
Using a Formal High-level Language to Instruct Manikins to Assemble
Cables

Downloaded from: https://research.chalmers.se, 2024-05-04 12:25 UTC

Citation for the original published paper (version of record):
Mårdberg, P., Carlson, J., Bohlin, R. et al (2014). Using a Formal High-level Language to Instruct
Manikins to Assemble Cables. Procedia CIRP, 23(C): 29-34.
http://dx.doi.org/10.1016/j.procir.2014.10.074

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

 Procedia CIRP 23 (2014) 29 – 34

Available online at www.sciencedirect.com

2212-8271 © 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the International Scientific Committee of 5th CATS 2014 in the person of the Conference
Chair Prof. Dr. Matthias Putz matthias.putz@iwu.fraunhofer.de
doi: 10.1016/j.procir.2014.10.074

ScienceDirect

5th CATS 2014 - CIRP Conference on Assembly Systems and Technologies

Using a formal high-level language to instruct manikins to assemble cables

Peter Mårdberga*, Johan S. Carlsona, Robert Bohlina, Niclas Delfsa, Stefan Gustafssona, Lars Hansonb,c

aFraunhofer-Chalmers Centre, Chalmers Science Park, SE-412 88 Göteborg, Sweden
bSecond Product and Production Development, Chalmers University of Technology, SE-412 96 and Göteborg, Sweden

Industrial Development, Scania CV, SE-151 87 Södertälje, Sweden

* Peter Mårdberg. Tel.: +46-31-7724000; fax: +46-31-7724260. E-mail address: peter.mardberg@fcc.chalmers.se

Abstract

In this paper, a formal high-level language is used to generate simulations where a manikin assembles flexible cables. The language generates
assembly instructions for the manikin, which automatically performs the corresponding assembly motion with as good ergonomic as possible.
Due to weight, stiffness and narrow regions, it may be difficult to perform an assembly of the cable. Our approach allows us to verify that it
may be performed in an ergonomically sound way. The generated instructions are formally verified to ensure that assembly order is held and to
prevent erroneous assembly states. The simulations have been made on industrial test cases.

© 2014 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of the International Scientific Committee of 5th CATS 2014 in the person of the Conference
Chair Prof. Dr. Matthias Putz matthias.putz@iwu.fraunhofer.de.

 Keywords: Assembly; Digtal human modeling; Formal methods;

1. Introduction

Today, an electronic device is a commonly assembled part
in the manufacturing industry. Usually, these devices needs to
be further connected to other devices, to for instance get
power supply and information from actuators. Thus, an
assembled product may include several operations where
cables need to be routed.

These cables have to be manually routed through the
assembly operation. Hence, all the forces and torques that
occurs due to weight, stiffness and shearing from the cable,
also needs to be handled throughout the routing. Moreover,
due to compact constructions, the routing may occur in
narrow and inaccessible regions.

In order to reach a high quality production, it is important
to ensure that it is both possible to correctly assemble the
cables, and that it is possible to make in an ergonomic sound
way.

A Digital Human Modeling software is an important tool
in virtual manufacturing, which allows simulation of manual

assembly work long before any physical product and work
place has been built (Laring, 2004). Thus it is possible to
solve design issues, troublesome assembly sequences and
logistic bottlenecks early in the conceptual development. This
reduces the cost of late design changes, increases the
production quality and decreases the ramp-up time of a
manufacturing process (Falck, et al., 2010).

A step towards integrating a manikin with flexible cables is
presented by (Wegner, et al., 2013), and in the work of (Delfs,
et al., 2013), it is shown how it is possible to integrate the
cables in the kinematical skeleton of the manikin.

However, far from all assembly operations are simulated
and evaluated even if all the necessary data is available. One
reason for this is the time consuming and tedious work that is
required to setup and to define all the realistic motions needed
by a manikin to perform a simulation (Lämkull, 2009;
Raschke, et al., 2005). In each assembly simulation, the user
has to position the manikin at the workstation, adjust the
manikin into the desired posture and select the correct grip.
Moreover, to make the simulation relevant, the user must

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Selection and peer-review under responsibility of the International Scientifi c Committee of 5th CATS 2014 in the person of the Conference
Chair Prof. Dr. Matthias Putz matthias.putz@iwu.fraunhofer.de

Conference on Assembly Technologies and Systems

30 Peter Mårdberg et al. / Procedia CIRP 23 (2014) 29 – 34

ensure that the manikin maintains balance during the
simulation and that it avoids collision with objects in the
environment.

