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Abstract We derive an integral representation for the Jacobi–Poisson kernel valid for
all admissible type parametersα, β in the context of Jacobi expansions. This enables us
to develop a technique for proving standard estimates in the Jacobi setting that works
for all possible α and β. As a consequence, we can prove that several fundamental
operators in the harmonic analysis of Jacobi expansions are (vector-valued) Calderón–
Zygmund operators in the sense of the associated space of homogeneous type, and
hence their mapping properties follow from the general theory. The new Jacobi–
Poisson kernel representation also leads to sharp estimates of this kernel. The paper
generalizes methods and results existing in the literature but valid or justified only for
a restricted range of α and β.
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1 Introduction

This paper is a continuation and completion of the research performed recently in [28]
by the first and second authors. Given parameters α, β > −1, consider the Jacobi
differential operator

J α,β = − d2

dθ2 − α − β + (α + β + 1) cos θ

sin θ

d

dθ
+
(
α + β + 1

2

)2

on the interval [0, π ] equipped with the (doubling) measure

dμα,β(θ) =
(

sin
θ

2

)2α+1 (
cos

θ

2

)2β+1

dθ.

This operator, acting initially on C2
c (0, π), has a natural self-adjoint extension in

L2(dμα,β), whose spectral decomposition is discrete and given by the classical Jacobi
polynomials. Various aspects of harmonic analysis related to the Jacobi setting have
been studied in the literature. This line of research goes back to the seminal work of
Muckenhoupt and Stein [26], in which the ultraspherical case (α = β) was investi-
gated. Later, several other authors contributed to the subject, see [28, Section 1] and
also the end of [28, Section 2] for a detailed account and references. Actually, for the
sake of completeness, that account should be augmented by further references, like
[3,4,6,13–16,19,20,23]. Certain extensions of the ultraspherical and Jacobi settings
related to Dunkl’s theory were investigated from the harmonic analysis perspective in
[24,25].

The main result of [28] is restricted to α, β ≥ −1/2. It states that several fun-
damental operators in the harmonic analysis of Jacobi expansions, including Riesz
transforms, imaginary powers of the Jacobi operator, the Jacobi–Poisson semigroup
maximal operator, and Littlewood–Paley–Stein type square functions, are (vector-
valued) Calderón–Zygmund operators. Consequently, their L p mapping properties
follow from the general theory. The proofs in [28] rely on an integral formula for the
Jacobi–Poisson kernel derived in [28] from a product formula for Jacobi polynomials
due to Dijksma and Koornwinder [17]. Unfortunately, the latter result is not valid if
either α < −1/2 or β < −1/2, and this limitation is inherited by the above-mentioned
Jacobi–Poisson kernel representation. Thus the technique of proving estimates for ker-
nels defined via the Jacobi–Poisson kernel developed in [28] is designed for the case
α, β ≥ −1/2. The object of the present paper is to eliminate this restriction in the
parameter values, which will require some new techniques.

Our method starts with the deduction of an integral representation of the Jacobi–
Poisson kernel, valid for all α, β > −1, see Proposition 2.3. This formula contains as
a special case the one obtained in [28, Proposition 4.1] for α, β ≥ −1/2 and is more
involved if either α or β is less than −1/2. Then we establish a suitable generalization
to all α, β > −1 of the strategy employed in [28] to prove standard estimates [see
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(15)–(17) below] for kernels expressible via the Jacobi–Poisson kernel. To achieve
this, some essentially new arguments are required, and the method allows a unified
treatment of all parameter values α, β > −1.

As an application of these techniques, we prove that the maximal operator of the
Jacobi–Poisson semigroup, the Riesz–Jacobi transforms, Littlewood–Paley–Stein type
square functions and multipliers of Laplace and Laplace–Stieltjes transform type are
scalar-valued or vector-valued Calderón–Zygmund operators, in the sense of the space
of homogeneous type ([0, π ], dμα,β, | · |); see Theorem 5.1. This extends to all α, β >
−1 several results for α, β ≥ −1/2 obtained in [28] and earlier papers, as well as
results on the two kinds of Laplace transform type multipliers that follow from the
recent work of Langowski [22]. Our technique is well suited to a wider variety of
operators, including more general forms of g-functions and Lusin area type integrals.
In a similar spirit, analogous problems concerning analysis for “low” values of type
parameters were recently investigated in the Laguerre [30], Bessel [8], and certain
Dunkl [9] settings.

The Jacobi–Poisson kernel representation derived in Proposition 2.3 makes it possi-
ble to describe the exact behavior of the kernel; see Theorem 6.1. The sharp estimates
we prove extend to all α, β > −1 the bounds found not long ago by Nowak and
Sjögren [29, Theorem A.1 in the Appendix] under the restriction α, β ≥ −1/2. An
important application of Theorem 6.1 are the sharp estimates for potential kernels in
the Jacobi and Fourier–Bessel settings proved recently by Nowak and Roncal [27].
Moreover, Theorem 6.1 readily implies explicit sharp bounds for the nonspectral vari-
ant of the Jacobi–Poisson kernel sometimes called the Watson kernel and given by
(see [2, Lecture 2] or [1, p. 385])

∞∑
n=0

rn Pα,βn (x)Pα,βn (y)

hα,βn

.

Here 0 < r < 1, x, y ∈ [−1, 1], Pα,βn are the classical Jacobi polynomials, and hα,βn
are suitable normalizing constants. Recently an upper bound for the Watson kernel
was obtained by Calderón and Urbina [5], and some earlier results in this spirit can be
found in [4,6,14,23] (see also [15]). We remark that our results concerning mapping
properties of the Jacobi–Poisson semigroup maximal operator, see Corollary 5.2, lead
in a straightforward manner to analogous results for the maximal operator related to
the Watson kernel and investigated in [3–6,16].

It is worth noting that there are further interesting applications of our Jacobi–Poisson
kernel representation. For instance, in [7] it is used to obtain a principal value integral
representation for the Riesz–Jacobi transforms. On the other hand, in [10–12,22,34]
(see also [35]), the authors make use of the integral representation for the Jacobi–
Poisson kernel derived in [28, Proposition 4.1], which is restricted to α, β ≥ −1/2.
The Jacobi–Poisson kernel formula obtained in Proposition 2.3 should thus make it
possible to extend the relevant results in these papers to a wider range of α, β. This,
however, remains to be investigated.

The paper is organized as follows. In Sect. 2, we derive an integral representation
of the Jacobi–Poisson kernel valid for all α, β > −1. Section 3 contains various facts
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and preparatory results needed for kernel estimates. In Sect. 4, we prove standard
estimates for kernels associated with the operators mentioned above. This leads to
our main results in Sect. 5, saying that the operators in question can be interpreted
as Calderón–Zygmund operators and giving, as a consequence, their L p mapping
properties. Finally, Sect. 6 is devoted to sharp estimates of the Jacobi–Poisson kernel.

Throughout the paper, we use a fairly standard notation with essentially all symbols
referring to the space of homogeneous type ([0, π ], dμα,β, | · |). Since the distance
in this space is the Euclidean one, the ball denoted B(θ, r) is simply the interval
(θ − r, θ + r) ∩ [0, π ]. When writing estimates, we will frequently use the notation
X � Y to indicate that X ≤ CY with a positive constant C independent of significant
quantities. We shall write X � Y when simultaneously X � Y and Y � X .

2 The Jacobi–Poisson Kernel

Let α, β > −1. The Jacobi–Poisson kernel is given by (see [28, Section 2])

Hα,β
t (θ, ϕ) =

∞∑
n=0

e
−t

∣∣∣n+ α+β+1
2

∣∣∣Pα,β
n (θ)Pα,β

n (ϕ);

here t > 0 and θ, ϕ ∈ [0, π ], and Pα,β
n are the classical Jacobi trigonometric polyno-

mials, normalized in L2(dμα,β). This is the kernel of the Jacobi–Poisson semigroup{
exp

(− t
√J α,β

)}
t>0, since each Pα,β

n is an eigenfunction of J α,β , with eigenvalue(
n + α+β+1

2

)2. Notice that the fraction α+β+1
2 may be negative. Defining the auxiliary

kernel

H
α,β
t (θ, ϕ) :=

∞∑
n=0

e
−t

(
n+ α+β+1

2

)
Pα,β

n (θ)Pα,β
n (ϕ),

the Jacobi–Poisson kernel can be written as

Hα,β
t (θ, ϕ) = H

α,β
t (θ, ϕ)+ χ{α+β<−1} 2α+β+2cα,β sinh

(
α + β + 1

2
t

)
, (1)

where

cα,β := �(α + β + 2)

2α+β+1�(α + 1)�(β + 1)
.

As we shall see later, there are important cancellations between the two terms in (1)
for large t .
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The kernel H
α,β
t (θ, ϕ) can be computed explicitly by means of Bailey’s formula,

see [1, pp. 385–387]. More precisely, we have

H
α,β
t (θ, ϕ) = cα,β

sinh t
2(

cosh t
2

)α+β+2

× F4

⎛
⎝α + β + 2

2
,
α + β + 3

2
;α + 1, β + 1;

(
sin θ

2 sin ϕ
2

cosh t
2

)2

,

(
cos θ2 cos ϕ2

cosh t
2

)2
⎞
⎠ , (2)

for t > 0 and θ, ϕ ∈ [0, π ]. Here F4 is Appel’s hypergeometric function of two
variables defined by the series

F4(a1, a2; b1, b2; x, y) =
∞∑

m,n=0

(a1)m+n(a2)m+n

(b1)m(b2)nm!n! xm yn,

where (a)n means the Pochhammer symbol, (a)n = a(a + 1) · · · · · (a + n − 1)
for n ≥ 1 and (a)0 = 1. This double power series is known to converge absolutely
when

√|x | + √|y| < 1, cf. [18, Chapter V, Section 5.7.2]. From this expression, the
positivity of H

α,β
t (θ, ϕ) can easily be seen. Moreover, (2) provides a holomorphic

extension of H
α,β
t (θ, ϕ) as a function of the parameters α, β > −1 to the region

{(α, β) ∈ C
2 : 	α,	β > −1}. Indeed, with t > 0 and θ, ϕ ∈ [0, π ] fixed, the

hypergeometric series in (2) is a sum of holomorphic functions of (α, β) converging
locally uniformly in the region in question (the latter fact can be justified by means
of elementary estimates for the Pochhammer symbol). However, the formula (2) does
not seem to be convenient from the point of view of kernel estimates. Thus we need a
more suitable representation.

