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robust least-squares estimation with
harmonic regressor and strictly
diagonally dominant information
matrix

Alexander Stotsky

Abstract
This article describes new high-order algorithms in the least-squares problem with harmonic regressor and strictly diag-
onally dominant information matrix. Estimation accuracy and the number of steps to achieve this accuracy are controlla-
ble in these algorithms. Simplified forms of the high-order matrix inversion algorithms and the high-order algorithms of
direct calculation of the parameter vector are found. The algorithms are presented as recursive procedures driven by
estimation errors multiplied by the gain matrices, which can be seen as preconditioners. A simple and recursive (with
respect to order) algorithm for update of the gain matrix, which is associated with Neumann series, is found. It is shown
that the limiting form of the algorithm (algorithm of infinite order) provides perfect estimation. A new form of the gain
matrix is also a basis for unification method of high-order algorithms. New combined and fast convergent high-order
algorithms of recursive matrix inversion and algorithms of direct calculation of the parameter vector are presented. The
stability of algorithms is proved and explicit transient bound on estimation error is calculated. New algorithms are sim-
ple, fast and robust with respect to round-off error accumulation.
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Introduction

Recursive least-squares (RLS) algorithms are widely
used in many applications such as adaptive control, sig-
nal processing, system identification and others.1 The
parameter vector is updated recursively in each step of
RLS algorithm, using information available in the pre-
vious step as follows

ui = ui�1 +
Gi�1ui

l0 +uT
i Gi�1ui

(yi � uTi�1ui) ð1Þ

where ui is the parameter vector, ui is the regressor vec-
tor, yi is the measured signal, Gi21 is a gain matrix and
l0 is a forgetting factor, i=1, 2, ... Equation (1) shows
clearly that round-off errors that are accumulated in
step i - 1 propagate to step i. This propagation has a
direct impact on the estimation performance and even
on system stability (see the articles by Ljung and

Ljung,2 Slock,3 Liavas and Regalia4 and references
therein for quantification of the performance deteriora-
tion in the presence of round-off errors).

RLS algorithm (1) is a recursive realization of the
solution of the following equation

Aiui = bi ð2Þ

where a symmetric matrix Ai is called an information
matrix and bi is the vector that contains measured sig-
nal. To tackle a round-off error propagation problem,
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equation (2) is solved with respect to ui in each step i.
Two groups of methods are used to solve linear alge-
braic equation (2): exact methods and recursive
methods.

Exact methods represent a finite number of calcula-
tions to find the parameter vector. Gaussian elimina-
tion method, Lower Upper (LU) decomposition,
square root method and others are the best known
exact methods for calculation of the parameter vec-
tor.5–8 Exact methods do not give an exact solution of
the algebraic equations due to round-off errors, which
are always present in a finite precision implementation
environment, and become computationally expensive
for large-scale systems. Moreover, estimation of the
accuracy of the calculated parameter vector is quite dif-
ficult for exact methods. Nevertheless, equation (2) can
be solved using exact methods in each step with some
errors, and those errors do not propagate to the next
step.

Recursive methods, such as Jacobi and Gauss–Seidel
iterative methods, provide a solution with controllable
accuracy. However, (1) recursive methods may require
a large number of iterations to achieve high accuracy,
(2) the stability of the methods depends on the initial
errors and (3) finally these methods are computation-
ally expensive. In other words, the recursive methods
are not directly applicable in practice due to the poten-
tial stability problems and computational complexity.

Performance of the recursive methods may be
improved by taking into account the properties of
information matrix Ai. This matrix is a strictly diagon-
ally dominant (SDD) and positive definite matrix,9,10 if
the regressor ui is a harmonic regressor,11 which con-
sists of trigonometric functions (sines and cosines) at
different frequencies.

Notice that numerical methods for many physical
systems, machine learning, random processes, computer
vision, image processing, network analysis and compu-
tational biology are also a source of linear systems of
equations with SDD matrices (see Ye,7 Kelner et al.12

and references therein).
Notice also that Jacobi and Gauss–Seidel methods

converge, if information matrix is an SDD matrix, but
the convergence may be slow.