In order to create a realistic simulation an assembly motion
of a cable, the torques and forces from the cable needs to be
included in the simulation.

Hence, even a small assembly case may be time consuming
to simulate, and it is well motivated to find an easier way to
construct assembly simulations.

A novel approach that uses a formal high-level language to
instruct automated manikins to reduce the time needed to
construct assembly simulations has been introduced in
(Mårdberg, et al., 2013). This paper shows how this language
also may be used to easily construct assembly simulations
with flexible cables. The user define were the cable should be
connected and then instruct the manikin with high-level
instructions to perform the assembly.

This is possible by including the cables into the assembly
model, as the instruction language, the manikin and all the
objects used in the assembly are composed into the same
discrete model (Mårdberg, et al., 2013). It is also formally
verified, to ensure that it is valid.

The grammatical structure of the language divides the
instructions into a hierarchical tree, where the lowest levels in
the tree contains the basic instructions for maneuvering the
manikin, such as Move, Position and Grasp, and the higher
levels contain more abstract instructions such as Get and
Assemble. Thus, a high-level instruction such as Assemble
defines sequences of other instructions, whereas a low-level
instruction such as Grasp corresponds to a direct instruction to
the manikin.

This approach has been implemented in the manikin
simulation software Intelligently Moving Manikins (IMMA)
(Hanson, et al., 2011), and it has been tested on relevant
assembly cases from the automotive industry. It is shown that
it is possible to efficiently construct simulations where
flexible cables are assembled.

The main contributions of this paper are that we based on
the work proposed in (Delfs, et al., 2013) expand the
assembly model and instruction language proposed in
(Mårdberg, et al., 2013) to reduce the time needed to perform
an assembly simulation with a flexible cable.

This paper is organized as follows. Section 2 covers the
requirements of the presented approach, whereas Section 3
covers our modeling approach. Section 4 shows some case
studies followed by discussion and future work in Section 5.
Concluding remarks are found in Section 6.

2. Assembly model requirements

In this work it is shown that it is possible to automate the
process of generating assembly simulations with flexible
cables. However, this approach requires a model that contains
an automated manikin, a formal instruction language and all
the cables and geometries used in the assembly.

2.1. Automated manikin

A manikin can be said to be automated if it is able to
automatically perform an assembly operation. Thus, if the
manikin is instructed to grasp an object, then it should be able
to automatically reposition itself and grasp the object without
any further help from the user. Moreover, it is not sufficient
for the manikin to just automatically perform the assembly
operation; it also needs to maintain balance during the
operation. The balance has to consider the body parts and the
objects being carried as well as exterior forces and torques
from the environment. Furthermore, it also needs to
automatically avoid collision with the objects in the assembly
station (Bohlin, et al., 2012; Delfs, et al., 2013).

2.2. Formal Language Definition

The set of available instructions that the manikin may
perform during a simulation depends on the current state of
the manikin and on the state of the objects in the assembly
station. For instance, if the manikin grasps an object with both
hands, it is then seen as impossible for the manikin to grasp
another object.

The properties of objects, such as grasping points and
mating points also help to define the set of available
instructions for the manikin. Each low-level keyword must
have a corresponding action in the simulation. A 𝐺𝑟𝑎𝑠𝑝
instruction may only be used if there is an object that is
available for the manikin to grasp.

It is also possible to consider the order in which the
different parts should be assembled when constructing
instruction sequences for the manikin. Thus, it is possible to
prevent a manikin from performing an assembly instruction
unless all the preconditions to that instruction are fulfilled.

