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Abstract 

In this paper, a formal high-level language is used to generate simulations where a manikin assembles flexible cables. The language generates 
assembly instructions for the manikin, which automatically performs the corresponding assembly motion with as good ergonomic as possible. 
Due to weight, stiffness and narrow regions, it may be difficult to perform an assembly of the cable. Our approach allows us to verify that it 
may be performed in an ergonomically sound way. The generated instructions are formally verified to ensure that assembly order is held and to 
prevent erroneous assembly states. The simulations have been made on industrial test cases. 
 
© 2014 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of 5th CATS 2014 in the person of the Conference 
Chair Prof. Dr. Matthias Putz matthias.putz@iwu.fraunhofer.de. 
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1. Introduction 

Today, an electronic device is a commonly assembled part 
in the manufacturing industry. Usually, these devices needs to 
be further connected to other devices, to for instance get 
power supply and information from actuators. Thus, an 
assembled product may include several operations where 
cables need to be routed.  

These cables have to be manually routed through the 
assembly operation. Hence, all the forces and torques that 
occurs due to weight, stiffness and shearing from the cable, 
also needs to be handled throughout the routing. Moreover, 
due to compact constructions, the routing may occur in 
narrow and inaccessible regions.  

In order to reach a high quality production, it is important 
to ensure that it is both possible to correctly assemble the 
cables, and that it is possible to make in an ergonomic sound 
way.  

A Digital Human Modeling software is an important tool 
in virtual manufacturing, which allows simulation of manual 

assembly work long before any physical product and work 
place has been built (Laring, 2004). Thus it is possible to 
solve design issues, troublesome assembly sequences and 
logistic bottlenecks early in the conceptual development. This 
reduces the cost of late design changes, increases the 
production quality and decreases the ramp-up time of a 
manufacturing process (Falck, et al., 2010).  

A step towards integrating a manikin with flexible cables is 
presented by (Wegner, et al., 2013), and in the work of (Delfs, 
et al., 2013), it is shown how it is possible to integrate the 
cables in the kinematical skeleton of the manikin. 

However, far from all assembly operations are simulated 
and evaluated even if all the necessary data is available. One 
reason for this is the time consuming and tedious work that is 
required to setup and to define all the realistic motions needed 
by a manikin to perform a simulation (Lämkull, 2009; 
Raschke, et al., 2005). In each assembly simulation, the user 
has to position the manikin at the workstation, adjust the 
manikin into the desired posture and select the correct grip. 
Moreover, to make the simulation relevant, the user must 
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ensure that the manikin maintains balance during the 
simulation and that it avoids collision with objects in the 
environment.  

In order to create a realistic simulation an assembly motion 
of a cable, the torques and forces from the cable needs to be 
included in the simulation.  

Hence, even a small assembly case may be time consuming 
to simulate, and it is well motivated to find an easier way to 
construct assembly simulations. 

A novel approach that uses a formal high-level language to 
instruct automated manikins to reduce the time needed to 
construct assembly simulations has been introduced in 
(Mårdberg, et al., 2013). This paper shows how this language 
also may be used to easily construct assembly simulations 
with flexible cables. The user define were the cable should be 
connected and then instruct the manikin with high-level 
instructions to perform the assembly.  

This is possible by including the cables into the assembly 
model, as the instruction language, the manikin and all the 
objects used in the assembly are composed into the same 
discrete model (Mårdberg, et al., 2013). It is also formally 
verified, to ensure that it is valid. 

The grammatical structure of the language divides the 
instructions into a hierarchical tree, where the lowest levels in 
the tree contains the basic instructions for maneuvering the 
manikin, such as Move, Position and Grasp, and the higher 
levels contain more abstract instructions such as Get and 
Assemble. Thus, a high-level instruction such as Assemble 
defines sequences of other instructions, whereas a low-level 
instruction such as Grasp corresponds to a direct instruction to 
the manikin.  

This approach has been implemented in the manikin 
simulation software Intelligently Moving Manikins (IMMA) 
(Hanson, et al., 2011), and it has been tested on relevant 
assembly cases from the automotive industry. It is shown that 
it is possible to efficiently construct simulations where 
flexible cables are assembled.  

