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Highlights

• A novel approach for space–time adaptive finite element analysis is presented.
• Global error control is obtained by the technique of solving a dual problem.
• Space and time errors are estimated using a hierarchical decomposition of the dual.
• Recursive adaptations of the whole space–time mesh is avoided.
• The coupled consolidation problem in geomechanics is considered as an application.

Abstract

Issues related to space–time adaptivity for a class of nonlinear and time-dependent problems are discussed. The dG(k)-methods
are adopted for the time integration, and the a posteriori error control is based on the appropriate dual problem in space–time. One
key ingredient is to decouple the error generation in space and time with a hierarchical decomposition of the discrete space of dual
solutions. The main idea put forward in the paper is to increase the computational efficiency of the adaptive scheme by avoiding
recursive adaptations of the whole time-mesh; rather, the space-mesh and the time-step defining each finite space–time slab are
defined in a truly sequential fashion.

The proposed adaptive strategy is applied to the coupled consolidation problem in geomechanics involving large deformations.
Its performance is investigated with the aid of a numerical example in 2D.
c⃝ 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/3.0/).

Keywords: Adaptivity; Error estimate; Finite element analysis; Porous media

1. Introduction

One of the classical coupled field problems in continuum mechanics is the time-dependent deformation of a porous
medium, when the pores are (partly) filled with a fluid, cf. de Boer [1]. In soil mechanics, this is denoted the con-
solidation problem (pertinent to fine-grained soils like clay) in the case of quasistatic loading, i.e. when acceleration
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of both the solid skeleton and the pore fluid can be ignored. A wealth of literature has been devoted to the finite
element solution of the coupled poroelasticity problem and its generalization to include materially nonlinear and rate-
dependent effects; cf. Booker and coworkers [2–4], Runesson [5]. However, as it appears from the literature, very little
attention has been paid to global error estimation and adaptive finite element techniques, in particular the appropriate
space–time adaptive strategies. Limited attempts are those of Aubry et al. [6] and Hicks [7], who considered pure
space-adaptivity, and those of Runesson et al. [8] and Larsson et al. [9], who considered pure time-adaptivity.

The general space–time adaptive procedure is far more challenging, cf., e.g., Eriksson et al. [10,11], Ran-
nacher [12], Dı́ez and Calderón [13], Ladevèze et al. [14] and Hoffman [15]. In particular when there is a strong
transport phenomena, such as in structural dynamics, cf. Verdugo et al. [16], the optimal spatial mesh varies dra-
matically with time. Hence, there is a great need for arbitrary space–time adaptivity. Such a general scheme requires
recursive adaptations of the whole space–time-mesh. In addition, existing error estimators for global error control
in space–time require extensive data storage in terms of saving the complete time–history of the entire solution, cf.
Chamoin and Ladevèze [17], Parés et al. [18,19] and Waeytens et al. [20]. Attempts of circumventing the need for such
a complete recursive strategy normally involves global error control in space while restricting to local error control in
time, cf. Aubry et al. [6].

In this paper, we present a strategy for obtaining global error control in quantities of interest via time-sequential
space–time adaptivity, whereby the need for recursive computations and excessive data storage is avoided. In order to
achieve this goal it is necessary to identify the error generation in space and time separately. This can be accomplished
via a hierarchical decomposition of the discrete (finite element based) dual space. Indeed, this is a novel feature that
is pursued in the present paper.

The paper is outlined as follows: To begin with, a quite broad class of time-dependent and nonlinear coupled
problems is discussed in an abstract variational setting in space–time, whereby the framework is sufficiently general
to allow for discontinuous discretization in time. Hence, the framework accommodates the dG(k)-methods. Next, the
formally exact a posteriori error representation formula is presented for the space–time format, which is based on
the solution of an appropriate dual problem. With such a formulation it is possible to choose any goal-oriented error
measure in space–time, which is of engineering interest, cf. Prudhomme and Oden [21], Larsson et al. [22], Stein
et al. [23]. The resulting error formula is manipulated (approximated) to allow for the identification of pure space
error and pure time error, respectively. In particular, we discuss a sequential-adaptive strategy that involves adaptive
change of the current space–time slab only in order to avoid full recursive adaptivity of the whole time–history.

Next, we apply the general strategy to the nonlinear consolidation problem in poromechanics. We then choose to
control the error in displacement and pore pressure at a given spatial point after given time has elapsed or during
a certain interval of time. The numerical results thoroughly demonstrate the good performance of the proposed
sequential-adaptive algorithm. In particular, it is shown that the precision (in terms of effectivity index) can be quite
acceptable for the considered problem; however, it is also noted that the optimal time-mesh is very sensitive to the
particular choice of the goal function in space–time.