2.3. Flexible Cable

The flexible cables used in the assembly are modeled as
cosserat rods (Hermansson, et al., 2013). Manipulation
handles, which may for instance be defined as clips clamped
onto the cable, work as constrains for the cables, see Figure 1.
Thus, properties of the material in the cable are represented by
introducing reaction torques and forces into the handles. A
cable is said to be placed in desired configuration when all
constrains consisting of positions and orientation in all
handles are in mechanical equilibrium (Hermansson, et al.,
2013).

Figure 1: A cable with four manipulation handles.

31 Peter Mårdberg et al. / Procedia CIRP 23 (2014) 29 – 34

2.4. Assembly model

All objects in the assembly station and the manikin are
composed into the same discrete model. Moreover, the
transitions in the model are defined by the instruction
language. Thus, since they utilize the same discrete
computational model, it is possible to apply formal methods
to verify that the assembly operations are correctly performed,
that the model specification is not violated and that no
deadlocks occur.

3. Modeling a Cable Assembly

This section is divided into four subsections. The first
shows how we define the grammar for the high and low-level
language instructions. This is followed by two sections in
which we show how to construct a model of the assembly
operation and how the mounting instruction of a cable is
defined. Then a brief section on how we use formal methods
to validate our model.

3.1. Language instruction grammar

The instruction language is a context free language where
the keywords are divided into high and low-level instructions.
The high-level instructions define sequences of other
instructions, whereas low-level instructions correspond to
direct instructions to the manikin. Since the language is
context free, there exists a non-deterministic pushdown
automaton (Hopcroft, et al., 2007) that defines a state machine
controlling the transitions in the underlying Discrete Event
System (DES) (see Section 3.2). Each instruction corresponds
to a non-empty set of transitions in the composed model. In
this way it is possible to integrate the language into the DES
model.

A grammar is defined to formally structure the instruction
levels into a hierarchical tree (Hopcroft, et al., 2007; Aho, et
al., 2007). The grammar furthermore defines how the
instruction sentences are generated, and hence ensures that all
the corresponding arguments are set (Aho, et al., 2007). For
instance, consider the instruction 𝐺𝑟𝑖𝑝 → 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 →𝑂𝑏𝑗𝑒𝑐𝑡௜ → 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡௝ . Here 𝐺𝑟𝑖𝑝 is the keyword
and 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 , 𝑂𝑏𝑗𝑒𝑐𝑡௜ and 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡௝ are the
corresponding arguments.

3.2. Modeling the assembly operation

A sequence of assembly instructions is said to be valid if it
does not contain any contradictory instructions that violate the
model specification. For instance, to grasp an object that
currently may not be grasped or to give identical instructions
in consecutive order, such as 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 → 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 directly
followed by 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 → 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 , are contradictory
instructions.

To be able to prove that the generated assembly
instructions are formally correct, the manikin has to be
modeled into the same discrete event system as all the objects
in the assembly operation. The model must also include all the

properties of the objects that may directly or indirectly be
used in the assembly.

All objects are modeled by an Extended Finite Automaton
(EFA). Using the notation in (Bengtsson, et al., 2012), an
EFA 𝐸 might be defined as 𝐸 = 〈𝑄 × 𝑉, Σ, 𝐺, 𝐴, →, (𝑞଴, 𝑣଴)〉,
where 𝑄 denotes the set of state locations, 𝑉 is finite set of
variables and Σ the non-empty finite set of events. The guard
predicates are denoted by 𝐺 whereas 𝐴 denotes the action
functions that update 𝑣 ∈ 𝑉 . The transition relation and the
starting state of the automation are denoted →⊆ 𝑄 × Σ × 𝐺 ×𝐴 × 𝑄 and (𝑞଴, 𝑣଴), respectively. A transition in 𝐸 may only
occur if the corresponding guard predicate is fulfilled. If the
transition occurs, then the corresponding action updates the
variable set 𝑉 (Bengtsson, et al., 2012; Miremadi, et al.,
2011).