The main contributions of this paper are that we based on 
the work proposed in (Delfs, et al., 2013) expand the 
assembly model and instruction language proposed in 
(Mårdberg, et al., 2013) to reduce the time needed to perform 
an assembly simulation with a flexible cable. 

This paper is organized as follows. Section 2 covers the 
requirements of the presented approach, whereas Section 3 
covers our modeling approach. Section 4 shows some case 
studies followed by discussion and future work in Section 5. 
Concluding remarks are found in Section 6.  

2. Assembly model requirements 

In this work it is shown that it is possible to automate the 
process of generating assembly simulations with flexible 
cables. However, this approach requires a model that contains 
an automated manikin, a formal instruction language and all 
the cables and geometries used in the assembly. 

2.1. Automated manikin 

A manikin can be said to be automated if it is able to 
automatically perform an assembly operation. Thus, if the 
manikin is instructed to grasp an object, then it should be able 
to automatically reposition itself and grasp the object without 
any further help from the user. Moreover, it is not sufficient 
for the manikin to just automatically perform the assembly 
operation; it also needs to maintain balance during the 
operation. The balance has to consider the body parts and the 
objects being carried as well as exterior forces and torques 
from the environment. Furthermore, it also needs to 
automatically avoid collision with the objects in the assembly 
station (Bohlin, et al., 2012; Delfs, et al., 2013). 

2.2. Formal Language Definition 

The set of available instructions that the manikin may 
perform during a simulation depends on the current state of 
the manikin and on the state of the objects in the assembly 
station. For instance, if the manikin grasps an object with both 
hands, it is then seen as impossible for the manikin to grasp 
another object.  

The properties of objects, such as grasping points and 
mating points also help to define the set of available 
instructions for the manikin. Each low-level keyword must 
have a corresponding action in the simulation. A  𝐺𝑟𝑎𝑠𝑝 
instruction may only be used if there is an object that is 
available for the manikin to grasp.  

It is also possible to consider the order in which the 
different parts should be assembled when constructing 
instruction sequences for the manikin. Thus, it is possible to 
prevent a manikin from performing an assembly instruction 
unless all the preconditions to that instruction are fulfilled.  

2.3. Flexible Cable 

The flexible cables used in the assembly are modeled as 
cosserat rods (Hermansson, et al., 2013). Manipulation 
handles, which may for instance be defined as clips clamped 
onto the cable, work as constrains for the cables, see Figure 1. 
Thus, properties of the material in the cable are represented by 
introducing reaction torques and forces into the handles. A 
cable is said to be placed in desired configuration when all 
constrains consisting of positions and orientation in all 
handles are in mechanical equilibrium (Hermansson, et al., 
2013).  

 

Figure 1: A cable with four manipulation handles. 



31 Peter Mårdberg et al.  /  Procedia CIRP   23  ( 2014 )  29 – 34 

2.4. Assembly model 

All objects in the assembly station and the manikin are 
composed into the same discrete model. Moreover, the 
transitions in the model are defined by the instruction 
language. Thus, since they utilize the same discrete 
computational model, it is possible to apply formal methods 
to verify that the assembly operations are correctly performed, 
that the model specification is not violated and that no 
deadlocks occur. 

3. Modeling a Cable Assembly 

This section is divided into four subsections. The first 
shows how we define the grammar for the high and low-level 
language instructions. This is followed by two sections in 
which we show how to construct a model of the assembly 
operation and how the mounting instruction of a cable is 
defined. Then a brief section on how we use formal methods 
to validate our model.  

3.1. Language instruction grammar 

The instruction language is a context free language where 
the keywords are divided into high and low-level instructions. 
The high-level instructions define sequences of other 
instructions, whereas low-level instructions correspond to 
direct instructions to the manikin. Since the language is 
context free, there exists a non-deterministic pushdown 
automaton (Hopcroft, et al., 2007) that defines a state machine 
controlling the transitions in the underlying Discrete Event 
System (DES) (see Section 3.2). Each instruction corresponds 
to a non-empty set of transitions in the composed model. In 
this way it is possible to integrate the language into the DES 
model. 

