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Abstract

We study the complexity of turning a given graph, by edge editing,
into a target graph whose critical-clique graph is any fixed graph. The
problem came up in practice, in an effort of mining huge word similarity
graphs for well structured word clusters. It also adds to the rich field
of graph modification problems. We show in a generic way that several
variants of this problem are in SUBEPT. As a special case, we give a
tight time bound for edge deletion to obtain a single clique and isolated
vertices, and we round up this study with NP-completeness results for a
number of target graphs.
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1 Introduction

Graphs in this paper are undirected and have no loops or multiple edges. In an
edge modification problem, an input graph must be modified by edge insertions
or deletions or both, to get a target graph with some prescribed property. Edge
editing means both insertions and deletions. Edge insertion is also known as fill-
in. The computational problem, for a given target graph property and a given
type of editsm is to use a minimum number k of edits. There is a rich literature
on the complexity of such problems for a number of target graph properties,
and also on their various applications. Here we cannot possibly survey them
all, we only refer to a few representative papers on hardness results [1, 13].
Other edit operations related to graph minors are studied in [9], and the target
graph is a single fixed graph. Ironically, results are missing on edge modification
problems for some structurally very simple target graphs. Informally, “simple”
here means that the graph becomes small after the identification of its twin
vertices (see Section 2 for technical definitions). For any fixed graph H, our
target graphs will be the graphs obtained from H by replacing vertices with
bags of true twins.

Our motivation of this type of problem is the concise description of graphs
with very few cliques (that may overlap) and some extra or missing edges.
They appear, e.g., as subgraphs in co-occurence graphs of words, and they
constitute meaningful word clusters there. Within a data mining project we
examined a similarity matrix of some 26,000 words, where similarity is defined
by co-occurence in English Wikipedia. By thresholding we obtain similarity
graphs (Figure 1 shows a part of such a graph), and we consider subgraphs that
have small diameter and only few cut edges to the rest of the graph. Words
occurring in the same contexts form nearly cliques. These are often not disjoint,
as words appear in several contexts. Furthermore, synonyms may not always
co-occur (as different authors prefer different expressions), but they co-occur
with other words. Relations like this give rise to various cluster structures. As
opposed to partitioning entire graphs into overlapping clusters (as in [7]), we
want to single out simple subgraphs of the aforementioned type. Experience
in our project shows that some existing standard clustering methods generate
poor word clusters which are either too small or dragged out and not internally
dense. This suggested the idea of defining the clusters directly by the desired
properties, and then to determine them by edge editing of candidate subgraphs.
Next, instead of describing the clusters naively as edge lists we can list their
vertices along with the few edited edges (to achieve cliques). Altogether this
yields very natural word clusters, and by varying the threshold we also obtain
different granularities. Applications of word clusters include sentence similarity
measures for text summarization, search query result diversification, and word
sense disambiguation. Thus, we believe that the problems are of importance,
but they are also interesting as pure graph-algorithmic problems.
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Figure 1: This Gephi visualization shows a small part of our word similarity
graph, for some similarity threshold. Words have been stemmed prior to the
calculations. One can clearly recognize the “almost cliques” structure, and in
the middle we see an example of two overlapping cliques (the H = P3 case).
Also, the clusters make sense, in that they comprise related words. The data
support our approach to define word clusters by edge-editing towards unions of
very few cliques.
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Overview of contributions:
For any fixed H, our edge modification problems are easily seen to be fixed-

parameter tractable (FPT) with k as the parameter. As our main result we
get in Section 3 that they even belong to the smaller class SUBEPT of prob-
lems solvable in subexponential time in the parameter. (Not very many natural
SUBEPT problems are known so far, as discussed in [8].) Each of our edge

modification problems has a 2
√
k log k time bound. The special case known as

p-Cluster Editing, where H is the graph with p vertices and no edges, was
recently treated in [8], using techniques like enumeration of small cuts. Our
result is more general, and the quite different algorithm looks conceptually sim-
pler, but at the price of a somewhat worse time for the special case. Therefore
it remains interesting to tighten the time bounds for other specific graphs H as
well.

Consequently, we then turn to the absolutely simplest graphs H: In Section
4 we study the (NP-complete) edge deletion problem towards a single clique plus
isolated vertices. We give a refined FPT time bound where the target clique size
c appears explicitly. Intuitively, 2k/c2 is an “edit density”. Using an evident
relationship to vertex covers we achieve, for small edit densities, essentially
O∗(1.2738k/c) time. For large enough k/c we invoke a naive algorithm instead,

and the time can be bounded by O(1.6355
√
k ln k). The base 1.2738 is due to the

best known Vertex Cover algorithm from [4]. Moreover, the bound is tight:
We show that the base of k/c cannot beat the base in the best FPT algorithm
for Vertex Cover.

Section 5 gives a similar FPT time bound for edge editing towards a single
clique plus isolated vertices, a problem that has recently been proved to be
NP-complete. In Section 6 we make some progress in proving NP-completeness
results systematically, for many graphs H. The results indicate that almost all
our modification problems, with rather few exceptions, might be NP-complete.
But recall that, on the positive side, they are in SUBEPT.

