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In this paper we present the first ridge gap waveguide resonator made with a polymer base. It is
designed for the frequency range 220 − 325 GHz, and is fabricated solely using a Au coated
two-layer SU8-based process. The design is based on previous work done with Si. The new
process has advantages such as fewer process steps and cheaper process steps. The SU8 ridge gap
waveguide resonator is made in order to obtain attenuation characteristics via the measured
Q-factor of the resonator. The ridge gap waveguide resonator has the same dimensions as the
previous one fabricated in Si, and the same thickness of the Au coating. The SU8-based
resonator shows an attenuation loss of 0.041 dB/mm at 282.2 GHz compared to the Si-based
resonator with an attenuation loss of 0.043 dB/mm at 283.5 GHz. This makes the SU8 process
a more cost-effective alternative to the Si process
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I INTRODUCTION

SU8 is an epoxy-based negative photoresist, which is often used for patterning or as
sacrificial layers in MEMS processing. Recently SU8 has been used as device material also
for RF-MEMS applications. WR-03 band rectangular waveguides fabricated by CNC
milling, KMPR-based LIGA and with SU8 have been compared to each other by Shang et
al [1]. They presented that the SU8-based rectangular waveguide insertion loss
(∼ 0.031 dB/mm for 220 − 325 GHz) have a comparable level with the commercially
available CNC precision-machined metal waveguides (∼ 0.02 dB/mm for
220 − 325 GHz). These results show that SU8 could be a promising material to fabricate
high-performance high frequency waveguides.
Gap waveguide technology is based on utilizing a metamaterial, in this case a bed of nails
[2], which forms an Artificial Magnetic Conductor (AMC). When a perfect electrical
conductor (PEC) is placed opposite an AMC, a parallel-plate stopband is created for a
certain frequency band [3]. However, if the AMC layer incorporates a guiding structure
such as a ridge, groove or strip, waves can propagate along the ridges, grooves or strips
without leaking away from the structure [4]. Such parallel-plate structures can be used as
transmission lines as shown in Fig. 1. The wave is prohibited to propagate outside the
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ridge due to the stopband as shown in Fig. 2.

Figure 1: Illustration of a ridge gap waveguide. The ridge and the lid are PEC surfaces and the
pin-surface realizes the AMC surface.

Figure 2: 2D color plot of the absolute value of E-field for the open circuit ridge gap waveguide
resonator.

A gap waveguide demonstrator for 10 − 20 GHz was presented in 2011 [5] and since then
different gap waveguide applications have been demonstrated below 50 GHz such as
filters [6] and packaging of MMICs [15]. We have also demonstrated gap waveguides and
their low loss at high frequency above 100 GHz, such as the ridge gap waveguide
resonator made in Si for 220 − 325 GHz [8], the pin-flange adapter [9, 10] and the groove
gap waveguide for 100 GHz [11, 12]. The resonator is used as a demonstrator of the low
losses of gap waveguides through measurements of the Q-factor of the resonance. The
SU8 material is advantageous for manufacturing gap waveguides because of its relative
low cost and simple process that lends itself well for mass production and provides high
flexibility in 3D fabrication.
In this paper, we present the first polymer-based gap waveguide component, a ridge gap
waveguide resonator for 220 − 325 GHz made out of a two-layer Au coated SU8.

II BACKGROUND

The design is based on the ridge-gap resonator for 220 − 325 GHz presented in [8]. It
consists of a ridge surrounded by pin structures, Fig. 3. The ridge is surrounded by two
rows of pins along the long sides of the ridge and one row of pins on the connecting side
(the short side). The coupling to the resonator needs to be weak, which is why there is
one pin-row at the connecting sides. The pins and the ridge both have the same height of
277 µm± 10 µm. The surrounding pins each have a top area of 165 µm× 165 µm. The
gap between the pin-surface and the PEC lid needs to be smaller than λ/4 for the
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stopband to exist. Here it has been chosen to be 167 µm from the design curves presented
in [3] to get a stopband between 210 GHz and 340 GHz.

Figure 3: Top view of the ridge gap resonator, displaying the dimensions and placements of the
pin and the ridge.