2. The abstract variational setting for a class of coupled problems

2.1. Continuous problem in space–time

2.1.1. Preliminaries
We shall establish the variational format in the space–time domain S

def
= Ω × I , for given spatial domain Ω and

time domain I = (0, T ), for a quite broad class of problems involving a first order time-derivative. In particular, the
coupled problem of consolidation of geomaterials falls within this class. Another interesting application is the problem
of dynamics, rewritten in first-order form, i.e. through a Hamiltonian description. It is of considerable interest to note
from the outset that, due to the forward transport of information in time, it is always possible to consider a set of
finite time intervals, whereby the solution at the end of any such interval will act as the initial data for the next one.
To this end, we introduce a partition 0 = t0 < t1 < · · · < tN = T of the considered time domain I = (0, T ) into

time-intervals In = (tn−1, tn) of length ∆tn = tn − tn−1.1 Hence, we define space–time slabs Sn
def
= Ω × In such that

the space–time domain can be given as S
def
= Ω × I = S1 ∪ S2 · · · ∪ Sn .

1 The abbreviated notation ∆t = ∆tn will be used henceforth for the current time step associated with In .
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Next, we introduce the space C(S′) defined on a space–time slab S′
def
= Ω× I ′ for a time-interval I ′ ⊆ I . The space

C(S′) is spanned by all functions for which (i) the weak form of the problem at hand is well-defined on S′, and (ii) the
Dirichlet-type boundary conditions on the (spatial) boundary of Ω are fulfilled. In conjunction with the solution space
C, we introduce the test-space C0(S′) that consists of functions that fulfill the same regularity requirements on S′ as
the functions in the solution space, but where the functions are homogeneous on the Dirichlet part of the boundary of
Ω . We thus obtain the relation z + δz ∈ C(S′) for any two functions z ∈ C(S′) and δz ∈ C0(S′).

As a further preliminary, we also introduce the time-dependent spatial variational forms a(z; δz)(t ′) =
a(z|t=t ′; δz|t=t ′), (z, δz)(t ′) = (z|t=t ′ , δz|t=t ′) and l(δz)(t ′) = l(δz|t=t ′) on Ω for functions z ∈ C(S′) and
δz ∈ C0(S′) defined on S′ = Ω × I ′ with I ′ ∋ t ′.2 The form a(z; δz) is semi-linear (non-linear in z but linear
in δz) and corresponds to the spatial weak form of the problem, (z, δz) is the bi-linear scalar product in L2(Ω), and
l(δz) is a linear functional that represents data to the problem. Such data are load/source in the interior of Ω and
natural boundary conditions on the Neumann boundary part of Ω . Moreover, we introduce the (generally non-linear)
differential operator Φ[z] in space that corresponds to a conservation quantity, i.e., the space–time PDE describes the
evolution of Φ[z]. We thus study a problem of which the spatial weak form, which is often utilized in conventional
semi-discrete formulations, reads as follows:

(dtΦ, δz)+ a (z; δz) = l(δz) t ∈ [0, T ], (1)

where dt denotes the time derivative. The initial condition is given as Φ[z] = Φ0 when t = t0 = 0.

2.1.2. Weak format based on time-discontinuous solution and test spaces
Employing the time-dependent variational forms in space introduced above, we establish the full variational forms

in space–time as follows:

A(z; δz)
def
=

N
n=1


In

[(dtΦ[z], δz)+ a(z; δz)] dt +

Φ


z(t+0 )


, δz(t+0 )


+

N
n=2


[[Φ[z]]](tn−1), δz(t

+

n−1)


(2)

L(δz)
def
=

N
n=1


In

l(δz) dt +

Φ[z0], δz(t

+

0 )

, (3)

where z0 represents the given initial value on z that is satisfied only in weak form in general, and where [[Φ]](t) def
=

Φ(t+) − Φ(t−) denotes the jump of Φ at time t . From the construction of these forms, it is clear that we consider
the situation when both z and δz may be time-discontinuous. Hence, we introduce the spaces of time-discontinuous
functions

D = {z : z|Sn ∈
nD def
= C(Sn), n = 1, 2, . . . , N }, (4)

D0
= {z : z|Sn ∈

nD0 def
= C0(Sn), n = 1, 2, . . . , N }. (5)

Here, we recall that C(Sn) denotes the space of functions on Sn that have sufficient regularity inside the slab, and
that satisfy essential boundary conditions on the Dirichlet part of the boundary of Ω . The functions in C0(Sn) possess
the same regularity properties; however, they are homogeneous on the Dirichlet part of the boundary of Ω . From the
construction of D and D0 in (4) and (5), respectively, we thus conclude that z + δz ∈ D for any two functions z ∈ D
and δz ∈ D0.