The following inequality, which plays a key role in
the algorithm design, is valid for SDD matrices

I�D�1
i Ai

�� ��\ 1 ð3Þ

where Ai is an SDD matrix, Di is a diagonal matrix that
contains diagonal elements of Ai, I is the identity matrix
and the norm is defined as the maximum row sum
matrix norm. This property can be used for perfor-
mance improvement of the recursive algorithms, which
in turn can be divided into two groups: recursive inver-
sion of matrix Ai and direct recursive estimation of the
parameter vector ui.

Recursive inversion algorithms use the diagonal
matrix D�1

i as a staring point for recursive inversion,

where the convergence is guaranteed by inequality (3).
Recursive inversion algorithms can be classified with
respect to order. The second-order algorithm is known
as Hotelling–Bodewig13 or Newton–Schulz algo-
rithm,14 and it is described in many books and articles
(see, for example, Schulz,15 Demidovich and Maron16

and Ben-Israel17). The third-order algorithm is
described in Krishnamurthy and Sen,18 Li et al.19 and
Codevico et al.,20 and finally, sixth- and seventh-order
algorithms are proposed in Krishnamurthy and Sen18

and Soleymani,13 respectively. Moreover, some initial
form of high-order algorithms was outlined in Li and
Li21 using a high-order error model.

Recursive algorithms of direct estimation of parameter
vector are also based on property (3), where the matrix
I�D�1

i Ai is directly associated with the error model.
Such algorithms can also be classified with respect to
order. The first-order algorithm was described in
Stotsky,9 and initial form of high-order algorithms was
proposed in Stotsky.22 The first-order algorithm is also
known as Jacobi method14 presented in the Richardson
form.23

Since the convergence of recursive inversion algo-
rithms and algorithms of direct calculation of the para-
meter vector is based on the same inequality (3), these
algorithms can be combined. A combination of the
second-order matrix inversion algorithm and high-
order algorithm of direct calculation of the parameter
vector is presented in Stotsky.22

Application of high-order algorithms to robust least-
squares estimation has a high potential since both an
accuracy and the number of steps to achieve this accu-
racy are controllable. This article is dedicated toward
further development of recursive high-order algorithms.
The contributions of this article can be summarized as
follows:

1. Simplified forms for both the high-order matrix
inversion algorithms and the high-order algorithms
of direct calculation of the parameter vector are
found. The algorithms are presented as recursive
procedures driven by estimation errors multiplied
by the gain matrices. A simple and recursive (with
respect to order) algorithm for update of the gain
matrices is found, where infinite order of the algo-
rithm (the limiting form) provides perfect estima-
tion. The gain matrix is associated with Neumann
series

Pn�1
d=0 F

d
0, which converges to (D�1

i Ai)
�1 as

order n!N, providing information about inverse
of the information matrix, where F0 = I�D�1

i Ai.
The convergence of this matrix series is guaranteed
again by inequality (3). This form of the gain
matrix provides also unification method for high-
order algorithms and facilitates implementation
and development of combined algorithms.

2. New combined and fast convergent high-order
algorithms of recursive matrix inversion and algo-
rithms of direct calculation of the parameter vector
are the main contribution of this article. The
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stability of algorithms is proved and explicit transi-
ent bound on estimation error is calculated.

This article is organized as follows. Problem state-
ment of estimation of the frequency content of oscillat-
ing signal is given in section ‘‘Problem statement.’’
Recursive algorithms of direct calculation of the para-
meter vector are presented in section ‘‘Recursive algo-
rithms of direct calculation of the parameter vector.’’
Inversion algorithms of an SDD matrix are discussed
in section ‘‘Inversion algorithms of an SDD matrix,’’
and combined algorithms are presented in section
‘‘Combined high-order algorithms.’’ This article ends
with brief conclusions in section ‘‘Conclusion.’’