2 Preliminaries

The number of vertices and edges of a graph G = (V,E) is denoted n and
m, respectively. The complement graph Ḡ of G is obtained by replacing all
edges with non-edges and vice versa. We also use standard notation for some
specific graphs: Kn, Cn, Pn is the complete graph (clique), the chordless cycle,
the chordless path, respectively, on n vertices, and Kn1,n2,...,np

is the complete
multipartite graph with p partite sets of ni vertices (i = 1, 2, . . . , p). The disjoint
union G + H of graphs G and H consists of a copy of G and a copy of H on
disjoint vertex sets. G−v denotes the graph G after removal of vertex v and all
incident edges. Similarly, G−X denotes the graph G after removal of a vertex
set X ⊆ V and all incident edges. The subgraph of G induced by X ⊆ V is
denoted G[X].

A vertex cover of G = (V,E) is a subset of V being incident to all edges.
The Vertex Cover problem asks for a minimum vertex cover. The vertex
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covers in a graph are exactly the complements of independent sets, hence the
complements of cliques in Ḡ.

A graph class G is called hereditary if, for every graph G ∈ G, all induced
subgraphs of G are also members of G. Any hereditary graph class G can be
characterized by its forbidden induced subgraphs: F is a forbidden induced
subgraph if F /∈ G, but F − v ∈ G for every vertex v.

The open neighborhood of a vertex v is the set N(v) of all vertices adjacent
to v, and the closed neighborhood is N [v] := N(v) ∪ {v}. For a subset X of
vertices, N [X] is the union of all N [v], v ∈ X. Vertices u and v are called true
twins if uv is an edge and N [u] = N [v]. Vertices u and v are called false twins
if uv is a non-edge and N(u) = N(v). The true twin relation is an equivalence
relation whose equivalence classes are known as the critical cliques of the graph.
(The false twin relation is an equivalence relation as well.) In the critical-clique
graph H of a graph G, every critical clique of G is represented by one vertex
of H, and two vertices of H are adjacent if and only if some edge exists (and
hence all possible edges exist) between the corresponding critical cliques of G.
For brevity we refer to the critical cliques as bags, and we say that G is a “graph
H of bags”.

As stated earlier, an edge edit is an edge insertion or deletion. For every
fixed graph H we define three edge modification problems as follows:

H-Bag Insertion / H-Bag Deletion / H-Bag Editing
Given: an input graph G and a parameter k.
Problem: Change G by at most k edge insertions / deletions / edits, such that
the critical-clique graph of the resulting graph is H or an induced subgraph
thereof.

We allow induced subgraphs of H in order to allow bags to be empty. Sim-
ilarly we define the problems H[0]-Bag Deletion and H[0]-Bag Editing.
The difference is that the target graph may additionally contain isolated ver-
tices, that is, false twins with no edges attached. Thus, not all vertices are
forced into the bags. More formally:

H[0]-Bag Deletion / H[0]-Bag Editing
Given: an input graph G and a parameter k.
Problem: Change G by at most k edge deletions / edits, such that the critical-
clique graph of the resulting graph, after removal of all isolated vertices, is H
or an induced subgraph thereof.

Problem H[0]-Bag Insertion is not mentioned above, as it easily reduces
to H-Bag Insertion: As only insertions are permitted, the isolated vertices
in an optimal solution are exactly the isolated vertices of G. Thus it remains to
solve H-Bag Insertion on G without its isolated vertices.

We also consider problem variants where the bags have prescribed sizes. We
sometimes refer to all the mentioned problems collectively as bag modification
problems, for any fixed H. We say that editing an edge uv affects its end vertices
u and v. A vertex is called unaffected if it is not affected by any edit.
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Without loss of generality we can always assume that H has no true twins,
because they could be merged, which leads to the same problems with a smaller
graph in the role of H. For any fixed graph H understood from context, we
use H to denote the class all graphs whose critical-clique graph is H or an
induced subgraph thereof. Similarly, we use H[0] to denote the class of graphs
consisting of all graphs from H, but possibly with additional isolated vertices.
All these classes are hereditary, and they are our classes of target graphs. (One
could modify the problems by, e.g., allowing any target graphs with modular
decompositions of some maximum size, but in this paper we also want a fixed
structure given by H.)

We assume that the reader is familiar with fixed-parameter tractability
(FPT) and basic facts, in particular with the notion of a branching vector. Oth-
erwise we refer to [6, 14] for general introductions. A problem with input size n
and an input parameter k is in FPT if some algorithm can solve it in f(k) ·p(n)
for some computable function f and some polynomial p. The O∗(f(k)) nota-
tion suppresses the polynomial factor p(n). The subexponential parameterized
tractable problems where f(k) = 2o(k) form the subclass SUBEPT. In our time
analysis we will encounter branching vectors of a special form.

Lemma 1 The branching vector (1, r, . . . , r) with q entries r has a branching

number bounded by 1 + log2 r
r , if r is large enough compared to the fixed q.