We are now in the position to formulate the variational problem in space–time as follows: Find z ∈ D such that

A(z; δz) = L(δz) ∀δz ∈ D0, (6)

which is completely equivalent to Eq. (1) due to the choice of infinite-dimensional trial and test spaces in time.
For later use, we introduce the residual of any given z̄ ∈ D as

R(z̄; δz) = L(δz)− A(z̄; δz), (7)

2 In the following, we shall omit the time variable following the spatial forms while keeping in mind that a(•; •), (•; •) and l(•) are actually
functions in time in the case the arguments are space–time functions.
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and it follows from (6) that R(z; δz) = 0. Moreover, we define the tangent form of A, denoted A′, as the Gâteaux
derivative

A′(z; δz, δz∗)
def
=

d
dϵ

A(z + ϵδz∗; δz)

ϵ=0

=

N
n=1


In


dtΦ′[z; δz∗], δz


+ a′(z; δz, δz∗)


dt

+

Φ′[z(t+0 ); δz

∗(t+0 )], δz(t
+

0 )

+

N
n=2


[[Φ′[z; δz∗]]](tn−1), δz(t

+

n−1)

. (8)

In (8), we introduced the derivatives

a′(z; δz, δz∗)
def
=

d
dϵ

a(z + ϵδz∗; δz)

ϵ=0, (9)

Φ′[z; δz∗] def
=

d
dϵ

Φ[z + ϵδz∗]

ϵ=0. (10)

Now, because of the forward transport of information in time mentioned above, it is sufficient to consider the
“incremental form” of (6) applied to the space–time slabs Sn in sequence as follows: Find z|Sn ∈

nD such that

A1(z; δz) = L1(δz) ∀δz ∈
1D0, (11)

An(z; δz) = Ln(z(t
−

n−1); δz) ∀δz ∈
nD0, n > 1 (12)

where z(t−n−1) is known from the previous increment. In ((11), (12)), we introduced the incremental forms

An(z; δz)
def
=


In

[(dtΦ[z], δz)+ a(z; δz)] dt +

Φ


z(t+n−1)


, δz(t+n−1)


, (13)

L1(δz)
def
=


I1

l(δz) dt +

Φ0, δz(t

+

0 )

, (14)

Ln(z(t
−

n−1); δz)
def
=


In

l(δz) dt +

Φ


z(t−n−1)


, δz(t+n−1)


, n > 1. (15)

Remark. Following the literature, e.g. Eriksson et al. [11], we may identify a fictitious “initial value” z(t−0 ) from the
identity

(Φ[z(t−0 )], δz(t
+

0 )) = (Φ0, δz(t
+

0 )), (16)

whereby ((12), (15)) hold also for n = 1. Henceforth, we tacitly use this identity independent on whether z(t−0 )
actually exists or not; hence, the relation (12) is valid also for n = 1. �

We may construct the residual pertinent to each Sn as

Rn(z̄; δz) = Ln(z̄(t
−

n−1); δz)− An(z̄; δz) (17)

for any function z̄ ∈ D. In view of ((11), (12)), the exact solution, z, satisfies

Rn(z; δz) = 0 ∀δz ∈ nD0 (18)

for each increment n = 1, . . . , N . Clearly, the solution that satisfies all the incremental problems ((11), (12)) also
solves the global problem (6), since we have the important identity

N
n=1

Rn(z; δz) = R(z; δz) (19)

for any functions z ∈ D and δz ∈ D0.
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For later use, we now define the tangent form of An , denoted A′n , as the Gâteaux derivative

A′n(z; δz, δz
∗)

def
=

d
dϵ

An(z + ϵδz
∗
; δz)


ϵ=0

=

Φ′[z(t+n−1); δz

∗(t+n−1)], δz(t
+

n−1)

+


In


dtΦ′[z; δz∗], δz


+ a′(z; δz, δz∗)


dt (20)

where we recall the spatial Gâteaux derivatives defined in (9) and (10).