Problem statement

Suppose that a measured oscillating signal yk can be
presented in the following form

yi =uT
i u� + ji ð4Þ

where ui is the harmonic regressor and u� is the vector
of constant unknown parameters defined as follows

uT
i = ½1 cos(q1i) sin(q1i) cos(q2i) sin(q2i) . . . cos(qri)

sin(qri)�
ð5Þ

uT� = u0� u1� u2� u3� u4� . . . u(2r�1)� u(2r)�
� �

ð6Þ
where i=1, 2, ... is the step number; qp, p=1, 2, ..., r,
are the frequencies and ji is a zero mean white
Gaussian noise. The model of signal (4) is presented in
the following form

ŷi =uT
i ui ð7Þ

with adjustable parameters

uTi = u0i u1i u2i u3i u4i . . . u(2r�1)i u(2r)i½ �
ð8Þ

Least-squares solution for estimation of the para-
meter vector can be written as follows1

ui =A�1
i bi ð9Þ

Ai = l0
Xi�1

j=1

uju
T
j

" #
+uiu

T
i ð10Þ

bi = l0
Xi�1

j=1

ujyj

" #
+uiyi ð11Þ

where matrix Ai is the information matrix, and 0 \ l0
\ 1 is a forgetting factor, i=2, 3, ... The matrix Ai is
an SDD matrix for a sufficiently large i and forgetting
factor l0 which is close to 1.24 This matrix property is
used in the next sections for the algorithm design and
analysis. Notice that positive definiteness of

information matrix for system with harmonic regressor
can also be shown using partitioning method for insuf-
ficiently large window size.25

Recursive algorithms of direct calculation
of the parameter vector

First-order algorithm

Least-squares problem is a problem of calculation of
the parameter vector ui with high accuracy. First-order
algorithm of direct calculation of the parameter vector
can be described as follows9

qk =qk�1 � G0(Aiqk�1 � bi) ð12Þ
~qk =F0

~qk�1 ð13Þ
where ~qk =qk � ui is the estimation error, and the
error matrix is defined as follows

F0 = I� G0Ai ð14Þ
and G0 =D�1

i , and Di is a diagonal matrix that con-
tains diagonal elements of Ai, which means that the
inverse of the diagonal matrix D�1

i is used as approxi-
mation of A�1

i .
The following property of the error matrix F0 is

established for SDD matrix Ai

F0k k4 k\ 1 ð15Þ
where the norm is defined as the maximum row sum
matrix norm. Inequality (15) guarantees the stability of
error model (13).

Notice that matrix G0 is usually called the precondi-
tioner (preconditioning matrix) and matrix F0 is called
the iteration matrix. Preconditioner is directly associ-
ated with estimate of the inverse of Ai. Moreover, algo-
rithm (12) can be seen as Jacobi method, written in the
Richardson form.14

High-order algorithm: three equivalent forms of the
gain matrix

High-order algorithms of direct calculation of the para-
meter vector are described in Stotsky22

qk =qk�1 � Gn|{z}
gain

G0 fAiqk�1 � big|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
error

ð16Þ

Gn =
Xn�1

d=0

n!

(n� d)!d!
(� 1)n�d�1(G0Ai)

n�d�1 ð17Þ

~qk =Fn
0
~qk�1, ~qk =Fnk

0
~q0 ð18Þ

where n=1, 2, 3, ... is referred as an order of the algo-
rithm, k=1, 2, 3, ... and F0k k\ 1.

High-order algorithms are tabulated in Table 1. The
order of the algorithm is chosen according to the accu-
racy requirements. The order of the algorithm can be
easily increased recursively in algorithms (16) and (17)
by adding additional terms to the gain matrix. The gain

Stotsky 3
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matrix Gn of the algorithm of order n, where n=2, 3,
4, ..., is calculated recursively via the gain matrix Gn21

as follows

Gn =Gn�1 +F n�1
0 ð19Þ

where G1= I, and F n�1
0 is the gain increment. Identity

(19) is proved via explicit evaluation of the first differ-
ence Gn2Gn21, where Gn is defined in equation (17).
Gain matrix Gn can also be presented as Neumann
series as follows

Gn = I+F0|fflfflffl{zfflfflffl}
sec ond order, n=2

+F2
0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
third order, n=3

+F3
0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fourth order, n=4

+ � � � +Fn�1
0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
nth order

ð20Þ

and

Gn =
Xn�1

d=0

Fd
0:

Notice that incremental relation (19) depends on the
order only and does not depend on estimation error.
This relation allows to increase the order recursively
and plays a key role in algorithm (16). This relation has
a direct impact on the accuracy of estimation and
allows to associate the gain matrix with convergent
matrix series. This convergence property results in a
new notion of the infinite order algorithm, described in
the next section.