Proof: Denoting the branching number by 1 + x, we get the characteristic
polynomial (1 +x)r+1 = (1 +x)r + q, thus x(1 +x)r = q. Trying x := log2 r

r , the

left-hand side becomes log2 r
r (1 + log2 r

r )
r

log2 r log2 r. As r grows, (1 + log2 r
r )

r
log2 r

tends to e > 2, thus, there is a threshold r0 such that, for r > r0, the left-hand
side exceeds log2 r

r 2log2 r = log2 r > q. Clearly, the latter inequality holds since q
is fixed, and we can just make r0 large enough. Next, as x(1 + x)r is monotone

in x, the true x is smaller than x := log2 r
r , for all r > r0. It follows that 1+ log2 r

r
is an upper bound on the branching number. �

3 Fixed-Parameter Tractability

Some of our bag modification problems (in different terminology) are known to
be NP-complete, among them cases with very simple graphs H. Specifically,
for H = K1, problem H[0]-Bag Deletion can be stated as follows. Given
a graph G, delete at most k edges so as to obtain a clique C and a set I of
isolated vertices. Equivalently, delete a set I of vertices incident to at most k
edges, and delete all these incident edges, so as to retain a clique. The problem
is NP-complete due to an obvious reduction from Maximum Clique.

Next, for any fixed p, the p-Cluster Editing problem asks to turn a graph,
by editing at most k edges, into a disjoint union of at most p cliques. p-Cluster
Insertion and p-Cluster Deletion are similarly defined. Observe that these
are the bag modification problems for H = K̄p. It is known that p-Cluster
Insertion is polynomial for every p, and so is p-Cluster Deletion for p = 2,
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but it remains NP-complete for every p ≥ 3, whereas p-Cluster Editing
remains NP-complete even for every p ≥ 2 [16].

These hardness results provoke the question of fixed-parameter tractability
of bag modification problems. By a well-quasi ordering argument based on Dick-
son’s lemma [5] one can show that H and H[0] have only finitely many induced
subgraphs, and then the general result from [2] implies that the bag modification
problems are in FPT, for every fixed graph H. Although the argument is neat,
we omit the details, because we will prove a stronger statement: membership
in SUBEPT.

The following observation is known for Cluster Editing (that is, H = K̄p)
due to [10]; here we show it for general H.

Proposition 1 Any bag modification problem has an optimal solution where
any two true twins of the input graph belong to the same bag (or both are isolated)
in the target graph.

Proof: First we consider H-Bag Editing. For a vertex v, an input graph, and
a solution, we define the edit degree of v to be the number of edits that affect
v. Consider any solution. For any equivalence class T of true twins, let v ∈ T
be some vertex with minimum edit degree. Consider any u ∈ T \ {v}. If the
solution puts u in a different bag than v, then we undo all edits that affect u,
and instead proceed as follows: We edit every edge uw, w 6= v, if and only if vw
is edited. We also move u to the bag of v and undo the deletion of edge uv (if
it happened). – Clearly, this yields a valid solution and does not increase the
number of edits between u and the vertices w 6= v. Since we do not incur an
additional edit of uv either, the new solution is no worse. Doing these changes
for all u ∈ T \ {v}, and also for all T , we get a solution where any true twins
end up in the same bag. This proves the assertion for H-Bag Editing.

For H[0]-Bag Editing we treat the set of isolated vertices as yet another
bag. Then the same arguments apply. What is, however, not covered in the
previous reasoning is the case when v is isolated and u is in a bag of true twins.
But then u and v are not adjacent, neither before nor after the move, hence
again the number of edits does not increase.

Finally, for the Insertion and Deletion problems, again the same argu-
ments go through in all cases. Just replace “edit” with “insert” or “delete”.

�

We make another simple observation.

Lemma 2 In any bag modification problem, for a fixed graph H with p vertices,
the input graph has at most 2k+p critical cliques (isolated vertices not counted),
or the instance has no solution.

Proof: The unaffected vertices induce a subgraph that belongs to H or H[0],
respectively, hence it has at most p bags. Any affected vertex is adjacent to
either all or none of the vertices of any of these bags (since the latter ones are
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unaffected). In the worst case, k edits affect 2k vertices, and each of them
becomes a critical clique of its own. Together this yields the bound. �

Lemma 2 implies again that all bag modification problems for fixed H are in
FPT: Assign every critical clique in the input graph to some bag of the target
graph (or make its vertices isolated, in the H[0] case). These are at most p + 1
options for every critical clique. For the isolated vertices it suffices to decide
how many of them we put in each bag, which are O(np) options in total. Hence
the time for this naive branching algorithm is O∗((p + 1)2k+p). Instead of this
poor bound we will now show:

Theorem 1 Any bag modification problem with a fixed graph H can be solved

in O∗(2
√
k log k) time, hence it belongs to SUBEPT.

Proof: First we focus on H-Bag Editing. The other problem variants can
then be treated in the same way, with minor modifications.

Let a, 0 < a < 1, be some fixed number to be specified later. To avoid
bulky notation, we omit rounding brackets and work with terms like ka as if
they were integers. Let p denote the number of vertices of our fixed graph H.
One difficulty is that the sizes of the p bags are not known in advance. Our
preprocessing phase takes care of that.

Preprocessing phase: Initially all bags are declared open. For every bag we
create ka places that we successively treat as follows. At every place we branch:
Either we close the bag and leave it, or we decide on a critical clique of the input
graph and put any of its vertices in the bag. (Clearly, the latter choice of a vertex
from a critical clique is arbitrary. By Proposition 1 we can even immediately
fill further places with the entire critical clique, but our analysis will not take
advantage of that.) Due to Lemma 2 these are at most 2k + p + 1 branches,
hence the total number of branches is (2k + p + 1)pk

a

= O(k)pk
a

= 2k
a log k.