A grammar is defined to formally structure the instruction 
levels into a hierarchical tree (Hopcroft, et al., 2007; Aho, et 
al., 2007). The grammar furthermore defines how the 
instruction sentences are generated, and hence ensures that all 
the corresponding arguments are set (Aho, et al., 2007). For 
instance, consider the instruction  𝐺𝑟𝑖𝑝 →  𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 →𝑂𝑏𝑗𝑒𝑐𝑡௜ → 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡௝ . Here  𝐺𝑟𝑖𝑝  is the keyword 
and  𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 , 𝑂𝑏𝑗𝑒𝑐𝑡௜  and 𝑇𝑎𝑟𝑔𝑒𝑡𝑃𝑜𝑖𝑛𝑡௝  are the 
corresponding arguments. 

3.2. Modeling the assembly operation 

A sequence of assembly instructions is said to be valid if it 
does not contain any contradictory instructions that violate the 
model specification. For instance, to grasp an object that 
currently may not be grasped or to give identical instructions 
in consecutive order, such as 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 → 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 directly 
followed by  𝑅𝑒𝑙𝑒𝑎𝑠𝑒 → 𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 , are contradictory 
instructions.  

To be able to prove that the generated assembly 
instructions are formally correct, the manikin has to be 
modeled into the same discrete event system as all the objects 
in the assembly operation. The model must also include all the 

properties of the objects that may directly or indirectly be 
used in the assembly.  

All objects are modeled by an Extended Finite Automaton 
(EFA). Using the notation in (Bengtsson, et al., 2012), an 
EFA 𝐸 might be defined as 𝐸 =  〈𝑄 × 𝑉, Σ, 𝐺, 𝐴, →, (𝑞଴, 𝑣଴)〉, 
where 𝑄 denotes the set of state locations, 𝑉 is finite set of 
variables and Σ the non-empty finite set of events. The guard 
predicates are denoted by 𝐺  whereas 𝐴  denotes the action 
functions that update  𝑣 ∈ 𝑉 . The transition relation and the 
starting state of the automation are denoted →⊆ 𝑄 × Σ × 𝐺 ×𝐴 × 𝑄 and (𝑞଴, 𝑣଴), respectively. A transition in 𝐸 may only 
occur if the corresponding guard predicate is fulfilled. If the 
transition occurs, then the corresponding action updates the 
variable set 𝑉  (Bengtsson, et al., 2012; Miremadi, et al., 
2011).  

All objects are modeled separately as EFAs and are 
composed into the same model using another EFA, 
denoted  𝐸஺௟௟ , defined as the parallel synchronization of all 
EFAs in the scene: 𝐸஺௟௟ = 𝐸଴ ∥ 𝐸ଵ ∥ ⋯  (Sköldstam & 
Åkesson, 2007; Miremadi, et al., 2008). The composed 
automaton is automatically constructed from the objects in the 
scene. Thus, when a manikin is included in the scene, the 
corresponding EFAs are added to 𝐸஺௟௟. Moreover, when a user 
defines a grip point on an object, an EFA for that grip point is 
also added to 𝐸஺௟௟ .  

Each EFA may contain actions 𝑎 ∈ 𝐴 and predicates that 
define illegal states, such as a grip point being used by both 
hands at the same time. These predicates are used to create 
guards that prevent these states from occurring. The guards in 
the EFAs form the model specification for the composed 
automata 𝐸஺௟௟ , and are used to automatically define a set of 
guard predicates for  𝐸஺௟௟  to prevent transitions which violate 
the model specification. Once all the guards have been added 
to 𝐸஺௟௟ , the set of allowed transitions corresponds to the set of 
instructions that the user may perform when constructing 
assembly sequences. Furthermore, the user may add 
constraints, such as assembly order, into 𝐸஺௟௟ , which then also 
are included in the set of allowed transitions.  