The infinite order algorithm: limiting form with
G‘= lim

n!‘
Gn

The gain matrix Gn =
Pn�1

d=0 F
d
0 converges to the matrix

(G0Ai)
21 as order n tends to infinity, that is

Gn =
Xn�1

d=0

Fd
0 ! (G0Ai)

�1 =A�1
i G�1

0 as n ! ‘

ð21Þ
where F0k k\ 1 and F0= I2G0Ai. Relation (21) fol-
lows directly from the convergence properties of the

matrix series (see theorem 5.6.15 in Horn and
Johnson26). Notice that the convergence rate of the
recursive matrix inversion algorithm based on
Neumann series is compared to the convergence rate of
the second-order algorithms (25) and (26) in Appendix
3 of Stotsky.9

Substitution of G‘ = lim
n!‘

Gn =A�1
i G�1

0 in equation
(16) results in the following identity qk= ui. Order n
quantifies the proximity between the gain matrix Gn and
the matrix A�1

i G�1
0 , which contains information about

the inverse of the information matrix and provides a
perfect estimation, where

Gn =(G0Ai)
�1 � (G0Ai)

�1(I� G0Ai)
n ð22Þ

I� GnG0Ai =(I� G0Ai)
n =Fn

0 ð23Þ
Substitution of Gn defined in equations (22) and (23)

in equation (16) results in error model (18). Finally, the
gain matrix Gn is presented in three equivalent forms
(17), (19) and (22), where equation (19) is used in imple-
mentation, equation (22) is useful for stability analysis
and equation (17) can be seen as intermediate form.

Notice that the product GnG0 in equation (16) can
also be seen as a composite preconditioner, in which Gn

is a polynomial preconditioner (see Chen14 for other
types of preconditioning).

Notice that the dynamics of the tracking error
ek=Aiqk2 bi can be presented as follows

ek =Ai qk�1 � Gn G0 fAiqk�1 � big|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ek�1

2
64

3
75� bi

=(I� AiGnG0)ek�1

ð24Þ

and substitution of G‘ =A�1
i G�1

0 in equation (24)
implies also that ek=0.

Notice also that algorithm (16) has two loops and
the estimation error can be minimized by (1) iterating
of qk for a fixed order and minimizing the error
Aiqk212 b and (2) increasing the order, where the gain
matrix converges to A�1

i G�1
0 .

High accuracy of estimation may be achieved in one
step, increasing the order of the algorithm. The perfor-
mance of the algorithm is illustrated in Figure 1, where
the error norm is plotted after the first iteration.

Inversion algorithms of an SDD matrix

Second-order algorithm

The parameter vector can be also calculated via equa-
tion (9) and an estimate of the inverse of the informa-
tion matrix. Strict diagonal dominance of the
information matrix Ai allows fast and computationally
efficient estimation of the inverse of information matrix
as follows

Gk =Gk�1 +Fk�1Gk�1 ð25Þ
Fk = I� GkAi ð26Þ

Table 1. A family of high-order algorithms.

Algorithms for direct calculation of parameters

qk=qk212GnG0 {Aiqk212 bi}, F0 = I2G0Ai, jF0j jj\ 1

Order Gain matrix Gn

1 I
2 I + F0
3 I+ F0 + F

2
0

4 I+ F0 + F
2
0 + F

3
0

... ...

n
Pn�1

d= 0

Fd0 ! (G0Ai)
�1 as n ! ‘
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where Gk is an estimate of the inverse of Ai, matrix Fk

is associated with the inversion error, I is the identity
matrix and k=1, 2, ... Algorithms (25) and (26) are
initialized according to equation (14), where inequality
(15) is valid.