Note that p is fixed, and constant factors are captured by the unspecified base
of log in the exponent.

Every open bag has now ka vertices (where k is the initially given parameter
value). We will not add any further vertices to closed bags. Vertices that are
not yet added to bags are called undecided. Finally we do all necessary edits of
edges between different bags, to stick to the structure of the target graph given
by H, and subtract the number of these edits from k, the number of remaining
edits.

Main phase: In every branch obtained in the preprocessing phase we apply
further branching rules that will further reduce the parameter k by edits. The
branching rules are applied exhaustively in the order described below. In the
following we first consider the special case that all bags are open. Later we show
how to handle the presence of closed bags, too.

All bags are open: We describe the branching rules and the situations after their
exhaustive application.
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• If there exists an undecided vertex u and a bag B such that u is adjacent
to some but not all vertices of B, then we branch as follows: either insert
all missing edges between u and B, or delete all edges between u and B.
(But for now, u is not yet added to any bag.) The branching vector is
some (i, ka−i) with two positive entries, or a better vector if already more
than ka vertices got into B.

• Now every undecided vertex u is either completely adjacent or completely
non-adjacent to each bag B. We say that u fits in B, if u is adjacent to
exactly those bags that belong to N [B]. Remember that H has no true
twins. It follows that every vertex u fits in at most one bag.

• If there exists an undecided vertex u that fits in no bag, we branch as
follows: we decide on a bag for u, put u in this bag, and do the necessary
edits. Since u does not fit anywhere, we need at least ka edits, thus the
branching vector, of length p, is (ka, . . . , ka) or better.

• After that, every undecided vertex u fits in exactly one bag B(u). Suppose
that two undecided vertices u and v have the wrong adjacency relation.
That is, either uv is an edge but B(u) and B(v) are not adjacent, or uv is
not an edge but B(u) and B(v) are adjacent or B(u) = B(v). We branch
as follows: either we edit uv or not. If we don’t, then u and v cannot be
both added to their designated bags. Then we also decide on u or v and
put that vertex in one of the other p−1 bags, which again costs at least ka

edits. Thus, the worst-case branching vector is (1, ka, . . . , ka) with 2p− 2
entries ka.

• Finally, all undecided vertices have their correct adjacency relations, hence
the graph belongs to H.

Some bags are closed: We cannot treat closed bags like the open bags, since
closed bags can be small, hence the above branching rules would not guarantee
at least ka edits. Therefore we modify the above procedure. Remember that all
edits between bags were already done in the preprocessing phase, and undecided
vertices can be put in open bags only.

Let U be the set of vertices of H corresponding to the open bags. Note
that H[U ] may have true twins. In that case we merge every critical clique of
H[U ] into one superbag. Since every open bag entered the main phase with ka

vertices, trivially, each superbag is larger than ka.
To place the undecided vertices we perform exactly the same branching rules

as above, but only on H[U ] (where superbags have the role of bags). Since we
have fewer branches, the branching vectors do not get worse. A new twist is
needed only when we actually add a vertex u to a superbag S. In every such
event we also decide on the bag within S that will host u. Since every S came
from a critical clique of H[U ], these latter choices do not change any more the
adjacency relations of u with other vertices in the open bags and with other
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undecided vertices. Therefore we can take these decisions independently for all
u, and always choose some bag in S that causes the minimum number of edits
of edges between u and the closed bags.

Complexity result: The worst branching vector we encounter (see above) is
(1, ka, . . . , ka) with 2p − 2 entries ka. From Lemma 1 we obtain the bound

(1 + a log2 k
ka )k = 2k

1−a log k for some suitable logarithm base. Since the main
phase is applied to every branch resulting from the prepocessing phase, we
must multiply the two bounds: 2k

a log k2k
1−a log k. Choosing a = 1/2 yields the

product 2
√
k log k. (Note that the base is, arbitrarily, 2 because of the unspecified

logarithm base.)
For H-Bag Deletion and H-Bag Insertion we proceed similarly. The

only difference is that only one type of edits is permitted, hence some of the
branches are disabled, which cannot make the branching vectors worse. In H[0]-
Bag Deletion and H[0]-Bag Editing we can treat the set of isolated vertices
like another bag; some necessary adjustments are straightforward. �

4 Clique Deletion

If H is the one-vertex graph, then the H[0] edge modification problems have
as target graphs a single clique plus isolated vertices. Instead of the H[0]-Bag
terminology we speak in this case of Clique Insertion, Clique Deletion,
and Clique Editing, which is more suggestive. Clique Insertion is a trivial
problem: Since only edge insertions are permitted, all vertices except the iso-
lated ones must be connected to a clique, thus there is no choice. In this section
we study:

Clique Deletion
Given: an input graph G and a parameter k.
Problem: Change G by at most k edge deletions so as to obtain a clique C and
a set I of isolated vertices. Equivalently: Delete a set I of vertices incident to
at most k edges, and delete all these incident edges as well, so as to retain a
clique.

This should not be confused with problems having a split graph as target
graph, as split graphs can have additional edges between C and I.