In [28, Section 4], the first and second authors derived the following integral rep-
resentation, valid for α, β ≥ −1/2 (notice that under this restriction Hα,β

t (θ, ϕ) coin-
cides with H

α,β
t (θ, ϕ)):

H
α,β
t (θ, ϕ) = cα,β sinh

t

2

∫∫
d	α(u) d	β(v)

(cosh t
2 − 1 + q(θ, ϕ, u, v))α+β+2

, (3)

for t > 0 and θ, ϕ ∈ [0, π ]. Here

q(θ, ϕ, u, v) = 1 − u sin
θ

2
sin

ϕ

2
− v cos

θ

2
cos

ϕ

2
,

and the measure d	α is defined in the following way. For α > −1/2, we let

	α(u) := �(α + 1)√
π�(α + 1/2)

∫ u

0
(1 − w2)α−1/2 dw, (4)
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which is an odd function in −1 < u < 1. Then d	α is a probability measure in [−1, 1].
As α → −1/2, one finds that d	α converges weakly to the measure d	−1/2 :=
1
2 (δ−1 + δ1), where δ±1 denotes a point mass at ±1.

Now we observe that (4) can be extended to all complex α �= −1/2 with 	α > −1.
Then the (distribution) derivative

d	α(u) = �(α + 1)√
π�(α + 1/2)

(
1 − u2

)α−1/2
du

is a local complex measure in (−1, 1). For α ∈ (−1,−1/2) real, its density is neg-
ative, even, and not integrable in (−1, 1). If φ is a continuous function in (−1, 1)
and φ(u) = O(1 − u) as u → 1, then the integral I (α) = ∫ 1

0 φ(u) d	α(u) is
well defined. As a function of α, this integral is analytic in {α : 	α > −1, α �=
−1/2}. Since |I (α)| � |α + 1/2| ∫ 1

0 (1 − u2)	α+1/2 du → 0 as α → −1/2, we
see that I (α) is actually analytic in {α : 	α > −1} and I (−1/2) = 0. More gen-
erally, if φα,β(u) is continuous in (u, α, β) and analytic in (α, β) for −1 < u <

1 and 	α,	β > −1, and φα,β(u) = O(1 − u) locally uniformly in (α, β), then

I (α, β) = ∫ 1
0 φα,β(u) d	α(u)will be analytic in (α, β) in 	α,	β > −1. Under anal-

ogous assumptions, this also extends to functions φα,β(u, v) and the double integral
I (α, β) = ∫∫

(0,1)2 φα,β(u, v) d	α(u) d	β(v), if one assumes φα,β(u, v) = O((1 −
u)(1 − v)) locally uniformly in α and β.

The measures d	α will now be used to extend the representation (3) to the range
α, β > −1. Define

�α,β(t, θ, ϕ, u, v) := cα,β sinh t
2

(cosh t
2 − 1 + q(θ, ϕ, u, v))α+β+2

. (5)

Taking the even parts of �α,β(t, θ, ϕ, u, v) in u and v, we also define

�
α,β
E (t, θ, ϕ, u, v) := 1

4

∑
ξ,η=±1

�α,β(t, θ, ϕ, ξu, ηv).

Notice that by (3) and for symmetry reasons, we have for α, β ≥ −1/2,

H
α,β
t (θ, ϕ) = 4

∫∫

(0,1]2

�
α,β
E (t, θ, ϕ, u, v) d	α(u) d	β(v). (6)

We can now state a general integral representation of H
α,β
t (θ, ϕ).

Theorem 2.1 For all α, β > −1, t > 0 and θ, ϕ ∈ [0, π ],
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H
α,β
t (θ, ϕ) = 4

∫∫

(0,1]2

(
�
α,β
E (t, θ, ϕ, u, v)−�

α,β
E (t, θ, ϕ, u, 1) (7)

−�α,βE (t, θ, ϕ, 1, v)+�
α,β
E (t, θ, ϕ, 1, 1)

)
d	α(u) d	β(v)

+ 2
∫
(0,1]

(
�
α,β
E (t, θ, ϕ, u, 1)−�

α,β
E (t, θ, ϕ, 1, 1)

)
d	α(u)

+ 2
∫
(0,1]

(
�
α,β
E (t, θ, ϕ, 1, v)−�

α,β
E (t, θ, ϕ, 1, 1)

)
d	β(v)

+�
α,β
E (t, θ, ϕ, 1, 1).

Proof For α, β ≥ −1/2, (7) is an easy consequence of (6). Withφα,β(u) = �
α,β
E (t, θ,

ϕ, u, 1) − �
α,β
E (t, θ, ϕ, 1, 1), the second integral in (7) is of the form I (α, β) just

described; observe that φα,β(u) = O(1−u) as u → 1, since the derivative ∂�α,βE /∂u
is bounded locally uniformly in α and β. The third integral in (7) is similar. For the
double integral, we let

φα,β(u, v) = �
α,β
E (t, θ, ϕ, u, v)−�

α,β
E (t, θ, ϕ, u, 1)

−�α,βE (t, θ, ϕ, 1, v)+�
α,β
E (t, θ, ϕ, 1, 1)

and get a double integral of type I (α, β).
The conclusion is that the right-hand side of (7) is analytic in (α, β) ∈ {z : 	z >

−1}2. Theorem 2.1 follows, since the left-hand side is also analytic. �
We remark that in Theorem 2.1, it does not matter whether one integrates over the

open interval (0, 1) or over (0, 1], even when the measure is d	−1/2. But subsequently,
it will be more convenient to use (0, 1].

Next we restate the formula of Theorem 2.1 in order to obtain a more suitable
representation of H

α,β
t (θ, ϕ) for the kernel estimates in Sect. 4. Recall that for −1 <

α < −1/2,	α(u) is an odd function, which is negative for u > 0. It can easily be
verified that the density |	α(u)| defines a finite measure on [−1, 1]. In fact, we have
the following.

Lemma 2.2 Let −1 < α < −1/2 be fixed. Then

|	α(u)| � |u|(1 − |u|)α+1/2 � |u|d	α+1(u)

du
, u ∈ (−1, 1).

Proof These three quantities are even in u, and we need consider only u ∈ (0, 1). It
is enough to observe that then |	α(u)| � ∫ u

0 (1 − w)α−1/2 dw. �
Proposition 2.3 Let t > 0 and θ, ϕ ∈ [0, π ].

(i) If α, β ≥ −1/2, then

H
α,β
t (θ, ϕ) =

∫∫
�α,β(t, θ, ϕ, u, v) d	α(u) d	β(v).
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(ii) If −1 < α < −1/2 ≤ β, then

H
α,β
t (θ, ϕ) =

∫∫ {−∂u�
α,β(t, θ, ϕ, u, v)	α(u) du d	β(v)

+�α,β(t, θ, ϕ, u, v) d	−1/2(u) d	β(v)
}
.

(iii) If −1 < β < −1/2 ≤ α, then

H
α,β
t (θ, ϕ) =

∫∫ {−∂v�α,β(t, θ, ϕ, u, v) d	α(u)	β(v) dv

+�α,β(t, θ, ϕ, u, v) d	α(u) d	−1/2(v)
}
.

(iv) If −1 < α, β < −1/2, then

H
α,β
t (θ, ϕ) =

∫∫ {
∂u∂v�

α,β(t, θ, ϕ, u, v)	α(u) du	β(v) dv

− ∂u�
α,β(t, θ, ϕ, u, v)	α(u) du d	−1/2(v)

− ∂v�
α,β(t, θ, ϕ, u, v) d	−1/2(u)	β(v) dv

+�α,β(t, θ, ϕ, u, v) d	−1/2(u) d	−1/2(v)
}
.

Here and in similar integrals in Sect. 6, it is understood that the integration in du
and dv is only over (−1, 1).

Proof of Proposition 2.3 Item (i) is just (3). To prove the remaining items, we com-
bine Theorem 2.1, Lemma 2.2, and symmetries of the quantity �α,βE (t, θ, ϕ, u, v), its
derivatives in u and v, and the measures involved. We give further details in the case
of (ii), leaving similar proofs of (iii) and (iv) to the reader.

Assume that −1 < α < −1/2 ≤ β. Since d	β is a symmetric probability measure
on [−1, 1] and has no atom at 0, formula (7) reduces to

H
α,β
t (θ, ϕ) = 4

∫∫

(0,1]2

(
�
α,β
E (t, θ, ϕ, u, v)−�

α,β
E (t, θ, ϕ, 1, v)

)
d	α(u) d	β(v)

+ 2
∫
(0,1]

�
α,β
E (t, θ, ϕ, 1, v) d	β(v)

≡ I1 + I2.

Then, expressing�α,βE via�α,β and making use of the symmetry of d	β , we see that

I2 = 4
∫∫

(0,1]2

�
α,β
E (t, θ, ϕ, u, v) d	−1/2(u) d	β(v)

=
∫∫

�α,β(t, θ, ϕ, u, v) d	−1/2(u) d	β(v).
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In I1 we integrate by parts in the u variable, which is legitimate in view of Lemma 2.2.
Observe that the integrand in I1 vanishes for u = 1 and that 	α(0) = 0. We get

I1 = −4
∫∫

(0,1]2

∂u�
α,β
E (t, θ, ϕ, u, v)	α(u) du d	β(v).

Inserting the definition of the symmetrization �α,βE , one easily finds that

I1 = −
∫∫

∂u�
α,β(t, θ, ϕ, u, v)	α(u) du d	β(v).

The conclusion follows. �
Remark 2.4 All the representations of H

α,β
t (θ, ϕ) contained in Proposition 2.3 are

positive in the sense that each of the double integrals [there are one of these in (i), two
in (ii) and in (iii), and four in (iv)] is nonnegative.

3 Preparatory Results

In this section, we gather various technical results, altogether forming a transparent and
convenient method of proving standard estimates for kernels defined via the Jacobi–
Poisson kernel. The essence of this technique is a uniform way of handling double
integrals against products of measures of type d	γ and 	γ (u) du. The resulting
expressions contain only elementary functions and are relatively simple.