All objects are modeled separately as EFAs and are
composed into the same model using another EFA,
denoted 𝐸஺௟௟ , defined as the parallel synchronization of all
EFAs in the scene: 𝐸஺௟௟ = 𝐸଴ ∥ 𝐸ଵ ∥ ⋯ (Sköldstam &
Åkesson, 2007; Miremadi, et al., 2008). The composed
automaton is automatically constructed from the objects in the
scene. Thus, when a manikin is included in the scene, the
corresponding EFAs are added to 𝐸஺௟௟. Moreover, when a user
defines a grip point on an object, an EFA for that grip point is
also added to 𝐸஺௟௟ .

Each EFA may contain actions 𝑎 ∈ 𝐴 and predicates that
define illegal states, such as a grip point being used by both
hands at the same time. These predicates are used to create
guards that prevent these states from occurring. The guards in
the EFAs form the model specification for the composed
automata 𝐸஺௟௟ , and are used to automatically define a set of
guard predicates for 𝐸஺௟௟ to prevent transitions which violate
the model specification. Once all the guards have been added
to 𝐸஺௟௟ , the set of allowed transitions corresponds to the set of
instructions that the user may perform when constructing
assembly sequences. Furthermore, the user may add
constraints, such as assembly order, into 𝐸஺௟௟ , which then also
are included in the set of allowed transitions.

The following example shows how a grip instruction may
be modeled by a pair of two-state automata, see Figure 2. Let 𝑄௥௛ = {𝑟ℎ଴ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝐹𝑟𝑒𝑒, 𝑟ℎଵ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝑈𝑠𝑒𝑑}
and 𝑄௚௣ = {𝑔𝑝଴ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝐹𝑟𝑒𝑒, 𝑔𝑝ଵ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝑈𝑠𝑒𝑑}
define the states in each automation, and let Σ௥௛ ={𝜎ଶ ≝ 𝑈𝑠𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑, 𝜎ଷ ≝ 𝐹𝑟𝑒𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑} define the
events. Moreover, let 𝑣 be defined as a Boolean string of
length 2 as 𝑣 ∈ 𝔹ଶ , and let a guard be defined as Boolean
function as 𝐺(𝑣) → 𝔹. The Boolean string 𝑣 and the guard 𝐺(𝑣) are shared by both automata. The transitions of these
automata define the set of instructions that are available for
the user. In this example, it is possible for the user to form a
high-level instruction that allows the user to use the grip point
as support point for the right hand, expressed in pseudo code
as 𝐺𝑒𝑡 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ → 𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝ → Support . Based on the
grammatical structure, all the low-level instructions needed
for the manikin to perform the operation are automatically
generated. For instance, the manikin needs to grasp the object
in order to take support at object, and a low level-instruction
is created as, 𝐺𝑟𝑖𝑝 → 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ →

32 Peter Mårdberg et al. / Procedia CIRP 23 (2014) 29 – 34

𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝. When a low-level instructions is created its
corresponding events are called in the underlying automata.
Thus, in this case, 𝐺𝑟𝑖𝑝 → 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ →𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝. will execute the transitions {𝜎଴, 𝜎ଶ} . If the
corresponding guard, 𝐺(𝑣) = {𝑣̅଴ ∧ 𝑣̅ଵ}, evaluates to true then 𝑣଴ and 𝑣ଵare updated to true, and state transitions are made,
and the low-level instruction is generated. Thus, the shared
guards 𝐺 and variables 𝑉 may be used to control the
transitions in the composed automaton. If all low-level
instructions are generated, then they high-level instruction, in
this case 𝐺𝑒𝑡 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ → 𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝ → Support, may be
executed.

 𝜎ଶ ≝ 𝑈𝑠𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝜎ଷ ≝ 𝐹𝑟𝑒𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑

𝑟ℎ଴ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝐹𝑟𝑒𝑒 𝑟ℎଵ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝑈𝑠𝑒𝑑
 𝐺(𝑣) = {𝑣̅଴ ∧ 𝑣̅ଵ}

 𝜎଴ ≝ 𝑈𝑠𝑒 𝐺𝑟𝑖𝑝 𝜎ଵ ≝ 𝐹𝑟𝑒𝑒 𝐺𝑟𝑖𝑝
𝑔𝑝଴ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝐹𝑟𝑒𝑒 𝑔𝑝ଵ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝑈𝑠𝑒𝑑

Figure 2: A pair of two-state automata. The upper models the grip of the right
hand whereas the lower models the state of the grip.