Lemma 3 A partitioning of the vertex set of a graph G into sets C and I is
a valid solution to Clique Deletion if and only if I is a vertex cover of Ḡ.
Moreover, a minimum vertex cover I of Ḡ also yields a minimum number of
edge deletions in G. Consequently, Clique Deletion is NP-complete.

Proof: The first assertion is evident. For the second assertion, note that
Clique Deletion requests a vertex cover I of Ḡ being incident to the mini-
mum number of edges of G. Since C is a clique, and every edge of G is either
in C or incident to I, we get the following chain of equivalent optimization
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problems: minimize the number of edges incident to I, maximize the number
of edges in C, maximize |C|, minimize |I|. The final assertion follows from the
NP-completeness of Vertex Cover. �

Clique Deletion is also in SUBEPT by Theorem 1, but besides the generic
time bound with unspecified constants in the exponent, we are now aiming at
an FPT algorithm with a tight time bound, as a function of k and c := |C|.
With m being the number of edges in the input graph, clearly, c must satisfy

m − k ≤ 1
2c(c − 1), thus c ≥ 1

2 +
√

1
4 + 2(m− k). In an algorithm for Clique

Deletion we may guess the exact clique size c above this threshold and try all
possible sizes c, which adds a factor smaller than n to the time bound. Therefore
we may assume in the following that c is already prescribed.

Before we turn to an upper complexity bound, we first give an implicit lower
bound, relative to Vertex Cover parameterized by the solution size.

Proposition 2 Any Clique Deletion algorithm with a time bound O∗(bk/c),
where b > 1 is some constant base, yields a Vertex Cover algorithm with a
time bound O∗(bv), where v is the vertex cover size.

Proof: We join our input graph G = (V,E) with a clique K, and define
c∗ := |K|. Joining means that all possible edges between K and V are cre-
ated. Observe that an optimal solution for the joined graph consists of an
optimal solution for G (a partitioning of V into some C and I), with K added
to C. Thus, if k edges are deleted in G, then k + (n− c)c∗ edges are deleted in
the joined graph, and the size of the solution clique is c∗ + c. Furthermore, the
size of the vertex cover I in Ḡ is n− c.

The above reasoning holds for every size c∗. If we choose c∗ “large” compared
to n, but still polynomial in n, then the number of deleted edges and the clique
size are (n− c)c∗ and c∗, respectively, subject to lower-order terms. Their ratio
is the vertex cover size v := n − c. Using the original notations k and c for
the number of deleted edges and the clique size, respectively, it follows that
any FPT algorithm for Clique Deletion that runs in time bounded by some
function O∗(f(k/c)) could be used to solve also Vertex Cover in Ḡ within
O∗(f(n− c)) = O∗(f(v)) time. �

Therefore, the best we can hope for is a Clique Deletion algorithm with
a time bound O∗(bk/c), with some constant base b > 1 that cannot be better
than in the state-of-the-art Vertex Cover algorithm. This bound is also tight
in a sense, as we will see below.

The exponent k/c is not an arbitrary measure, rather, it has a natural inter-
pretation: It can be rewritten as c k

c2 , where the second factor can be viewed as

an “edit density”; note that 2k
c(c−1) is the ratio of deleted edges and remaining

edges in the target graph. For technical reasons it will be convenient to define
the edit density slightly differently as d := 2k/c′2 where c′ := c − 1. Further-
more, in applications we are mainly interested in instances that are already
nearly cliques, thus we keep a special focus on the case d < 1 in the following.
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We start our algorithm for Clique Deletion with a single reduction rule:
Consider any vertex v of degree smaller than c′. Clearly, v cannot be in a clique
C of size c, hence it must be in I, and we can remove it without changing the
problem. It also follows that it is correct to iterate this process.

Reduction rule: Remove any vertex v of degree smaller than c′, along with
all incident edges, and subtract the degree of v from the parameter.

After exhaustive application of this rule there remains a graph where all
vertex degrees are at least c′. In order words, we compute the c′-core. From
now on we can suppose without loss of generality that, already in G, all vertices
have degree at least c′.

Lemma 4 If a graph where all vertex degrees are at least c′ admits a solution
to Clique Deletion with at most k edge deletions, |C| = c′ + 1, and |I| = i,
then we have i ≤ 2k/c′, and in the case d := 2k/c′2 < 1 this can be improved to
i ≤ 2

1+
√
1−d · k/c

′.

Proof: Let h be the number of edges in I. Since at most k edge deletions are
permitted, we have ic′− h ≤ k. Since h ≤ k (or we must delete too many edges
already in I), it follows i ≤ 2k/c′ = dc′.

For d < 1, this further implies i ≤ c′. Using h < i2/2, the previous inequality
ic′ − h ≤ k yields ic′ − i2/2 ≤ k, thus i2 − 2c′i + 2k ≥ 0 with the solution
i ≤ c′ −

√
c′2 − 2k. (Recall that i ≤ c′, thus the other solution is already

excluded.) By using simple algebra this can be rewritten as

i ≤ c′−
√

c′2 − 2k =
c′2 − (c′2 − 2k)

c′ +
√
c′2 − 2k

=
2k

c′ +
√
c′2 − 2k

=
2

1 +
√

1− 2k/c′2
·k/c′.