The result below, which is a generalization of [28, Lemma 4.3], plays a crucial role
in our method to prove kernel estimates. It provides a link from estimates emerging
from the integral representation of H

α,β
t (θ, ϕ), see Proposition 2.3, to the standard

estimates related to the space of homogeneous type ([0, π ], dμα,β, | · |).
Lemma 3.1 Let α, β > −1. Assume that ξ1, ξ2, κ1, κ2 ≥ 0 are fixed and such that
α + ξ1 + κ1, β + ξ2 + κ2 ≥ −1/2. Then, uniformly in θ, ϕ ∈ [0, π ], θ �= ϕ,

(
sin

θ

2
+ sin

ϕ

2

)2ξ1
(

cos
θ

2
+ cos

ϕ

2

)2ξ2 ∫∫ d	α+ξ1+κ1(u) d	β+ξ2+κ2(v)

q(θ, ϕ, u, v)α+β+ξ1+ξ2+3/2

� 1

μα,β(B(θ, |θ − ϕ|)) .

Note that for any fixed α, β > −1, the μα,β measure of the interval B(θ, |θ − ϕ|)
can be described as follows, see [28, Lemma 4.2]:

μα,β(B(θ, |θ−ϕ|)) � |θ−ϕ|(θ+ϕ)2α+1(π−θ+π−ϕ)2β+1, θ, ϕ ∈ [0, π ]. (8)

Notice also that the right-hand side of the estimate in Lemma 3.1 is always larger
than the positive constant 1/μα,β([0, π ]). This fact will be used subsequently without
further mention.
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To prove Lemma 3.1, we need item (b) in the simple lemma below.

Lemma 3.2 Let κ ≥ 0 and γ and ν be such that γ > ν + 1/2 ≥ 0. Then

(a)

∫
d	ν(s)

(D − Bs)κ(A − Bs)γ
� 1

(D − B)κ Aν+1/2(A − B)γ−ν−1/2

uniformly for 0 ≤ B < A ≤ D;

(b)

∫
d	ν+κ (s)
(A − Bs)γ

� 1

Aν+1/2(A − B)γ−ν−1/2 , 0 ≤ B < A.

Proof Part (a) is proved in [29, Appendix]. Part (b) can easily be deduced from (a)
since the integral to be estimated is controlled by the same integral with κ = 0. �
Proof of Lemma 3.1 The reasoning is a combination of the arguments given in the
proofs of [30, Lemma 2.1] and [28, Lemma 4.3]. Observe that we may reduce the task
to showing that

∫∫
d	α+κ1(u) d	β+κ2(v)

q(θ, ϕ, u, v)α+β+3/2 � 1

μα,β(B(θ, |θ − ϕ|)) , θ, ϕ ∈ [0, π ], θ �= ϕ, (9)

under the assumption α+κ1, β+κ2 ≥ −1/2. Indeed, applying (9) with α+ξ1, β+ξ2
instead of α, β, and then using (8), we obtain

(
sin

θ

2
+ sin

ϕ

2

)2ξ1
(

cos
θ

2
+ cos

ϕ

2

)2ξ2 ∫∫ d	α+ξ1+κ1(u) d	β+ξ2+κ2(v)

q(θ, ϕ, u, v)α+β+ξ1+ξ2+3/2

� (θ + ϕ)2ξ1 (π − θ + π − ϕ)2ξ2
1

μα+ξ1,β+ξ2(B(θ, |θ − ϕ|))
� 1

μα,β(B(θ, |θ − ϕ|)) .

To prove (9), it is convenient to distinguish two cases.
Case 1 α, β ∈ (−1,−1/2). Taking into account the estimates, see [28, (21)],

|θ − ϕ|2 � 2 sin2 θ − ϕ

4
≤ q(θ, ϕ, u, v) ≤ 2 cos2 θ − ϕ

4
≤ 2,

where θ, ϕ ∈ [0, π ], u, v ∈ [−1, 1], and using the fact that d	α+κ1 and d	β+κ2 are
finite, we get

∫∫
d	α+κ1(u) d	β+κ2(v)

q(θ, ϕ, u, v)α+β+3/2 � 1

|θ − ϕ|2α+1|θ − ϕ|2β+1|θ − ϕ| + χ{α+β+3/2<0}.

123



Constr Approx (2015) 41:185–218 195

Then using the inequalities |θ − ϕ| ≤ θ + ϕ and |θ − ϕ| ≤ π − θ + π − ϕ together
with (8), we obtain (9).
Case 2 At least one of the parameters α, β is in [−1/2,∞), say β ≥ −1/2. Proceeding
as in the proof of [28, Lemma 4.3] but applying Lemma 3.2 (b) instead of [28, Lemma
4.4] to the integral against d	β+κ2 , we see that

∫∫
d	α+κ1(u) d	β+κ2(v)

q(θ, ϕ, u, v)α+β+3/2 � 1

(π − θ + π − ϕ)2β+1

∫
d	α+κ1(u)

q(θ, ϕ, u, 1)α+1 .

When α ≥ −1/2, another application of Lemma 3.2 (b) leads to (9), see the proof
of [28, Lemma 4.3]. If α ∈ (−1,−1/2), we can apply the arguments from Case 1,
getting

∫
d	α+κ1(u)

q(θ, ϕ, u, 1)α+1 � 1

|θ − ϕ|2α+2 ≤ 1

(θ + ϕ)2α+1|θ − ϕ| .

Now using (8), we arrive at the desired conclusion.
The proof of Lemma 3.1 is complete. �
The remaining part of this section contains various technical results, which will

allow us to control the relevant kernels by means of Lemma 3.1. To state the next
lemma and also for further use, we introduce the following notation. We will omit
the arguments and write briefly q instead of q(θ, ϕ, u, v), when it does not lead to
confusion. For a given parameter λ ∈ R, we define the auxiliary function

�λ(t, q) := sinh t
2

(cosh t
2 − 1 + q)λ

,

so that �α,β(t, θ, ϕ, u, v) = cα,β�α+β+2(t, q); see (5).

Lemma 3.3 Let λ ∈ R,M, N ∈ N = {0, 1, 2, . . .} and K , R, L ∈ {0, 1} be fixed.
Then

∣∣∂K
u ∂

R
v ∂

L
ϕ ∂

N
θ ∂

M
t �

λ(t, q)
∣∣

�
∑

k,r=0,1,2

(
sin

θ

2
+ sin

ϕ

2

)K k (
cos

θ

2
+ cos

ϕ

2

)Rr

× 1

(t2 + q)λ+(L+N+M−1+K k+Rr)/2
,

uniformly in t ∈ (0, 1], θ, ϕ ∈ [0, π ] and u, v ∈ [−1, 1].
To prove this lemma, we need two preparatory results. One of them is Faà di Bruno’s

formula for the N th derivative, N ≥ 1, of the composition of two functions (see [21]
for related references and interesting historical remarks). With D denoting the ordinary
derivative, it reads

123



196 Constr Approx (2015) 41:185–218

DN (g ◦ f )(θ) =
∑ N !

j1! · · · · · jN !
(

D j1+···+ jN g
)

◦ f (θ)

×
(

D1 f (θ)

1!
) j1

· · · · ·
(

DN f (θ)

N !
) jN

, (10)

where the summation runs over all j1, . . . , jN ≥ 0 such that j1+2 j2+· · ·+N jN = N .
Further, in the proof of Lemma 3.3, we will make use of the following bounds given
in [28].

Lemma 3.4 [28, Lemma 4.5] For all θ, ϕ ∈ [0, π ] and u, v ∈ [−1, 1], one has

∣∣∂θq∣∣ � √
q and

∣∣∂ϕq∣∣ � √
q.

Proof of Lemma 3.3 Given λ ∈ R, we introduce the auxiliary function

�̃λ(t, q) := 1

sinh t
2

�λ(t, q) = 1

(cosh t
2 − 1 + q)λ

.

We first reduce our task to showing the estimate

∣∣∂K
u ∂

R
v ∂

L
ϕ ∂

N
θ �̃

λ(t, q)
∣∣

�
∑

k,r=0,1,2

(
sin

θ

2
+ sin

ϕ

2

)K k (
cos

θ

2
+ cos

ϕ

2

)Rr 1

(t2 + q)λ+(L+N+K k+Rr)/2

(11)

for t ∈ (0, 1], θ, ϕ ∈ [0, π ] and u, v ∈ [−1, 1]; here λ ∈ R, N ∈ N and K , R, L ∈
{0, 1} are fixed.

Observe that

�λ(t, q) = cλ

{
∂t

1

(cosh t
2 −1+q)

λ−1 , λ �= 1,

∂t log
(
cosh t

2 − 1 + q
)
, λ = 1,

where cλ is a constant, possibly negative. Using Faà di Bruno’s formula (10) with
f (t) = cosh t

2 − 1 + q and either g(x) = x−λ+1 or g(x) = log x , we obtain

∂M
t �

λ(t, q) = cλ ∂
M+1
t (g ◦ f )(t)

=
∑
ji ≥0

j1+···+(M+1) jM+1=M+1

Cλ, j

(
sinh

t

2

)∑
odd i ji

×
(

cosh
t

2

)∑
even i ji

�̃λ−1+∑
i ji (t, q),
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where the Cλ, j are constants, possibly zero. Differentiating these identities with respect
to θ, ϕ, u, v and then applying (11) and the relations

cosh
t

2
� 1, sinh

t

2
� t ≤

√
t2 + q, t ∈ (0, 1],

we see that

∣∣∂K
u ∂

R
v ∂

L
ϕ ∂

N
θ ∂

M
t �

λ(t, q)
∣∣ �

∑
ji ≥0

j1+···+(M+1) jM+1=M+1

∑
k,r=0,1,2

(
sin

θ

2
+ sin

ϕ

2

)K k

×
(

cos
θ

2
+ cos

ϕ

2

)Rr

× 1

(t2 + q)λ−1+∑
i ji −(∑odd i ji )/2+(L+N+K k+Rr)/2

.

Now by the boundedness of q and the inequality

∑
i

ji − 1

2

∑
odd i

ji ≤ M + 1

2
, (12)

forced by the constraint j1 + · · · + (M + 1) jM+1 = M + 1, we get the asserted
estimate. Thus it remains to prove (11).