Remark. Note that the introduction of time-discontinuities so far is not an approximation. Comparing with the more
straightforward presentation, i.e. in Eriksson et al. [10], the sum of time-intervals in the global problem (6) should
rather be viewed as a set of sequential (exact) variational problems of standard character. �

2.2. Space–time finite element formulation using discontinuous Galerkin in time

2.2.1. General case: dG(k)-method
We introduce finite element approximations in both space and time. For the time-discretization we shall adopt the

class of dG(k)-methods, k ≥ 0, with k = 0 as the basic choice. The temporal mesh-function is common for all spatial
points and given by the partitioning I =

N
n=1 In as defined in the previous subsection, whereas the spatial mesh

hn(X),X ∈ Ω , is associated with the triangulation of Ω that is unique to each In, n = 1, . . . , N . As a result, the
space–time mesh is piecewise prismatic on each Sn .3

With these preliminaries we may now formulate the finite element problem. Since we adopt discontinuous Galerkin
(dG), we utilize the weak format based on discontinuous solution and test spaces, cf. Section 2.1.2. In standard fashion,
we thus seek the finite element solution zh ∈ Dh ⊂ D such that

A(zh; δzh) = L(δzh) ∀δzh ∈ D0
h ⊂ D0, (21)

where we recall the weak form (6). Introducing the finite element spaces related to the triangulation hn(X) as nVh and
nV0

h for the trial and test-spaces, respectively, we define the FE-spaces for a dG(k)-method in time as follows:

nDh =
nVh × P k(In),

nD0
h =

nV0
h × P k(In), (22)

where P k(In) denotes polynomials of order k in time on the interval In .
We note that the residual of the FE-solution zh ∈ Dh is given from (7) as

R(zh; δz) = L(δz)− A(zh; δz) = A(z; δz)− A(zh; δz) (23)

for arbitrary δz ∈ D0, where (6) was used to give the last equality. Finally, the (non-linear) Galerkin orthogonality

R(zh; δzh) = 0 ∀δzh ∈ D0
h (24)

follows from (21).
In practice, we consider the “incremental form” (18) on space–time slabs Sn , in sequence for n = 1, 2, . . . , N , as

follows: Find zh |Sn ∈
nVh × P k(In) such that

An(zh; δzh) = Ln(zh(t
−

n−1); δzh) ∀δzh ∈
nV0

h × P k(In), (25)

where z(t−n−1) is known from the previous increment. The incremental forms An and Ln were given in (13) and (15).
In general, (25) is non-linear and we have to adopt an iterative solution strategy. Here, we propose Newton iterations

as the basic method, which requires the Gâteaux derivative of An , as defined in (20), and the residual of (25), as defined
in (17),

Rn(z̄; δz)
def
= Ln(z̄(t

−

n−1); δz)− An(z̄; δz). (26)

3 This is a result of adopting a dG-method; the situation becomes slightly different when a cG-method is adopted.
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For the time interval In , we thus iterate for l = 1, 2, . . . ,

z(l+1)
h |Sn = z(l)h |Sn + dzh, (27)

until (25) is satisfied within a given tolerance. In each Newton-step, we solve for the update dzh ∈ V0
h × P k(In) such

that

A′n(z
(l)
h ; δzh, dzh) = Rn(z

(l)
h ; δzh) ∀δzh ∈

nV0
h × P k(In). (28)

2.2.2. Special case: dG(0)-method
In particular, we shall employ the simple dG(0)-method of piecewise constant functions in time, i.e. zh(X, t) =

nzh(X) for t ∈ In . In practice this means to solve for the spatial solutions nzh ∈
nVh for each time-step In .4 The

FE-problem, now purely spatial, thus reads: For n = 1, . . . , N , find nzh ∈
nVh such that5

Rn(
nzh; δzh) = ∆t


⟨l(δzh)⟩n − a(nzh; δzh)


−


Φ[nzh] − Φ[n−1zh], δzh


= 0 ∀δzh ∈

nV0
h (29)

or

(Φ[nzh], δzh)+∆t a(nzh; δzh) = (Φ[n−1zh], δzh)+∆t ⟨l(δzh)⟩n ∀δzh ∈
nV0

h, (30)

where ⟨l⟩n denotes the mean value of l on In , i.e.

⟨l⟩n
def
=

1
∆t


In

l dt, (31)

and n−1zh ∈
n−1Vh is known from the previous time-step.6

The Gâteaux-derivative A′n , used in the Newton-iterations, becomes

A′n(zh; δzh, δz
∗

h) =

Φ′[nzh; δz

∗

h], δzh

+∆t a′(nzh; δzh, δz

∗

h). (32)

The Newton-step, given by (28), can thus be rephrased more explicitly as
Φ′[nz(l)h ; dzh], δzh


+∆t a′(nz(l)h ; δzh, dzh) = Rn(z

(l)
h ; δzn) ∀δzh ∈

nV0
h . (33)

2.3. Computation of space–time error based on the dual solution

We wish to control the error of the FE-solution zh ∈ Dh in terms of a scalar goal function Q(z) of engineering
interest, and we define the error as

E(z, zh)
def
= Q(z)− Q(zh). (34)

It is noted that Q(z) does not need to be a norm, nor does it need to be a linear functional of z.