Finally remember 2k/c′2 = dc. �

Note that the factor in front of k/c′ grows only from 1 to 2 when d grows
from 0 to 1. To make this factor more comprehensible, we may also simplify it to
a slightly worse upper bound: Since

√
1− d > 1− d, we have i ≤ 2

2−d · k/c
′. We

also remark that Clique Deletion is trivial if k < c′, because, after reduction
to the c′-core, either there remains a clique, or the instance has no solution.

Theorem 2 Clique Deletion can be solved in O∗(1.2738
2

1+
√

1−d
·k/c′

) time if
d < 1, and in general in O∗(1.27382k/c

′
) time.

Proof: First we apply our reduction rule, in polynomial time. Let G be the
remaining graph. Due to Lemma 3 it suffices then to compute a vertex cover of
minimum size in Ḡ. As for the time bound, the base comes from the Vertex
Cover algorithm in [4], and the exponent comes from the bounded size i in
Lemma 4. For large edit densities we may still use the algorithm with the
simpler bound from Lemma 4. �

In the time bound from Theorem 2 we may replace c′ with c, which does
not make a difference asymptotically, and write O∗(1.27382k/c). The following



JGAA, 18(4) 557–576 (2014) 569

result gives a time bound as a function of k only, as in the previous section, but
with a specified base.

Corollary 1 Clique Deletion can be solved in O∗(1.6355
√
k ln k) time.

Proof: Depending on c, either we run the algorithm from Theorem 2 in
O∗(1.27382k/c) time, or we check in a brute-force manner all subsets of c vertices
for being cliques. The latter method runs in O∗((2k + c)c) time, since at most
2k+ c non-isolated vertices exist due to Lemma 2. For any fixed k, compare the
expressions 1.27382k/c and (2k + c)c. They decrease and increase, respectively,
as functions of c. Hence their minimum is maximized if they are equal. This
happens at approximately c = 0.492

√
k/ ln k. Plugging in this c yields the

asserted time bound. �

One may wish to improve the naive O∗(2k + cc) bound, and hence the Corol-
lary, by fast exclusion of most c-vertex subsets as candidates for the clique C.
However, the maximum clique problem cannot be solved in O(f(c) · no(c)) time
for any function f , under the Exponential Time Hypothesis [3].

5 Clique Editing

Recall that Clique Editing is the problem of editing at most k edges so as to
obtain a clique C, say of size c, and a set I of n − c isolated vertices. In the
following theorem, c is part of the input.

Theorem 3 Clique Editing with prescribed size c of the target clique is W[1]-
complete in parameter n− c, hence also NP-complete.

Proof: We argue with the (non-parameterized) optimization version and show
that minimizing the number of edited edges is equivalent to finding a set I of
n − c vertices being incident to the minimum number of edges. This claim is
verified as follows. Note that the edges incident to I are exactly those to be
deleted, and minimizing deletions means maximizing the number of remaining
edges. Since c is presecribed, this also minimizes the number of edge insertions
needed to make C a clique. Due to [11], finding at least s vertices that cover at
most t edges, known as Minimum Partial Vertex Cover, is W[1]-complete
in the parameter s. Thus our assertion follows by letting s := n− c. �

Note that we cannot simply use Theorem 3 to conclude NP-completeness of
Clique Editing when the size c is arbitrary. The catch is that the prescribed
clique sizes c in the reduction graphs may be different from c in optimal solutions
to Clique Editing on these graphs, and our problem might still be polynomial
for the “right” c. Actually, NP-completeness has been proved in [12].

Another equivalent way to state the Clique Editing problem is: Given a
graph G, find a subset C of vertices that induces a subgraph that maximizes
the number of edges minus the number of non-edges. Denoting the number
of edges by m(G), the objective can be written as m(G[C]) −m(Ḡ[C]). This
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formulation also gives rise to an extension to a weighted version: For a given
real number w > 0, maximize m(G[C]) − w · m(Ḡ[C]). Now the effect of w
becomes interesting. The problem is trivial for w = 0 (the whole vertex set is
an optimal C), and NP-complete if w is part of the input (since a maximum
clique is an optimal C if w is large enough). But what happens in between?
What is the complexity for any constant w > 0? We must leave this question
open.

Next we propose an FPT algorithm for Clique Editing when k is the
parameter. It works if c is part of the input, and hence also for free c, as we can
try all, at most n, values of c. Membership in SUBEPT follows from Theorem
1, but as earlier we are also interested in the dependency of the time bound on
c. The following algorithm uses similar ideas as the earlier ones.

Theorem 4 Clique Editing can be solved in O∗(2log c·k/c) time.

Proof: We have to decide for every vertex whether to put it in C or in I.
Consider the following reduction rule: Put every vertex v of degree at most

(c− 1)/2 in I, and delete the incident edges. The correctness is seen as follows.
Assume that v ∈ C in the final solution. Since v has degree at most (c− 1)/2,
at least (c − 1)/2 edges between v and the rest of C have been inserted. If we
had instead decided v ∈ I, we would have inserted no edges incident to v, but
deleted the at most (c− 1)/2 incident edges, which is not more expensive.