3.3. Grasping and releasing a cable

Manipulation handles are mounted at fixed points along the
cable. Two handles are needed in the start and end of a cable.
Movements of handles are represented by transformations in 𝑅ଷ × 𝑆𝐸(3) (Hermansson, et al., 2013). Thus, when moved,
torques and forces are created due to reaction from strain and
shear in the cable and due to its own weight. These repelling
torques and forces are contained in each handle and are added
to the kinematical model of the manikin when they are
grasped and removed when released.

The assembly of a clip is represented by following the clip
along a short path in the clip direction, see Figure 3.
Moreover, each assemble clip also contains a force that
represent the force needed by the manikin in order to push the
clip in place. It is automatically added to the kinematical
model when a push command is executed.

Figure 3: a) The grasp used to move and mount the clip. b) The path where
the cable is moved into mounting position. c) The path to where the clip is
mounted.

3.4. Formal Methods

Since the assembly information, the automated manikin,
the instruction language and all the objects used in the
assembly are contained in the model. It is important to verify
that it is correct.

Formal verification is a methodology to prove if a set of
properties hold for a model (Voronov & Åkesson, 2009), and
it is used to verify that no language instruction violates the
model 𝐸஺௟௟ and to ensure that there are no contradictions in the
model specification. By modelling properties of the manikin
and the objects into 𝐸஺௟௟ , it is possible to also include them in
the verification synthesis. For instance, it is possible to verify
if a set of states are reachable from the initial state, or that
there exists a way to return to the initial state. In this way, the
manikin may be prevented from reaching a deadlock state or
from violate any properties in the model.

4. Test Case

The presented test cases are based cable assemblies in a
truck cabin, and we show two assembly methods with
different automation levels.

The test cases are based cable assemblies in a truck cabin.
The first test case shows how it is possible to construct a
simulation by individually defining the instructions needed to
connect each clip of the cable. In the second test case, it is
shown how a sequence of push instructions may automatically
be generated. Based on the grip points, the instructions needed
for mounting the clips are automatically generated.

The flexible cables are constructed in IPS (Industrial Path
Solutions, 2012). However, the collision model is not used,
and the cables are allowed to intersect with other geometric
objects. Also, the generated paths used to move the clips and
to define the path to which the clips are pushed are not
guaranteed to be collision free.

For each clip to be mounted a grip point has been defined.
The force required to mount a clip is set to 35 [N] and is
based on an industrial case (unpublished data). Each clip is set
to be is pushed 20[mm]. Thus, when a push instruction is used
on a grip point, the clip will be moved 20[mm] along the local
z-axis of the grip point.

The manikins are instructed using a graphical language,
where the user gradually builds up an instruction by selecting
different options, see Figure 4. The set of available options
depend on the current instruction and on the objects in the
scene. The user creates operations that may consist of one or
several instructions. An operation must be verified in order to
be executed. In the execution step, a list with all the necessary
low-level instructions needed for the manikin to perform the
operation is automatically generated. The low-level
instructions are then sequentially executed.

a)

c)

b)

33 Peter Mårdberg et al. / Procedia CIRP 23 (2014) 29 – 34

Figure 4: The graphical interface used to instruct the manikins in IMMA.

4.1. Test case A

In this case the cable is assembled by mounting two clips
in the chassis, see Figure 5. The grip points have been defined
for mounting the clips and to allow support for the manikin.
Three instructions are defined and composed into an
operation. The clips shown in Figure 5 a) and b) are mounted
using two push instructions. One instruction is defined to
allow the manikin to use a grip point, see Figure 5 c), for
support when performing the assembly.

Figure 6, shows two frames of the assembly where the
manikin leans into the chassis, takes support, and mounts the
clips. Table 1 shows pseudo code of the low-level instructions
that automatically have been generated too perform the
assembly operation.

Figure 5: a) and b) shows the clips to be mounted, and c) the support point.
CAD models courtesy of Scania.

Figure 6: Two frames showing the assembly of the two cable clips. CAD
models courtesy of Scania.