The following example shows how a grip instruction may 
be modeled by a pair of two-state automata, see Figure 2. Let 𝑄௥௛ = {𝑟ℎ଴ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝐹𝑟𝑒𝑒, 𝑟ℎଵ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝑈𝑠𝑒𝑑}  
and 𝑄௚௣ = {𝑔𝑝଴ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝐹𝑟𝑒𝑒,  𝑔𝑝ଵ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝑈𝑠𝑒𝑑}  
define the states in each automation, and let  Σ௥௛ ={𝜎ଶ ≝ 𝑈𝑠𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑, 𝜎ଷ ≝ 𝐹𝑟𝑒𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑}  define the 
events. Moreover, let 𝑣  be defined as a Boolean string of 
length 2 as 𝑣 ∈ 𝔹ଶ , and let a guard be defined as Boolean 
function as 𝐺(𝑣) → 𝔹. The Boolean string 𝑣  and the guard 𝐺(𝑣) are shared by both automata. The transitions of these 
automata define the set of instructions that are available for 
the user. In this example, it is possible for the user to form a 
high-level instruction that allows the user to use the grip point 
as support point for the right hand, expressed in pseudo code 
as 𝐺𝑒𝑡 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ → 𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝ → Support . Based on the 
grammatical structure, all the low-level instructions needed 
for the manikin to perform the operation are automatically 
generated. For instance, the manikin needs to grasp the object 
in order to take support at object, and a low level-instruction 
is created as, 𝐺𝑟𝑖𝑝 →  𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ →
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𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝. When a low-level instructions is created its 
corresponding events are called in the underlying automata. 
Thus, in this case, 𝐺𝑟𝑖𝑝 →  𝑅𝑖𝑔ℎ𝑡𝐻𝑎𝑛𝑑 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ →𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝. will execute the transitions  {𝜎଴, 𝜎ଶ} . If the 
corresponding guard, 𝐺(𝑣) = {𝑣̅଴ ∧ 𝑣̅ଵ}, evaluates to true then  𝑣଴ and  𝑣ଵare updated to true, and state transitions are made, 
and the low-level instruction is generated. Thus, the shared 
guards 𝐺  and variables 𝑉  may be used to control the 
transitions in the composed automaton. If all low-level 
instructions are generated, then they high-level instruction, in 
this case 𝐺𝑒𝑡 → 𝑂𝑏𝑗𝑒𝑐𝑡௜ → 𝐺𝑟𝑖𝑝𝑃𝑜𝑖𝑛𝑡௝ → Support, may be 
executed. 

 
 𝜎ଶ ≝ 𝑈𝑠𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝜎ଷ ≝ 𝐹𝑟𝑒𝑒 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 

𝑟ℎ଴ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝐹𝑟𝑒𝑒 𝑟ℎଵ ≝ 𝑅𝑖𝑔ℎ𝑡 𝐻𝑎𝑛𝑑 𝑈𝑠𝑒𝑑 
 𝐺(𝑣) = {𝑣̅଴ ∧ 𝑣̅ଵ} 

 

 𝜎଴ ≝ 𝑈𝑠𝑒 𝐺𝑟𝑖𝑝 𝜎ଵ ≝ 𝐹𝑟𝑒𝑒 𝐺𝑟𝑖𝑝 
𝑔𝑝଴ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝐹𝑟𝑒𝑒 𝑔𝑝ଵ ≝ 𝐺𝑟𝑖𝑝 𝑃𝑜𝑖𝑛𝑡 𝑈𝑠𝑒𝑑 

Figure 2: A pair of two-state automata. The upper models the grip of the right 
hand whereas the lower models the state of the grip. 

3.3. Grasping and releasing a cable 

Manipulation handles are mounted at fixed points along the 
cable. Two handles are needed in the start and end of a cable. 
Movements of handles are represented by transformations in 𝑅ଷ × 𝑆𝐸(3) (Hermansson, et al., 2013). Thus, when moved, 
torques and forces are created due to reaction from strain and 
shear in the cable and due to its own weight. These repelling 
torques and forces are contained in each handle and are added 
to the kinematical model of the manikin when they are 
grasped and removed when released. 