The lid is part of a support package also presented in [8]. Fig. 4 shows the support
package with space for the ridge gap resonator and a gap of 167 µm realized in the top
part of this space. The package is used to support the chip when the measurement flanges
are connected to it. The setup can be seen in Fig. 5, where (a) is a Network Analyzer
(Agilent N5250C) connected to, (b) a millimeter-wave controller (Agilent N5260A). The
millimeter-wave controller is coupled to two OML extenders constructed for
220 − 325 GHz (c) where WR03 flanges (d) are connected to each side of the resonators
support package (e), Fig. 4.
The previous ridge-gap resonator was completely made out of silicon and coated with
gold. The full process involved several process steps such as sputtering, lithography, ICP
DRIE, stripping, gold sputtering and gold electroplating and dicing. Measurements were
done on the silicon ridge gap resonator and compared to simulations with the same
dimensions. The measurements of the previous silicon resonator can be seen in Fig. 6, [8].
The difference with the new ridge gap resonator presented here in this paper is that
instead of making it out of silicon, it is made of a two-layer SU8, coated with gold. The
first layer acts as a carrier and the second layer determines the pin and ridge height. The
pin width is 165 µm and its intended height is 277 µm.
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Figure 4: a) Picture of the support package used during measurements with the PEC lid incor-
porated above, b) a schematic view of the opening which fit the ridge gap waveguide resonator
and have gap of 167 µm above it.

Figure 5: Measurement setup with a photo of the resonator being measured. a) The network an-
alyzer (Agilent N5250C), b) The millimeter-wave controller (Agilent N5260A), c) OML extender,
d) WR03 flange, e) Support package for the resonator (Fig. 4).

III FABRICATION

The fabrication process presented here in this paper has been optimized for the ridge gap
resonator structure. SU8 2150 from micro resist technology was dispensed on a 4” Si
carrier wafer. First, it was spun at a low speed of 500 rpm to distribute the SU8 over the
surface, and then it was spun at 2300 rpm to reach the desired thickness of the carrier
layer, Fig. 7b. It was then soft baked in two steps, first at 65◦C for 10 min followed by a
bake at 95◦C for 55min on a hotplate, Fig. 7c. The two soft-bake steps are to avoid that
the surface develops a crust that prevents the solvent to evaporate, and to reduce stress.
It is quite common that craters or bubbles appear after the soft-bake, which was not
visible before the soft-bake, Fig. 8. This can be traced back to how the SU8 was dispensed
on the wafer. Several dispensing techniques are discussed at the forum memscyclopedia
[13], to avoid this problem. In this work the syringe technique, the squeegee technique,
pre-heating the wafer and the star-pattern have been tested. In the end a combination of
pouring the SU8 directly out of the bottle and allowing it to relax for about 10 min
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Figure 6: Measurement and simulation of the previous Si ridge gap resonator, [8].

Figure 7: a) Si wafer, b) first layer of SU8 dispensed, c) soft-bake, d) flood exposure, e) second
layer of SU8, f) second soft-bake, g) patterning, h) developing the SU8, i) KOH etch of the Si, j)
sputtering and electroplating of Au.
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between every process step, reduces stress and the appearance of craters and bubbles.

Figure 8: Craters and bubbles appearing after the first soft-bake step, due to unsuccessful dis-
pensing of the SU8

The whole wafer was flood exposed for 62 sec to supply enough energy for the SU8
polymers to crosslink, Fig. 7d. According to MicroChems data sheet the SU8 2150 needs
about 370 mJ/cm2 for crosslinking at these thicknesses. The exposure energy from the
Suss MicroTec mask aligner is 6 mW/cm2.
A second layer of SU8 2150 was dispensed (Fig. 7e) and distributed at 500 rpm, and then
spun at 2000 rpm to achieve the pin height of 275 µm. The wafer went through a second
soft bake at 65◦C for 10 min followed by a bake at 95◦C for 120 min (Fig. 7f) and was
finally patterned with a negative photomask in proximity mode, Fig. 7g. Another
post-exposure bake at 65◦C for 5 min and at 95 ◦ C for 28 min was performed.
Finally, the whole wafer was developed with strong agitation for 20 min, Fig. 7h. The
strong agitation is needed due to that the pins will have strings of SU8 connecting them
to each other otherwise. After developing for 20 min the wafer was dipped in a new
developer bath and then rinsed with Isopropanol. If white marks appear during drying
after the IPA rinse, the wafer needs to be developed further.

Figure 9: A complete SU8 wafer.