Table 1: Pseudo code of the low-level instructions used to perform the
assembly of two cable clips in Figure 6.

Get Chassis left hand grip (Figure 4c)

Set left hand as support

Get Clip1 right hand grip (Figure 4b)

Create the path needed to push the
clip

Push the clip along the generated
path

Release Clip1

Get Clip2 right hand grip
(Figure 4a)

Create the path needed to push
the clip

Push the clip along the
generated path

Release Clip2

Release Chassis

4.2. Test case B

A cable consisting of four clips is to be mounted in the
chassis. On each clip to be mounted, a grip point is defined
and positioned to in the direction of the intended push
operation, see Figure 7. One push instruction is defined, and
the cable is selected as to object to be pushed. When a cable is
selected as push object a push instruction is created for each
clip on the cable that has a grip point. Thus, in this case, four
push instructions are generated. The order of the push
instructions is defined of the order in which they are placed in
the operation. The pseudo code of the low-level instructions
that are automatically generated out of the four push
instructions are shown in Table 2. Figure 8, shows four
frames of the assembly.

Figure 7: The flexible cable with the corresponding grip points. CAD models
courtesy of Scania.

Figure 8: Four frames showing of the assembly of the cable in Figure 7. CAD
models courtesy of Scania.

Table 2: Pseudo code of the low-level instructions used to perform the
assembly of the four clips of the cable in Figure 7.

Get Clip1 right hand grip

Create the path needed to push the
clip

Push the clip along the generated
path

Release Clip2

Get Clip2 right hand grip

Create the path needed to push the
clip

Push the clip along the generated
path

Release Clip2

Get Clip3 right hand grip

Create the path needed to push
the clip

Push the clip along the
generated path

Release Clip3

Get Clip4 right hand grip

Create the path needed to push
the clip

Push the clip along the
generated path

Release Clip4

a)

c)

b)

34 Peter Mårdberg et al. / Procedia CIRP 23 (2014) 29 – 34

5. Discussion and Future Work

It is shown that with our approach it is possible to easily
construct simulations with flexible cables. The forces and
torques from the cable are included in the kinematical model
of the manikin and are taken into consideration when the
manikin tries to avoid collision and maintain the balance in an
ergonomic sound way. Since the assembly operation and the
manikin are merged into the same model, it is also possible to
formally prove that the manikin correctly performs the
assembly operation.

Two methods for constructing cable simulations are
presented. In the second method (test case B), it is shown that
it is possible further reduce the time needed to construct
simulations. However, the current implementation only allows
the same hand to be used in one mounting sequence. To allow
the manikin to automatically use different hands to both the
support and mounting clips will be covered in the future work.

There are no collision between the cables and objects in the
environment. However, this is necessary in order to achieve a
realistic simulation and will be considered in the future work.

Even if it is an important factor, the assembly time has not
been considered in the simulations. However, the assembly
time may be computed from a Predetermined Motion Time
system in a post computational step (Mårdberg, et al., 2013).

In the test cases, the cable has been placed close to its final
assembly position. The part where the cable has been brought
from the material shelf and been straightened out into the
chassis are omitted from the simulations. In order to simulate
this, there is a need for a possibility to set a handle to be
active or not. A handle is active when it is used by the
manikin or has been mounted and inactive otherwise. An
inactive handle follows the activated handles on the cable.

6. Conclusion

In this work we show how a high-level language is used to
instruct an automated manikin to automatically perform
assembly of a flexible cable. The assembly is made on test
cases from the automotive industry, and it is shown it is
possible to efficiently construct simulations with flexible
cables. The instruction language is designed to use the
automated functions of the IMMA manikin. This reduces the
number of instructions needed to generate an assembly
simulation with flexible cables. For instance, the torques and
forces from the stiffness, shearing and weight of the cables
will automatically be included into the kinematic model of the
manikin when it assembles a cable.

The modeling approach is general and may be expanded to
allow more properties in the objects, more complex assembly
instructions and more manikins to be included into the model.

Moreover, with our modeling approach, the whole
assembly operation may be included into the same model as
the manikin. This way, it is possible to formally prove that the
manikin correctly performs the assembly operation.

