, tN and for convenience also h.

To solve the resulting non-linear optimization prob-

lem we use the NLP-solver Ipopt (Interior Point OPTi-

mizer) described in [14].

Figure 1. Collision avoiding trajectory and contours of the distance

function in configuration space

2.4. Collision avoidance
The initial path given to our optimal control problem

is collision free. In this section we describe how this

property is maintained while the optimal control prob-

lem is solved.

Let us define the distance function as

ϕ(q) = min
p∈A(q)

d(p)

where A(q) is the space occupied by the robot at con-

figuration q and d(p) : R
3 → R is the minimum dis-

tance to the surrounding geometry Γ ⊂ R
3, i.e. d(p) =

miny∈Γ ‖p − y‖2.

One way of keeping the solution collision free would

be to add a minimum clearance constraint, i.e include

ϕ(q(t)) ≥ dc, ∀t ∈ [ts, t f ] (4)

in (1c), where dc ∈ R is the minimum allowed clear-

ance along the path, this is illustrated in Fig. 1. But

ϕ(q) is not generally in C1 so adding the constraint (4)

to the optimal control problem would result in a pro-

gramming problem which can not be solved using stan-

dard NLP-solvers. To overcome this we formulate an

iterative method based on local sensitivity analysis.

In the discrete setting the approximate minimum

clearance constraints, for iteration k, can be written as

n
∥∥∥qk+1

i − qk
i

∥∥∥w(qk
i )

∞ ≤ ϕ(qk
i ) − dc for i = 0 . . .N

where n is the dimension of the configuration space, qk

is a given feasible configuration, dc ≥ 0 is the mini-

mum clearance allowed, and ‖ · ‖w(q) denotes a weighted

norm with weight vector wi(q) = maxp ‖ ∂p
∂qi

(q)‖1 for

i = 1 . . . n. These inequalities are simply box constraints
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(a) Stage I (b) Stage II (c) Stage III

Figure 2. Three different stages in the iterative procedure. Using the

collision free path from the previous iteration an improved path is

found by optimization constrained to the trust regions. The iteration is

initialized by a piecewise linear collision free path from a path planner

(Stage I) and terminated when no progress is being made (Stage III).

on the optimization variables at each time step, as il-

lustrated in Fig. 2, for details on the derivations please

refer to [8]. Since we use an approximate clearance con-

straint we can not guarantee that the new configuration

qk+1 is above our clearance threshold. Hence we need to

check the new iterate and perform a backtracking step if

necessary. We stop the iteration when the reduction in

the objective is below some given threshold.

Starting with an initial collision free path from the

path planner, Fig. 2 illustrates how the trajectory is iter-

atively improved using the clearance constraints.

3. Results

In order to validate our method we have applied it

to a virtual stud welding station. The case consists of

a car body with 20 stud welding points to be welded

by an ABB 6400 industrial robot, the setup can be seen

in Figure 3. Each welding takes 2 seconds to perform.

The welding points can be visited in any order and each

welding point can be reached by the robot from several

alternative joint configurations.

To evaluate the performance of our solutions we will

use the composite cost function

J =
∫ t f

ts

ct + ceu(t)T u(t) + cvq̇(t)T q̇(t)dt

i.e. a linear combination of the time, the control effort

and a regularizing term to keeping the kinetic energy of

the system low. In our test case we have used ct = 1.0,

cv = 1.0 and ce = 10−6 which tend to give fast and

smooth trajectories with low actuator torques.

The number of alternatives for each welding point

and the range of the costs associated with each weld-

ing are given in Table 1, note the large variations in cost

depending on the alternative joint configurations. The

main difference between the method in this paper and

Figure 3. Welding station

Stud Alt. Cost

1 6 [41.16, 41.44]

2 8 [79.11, 80.73]

3 16 [110.8, 223.3]

4 22 [95.69, 240.0]

5 27 [33.78, 330.0]

6 18 [58.36, 339.6]

7 10 [240.8, 350.8]

8 16 [176.9, 448.6]

9 20 [89.64, 307.2]

10 30 [48.63, 282.2]

11 16 [35.49, 295.5]

12 36 [50.55, 471.6]

13 16 [73.29, 228.7]

14 13 [140.1, 447.8]

15 16 [44.07, 417.3]

16 9 [173.1, 324.9]

17 9 [181.1, 329.3]

18 7 [174.5, 181.5]

19 6 [241.5, 242.5]

20 6 [222.9, 223.3]

Table 1. Number of alternatives for each weld and the corresponding

range of cost associated with performing each stud welding operation

Travel Welding Total

Old sequence 2212.5 4590.4 6802.9

New sequence 1560.9 2323.1 3884.0

Table 2. The cost of completing a cycle of the stud welding station

using sequences computed with and without optimal control
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our previous method, described in [8], is that we now

incorporate optimal control already in the sequencing

step. This also means that we can include the cost oc-

curring while performing the welding operation, which

increase the potential saving even further.

In Table 2 we compare a sequence computed using

our old sequencer, based on approximate travel time

minimization, to a sequence computed using our new

optimal control based sequencer. In this particular case

we see that by using the costs from the optimal control

problem already when selecting the sequence we can re-

duce our cost with over 40 percent. It is particularly in-

teresting to note that the greatest saving is made during

the welding operation while the robot is standing still.

4. Conclusion

We have presented a method for efficient sequencing

of industrial robots. The method extends our previous

method, presented in [8], by incorporating the optimal

control problem in the sequence optimization. Our op-

timal control solver has also been improved by using a

discrete variational principle to derive the equations of

motion. This gives our solver the nice characteristics,

regarding conservation of momentum and energy, usu-

ally associated with variational integrators [15].

From our experiments we conclude that our method

can indeed give considerable savings under realistic

conditions and that the static poses are as important as

the motions connecting them.

While this approach can be applied to any robot in

a station, collisions among robots require geometrical

and/or timing modifications of the paths, see [16] and

[17]. This extension is to be included in future work.
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