After exhaustive application of the reduction rule, there remains a graph
of minimum degree at least c/2. We can assume without loss of generality
that already the input graph has minimum degree at least c/2. We begin with
branching. A vertex is called undecided if it is not yet put in C or I. Initially
we guess one vertex of C, which adds only a linear factor to the time bound.
All other vertices are undecided in the beginning.

As long as there exists an undecided vertex v which is not adjacent to all
of C, we branch on v. In the I := I ∪ {v} branch we delete the, at least c/2,
incident edges. (Whenever some vertex degrees fall below c/2 because of the
deletions, we first apply the reduction rule again.) In the C := C ∪ {v} branch
we insert at least one edge that is missing in C. After exhaustive application,
all undecided vertices are adjacent to all vertices in C. If the undecided vertices
form a clique, we are done, as we can add the undecided vertices to C, and if we
get |C| > c, some surplus vertices are moved to I without branching. Suppose
that the other case holds: two non-adjacent undecided vertices u and v exist.
Then we branch by setting C := C ∪ {u, v} or I := I ∪ {u} or I := I ∪ {v}. In
the first branch we must insert an edge, and otherwise delete at least c/2 edges.

Our rules have, obviously, the worst-case branching vectors (1, c/2) and
(1, c/2, c/2), and Lemma 1 yields the time bound. �

6 Some Hardness Results

All bag modification problems are trivially in NP. In this section we prove the
NP-completeness of bag modification problems for many target graphs H. We
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S0S1 S1

G

H

S0

G'

H'

Figure 2: Thick lines mean that all possible edges between the induced sub-
graphs exist, dotted lines mean that some of the edges may exist. Inflation of
the vertices to bags is not shown here.

give a general construction that “lifts” NP-completeness from a considered H to
larger graphs H ′. That is, we will in polynomial time reduce H-Bag Editing
to H ′-Bag Editing, for certain graphs H and H ′ specified later on.

The general situation is as follows. Let the graph G and parameter k be
any instance of H-Bag Editing, and let H ′ be a graph that contains H as an
induced subgraph.

We choose a particular subset S of vertices of H ′ such that H ′[S] is isomor-
phic to H. Note that H may have several occurrences as induced subgraph in
H ′, but we fix some set S. Let S0 be some set of vertices of H ′ − S which
are adjacent to no vertices of S. (But S0 is not necessarily the set of all such
vertices.) Similarly, let S1 be some set of vertices of H ′ − S which are adjacent
to all vertices of S. From G we construct a graph G′ as follows, in polynomial
time. We take S0 ∪ S1 from H ′ and replace every vertex of S0 ∪ S1 with a bag
of size c, for some number c > 2k. Two bags are joined by all possible edges (by
no edges) if the corresponding vertices in H ′ are adjacent (not adjacent). Then
we add G and insert all possible edges between S1 and the vertices of G. Figure
2 is a simple sketch of the construction that shall help remember the role of S0

and S1.

If G with parameter k is a yes-instance of H-Bag Editing, then we can
take the at most k edits that yield a solution, and mimic them in the subgraph
G of G′. This immediately implies that G′ with parameter k is a yes-instance
of H ′-Bag Editing: we can map the vertices of G onto S to obtain an edited
graph whose critical-clique graph is an induced subgraph of H ′. (Assumption
c > 2k is not needed for this direction.)

However the converse does not hold in general: “If G′ with parameter k is
a yes-instance of H ′-Bag Editing, then G′ with parameter k is a yes-instance
of H-Bag Editing.” Our aim in the following is to show this converse under
certain conditions on H and H ′. The equivalence will then establish the desired
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reduction.
Specifically, suppose that the following technically looking condition is sat-

isfied. Here, an embedding of a graph into another graph means that edges
are mapped to edges, and non-edges are mapped to non-edges, i.e., the em-
bedded graph is an induced subgraph of the host graph. Remember that H is
isomorphic to H ′[S].

Embedding condition: Let J be any induced subgraph of H ′ isomorphic to
H ′[S0 ∪ S1]. Accordingly, we embed J into any graph of H′ and divide the
vertex set of J in two sets U0 and U1. These are the sets of those vertices which
come from S0 and S1, respectively. For every such embedding, let T be the set
of vertices t such that N [t] contains all vertices of U1 and no vertex of U0. Then
the subgraph induced by T is always in H.

Note that there may exist many possible embeddings of J into a host graph
from H′, and our condition must hold for each of them. We also remark that T
may contain some vertices of U1.

Now suppose that G′ with parameter k is a yes-instance of H ′-Bag Editing,
that is, at most k edge edits in G′ have produced a graph in H′. Since k edits
affect at most 2k vertices, but c > 2k, we conclude that every bag in the edited
graph corresponding to a vertex of S0 ∪ S1 still has at least one unaffected
vertex. Accordingly, let U be some set of unaffected vertices, containing one
such vertex from each of the bags. The subgraph induced by U in the edited
graph is then isomorphic to H ′[S0 ∪ S1]. Let U0 and U1 be the subset of those
vertices of U corresponding to vertices of S0 and S1, respectively. Then we have
U = U0 ∪ U1. Furthermore, since U is unaffected, all vertices of G are still
adjacent (non-adjacent) to all vertices of U1 (U0).