We assume that N ≥ 1. The simpler case N = 0 is left to the reader. Taking into
account the relations

∂2m
θ q = (−4)−m(q − 1), ∂2m−1

θ q = (−4)1−m∂θq, m ≥ 1,

see [28, Section 4], and using Faà di Bruno’s formula with f (θ) = cosh t
2 − 1 + q

and g(x) = x−λ, we get

∂N
θ �̃

λ(t, q) =
∑
ji ≥0

j1+···+N jN =N

cλ, j
1(

cosh t
2−1+q

)λ+∑
i ji
(q−1)

∑
even i ji (∂θq)

∑
odd i ji ,

where the cλ, j are constants. Further, keeping in mind that L , R, K ∈ {0, 1} and
applying repeatedly Leibniz’ rule, we see that ∂L

ϕ ∂
N
θ �̃

λ(t, q) is a sum of terms of the
form constant times

1(
cosh t

2 − 1 + q
)λ+∑

i ji +l1
(∂ϕq)

l1+l2(q − 1)
∑

even i ji −l2(∂θq)
∑

odd i ji −l3(∂ϕ∂θq)
l3 ,

where the indices run over the set described by the conditions ji ≥ 0, j1+· · ·+N jN =
N , l1, l2, l3 ≥ 0, l1 + l2 + l3 = L , and the exponents of q−1 and ∂θq are nonnegative.
Similarly, ∂ R

v ∂
L
ϕ ∂

N
θ �̃

λ(t, q) is a sum of terms of the form constant times
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1(
cosh t

2 − 1 + q
)λ+∑

i ji +l1+r1
(∂vq)

r1+r3(∂ϕq)
l1+l2−r2(∂v∂ϕq)

r2(q − 1)
∑

even i ji −l2−r3

× (∂θq)
∑

odd i ji −l3−r4(∂v∂θq)
r4(∂ϕ∂θq)

l3−r5(∂v∂ϕ∂θq)
r5 ,

where also r1, . . . , r5 ≥ 0, r1 + · · · + r5 = R, l1 + l2 ≥ r2, l3 ≥ r5. Finally, since the
derivative ∂u∂vq vanishes, ∂K

u ∂
R
v ∂

L
ϕ ∂

N
θ �̃

λ(t, q) is a sum of terms of the form constant
times

1

(cosh t
2 − 1 + q)λ+

∑
i ji +l1+r1+k1

(∂uq)k1+k3(∂vq)
r1+r3(∂ϕq)

l1+l2−r2−k2(∂u∂ϕq)
k2

× (∂v∂ϕq)
r2(q − 1)

∑
even i ji −l2−r3−k3(∂θq)

∑
odd i ji −l3−r4−k4(∂u∂θq)

k4

× (∂v∂θq)
r4(∂ϕ∂θq)

l3−r5−k5(∂u∂ϕ∂θq)
k5(∂v∂ϕ∂θq)

r5 .

Here we must add the conditions k1, . . . , k5 ≥ 0, k1 + · · · + k5 = K , and replace
l1 + l2 ≥ r2, l3 ≥ r5 by l1 + l2 ≥ r2 + k2, l3 ≥ r5 + k5. We shall estimate all the
factors in this product from above. Since t ≤ 1, we can replace cosh t

2 − 1 + q by
t2 + q. The quantities q and ∂ϕ∂θq are bounded. Further, we apply Lemma 3.4 to get

|∂ϕq| + |∂θq| � √
q ≤

√
t2 + q.

To deal with the resulting exponent of 1/(t2 + q), we observe that

l1 − l2 + l3 ≤ L ,
∑

i

ji − 1

2

∑
odd i

ji ≤ N

2
,

cf. (12). Using also the estimates

|∂uq| ≤ (
sin θ

2 + sin ϕ
2

)2
, |∂vq| ≤ (

cos θ2 + cos ϕ2
)2
,

|∂θ∂uq| + |∂ϕ∂uq| ≤ sin θ
2 + sin ϕ

2 , |∂θ∂vq| + |∂ϕ∂vq| ≤ cos θ2 + cos ϕ2 ,|∂ϕ∂θ∂uq| ≤ 1, |∂ϕ∂θ∂vq| ≤ 1,

we infer that

∣∣∂K
u ∂

R
v ∂

L
ϕ ∂

N
θ �̃

λ(t, q)
∣∣ �

∑
r1+···+r5=R
k1+···+k5=K

(
sin

θ

2
+ sin

ϕ

2

)2k1+2k3+k2+k4

×
(

cos
θ

2
+ cos

ϕ

2

)2r1+2r3+r2+r4

× 1

(t2 + q)λ+(N+L+2k1+k2+k4+2r1+r2+r4)/2
.

Notice that 2k1 + k2 + k4 ∈ {0, K , 2K }, and similarly 2r1 + r2 + r4 ∈ {0, R, 2R}.
This observation leads directly to (11).
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The proof of Lemma 3.3 is complete. �
Define

d	α,K =
{

d	−1/2, K = 0,

d	α+1, K = 1,

and similarly for d	β,R .

Corollary 3.5 Let M, N ∈ N and L ∈ {0, 1} be fixed. The following estimates hold
uniformly in t ∈ (0, 1] and θ, ϕ ∈ [0, π ]:

(i) If α, β ≥ −1/2, then

∣∣∂L
ϕ ∂

N
θ ∂

M
t Hα,β

t (θ, ϕ)
∣∣ �

∫∫
d	α(u) d	β(v)

(t2 + q)α+β+3/2+(L+N+M)/2
.

(ii) If −1 < α < −1/2 ≤ β, then

∣∣∂L
ϕ ∂

N
θ ∂

M
t Hα,β

t (θ, ϕ)
∣∣ � 1 +

∑
K=0,1

∑
k=0,1,2

(
sin

θ

2
+ sin

ϕ

2

)K k

×
∫∫

d	α,K (u) d	β(v)

(t2 + q)α+β+3/2+(L+N+M+K k)/2
.

(iii) If −1 < β < −1/2 ≤ α, then

∣∣∂L
ϕ ∂

N
θ ∂

M
t Hα,β

t (θ, ϕ)
∣∣ � 1 +

∑
R=0,1

∑
r=0,1,2

(
cos

θ

2
+ cos

ϕ

2

)Rr

×
∫∫

d	α(u) d	β,R(v)

(t2 + q)α+β+3/2+(L+N+M+Rr)/2
.

(iv) If −1 < α, β < −1/2, then

∣∣∂L
ϕ ∂

N
θ ∂

M
t Hα,β

t (θ, ϕ)
∣∣ � 1 +

∑
K ,R=0,1

∑
k,r=0,1,2

(
sin

θ

2
+ sin

ϕ

2

)K k (
cos

θ

2
+ cos

ϕ

2

)Rr

×
∫∫

d	α,K (u) d	β,R(v)

(t2 + q)α+β+3/2+(L+N+M+K k+Rr)/2
.

Proof All the bounds are direct consequences of the equality (1), Proposition 2.3,
Lemma 2.2, and the estimate from Lemma 3.3 (specified to λ = α + β + 2). Here
passing with the differentiation in t, θ or ϕ under integrals against d	γ , γ ≥ −1/2,
or	γ (u) du,−1 < γ < −1/2, can easily be justified with the aid of Lemma 3.3 and
the dominated convergence theorem. �
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Lemma 3.6 Let γ ∈ R and η ≥ 0 be fixed. Then

∫ 1

0

tη dt

(t2 + ρ)γ+η/2+1/2 �

⎧⎨
⎩
ρ−γ , γ > 0,
log

(
1 + ρ−1/2

)
, γ = 0,

1, γ < 0,

uniformly in 0 < ρ ≤ 2.

Proof This is elementary. For γ = 0, one has

∫ 1

0

tη dt

(t2 + ρ)η/2+1/2 ≤
∫ 1

0

dt

(t2 + ρ)1/2
�
∫ 1

0

dt

t + ρ1/2 = log
(

1 + ρ−1/2
)
.

�

The next lemma will be frequently used in Sect. 4 to prove the relevant kernel
estimates. Only the cases p ∈ {1, 2,∞} will be needed for our purposes. Other values
of p are also of interest, but in connection with operators not considered in this paper.

Lemma 3.7 Let K , R ∈ {0, 1}, k, r ∈ {0, 1, 2},W ≥ 1, s ≥ 0, and 1 ≤ p ≤ ∞
be fixed. Consider a function ϒα,βs (t, θ, ϕ) defined on (0, 1)× [0, π ] × [0, π ] in the
following way:

(i) For α, β ≥ −1/2,

ϒα,βs (t, θ, ϕ) :=
∫∫

d	α(u) d	β(v)

(t2 + q)α+β+3/2+W/(2p)+s/2
.

(ii) For −1 < α < −1/2 ≤ β,

ϒα,βs (t, θ, ϕ) :=
(

sin
θ

2
+ sin

ϕ

2

)K k ∫∫ d	α,K (u) d	β(v)

(t2 + q)α+β+3/2+W/(2p)+K k/2+s/2
.

(iii) For −1 < β < −1/2 ≤ α,

ϒα,βs (t, θ, ϕ) :=
(

cos
θ

2
+ cos

ϕ

2

)Rr ∫∫ d	α(u) d	β,R(v)

(t2 + q)α+β+3/2+W/(2p)+Rr/2+s/2
.

(iv) For −1 < α, β < −1/2,

ϒα,βs (t, θ, ϕ) :=
(

sin
θ

2
+ sin

ϕ

2

)K k (
cos

θ

2
+ cos

ϕ

2

)Rr

×
∫∫

d	α,K (u) d	β,R(v)

(t2 + q)α+β+3/2+W/(2p)+K k/2+Rr/2+s/2
.
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Then the estimate

∥∥1 + ϒα,βs (t, θ, ϕ)
∥∥

L p((0,1),tW−1dt) � 1

|θ − ϕ|s
1

μα,β(B(θ, |θ − ϕ|))
holds uniformly in θ, ϕ ∈ [0, π ], θ �= ϕ.

Proof It is enough to prove the desired estimate without the term 1 in the left-hand
side. Further, since |θ − ϕ|2 � q, it suffices to consider the case s = 0. We prove the
estimate when −1 < α, β < −1/2. The remaining cases are left to the reader; they
are simpler, since then α + β + 3/2 > 0 and one needs Lemma 3.6 only with γ > 0.