Matrix Fk that represents the inversion error can be
written as follows

Fk = I� GkAi =F2k

0 ð27Þ
and lim

k!‘
Gk=A�1

i due to property (15).

Algorithms (25) and (26) can be derived from the fol-
lowing error model

Fk =F2
k�1 ð28Þ

I� GkAi =(I� Gk�1Ai)
2 ð29Þ

where equation (29) is solved with respect to Gk, and it
is called the second-order algorithm or Newton–Schulz
algorithm.15–17

High-order matrix inversion algorithm

A family of high-order matrix inversion algorithms is
derived from the following error model

Fk =Fm
k�1 ð30Þ

where m=2, 3, ... is referred as the order of the algo-
rithm, and Fk =Fmk

0 , where Fk and F0 are defined in
equations (26) and (14), respectively, k=1, 2, 3, ...

Solving equation (30) with respect to Gk yields

Gk =Gk�1 + Fk�1|ffl{zffl}
error

Lm|{z}
gain

Gk�1 ð31Þ

where Lm is a gain matrix, which is defined as follows

Lm =
Xm�2

d=0

(m� 1)!

(m� d� 1)!d!
(� 1)m�d�2(Gk�1Ai)

m�d�2

ð32Þ

The gain matrix of order m is calculated recursively
via the gain matrix of order m2 1 (similar to equation
(19)), where m=3, 4, 5, ... as follows

Lm =Lm�1 +F m�2
k�1 ð33Þ

where L2= I and Lm =
Pm�2

d=0 F
d
k�1. Notice that the

gain matrix Lm can be presented in the following form
Lm =(Gk�1Ai)

�1 � (Gk�1Ai)
�1F m�1

k�1 , m=2, 3, ..., and
error model (30) is obtained after substitution of this
gain matrix in equation (31).

High-order algorithms are tabulated in Table 2. The
performance of high-order algorithms is illustrated in
Figure 2, where the norm of the error matrix Fk is plotted
for three steps k=0, 1, 2 as a function of order m.

Notice that algorithms (31) and (33) are a unified
form of high-order algorithms described in
Soleymani,13 Li and Li21 and in many other articles.

The infinite order algorithm, m = N

The gain matrix Lm =
Pm�2

d=0 F
d
k�1 converges to the

matrix (Gk21 Ai)
21 as order m tends to infinity, that is

Lm =
Xm�2

d=0

Fd
k�1 ! (Gk�1Ai)

�1 =A�1
i G�1

k�1 as m ! ‘

ð34Þ

Table 2. A family of high-order matrix inversion algorithms.

Matrix inversion algorithms

Gk=Gk21 + Fk21LmGk21, Fk21 = I2Gk21Ai, jF0j jj\ 1

Order Gain update algorithm Lm

2 I
3 I + Fk21

4 I+ Fk�1 + F
2
k�1

5 I+ Fk�1 + F
2
k�1 + F

3
k�1

... ...

m
Pm�2

d= 0

Fdk�1 ! (Gk�1Ai)
�1 as m ! ‘

24681012
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Figure 2. The norm of the error matrix Fk is plotted for three
steps k= 0, 1, 2 as a function of order m.
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Figure 1. The error norm ~q1 =q1 � ui is plotted as function
of the order of algorithm (16) after the first step.
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where Fk�1k k\ 1. Substitution of L‘ =A�1
i G�1

k�1 in
equation (31) results in the following identity
Gk =A�1

i .