Recall that H and H ′ are assumed to satisfy our embedding condition. Take
as T the vertex set of G. It follows that, after editing, the vertices of G form a
graph in H. Since at most k edits have been done in the whole graph, we get
that G with parameter k is a yes-instance of H-Bag Editing. To summarize:

Lemma 5 If the embedding condition holds for graphs H and H ′ and some
vertex sets S, S0, S1 (as specified above), then H-Bag Editing is reducible to
H ′-Bag Editing in polynomial time.

The embedding condition looks more complicated than it is. When it comes
to specific graphs H and H ′, it is often easy to apply, as we will see in the
examples below. We only have to find suitable sets S0 and S1. For convenience
we refer to the vertices in S0 and S1 as 0-vertices and 1-vertices, respectively,
and we call any graph in H a graph H of bags.

Theorem 5 H ′-Bag Editing is NP-complete for, at least, the following
graphs H ′:
complete multipartite graphs where some partite set has at least 3 vertices;
the complete multipartite graph with partite sets of exactly 2 vertices;
K3-free graphs with maximum degree at least 3.
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Proof: H-Bag Editing for H = K̄p is p-Cluster Editing, which is known
to be NP-complete for every p ≥ 2 [16]. By virtue of Lemma 5 we reduce H-
Bag Editing for H = K̄p, with a suitable p ≥ 2, to H ′-Bag Editing for the
mentioned graphs H ′.

In a complete multipartite graph H ′, let b denote the size of some largest
partite set, and assume b ≥ 3. We choose p = b − 1 ≥ 2. We let S1 be empty,
and we let S0 consist of a single vertex in a partite set of size b. The vertices
of H ′ being non-adjacent to this 0-vertex are in the same partite set, hence
they induce a graph K̄b−1 = K̄p. No matter where we embed our 0-vertex in
a graph H ′ of bags, the set T as defined in the embedding condition forms a
graph H = K̄b−1 of bags. (For partite sets smaller than b, note that bags are
allowed to be empty.) Hence the embedding condition is satisfied.

Next consider H ′ = K2,2 = C4. We choose p = 2, and we let S1 consist of
two non-adjacent vertices, while S0 is empty. Clearly, the common neighbors of
the two 1-vertices induce the graph K̄2 = H. The only possible embedding of
our two non-adjacent 1-vertices in a graph H ′ = C4 of bags is to put them in
two non-adjacent bags. Then the set T forms again a graph K̄2 = H of bags,
thus the embedding condition is satisfied.

To prove NP-completeness of H ′-Bag Editing for H ′ = K2,...,2, let H =
K2,...,2 but with two vertices less. Then literally the same arguments as in the
previous paragraph show that the embedding condition is satisfied. Using this
observation as induction step and the case H ′ = K2,2 as the induction base,
this proves the claim by induction on the number of partite sets.

Finally, consider any K3-free graph H ′ of maximum degree d ≥ 3. (That is,
H ′ is K3-free but not merely a disjoint union of paths and cycles.) Fix some
vertex v of degree d, and some neighbor u of v. We choose p = d− 1, S1 = {v},
and S0 = {u}. The vertices adjacent to v and non-adjacent to u obviosuly
induce a graph K̄d−1 = K̄p. For any embedding of an adjacent pair of a 1-
vertex and a 0-vertex into a graph H ′ of bags, the set T forms a graph H = K̄p

of bags. This holds because every vertex in H ′ has at most d neighbors, they
are pairwise non-adjacent, and one of the d bags neighbored to the 1-vertex
is already occupied by the 0-vertex. Once more, the embedding condition is
satisfied. �

The same construction also lifts NP-completeness results from H[0] to H ′[0],
whenever we can choose S1 = ∅ and a suitable S0. Our construction also works
for H ′-Bag Deletion and H ′-Bag Insertion; the only modification is that
only one type of edge edits is permitted. However, note that we need an NP-
complete case to start with. For H ′-Bag Deletion we can use K̄p with p ≥ 3.
As for H ′-Bag Insertion, remember that K̄p-Bag Insertion is polynomial
[16] for every p. Still we can start from P3 instead and get, for instance, the
following results:

Theorem 6 H ′-Bag Insertion is NP-complete for, at least, the graphs
H ′ = P3, and H ′ = Pn and H ′ = Cn for each n ≥ 6.

Proof: P3-Bag Insertion in G means to delete in Ḡ a minimum number of
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edges so as to obtain a graph consisting of a complete bipartite graph (biclique)
and isolated vertices. This in turn is equivalent to the problem of finding a
biclique with a maximum number of edges. The latter problem is NP-complete
(even in bipartite graphs and hence in general graphs) due to [15]. Finally we
reduce P3-Bag Insertion to Pn-Bag Insertion for each n ≥ 6 by setting
S1 = ∅ and S0 isomorphic to Pn−4. Similarly, we reduce P3-Bag Insertion
to Cn-Bag Insertion for each n ≥ 6 by setting S1 = ∅ and S0 isomorphic to
Pn−5. It is straightforward to verify the embedding condition. �

These results are applications of only one reduction technique. We may
get out more NP-complete cases, but the construction also fails for some other
graphs. We also remark that P3-Bag Deletion is polynomial: consider the
complement graph and proceed similarly as in [16]. It would be interesting to
achieve a complexity dichotomy for all target graphs.
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