We first assume that p < ∞. Using Minkowski’s integral inequality and then
Lemma 3.6 with γ = p(α + β + 3/2 + K k/2 + Rr/2), η = W − 1 and ρ = q, we
obtain ∥∥∥ϒα,β0 (t, θ, ϕ)

∥∥∥
L p((0,1),tW−1dt)

≤
(

sin
θ

2
+ sin

ϕ

2

)K k (
cos

θ

2
+ cos

ϕ

2

)Rr

×
∫∫ (∫ 1

0

tW−1 dt

(t2 + q)p(α+β+3/2+W/(2p)+K k/2+Rr/2)

)1/p

× d	α,K (u) d	β,R(v)

�
(

sin
θ

2
+ sin

ϕ

2

)K k (
cos

θ

2
+ cos

ϕ

2

)Rr

×
∫∫ [(

1

q

)α+β+3/2+K k/2+Rr/2

+ 1 +
(

log
(

1 + q−1/2
))1/p

]

× d	α,K (u) d	β,R(v).

Now an application of Lemma 3.1 (specified to ξ1 = K k/2, κ1 = −α − 1/2 if
K = 0 and κ1 = 1 − k/2 if K = 1, ξ2 = Rr/2, κ2 = −β − 1/2 if R = 0 and
κ2 = 1 − r/2 if R = 1) gives the desired estimate for the expression emerging from
the first term in the last integral. As for the remaining two expressions, we observe
that 1 � log

(
1 + q−1/2

)
� log

(
1 + |θ − ϕ|−1

)
. Moreover, as can be seen from (8),

there exists an ε = ε(α, β) > 0 such that

μα,β (B(θ, |θ − ϕ|)) � |θ − ϕ|ε, θ, ϕ ∈ [0, π ].

Since the measures d	α,K and d	β,R are finite, the conclusion follows.
The case p = ∞ can be justified in a similar way by using in the reasoning above

the estimate

1

(t2 + q)α+β+3/2+K k/2+Rr/2 �
(

1

q

)α+β+3/2+K k/2+Rr/2

+ 1, t ∈ (0, 1),

instead of Lemma 3.6. �
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The next lemma and corollaries are long-time counterparts of Corollary 3.5 and
Lemma 3.7.

Lemma 3.8 Assume that M, N ∈ N and L ∈ {0, 1} are fixed. Given α, β > −1, there
exists an ε = ε(α, β) > 0 such that

∣∣∂L
ϕ ∂

N
θ ∂

M
t Hα,β

t (θ, ϕ)
∣∣ � e

−t
(∣∣∣ α+β+1

2

∣∣∣+ε) + χ{N=L=0, α+β+1 �=0}e
−t

∣∣∣ α+β+1
2

∣∣∣
+ χ{M=N=L=0, α+β+1=0},

uniformly in t ≥ 1 and θ, ϕ ∈ [0, π ]. Moreover, one can take ε = (α + β + 2) ∧ 1.

To prove this, it is more convenient to employ the series representation of Hα,β
t (θ, ϕ)

rather than the formulas from Proposition 2.3.

Proof of Lemma 3.8 For α, β > −1, t > 0 and θ, ϕ ∈ [0, π ], we have

Hα,β
t (θ, ϕ) = 1

μα,β([0, π ])e
−t

∣∣∣ α+β+1
2

∣∣∣ +
∞∑

n=1

e
−t

(
n+ α+β+1

2

)
Pα,β

n (θ)Pα,β
n (ϕ). (13)

Denote the sum in (13) by S. To estimate S and its derivatives, we will need suitable
bounds for ∂N

θ Pα,β
n (θ), N ≥ 0. It is known (see [33, (7.32.2)]) that

|Pα,β
n (θ)| � nα+β+2, θ ∈ [0, π ], n ≥ 1. (14)

Combining this with the identity (cf. [33, (4.21.7)])

∂θPα,β
n (θ) = −1

2

√
n(n + α + β + 1) sin θ Pα+1,β+1

n−1 (θ), n ≥ 1,

we see that for each N ≥ 0,

|∂N
θ Pα,β

n (θ)| � n3N+α+β+2, θ ∈ [0, π ], n ≥ 1.

In view of these facts, the series in (13) can be repeatedly differentiated term by
term in t, θ and ϕ, and we get the bounds

∣∣∂L
ϕ ∂

N
θ ∂

M
t S

∣∣ �
∞∑

n=1

e
−t

(
n+ α+β+1

2

)
nM+3N+3L+2α+2β+4

= e
−t

(∣∣∣ α+β+1
2

∣∣∣+(α+β+2)∧1
) ∞∑

n=1

e−t(n−1)nM+3N+3L+2α+2β+4

� e
−t

(∣∣∣ α+β+1
2

∣∣∣+(α+β+2)∧1
)
,

uniformly in t ≥ 1 and θ, ϕ ∈ [0, π ].
Since the other term in (13) is trivial to handle, the conclusion follows. �
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Corollary 3.9 Let α, β > −1,M, N ∈ N, L ∈ {0, 1},W ≥ 1, and 1 ≤ p ≤ ∞ be
fixed. Then

∥∥∥∥ sup
θ,ϕ∈[0,π ]

∣∣∂L
ϕ ∂

N
θ ∂

M
t Hα,β

t (θ, ϕ)
∣∣
∥∥∥∥

L p((1,∞),tW−1dt)
< ∞,

excluding the cases when simultaneously α + β + 1 = 0 and M = N = L = 0 and
p < ∞.

A strengthened special case of Corollary 3.9 will be needed when we estimate
kernels associated with multipliers of Laplace–Stieltjes type.

Corollary 3.10 Let α, β > −1 and L , N ∈ {0, 1} be fixed. Then

∥∥∥∥e
t
∣∣∣ α+β+1

2

∣∣∣
sup

θ,ϕ∈[0,π ]
∣∣∂L
ϕ ∂

N
θ Hα,β

t (θ, ϕ)
∣∣∥∥∥∥

L∞((1,∞),dt)
< ∞.

4 Kernel Estimates

Let B be a Banach space, and let K (θ, ϕ) be a kernel defined on [0, π ]×[0, π ]\{(θ, ϕ) :
θ = ϕ} and taking values in B. We say that K (θ, ϕ) is a standard kernel in the sense of
the space of homogeneous type ([0, π ], dμα,β, | · |) if it satisfies the so-called standard
estimates, i.e., the growth estimate

‖K (θ, ϕ)‖B � 1

μα,β(B(θ, |θ − ϕ|)) (15)

and the smoothness estimates

‖K (θ, ϕ)− K (θ ′, ϕ)‖B � |θ − θ ′|
|θ − ϕ|

1

μα,β(B(θ, |θ − ϕ|)) , |θ − ϕ| > 2|θ − θ ′|,
(16)

‖K (θ, ϕ)− K (θ, ϕ′)‖B � |ϕ − ϕ′|
|θ − ϕ|

1

μα,β(B(θ, |θ − ϕ|)) , |θ − ϕ| > 2|ϕ − ϕ′|.
(17)

Notice that in these formulas, the ball (interval) B(θ, |θ − ϕ|) can be replaced by
B(ϕ, |ϕ − θ |), in view of the doubling property of μα,β .

We will show that the following kernels, with values in properly chosen Banach
spaces B, satisfy the standard estimates:

(I) The kernel associated with the Jacobi–Poisson semigroup maximal operator,

Hα,β(θ, ϕ) = {
Hα,β

t (θ, ϕ)
}

t>0, B = X ⊂ L∞(R+, dt),

where X is the closed separable subspace of L∞(R+, dt) consisting of all
continuous functions f on (0,∞) which have finite limits as t → 0+ and as

123



204 Constr Approx (2015) 41:185–218

t → ∞. Observe that
{

Hα,β
t (θ, ϕ)

}
t>0 ∈ X, for θ �= ϕ, as can be seen from

Proposition 2.3 and the bound q � (θ − ϕ)2, and the series representation (see
the proof of Lemma 3.8).

(II) The kernels associated with Riesz–Jacobi transforms,

Rα,βN (θ, ϕ) = 1

�(N )

∫ ∞

0
∂N
θ Hα,β

t (θ, ϕ)t N−1 dt, B = C,

where N = 1, 2, . . ..
(III) The kernels associated with mixed square functions,

G
α,β
M,N (θ, ϕ) = {

∂N
θ ∂

M
t Hα,β

t (θ, ϕ)
}

t>0, B = L2(
R+, t2M+2N−1dt

)
,

where M, N = 0, 1, 2, . . . are such that M + N > 0.
(IVa) The kernels associated with Laplace transform type multipliers,

K α,β
φ (θ, ϕ) = −

∫ ∞

0
φ(t) ∂t Hα,β

t (θ, ϕ) dt, B = C,

where φ ∈ L∞(R+, dt).
(IVb) The kernels associated with Laplace–Stieltjes transform type multipliers,

K α,β
ν (θ, ϕ) =

∫
(0,∞)

Hα,β
t (θ, ϕ) dν(t), B = C,

where ν is a signed or complex Borel measure on (0,∞) with total variation
|ν| satisfying ∫

(0,∞)

e
−t

∣∣∣ α+β+1
2

∣∣∣
d|ν|(t) < ∞. (18)

When K (θ, ϕ) is scalar-valued, i.e., B = C, it is well known that the bounds (16)
and (17) follow from the more convenient gradient estimate

‖∂θK (θ, ϕ)‖B + ‖∂ϕK (θ, ϕ)‖
B

� 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) . (19)

We shall see that the same holds also in the vector-valued cases we consider. Then the
derivatives in (19) are taken in the weak sense, which means that for any v ∈ B

∗,

〈
v, ∂θK (θ, ϕ)

〉 = ∂θ
〈
v, K (θ, ϕ)

〉
(20)

and similarly for ∂ϕ . If these weak derivatives ∂θK (θ, ϕ) and ∂ϕK (θ, ϕ) exist as
elements of B and their norms satisfy (19), the scalar-valued case applies and (16) and
(17) follow.

The result below extends to all α, β > −1 the estimates obtained in [28, Section 4]
for the restricted range α, β ≥ −1/2. Moreover, here we also consider multipliers of
Laplace and Laplace–Stieltjes transform type, which were merely mentioned in [28]
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and which cover as a special case the imaginary powers of J α,β (or J α,β	0 when
α + β + 1 = 0) investigated there.

Theorem 4.1 Let α, β > −1. Then the kernels (I)–(III), (IVa), and (IVb) satisfy the
standard estimates (15), (16), and (17) with B as indicated above.