The assembly of a clip is represented by following the clip 
along a short path in the clip direction, see Figure 3. 
Moreover, each assemble clip also contains a force that 
represent the force needed by the manikin in order to push the 
clip in place. It is automatically added to the kinematical 
model when a push command is executed.  

 

Figure 3: a) The grasp used to move and mount the clip. b) The path where 
the cable is moved into mounting position. c) The path to where the clip is 
mounted. 

3.4. Formal Methods  

Since the assembly information, the automated manikin, 
the instruction language and all the objects used in the 
assembly are contained in the model. It is important to verify 
that it is correct. 

Formal verification is a methodology to prove if a set of 
properties hold for a model (Voronov & Åkesson, 2009), and 
it is used to verify that no language instruction violates the 
model 𝐸஺௟௟  and to ensure that there are no contradictions in the 
model specification. By modelling properties of the manikin 
and the objects into 𝐸஺௟௟ , it is possible to also include them in 
the verification synthesis. For instance, it is possible to verify 
if a set of states are reachable from the initial state, or that 
there exists a way to return to the initial state. In this way, the 
manikin may be prevented from reaching a deadlock state or 
from violate any properties in the model.  

4. Test Case 

The presented test cases are based cable assemblies in a 
truck cabin, and we show two assembly methods with 
different automation levels. 

The test cases are based cable assemblies in a truck cabin. 
The first test case shows how it is possible to construct a 
simulation by individually defining the instructions needed to 
connect each clip of the cable. In the second test case, it is 
shown how a sequence of push instructions may automatically 
be generated. Based on the grip points, the instructions needed 
for mounting the clips are automatically generated. 

The flexible cables are constructed in IPS (Industrial Path 
Solutions, 2012). However, the collision model is not used, 
and the cables are allowed to intersect with other geometric 
objects. Also, the generated paths used to move the clips and 
to define the path to which the clips are pushed are not 
guaranteed to be collision free.  

For each clip to be mounted a grip point has been defined. 
The force required to mount a clip is set to 35 [N] and is 
based on an industrial case (unpublished data). Each clip is set 
to be is pushed 20[mm]. Thus, when a push instruction is used 
on a grip point, the clip will be moved 20[mm] along the local 
z-axis of the grip point. 

The manikins are instructed using a graphical language, 
where the user gradually builds up an instruction by selecting 
different options, see Figure 4. The set of available options 
depend on the current instruction and on the objects in the 
scene. The user creates operations that may consist of one or 
several instructions. An operation must be verified in order to 
be executed. In the execution step, a list with all the necessary 
low-level instructions needed for the manikin to perform the 
operation is automatically generated. The low-level 
instructions are then sequentially executed.  

 

a) 

c) 

b) 
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Figure 4: The graphical interface used to instruct the manikins in IMMA. 

4.1. Test case A 

In this case the cable is assembled by mounting two clips 
in the chassis, see Figure 5. The grip points have been defined 
for mounting the clips and to allow support for the manikin. 
Three instructions are defined and composed into an 
operation. The clips shown in Figure 5 a) and b) are mounted 
using two push instructions. One instruction is defined to 
allow the manikin to use a grip point, see Figure 5 c), for 
support when performing the assembly.  

Figure 6, shows two frames of the assembly where the 
manikin leans into the chassis, takes support, and mounts the 
clips. Table 1 shows pseudo code of the low-level instructions 
that automatically have been generated too perform the 
assembly operation. 

 

Figure 5: a) and b) shows the clips to be mounted, and c) the support point. 
CAD models courtesy of Scania. 

  

Figure 6: Two frames showing the assembly of the two cable clips. CAD 
models courtesy of Scania. 

Table 1: Pseudo code of the low-level instructions used to perform the 
assembly of two cable clips in Figure 6. 