Acknowledgements

This work was carried out within The Swedish Foundation
for strategic Research (SSF) ProViking II program and the
Wingquist Laboratory VINN Excellence Centre, supported by
the Swedish Governmental Agency for Innovation Systems
(VINNOVA).

This work is a part of the Sustainable Production Initiative

and the Production Area of Advance at Chalmers University
of Technology.

References

Aho, A. V., Lam, M. S., Sethi, R. & Ullman, J. D., 2007. Compilers :
principles, techniques, & tools. Boston: Pearson Addison-Wesley.

Bengtsson, K. o.a., 2012. Sequence Planning Using Multiple and Coordinated
Sequences of Operations. IEEE Transactions on Automation Science and
Engineering, 9(2), pp. 308 - 319.

Bohlin, R. o.a., 2012. Automatic Creation of Virtual Manikin Motions
Maximizing Comfort in Manual Assembly Processes. Ann Arbor,
Michigan, USA, u.n.

Delfs, N. o.a., 2013. Automatic Creation of Manikin Motions Affected by
Cable Forces. Submitted to International Journal of Human Factors
Modelling and Simulation.

Delfs, N. o.a., 2013. Introducing Stability of Forces to the Automatic
Creation of Digital Human Postures. Ann Arbor, Michigan, USA, u.n.

Falck, A.-C., Örtengren, R. & Högberg, D., 2010. The Impact of Poor
Assembly Ergonomics on Product Quality: A Cost–Benefit Analysis in
Car Manufacturing. 20(1), p. 24–41.

Hanson, L., Högberg, D., Bohlin, R. & Carlson, J., 2011. IMMA –
Intelligently Moving Manikins – Project Status 2011. Lyon, First
International Symposium on Digital Human Modeling.

Hermansson, T., Bohlin, R., Carlson, J. & Söderberg, R., 2013. Automatic
assembly path planning for wiring harness installations. Journal of
Manufacturing Systems, 32(3), pp. 417-422.

Hopcroft, J. E., Motwani, R. & Ullman, J. D., 2007. Introduction to automata
theory, languages and computation. Boston : Pearson Addison-Wesley,
cop.

Industrial Path Solutions, 2012. [Online]
Available at: www.industrialpathsolutions.com

Laring, J., 2004. Ergonomic Workplace Design Analysis: Development of a
practitioner's tool for enhanced productivity. Göteborg: Chalmers
University of Technology.

Lämkull, D., 2009. Computer Manikins in Evaluation of Manual Assembly
Tasks. Göteborg: Chalmers University of Technology.

Miremadi, S., Åkesson, K. & Lennartson, B., 2008. Extraction and
Representation of a Supervisor Using Guards in Extended Finite
Automata. Göteborg, u.n.

Miremadi, S., Åkesson, K. & Lennartson, B., 2011. Symbolic Computation of
Reduced Guards in Supervisory Control. IEEE Transactions on
Automation Science and Engineering, 8(4), pp. 754-765.

Mårdberg, P. o.a., 2013. Introducing a Formal High-Level Language for
Instructing Automated Manikins. Ann Arbor, Michigan, USA, u.n.

Mårdberg, P. o.a., 2013. Using a Formal High-Level Language and
Automated Manikin to Automatically Generate Assembly Instructions.
Submitted to International Journal of Human Factors Modelling and
Simulation.

Raschke, U., Kuhlmann, H. & Hollick, M., 2005. On the Design of a Task
Based Human Simulation System. Iowa City, Iowa, USA, SAE
International.

Sköldstam, M. & Åkesson, K., 2007. Modeling of Discrete Event Systems
using Finite Automata With Variables. New Orleans. LA, USA,
Proceedings of the 46th IEEE Conference on Decision and Control,.

Wegner, D. o.a., 2013. Simulation of Flexible Part Installation. Ann Arbor,
Michigan, USA, u.n.

Voronov, A. & Åkesson, K., 2009. Verification of process operations using
model checking. Bangalore, India, August 22-2, 2009, u.n.