Combined high-order algorithms

Description of the algorithms

High-order algorithms described in section ‘‘High-order
algorithm: three equivalent forms of the gain matrix’’
and section ‘‘High-order matrix inversion algorithm’’
can be combined as follows

Fk�1 = I� Gk�1Ai|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
inversion error

ð35Þ

Lm =Lm�1 +F m�2
k�1 =

Xm�2

d=0

F d
k�1 ð36Þ

Gk =Gk�1 +Fk�1LmGk�1 ð37Þ
Fk = I� GkAi ð38Þ

Gn =Gn�1 +F n�1
k =

Xn�1

d=0

F d
k ð39Þ

qk =qk�1 � Gn Gk fAiqk�1 � big|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
estimation error

ð40Þ

where Gk is an estimate of the inverse of information
matrix Ai, Fk is an estimation error and qk is an esti-
mate of the parameter vector ui. Algorithms (35)–(40)
are initialized according to equation (14) with two para-
meters to be chosen. The first one is the order of the
matrix inversion algorithm m=2, 3, 4, ..., and the sec-
ond one is the order of the algorithm of direct calcula-
tion of the parameters n=1, 2, 3, ... These orders have
impact on the gain matrices Lm and Gn only. The com-
putational burden of the algorithm may be reduced
using the same calculations for Gn and Lm.

Notice that the substitution of L‘ =A�1
i G�1

k�1 and
G‘ =A�1

i G�1
k in equations (37) and (40) implies that

Gk =A�1
i and qk= ui. Matrix Gk can be seen as pre-

conditioner and matrices Lm and Gn are polynomial
preconditioners.

The following error model is valid for algorithms
(35)–(40)

~qk =F n
k
~qk�1 ð41Þ

Fk =F m
k�1 ð42Þ

where ~qk =qk � ui, k=1, 2, ... This model can be writ-
ten in the following form

~qk =F
n(mk+1�m)

(m�1)

0
~q0 ð43Þ

where F0= I2G0Ai, ~q0 =q0 � ui and F0k k\ 1, which
guarantees the system stability.

Which order n or m?

Two parameters should be chosen in algorithms
(35)–(40): order n and order m. Error model (43) can

be used to facilitate the choice of these orders. The
norm of the error ~q1 calculated in one step for two
cases is plotted in Figure 3. The norm of the second-
order matrix inversion algorithm, m=2, is plotted
with a red solid line for the order of the algorithm of
direct calculation of the parameter vector which is
equal to n=1, 2, 3, 4, 5. The same norm for the first-
order algorithm of direct calculation of the para-
meter vector, n=1, is plotted with a blue dashed line
for the order of the matrix inversion algorithm which
is equal to m=2, 3, 4, 5. The figure shows that
higher order of the algorithm of direct calculation of
the parameter vector should be chosen that essen-
tially reduces estimation error. Notice that the error
model for m=2 and n=5 and for n=1 and m=5
gets the form ~q1 =F 10

0
~q0 and ~q1 =F 5

0
~q0, respec-

tively, with k=1.

Conclusion

RLS algorithms, which are widely used in practice aim-
ing to reduce computational complexity, suffer from
round-off error accumulation problem. This is a main
obstacle to real-time implementation of RLS algo-
rithms and motivation to look back on classical solu-
tions of algebraic equations. These solutions are
usually computationally expensive, which is again an
obstacle to real-time implementation. The performance
of classical methods can be improved by taking into
account the properties of the information matrix,
which is an SDD matrix for systems with harmonic
regressor. This idea attracted significant research
efforts in recent years related to exact methods of solu-
tion of algebraic equations7 and recursive meth-
ods.13,18,21 Recursive methods provide solutions with
controllable accuracy. Moreover, high-order algo-
rithms allow also to control the number of steps to
achieve this high accuracy. Computational complexity
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Figure 3. The error norm ~q1 =q1 � ui is plotted as a function
of orders n and m of algorithms (35)–(40) after the first step.
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of high-order algorithms necessitates simplifications.
The algorithms are presented in this article as recursive
procedures driven by estimation errors multiplied by
the gain matrices. A simple incremental algorithm for
update of the gain matrices is found, and the gain
matrix is associated with Neumann series. Moreover, a
new notion of infinite order algorithm (the limiting
form) is introduced for quantification of the proximity
between high-order estimator and perfect estimator.
The results provide a new unification method for high-
order algorithms with simplified structure, which
makes algorithms implementable.
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