In the proof, we tacitly assume that passing with the differentiation in θ or ϕ under
integrals against dt or dν(t) is legitimate. In fact, such manipulations can easily be
verified by means of the dominated convergence theorem and the estimates obtained
in Corollary 3.5 and Lemma 3.8.

Proof of Theorem 4.1 We treat each of the kernels separately.

The case of Hα,β(θ, ϕ) We first deal with the growth condition. Clearly, it suf-
fices to prove independently the two bounds emerging from (15) by choosing B =
L∞((1,∞), dt) and B = L∞((0, 1), dt). These, however, are immediate consequences
of Corollary 3.9 (with M = N = L = 0, p = ∞) and Corollary 3.5 (taken with
M = N = L = 0) combined with Lemma 3.7 (specified to p = ∞, s = 0), respec-
tively.

To obtain the smoothness estimates, we must verify that the weak derivatives ∂θHα,β

(θ, ϕ) and ∂ϕHα,β(θ, ϕ) exist in the sense of (20) and satisfy (19). In this case, v is a
complex measure in [0,∞], and

〈
v,Hα,β(θ, ϕ)

〉 =
∫

[0,∞]
Hα,β

t (θ, ϕ) dv(t).

It is enough to consider the derivative with respect to θ . By the dominated convergence
theorem, which is applicable because of Lemma 3.8 and Corollary 3.5 together with
the bound q � (θ − ϕ)2, we obtain

∂θ
〈
v,Hα,β(θ, ϕ)

〉 =
∫

[0,∞]
∂θ Hα,β

t (θ, ϕ) dv(t), θ �= ϕ;

observe that
{
∂θ Hα,β

t (θ, ϕ)
}

t>0 ∈ X for θ �= ϕ, as can be seen from Proposition 2.3
and Lemma 3.8. This identity implies that for θ �= ϕ, the weak derivative ∂θHα,β(θ, ϕ)
exists and equals

{
∂θ Hα,β

t (θ, ϕ)
}

t>0. To see that it also satisfies (19), we first consider
large t and observe that the estimate

∥∥∂θ Hα,β
t (θ, ϕ)

∥∥
L∞((1,∞),dt) � 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ,

follows from Corollary 3.9 (specified to M = L = 0, N = W = 1, p = ∞). For
small t , we have

∥∥∂θ Hα,β
t (θ, ϕ)

∥∥
L∞((0,1),dt) � 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ,

123



206 Constr Approx (2015) 41:185–218

in view of Corollary 3.5 (with M = L = 0, N = 1) and Lemma 3.7 (taken with
W = 1, p = ∞, s = 1).
The case of Rα,β

N (θ, ϕ) To prove the growth condition, it is enough to verify that

∥∥∂N
θ Hα,β

t (θ, ϕ)
∥∥

L1(R+,t N−1dt) � 1

μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ.

This, however, is a consequence of Corollary 3.9 (taken with M = L = 0,W =
N , p = 1) and Corollary 3.5 (with M = L = 0) combined with Lemma 3.7 (specified
to W = N , p = 1, s = 0).

In order to show the gradient bound (19), it suffices to check that

∥∥∥∣∣∇θ,ϕ∂N
θ Hα,β

t (θ, ϕ)
∣∣∥∥∥

L1(R+,t N−1dt)
� 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ.

This estimate follows by means of Corollary 3.9 (applied with M = 0, p = 1) and
Corollary 3.5 (with M = 0) together with Lemma 3.7 (specified to W = N , p =
1, s = 1).
The case of G

α,β
M,N(θ, ϕ) The growth condition is a straightforward consequence of

Corollary 3.9 (with L = 0,W = 2M + 2N , p = 2), Corollary 3.5 (with L = 0) and
Lemma 3.7 (taken with W = 2M + 2N , p = 2, s = 0).

Next, we prove the gradient estimate (19), which amounts to

∥∥∥∣∣∇θ,ϕ∂N
θ ∂

M
t Hα,β

t (θ, ϕ)
∣∣∥∥∥

L2(R+,t2M+2N−1dt)
� 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ,

where ∇θ,ϕ is taken in the weak sense. This follows with the aid of Corollary 3.9 (with
W = 2M + 2N , p = 2), Corollary 3.5, and Lemma 3.7 (applied with
W = 2M + 2N , p = 2, s = 1); cf. the arguments given for the case Hα,β(θ, ϕ)
above.
The case of Kα,β

φ
(θ, ϕ) The growth bound is a direct consequence of the assumption

φ ∈ L∞(R+, dt), Corollary 3.9 (specified to M = 1, N = L = 0,W = 1, p = 1),
Corollary 3.5 (with M = 1, N = L = 0), and Lemma 3.7 (taken with W = 1, p =
1, s = 0).

Since φ is bounded, to prove the gradient estimate it is enough to verify that

∥∥∥∣∣∇θ,ϕ∂t Hα,β
t (θ, ϕ)

∣∣∥∥∥
L1(R+,dt)

� 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ.

Now applying Corollary 3.9 (with M = 1,W = 1, p = 1 and either N = 1, L = 0
or N = 0, L = 1), Corollary 3.5 (specified to M = 1 and either N = 1, L = 0 or
N = 0, L = 1), and Lemma 3.7 (taken with W = 1, p = 1, s = 1), we arrive at the
desired bound.
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The case of Kα,β
ν (θ, ϕ) To show the growth condition, it is enough, by the assumption

(18) concerning the measure ν, to check that

∥∥∥e
t
∣∣∣ α+β+1

2

∣∣∣
Hα,β

t (θ, ϕ)

∥∥∥
L∞((1,∞),dt)

� 1

μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ,

∥∥∥Hα,β
t (θ, ϕ)

∥∥∥
L∞((0,1),dt)

� 1

μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ.

The first estimate above is an immediate consequence of Corollary 3.10 (applied with
N = L = 0). The remaining bound is part of the growth condition for Hα,β(θ, ϕ),
which is already justified.

Taking (18) into account, to verify the gradient estimate (19), it suffices to show
that
∥∥∥∥e

t
∣∣∣ α+β+1

2

∣∣∣∣∣∇θ,ϕHα,β
t (θ, ϕ)

∣∣∥∥∥∥
L∞((1,∞),dt)

� 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ,

∥∥∥∣∣∇θ,ϕHα,β
t (θ, ϕ)

∣∣∥∥∥
L∞((0,1),dt)

� 1

|θ − ϕ|μα,β(B(θ, |θ − ϕ|)) , θ �= ϕ.

Again, an application of Corollary 3.10 (with either N = 1, L = 0 or N = 0, L = 1)
produces the first bound. The second one is contained in the proof of the gradient
estimate for Hα,β(θ, ϕ).

The proof of Theorem 4.1 is complete. �

5 Calderón–Zygmund Operators

Let B be a Banach space, and suppose that T is a linear operator assigning to each
f ∈ L2(dμα,β) a strongly measurable B-valued function T f on [0, π ]. Then T is
said to be a (vector-valued) Calderón–Zygmund operator in the sense of the space
([0, π ], dμα,β, | · |) associated with B if

(A) T is bounded from L2(dμα,β) to L2
B
(dμα,β),

(B) there exists a standard B-valued kernel K (θ, ϕ) such that

T f (θ) =
∫ π

0
K (θ, ϕ) f (ϕ) dμα,β(ϕ), a.a. θ /∈ supp f,

for f ∈ L∞([0, π ]).
Here integration of B-valued functions is understood in Bochner’s sense, and L2

B
(dμα,β)

is the Bochner–Lebesgue space of all B-valued dμα,β -square integrable functions on
[0, π ].

It is well known that a large part of the classical theory of Calderón–Zygmund
operators remains valid, with appropriate adjustments, when the underlying space is
of homogeneous type and the associated kernels are vector-valued, see for instance [31,
32]. In particular, if T is a Calderón–Zygmund operator in the sense of ([0, π ], dμα,β,
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| · |) associated with a Banach space B, then its mapping properties in weighted L p

spaces follow from the general theory.
Let

Hα,β
t f (θ) =

∫ π

0
Hα,β

t (θ, ϕ) f (ϕ) dμα,β(ϕ), t > 0, θ ∈ [0, π ],

be the Jacobi–Poisson semigroup. For α, β > −1 consider the following operators
defined initially in L2(dμα,β):

(I) The Jacobi–Poisson semigroup maximal operator

Hα,β∗ f = ∥∥Hα,β
t f

∥∥
L∞(R+,dt).

(II) Riesz–Jacobi transforms of orders N = 1, 2, . . .,

Rα,βN f =
∞∑

n=1

∣∣∣n + α + β + 1

2

∣∣∣−N 〈
f,Pα,β

n

〉
dμα,β

∂N
θ Pα,β

n ,

where
〈
f,Pα,β

n
〉
dμα,β

are the Fourier–Jacobi coefficients of f .
(III) Littlewood–Paley–Stein type mixed square functions

gα,βM,N f = ∥∥∂N
θ ∂

M
t Hα,β

t f
∥∥

L2(R+,t2M+2N−1dt),

where M, N = 0, 1, 2, . . . and M + N > 0.
(IV) Multipliers of Laplace and Laplace–Stieltjes transform type

Mα,β
m f =

∞∑
n=0

m

(∣∣∣n + α + β + 1

2

∣∣∣
) 〈

f,Pα,β
n

〉
dμα,β

Pα,β
n ,

where either m(z) = ∫∞
0 ze−t zφ(t) dt with φ ∈ L∞(R+, dt) or m(z) =∫

(0,∞)
e−t z dν(t) for a signed or complex Borel measure ν on (0,∞) whose

total variation satisfies (18).

The formulas defining Hα,β∗ and gα,βM,N are understood pointwise and are actually
valid for general functions f from weighted L p spaces with Muckenhoupt weights.
This is because for such f , the integral defining Hα,β

t f (θ) is well defined and produces
a smooth function of (t, θ) ∈ (0,∞)×[0, π ], see [28, Section 2]. The series defining
Rα,βN and Mα,β

m indeed converge in L2(dμα,β), which is clear in the case of Mα,β
m ,

since the values of m that occur here stay bounded. For Rα,βN , the convergence follows

by [28, Lemma 3.1], see the proof of [28, Proposition 2.2] in the case of Rα,βN .
As a consequence of Theorem 4.1, we get the following result.