After patterning, the Si was removed from the SU8 by immersion in KOH at 80◦C . Left
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was a wafer completely made out of SU8, see Fig. 7i and Fig. 9. The SU8 wafer was then
diced with a Loadpoint Microace 3+ into resonators and sputtered with a seed layer of
Ti/Au (50/200nm). The SU8 resonator chip was finally electroplated with Au, Fig. 7j.
To avoid skin effects a rule of thumb is that the overall thickness of the metal coating
should be larger than five times the skin depth. The skin depth at 280 GHz is 0.15 µm.
Therefor the Au-coating was decided to be 1 µm thick, the same as previously was
successfully used for this device fabricated in Si [8].
The SU8 ”wafer” is as easy to handle as a Si wafer of the same size. The SU8 wafer was
diced, sputtered and electroplated in the same way as the Si wafer in [8].

IV RESULTS & DISCUSSION

A) Fabrication Results

A two-layer SU8 ridge gap resonator was fabricated. A SEM image of the SU8 resonator
and the previous Si resonator can be seen in Fig. 10. The height of the pins is 275 µm,
which is within one percent of the desired height of 277 µm. The top part of the pins is
slightly wider which may broaden the bandwidth because it is closer to a mushroom
shape that may have larger bandwidth [8, 14]. Fig. 11a shows a SEM image of the SU8
pin and Fig. 11b shows a SEM image of the silicon pin. The silicon pin walls have a
higher slope than the SU8 walls. The slope of the Si pin could probably result in a wider
bandwidth than the SU8 pin, however both structures will have a bandwidth sufficient for
the WR-03 frequency band.

Figure 10: SEM image of a) the SU8 ridge gap resonator, with a pin height of 275 µm and b) the
Si-based ridge gap resonator with a pin height of 275 µm.

Fig. 12 shows the ridge gap resonator made out of SU8 (Fig. 12a) next to the ridge gap
resonator made out of Si (Fig. 12b). Using SU8 as only structural material allows for
future low-cost fabrication processes that entirely avoid the use of Si.
The process time has been analyzed and is about the same as the Si based process in [8].
The equipment used in the SU8 based process is cheaper compared to the Si based
process, where instead of using the STS ICP dry etching machine for a majority of the
process time, a hotplate is used for a relatively long curing time. The material cost for
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Figure 11: a) SEM image of a SU8 pin on the SU8 carrier. b) SEM image of the Si pins.

Figure 12: a) Ridge gap resonator made out of only SU8. b) Ridge gap resonator made out of
silicon.

the SU8 process is also lower than for the Si process.

B) Measured Results

The measurements of the SU8-based resonator and the Si-based resonator were done for
two frequency ranges, 220 − 260 GHz and 270 − 310 GHz. These ranges were selected
such as to obtain a high number of measurement points around the resonance peak. The
measurements of the SU8-based ridge gap resonator and the Si-based ridge gap resonator
were compared to each other and to simulations, in Fig. 13 and 14.
The resonance frequencies, the unloaded Q-values and the corresponding attenuation can
be seen in Table 1. The attenuation was calculated from the unloaded Q-values with
equation 1, [15].

Table 1: Measured unloaded Q-values and loss/mm
Simulated Si SU8

Frequency 234.1 GHz 282.9 GHz 234.1 GHz 283.5 GHz 233.4 GHz 282.8 GHz
Qu − value 866 993 642 597 319 628
Loss dB/mm 0.025 0.026 0.033 0.043 0.067 0.041
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Figure 13: Comparison between the measurements of simulation, Si and SU8 resonators at 220-260
GHz.

Figure 14: Comparison between the measurements of simulation, Si and SU8 resonators at 270-310
GHz.

α = β/(2Qu) (1)
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The resonance peaks for the SU8-based resonator match those of the Si-based resonator
and simulations. The SU8-based resonator shows higher Q-values than the Si-based
resonator at higher frequencies. The loss at higher frequencies is comparable to the
Si-based resonator.

V CONCLUSION

The first polymer gap waveguide resonator has been presented. The process of creating a
two-layer SU8 device with SU8 both as carrier layer and as device layer has been
successful. The SU8-based resonator has peaks close to the simulation and the previously
presented fabricated Si-based resonator. The unloaded Q-values for the SU8-based
resonator are higher for higher frequencies and an attenuation loss of 0.041 dB/mm at
282.2 GHz compared to the Si-based resonator with an attenuation loss of 0.043 dB/mm
at 283.5 GHz. The SU8 process has fewer steps compared to the silicon-based process.
SU8 is a more flexible material and therefore more robust, with a more cost-effective
process.
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