Get Chassis left hand grip (Figure 4c)  

Set left hand as support  

Get Clip1 right hand grip (Figure 4b) 

Create the path needed to push the 
clip  

Push the clip along the generated 
path 

Release Clip1 

Get Clip2 right hand grip 
(Figure 4a) 

Create the path needed to push 
the clip  

Push the clip along the 
generated path 

Release Clip2 

Release Chassis 

4.2. Test case B 

A cable consisting of four clips is to be mounted in the 
chassis. On each clip to be mounted, a grip point is defined 
and positioned to in the direction of the intended push 
operation, see Figure 7. One push instruction is defined, and 
the cable is selected as to object to be pushed. When a cable is 
selected as push object a push instruction is created for each 
clip on the cable that has a grip point. Thus, in this case, four 
push instructions are generated. The order of the push 
instructions is defined of the order in which they are placed in 
the operation. The pseudo code of the low-level instructions 
that are automatically generated out of the four push 
instructions are shown in Table 2. Figure 8, shows four 
frames of the assembly.  
 

Figure 7: The flexible cable with the corresponding grip points. CAD models 
courtesy of Scania. 

  

  

Figure 8: Four frames showing of the assembly of the cable in Figure 7. CAD 
models courtesy of Scania. 

Table 2: Pseudo code of the low-level instructions used to perform the 
assembly of the four clips of the cable in Figure 7. 

Get Clip1 right hand grip  

Create the path needed to push the 
clip  

Push the clip along the generated 
path 

Release Clip2 

Get Clip2 right hand grip  

Create the path needed to push the 
clip  

Push the clip along the generated 
path 

Release Clip2 

Get Clip3 right hand grip  

Create the path needed to push 
the clip  

Push the clip along the 
generated path 

Release Clip3 

Get Clip4 right hand grip  

Create the path needed to push 
the clip  

Push the clip along the 
generated path 

Release Clip4 

a) 

c) 

b) 
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5. Discussion and Future Work 

It is shown that with our approach it is possible to easily 
construct simulations with flexible cables. The forces and 
torques from the cable are included in the kinematical model 
of the manikin and are taken into consideration when the 
manikin tries to avoid collision and maintain the balance in an 
ergonomic sound way. Since the assembly operation and the 
manikin are merged into the same model, it is also possible to 
formally prove that the manikin correctly performs the 
assembly operation. 

Two methods for constructing cable simulations are 
presented. In the second method (test case B), it is shown that 
it is possible further reduce the time needed to construct 
simulations. However, the current implementation only allows 
the same hand to be used in one mounting sequence. To allow 
the manikin to automatically use different hands to both the 
support and mounting clips will be covered in the future work. 

There are no collision between the cables and objects in the 
environment. However, this is necessary in order to achieve a 
realistic simulation and will be considered in the future work.  

Even if it is an important factor, the assembly time has not 
been considered in the simulations. However, the assembly 
time may be computed from a Predetermined Motion Time 
system in a post computational step (Mårdberg, et al., 2013). 

In the test cases, the cable has been placed close to its final 
assembly position. The part where the cable has been brought 
from the material shelf and been straightened out into the 
chassis are omitted from the simulations. In order to simulate 
this, there is a need for a possibility to set a handle to be 
active or not. A handle is active when it is used by the 
manikin or has been mounted and inactive otherwise. An 
inactive handle follows the activated handles on the cable.  

6. Conclusion 

In this work we show how a high-level language is used to 
instruct an automated manikin to automatically perform 
assembly of a flexible cable. The assembly is made on test 
cases from the automotive industry, and it is shown it is 
possible to efficiently construct simulations with flexible 
cables. The instruction language is designed to use the 
automated functions of the IMMA manikin. This reduces the 
number of instructions needed to generate an assembly 
simulation with flexible cables. For instance, the torques and 
forces from the stiffness, shearing and weight of the cables 
will automatically be included into the kinematic model of the 
manikin when it assembles a cable. 

The modeling approach is general and may be expanded to 
allow more properties in the objects, more complex assembly 
instructions and more manikins to be included into the model. 

Moreover, with our modeling approach, the whole 
assembly operation may be included into the same model as 
the manikin. This way, it is possible to formally prove that the 
manikin correctly performs the assembly operation.  
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