Theorem 5.1 Assume that α, β > −1. The Riesz–Jacobi transforms and the multi-
pliers of Laplace and Laplace–Stieltjes transform type are scalar-valued Calderón–
Zygmund operators in the sense of the space ([0, π ], dμα,β, | · |). Furthermore, the
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Jacobi–Poisson semigroup maximal operator and the mixed square functions can be
viewed as vector-valued Calderón–Zygmund operators in the sense of ([0, π ], dμα,β,
| · |), associated with the Banach spaces B = X and B = L2(R+, t2M+2N−1dt),
respectively.

Proof The standard estimates are provided in all the cases by Theorem 4.1. Thus it
suffices to verify L2 boundedness and kernel associations [conditions (A) and (B)
above]. This, however, was essentially done in [28, Section 3], since the arguments
given there are actually valid for all α, β > −1 if combined with the estimates proved
(in some cases implicitly) in Sect. 4. An exception here are the Laplace and Laplace–
Stieltjes type multipliers. But in these cases, the boundedness in L2 is straightforward,
and the kernel associations are justified according to the outline opening the proof
of [28, Proposition 2.3], see [28, Section 3, pp. 732–733]. Since all the necessary
ingredients are contained in [28] and in the present paper, we leave further details to
interested readers. �

Denote by Aα,βp , 1 ≤ p < ∞, the Muckenhoupt classes of weights related to the
space ([0, π ], dμα,β, | · |) (see [28, Section 1] for the definition).

Corollary 5.2 Let α, β > −1. The Riesz–Jacobi transforms and the multipliers of
Laplace and Laplace–Stieltjes type extend to bounded linear operators on L p(wdμα,β),

w ∈ Aα,βp , 1 < p < ∞, and from L1(wdμα,β) to weak L1(wdμα,β), w ∈ Aα,β1 . The
same boundedness properties hold for the Jacobi–Poisson semigroup maximal oper-
ator and the mixed square functions, viewed as scalar-valued sublinear operators.

Proof The part concerning Rα,βN and Mα,β
m is a direct consequence of Theorem 5.1

and the general theory. The remaining part follows by Theorem 5.1 and the arguments
given in the proof of [28, Corollary 2.5].

Remark 5.3 Elementary arguments, similar to those presented at the end of [8, Section
2], allow us to obtain unweighted L p(dμα,β)-boundedness, 1 ≤ p ≤ ∞, for the
Laplace–Stieltjes transform type multipliers. The crucial fact needed in the reasoning
is the estimate

∫ π

0
|K α,β

ν (θ, ϕ)| dμα,β(ϕ)+
∫ π

0
|K α,β

ν (ϕ, θ)| dμα,β(ϕ) � 1, θ ∈ [0, π ],

which is a direct consequence of the identity Hα,β
t 1 = e

−t
∣∣∣ α+β+1

2

∣∣∣
and condition (18)

concerning the measure ν; here 1 is the constant function equal to 1 on [0, π ].

6 Exact Behavior of the Jacobi–Poisson Kernel

We give another application of the representations in Proposition 2.3, which is inter-
esting and important in its own right. We will describe in a sharp way the behavior
of the kernels H

α,β
t (θ, ϕ) and Hα,β

t (θ, ϕ). The result below extends sharp estimates
for the Jacobi–Poisson kernel obtained in [29, Theorem A.1] under the restriction
α, β ≥ −1/2.
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Theorem 6.1 Let α, β > −1. Then

Hα,β
t (θ, ϕ) � H

α,β
t (θ, ϕ)

�
(

t2 + θ2 + ϕ2
)−α−1/2 (

t2 + (π − θ)2 + (π − ϕ)2
)−β−1/2 t

t2 + (θ − ϕ)2
,

uniformly in 0 < t ≤ 1 and θ, ϕ ∈ [0, π ], and

Hα,β
t (θ, ϕ) � exp

(
−t

|α + β + 1|
2

)
, H

α,β
t (θ, ϕ) � exp

(
−t
α + β + 1

2

)
,

uniformly in t ≥ 1 and θ, ϕ ∈ [0, π ].
To prove this, we will need some technical results, one of which is Lemma 3.2 (a).

Note that this lemma remains true if the integration is restricted to the subinterval
(1/2, 1]. This follows from the structure of d	ν and the fact that the integrand is
positive and increasing.

Lemma 6.2 Let τ > 0 be fixed. Then

1

aτ
− 1

bτ
− 1

cτ
+ 1

dτ
� (b ∧ c − a)2 ∧ a2

aτ+2 ,

uniformly in 0 < a ≤ b, c ≤ d satisfying a + d = b + c.

Proof We can assume that b ≤ c. Then the right-hand side is independent of c and d. In
the left-hand side, we therefore replace c and d by c + s and d + s, respectively, where
s ≥ b − c. By differentiating, we see that the function s �→ −(c + s)−τ + (d + s)−τ
is increasing. As a result, we need only consider the extreme case s = b − c, which
means proving the lemma for b = c.

Writing h = b − a, and letting f (x) = x−τ , the left-hand side is now the second
difference f (a) − 2 f (a + h) + f (a + 2h), which equals f ′′(ξ)h2 for some ξ ∈
(a, a + 2h). Now if h > Ca for some large C = C(τ ), the inequality of the lemma
is trivial, since the term a−τ will dominate in the left-hand side. But if h ≤ Ca, we
have f ′′(ξ) � a−τ−2, and the conclusion follows again. �

Let σ > 1 be fixed. Then one easily verifies that

∣∣x−σ − y−σ ∣∣ � |x − y|
(x ∨ y)(x ∧ y)σ

, x, y > 0. (21)

Proof of Theorem 6.1 We first prove the estimates for H
α,β
t (θ, ϕ). Among the four

ranges of the type parameters distinguished in Proposition 2.3, it is enough to con-
sider only two. Indeed, when α, β ≥ −1/2, the desired bounds are contained in [29,
Theorem A.1], and the cases β < −1/2 ≤ α and α < −1/2 ≤ β are essentially the
same. In what follows, we denote for t > 0 and θ, ϕ ∈ [0, π ],

X := sin θ
2 sin ϕ

2

cosh t
2 − cos θ2 cos ϕ2

, Y := cos θ2 cos ϕ2
cosh t

2 − sin θ
2 sin ϕ

2

,
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and

Z := sinh t
2(

cosh t
2 − cos θ2 cos ϕ2

)α+1/2 (
cosh t

2 − sin θ
2 sin ϕ

2

)β+1/2 (
cosh t

2 − sin θ
2 sin ϕ

2 − cos θ2 cos ϕ2
) .

Notice that 0 ≤ X,Y < 1, and that Z is comparable, uniformly in 0 < t ≤ 1 and
θ, ϕ ∈ [0, π ], with the expression describing the short-time behavior in Theorem 6.1;
see the proof of [29, Theorem A.1]. Moreover, Z has the same long-time behavior as
that asserted for H

α,β
t (θ, ϕ). Thus that part of the statement of Theorem 6.1 which

deals with H
α,β
t (θ, ϕ) can be written simply as

H
α,β
t (θ, ϕ) � Z , t > 0, θ, ϕ ∈ [0, π ]. (22)

Case 1 −1 < α < −1/2 ≤ β. By Proposition 2.3,

H
α,β
t (θ, ϕ) =

∫∫
−∂u�

α,β(t, θ, ϕ, u, v)	α(u) du d	β(v)

+
∫∫

�α,β(t, θ, ϕ, u, v) d	−1/2(u) d	β(v)

≡ I1 + I2.

One finds that the integral I1 is dominated (up to a multiplicative constant) by its
restriction to the subsquare (1/2, 1]2 and that the essential contribution to I2 comes
from integrating over (1/2, 1]2. In view of Lemma 2.2, the measures |	α(u)| du and
d	α+1 are comparable on (1/2, 1], and we infer that

I1 � sinh
t

2
sin

θ

2
sin

ϕ

2

∫∫
d	α+1(u) d	β(v)(

cosh t
2 − u sin θ

2 sin ϕ
2 − v cos θ2 cos ϕ2

)α+β+3 ,

I2 � sinh
t

2

∫
d	β(v)(

cosh t
2 − sin θ

2 sin ϕ
2 − v cos θ2 cos ϕ2

)α+β+2 ,

uniformly in t > 0 and θ, ϕ ∈ [0, π ]. Applying now Lemma 3.2 (a) to I1 twice, first
to the integral against d	β , with the parameters ν = β, κ = 0, γ = α + β + 3, A =
cosh t

2 − u sin θ
2 sin ϕ

2 , B = cos θ2 cos ϕ2 , and then to the resulting integral against
d	α+1, with the parameters ν = α+1, κ = β+1/2, γ = α+5/2, D = cosh t

2 , A =
cosh t

2 − cos θ2 cos ϕ2 , B = sin θ
2 sin ϕ

2 , we arrive at the bound

I1 � X Z .

Applying once again Lemma 3.2 (a), this time to I2 and with the parameters ν =
β, κ = 0, γ = α + β + 2, A = cosh t

2 − sin θ
2 sin ϕ

2 , B = cos θ2 cos ϕ2 , we get

I2 � (1 − X)−α−1/2 Z .
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Estimating I1 from below is slightly more subtle. Notice that

I1 =
∑
η=±1

∫∫

(0,1]2

(
∂u�

α,β(t, θ, ϕ, u, ηv)

− ∂u�
α,β(t, θ, ϕ,−u, ηv)

) |	α(u)| du d	β(v);

here the integrand in each double integral is nonnegative, and the one corresponding
to η = 1 is dominating. Thus, restricting the set of integration to (1/2, 1]2 and making
use of Lemma 2.2, we write

I1 �
∫∫

(1/2,1]2

(
∂u�

α,β(t, θ, ϕ, u, v)− ∂u�
α,β(t, θ, ϕ,−u, v)

)
d	α+1(u) d	β(v)

� sinh
t

2
sin

θ

2
sin

ϕ

2

∫∫

(1/2,1]2

[
1(

cosh t
2 − u sin θ

2 sin ϕ
2 − v cos θ2 cos ϕ2

)α+β+3

− 1(
cosh t

2 + u sin θ
2 sin ϕ

2 − v cos θ2 cos ϕ2
)α+β+3

]
d	α+1(u) d	β(v).

Applying (21) to the expression in square brackets above, we get

I1 �
∫∫

(1/2,1]2

sinh t
2

(
sin θ

2 sin ϕ
2

)2
u d	α+1(u) d	β(v)(

cosh t
2 + u sin θ

2 sin ϕ
2 − v cos θ2 cos ϕ2

) (
cosh t

2 − u sin θ
2 sin ϕ

2 − v cos θ2 cos ϕ2

)α+β+3

�
∫∫

(1/2,1]2

sinh t
2

(
sin θ

2 sin ϕ
2

)2
d	α+1(u) d	β(v)(

cosh t
2 + sin θ

2 sin ϕ
2 − v cos θ2 cos ϕ2

) (
cosh t

2 − u sin θ
2 sin ϕ

2 − v cos θ2 cos ϕ2

)α+β+3 .

The last integral is comparable with an analogous integral over the larger square
[−1, 1]2, see the comment following Theorem 6.1. Now using Lemma 3.2 (a) twice,
first for the integral against d	β (with the parameters ν = β, κ = 1, γ = α +
β + 3, D = cosh t

2 + sin θ
2 sin ϕ

2 , A = cosh t
2 − u sin θ

2 sin ϕ
2 , B = cos θ2 cos ϕ2 ) and

then for the resulting integral against d	α+1 (with ν = α + 1, κ = β + 1/2, γ =
α + 5/2, D = cosh t

2 , A = cosh t
2 − cos θ2 cos ϕ2 , B = sin θ

2 sin ϕ
2 ), we arrive at the

bound

I1 � X2

X + 1
Z � X2 Z .

Summing up, we have proved that

X2 Z + (1 − X)−α−1/2 Z � H
α,β
t (θ, ϕ) � X Z + (1 − X)−α−1/2 Z ,
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uniformly in t > 0 and θ, ϕ ∈ [0, π ], and (22) follows.
Case 2 −1 < α, β < −1/2. In view of Proposition 2.3,

H
α,β
t (θ, ϕ) =

∫∫
∂u∂v�

α,β(t, θ, ϕ, u, v)	α(u) du	β(v) dv

+
∫∫

−∂u�
α,β(t, θ, ϕ, u, v)	α(u) du d	−1/2(v)

+
∫∫

−∂v�α,β(t, θ, ϕ, u, v) d	−1/2(u)	β(v) dv

+
∫∫

�α,β(t, θ, ϕ, u, v) d	−1/2(u) d	−1/2(v)

≡ J1 + J2 + J3 + J4.

Clearly, the main contribution to J4 comes from the point (u, v) = (1, 1), and so

J4 � �α,β(t, θ, ϕ, 1, 1) � (1 − X)−α−1/2(1 − Y )−β−1/2 Z ≤ Z .

To bound the remaining integrals from above, we proceed as in Case 1, obtaining

J1 �
∫∫

∂u∂v�
α,β(t, θ, ϕ, u, v) d	α+1(u) d	β+1(v),

J2 �
∫
∂u�

α,β(t, θ, ϕ, u, 1) d	α+1(u),

J3 �
∫
∂v�

α,β(t, θ, ϕ, 1, v) d	β+1(v).

Then applying repeatedly Lemma 3.2 (a) with suitably chosen parameters, we get

J1 � XY Z ≤ Z , J2 � X (1 − Y )−β−1/2 Z ≤ Z , J3 � (1 − X)−α−1/2Y Z ≤ Z .

To estimate J2 and J3 from below, we use the same trick as for I1 in Case 1. By
means of Lemma 2.2 and (21), we can write
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J2 �
sinh t

2

(
sin θ

2 sin ϕ
2

)2

cosh t
2 + sin θ

2 sin ϕ
2 − cos θ2 cos ϕ2

×
∫
(1/2,1]

d	α+1(u)(
cosh t

2 − u sin θ
2 sin ϕ

2 − cos θ2 cos ϕ2
)α+β+3 .

Then Lemma 3.2 (a) shows that

J2 � X2

X + 1
(1 − Y )−β−1/2 Z � X2(1 − Y )−β−1/2 Z .

The case of J3 is parallel; we have

J3 � (1 − X)−α−1/2 Y 2

Y + 1
Z � (1 − X)−α−1/2Y 2 Z .

Finally, we focus on the more delicate integral J1. Observe that

J1 =
∫∫

(0,1]2

∑
ξ,η=±1

ξη ∂u∂v�
α,β(t, θ, ϕ, ξu, ηv) |	α(u)| du |	β(v)| dv.

Restricting here the region of integration (the integrand is nonnegative, as we shall see
in a moment) and using Lemma 2.2, we conclude

J1 � sinh
t

2
sin

θ

2
sin

ϕ

2
cos

θ

2
cos

ϕ

2

∫∫

(1/2,1]2

(
1

aτ
− 1

bτ
− 1

cτ
+ 1

dτ

)
d	α+1(u) d	β+1(v),

where τ = α + β + 4, a = cosh t
2 − u sin θ

2 sin ϕ
2 − v cos θ2 cos ϕ2 , b = cosh t

2 −
u sin θ

2 sin ϕ
2 +v cos θ2 cos ϕ2 , c = cosh t

2 +u sin θ
2 sin ϕ

2 −v cos θ2 cos ϕ2 , d = cosh t
2 +

u sin θ
2 sin ϕ

2 + v cos θ2 cos ϕ2 . Now applying Lemma 6.2, we get

J1 � sinh
t

2
sin

θ

2
sin

ϕ

2
cos

θ

2
cos

ϕ

2

∫∫

(1/2,1]2

(b ∧ c − a)2 ∧ a2

aα+β+6 d	α+1(u) d	β+1(v).

Since

b ∧ c − a = 2u sin
θ

2
sin

ϕ

2
∧ 2v cos

θ

2
cos

ϕ

2
≥ sin

θ

2
sin

ϕ

2
∧ cos

θ

2
cos

ϕ

2
, u, v ≥ 1/2,
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we can write

J1 � sinh
t

2
sin

θ

2
sin

ϕ

2
cos

θ

2
cos

ϕ

2

×
∫∫

(1/2,1]2

d	α+1(u) d	β+1(v)(
cosh t

2 − u sin θ
2 sin ϕ

2 − v cos θ2 cos ϕ2
)α+β+6

×
[(

cosh
t

2
− sin

θ

2
sin

ϕ

2
− cos

θ

2
cos

ϕ

2

)
∧ sin

θ

2
sin

ϕ

2
∧ cos

θ

2
cos

ϕ

2

]2

.

Combining this with Lemma 3.2 (a), we see that

J1 � XY

[
1 ∧

(
X

1 − X

)2

∧
(

Y

1 − Y

)2
]

Z ≥ (X ∧ Y )4 Z .

Altogether, the above considerations justify the estimates

(
(X ∧ Y )4 + X2(1 − Y )−β−1/2 + (1 − X)−α−1/2Y 2

+(1 − X)−α−1/2(1 − Y )−β−1/2
)

Z

� H
α,β
t (θ, ϕ) � Z ,

which hold uniformly in t > 0 and θ, ϕ ∈ [0, π ]. From this, (22) follows.
We pass to the Jacobi–Poisson kernel Hα,β

t (θ, ϕ). Here we can assume that
λ := α+β+ 1 < 0, since otherwise the kernels H

α,β
t (θ, ϕ) and Hα,β

t (θ, ϕ) coincide.
Then

Hα,β
t (θ, ϕ) = H

α,β
t (θ, ϕ)+ 2λ+1cα,β sinh

λt

2
.

The second term here is negative for t > 0, so Hα,β
t (θ, ϕ) < H

α,β
t (θ, ϕ). Taking

(22) into account, we obtain the short-time upper bound for Hα,β
t (θ, ϕ). Thus what

remains to show is the lower bound and the long-time upper bound for Hα,β
t (θ, ϕ).

We first claim that the lower short-time bound holds provided that t > 0 is small
enough. In view of the already justified estimates for H

α,β
t (θ, ϕ), this will follow once

we check that

−2λ+1cα,β sinh
λt

2
≤ c H

α,β
t (θ, ϕ), 0 < t ≤ T0,

for some T0 > 0 and some c < 1. Notice that the hypergeometric series defining F4
in (2) has nonnegative terms and that the zero-order term is 1. Thus for t > 0 and
θ, ϕ ∈ [0, π ],
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(
2

e

)λ+1

H
α,β
t (θ, ϕ)+ 2λ+1cα,β sinh

λt

2

≥
(

2

e

)λ+1

cα,β

(
sinh t

2(
cosh t

2

)λ+1 + eλ+1 sinh
λt

2

)
.

Now it suffices to ensure that, given λ ∈ (−1, 0), the function

h(s) = sinh s

(cosh s)λ+1 + eλ+1 sinh(λs)

satisfies h(0) = 0 and h′(0) > 0. This, however, is straightforward. The claim follows.
Next we show that the upper long-time bound for Hα,β

t (θ, ϕ) holds for t ≥ 1 and
that the lower counterpart is also true provided that t ≥ T1 with T1 chosen large
enough. From the series representation,

Hα,β
t (θ, ϕ) = 2λcα,β e−t |λ|/2 +

∞∑
n=1

e−t (n+λ/2)Pα,β
n (θ)Pα,β

n (ϕ).

The last series can be controlled by means of the bound |Pα,β
n (θ)| � n, n ≥ 1, see

(14). More precisely, we have

∣∣∣∣
∞∑

n=1

e−t (n+λ/2)Pα,β
n (θ)Pα,β

n (ϕ)

∣∣∣∣ � e−t/2
∞∑

n=1

n2e
−t

(
n+ α+β

2

)
� e−t/2, t ≥ 1.

Since α + β > −2 and |λ| < 1, the conclusion follows.
To deal finally with the lower bound in the range T0 ≤ t ≤ T1, we use the semigroup

property of Hα,β
t . For T0 ≤ t ≤ 2T0, we have

Hα,β
t (θ, ϕ) =

∫ π

0
Hα,β

t/2 (θ, ψ)H
α,β
t/2 (ψ, ϕ) dμα,β(ψ).

Since Hα,β
t/2 (θ, ϕ) � 1 in [T0, 2T0] × [0, π ]2 by the above, we conclude that also

Hα,β
t (θ, ϕ) has a positive lower bound in the same set. In a finite number of similar

steps, we will reach t = T1.
The proof of Theorem 6.1 is complete. �

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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