With z̄(s)
def
= zh + s(z − zh), e = z − zh , we define the secant forms AS and QS as follows:

A(z; δz)− A(zh; δz) =
 1

0

d
ds

A(z̄(s); δz)ds =
 1

0
A′(z̄(s); δz, e)ds

def
= AS(z, zh; δz, e), (35)

4 The only way that nVh differs for different values of n is that the Dirichlet boundary conditions may change with time. In fact, even the
extension of the Dirichlet part of the boundary may be time-dependent.

5 For brevity the notation δzh is used for functions in nV0
h ×P k (In) as well as for functions in nV0

h . This is the case in (29).
6 In analogy with the Remark above, we make the tacit interpretation


Φ[0zh ], δzh


= (Φ0, δzh) ∀δzh ∈

1V0
h , whereby (29) is valid also for

n = 1.
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Q(z)− Q(zh) =

 1

0

d
ds

Q(z̄(s))ds =
 1

0
Q′(z̄(s); e)ds

def
= QS(z, zh; e). (36)

In (36), we introduced the tangent form Q′(z; δz∗) as the Gâteaux-derivative of Q in complete analogy with A′ in (8).
Next, we introduce the appropriate dual solution z∗ ∈ D0, which solves the (generally nonlinear) dual problem

AS(•; z
∗, δz∗) = QS(•; δz

∗), ∀δz∗ ∈ D0. (37)

We then obtain, by definition, the error representation

E(•)
(36)
= QS(•; e)

(37)
= AS(•; z

∗, e)
(35), (23)
= R(zh; z

∗). (38)

In practice, it is necessary to introduce approximations (from linearization) at the computation of AS and QS in
(37), which introduces a linearization error. The most straightforward approximation is to replace the secant with the
tangent at the known solution zh , i.e.

AS(z, zh; z
∗, δz∗) ≈ AS(zh, zh; z

∗, δz∗) = A′(zh; z
∗, δz∗), (39)

QS(z, zh; δz
∗) ≈ QS(zh, zh; δz

∗) = Q′(zh; δz
∗). (40)

Henceforth, this approximation is used if nothing else is stated. Moreover, it is necessary to compute z∗ by suitable
space–time discretization; see further below.

As to the explicit structure of the dual problem (37), it is illuminating to elaborate on the expression for A′ in (8).
Upon integrating by parts in time on each In and then rearranging terms, we obtain

A′(z; δz, δz∗) =
N

n=1


In


−


Φ′[z; δz∗], dtδz


+ a′(z; δz, δz∗)


dt

− (Φ′[z(t−n ); δz
∗(t−n )], [[δz]](tn))


+ (Φ′[z(t−N ); δz

∗(t−N )], δz(t
+

N ))

def
= A∗(z; δz∗, δz). (41)

Upon introducing the form associated with each In

A∗n(z; δz
∗, δz) =


In


−(Φ′[z; δz∗], dtδz)+ a′(z; δz, δz∗)


dt + (Φ′[z(t−n ); δz

∗(t−n )], δz(t
−
n )) (42)

we may express A∗ as

A∗(z; δz∗, δz) =
N

n=1


A∗n(z; δz

∗, δz)− (Φ′[z(t−n ); δz
∗(t−n )], δz(t

+
n ))


+ (Φ′[z(t−N ); δz

∗(t−N )], δz(t
+

N )). (43)

Moreover, we decompose the goal-functional Q into

Q(z) =
N

n=1

Qn(z)+ Q̄(z(T )), (44)

where Qn are space–time functionals on the open time-intervals In , and Q̄ is a space-functional to be evaluated at
t = T . Hence, we obtain the forms associated with the dual loading as follows:

L∗N (z; δz
∗) = Q̄′(z(t−N ); δz

∗(t−N ))+ Q′N (z; δz
∗) (45)

L∗n(z; δz
∗, z∗(t+n )) = (Φ

′
[z(t−n ); δz

∗(t−n )], z∗(t+n ))+ Q′n(z; δz
∗), n < N . (46)

It is noted that (37) represents a time-dependent problem running backwards in time from t = tN . Hence, we may
consider the “incremental form” of (37) applied to the space–time slabs Sn in sequence for n = N , N − 1, . . . , 1 as
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follows: Find z∗|Sn ∈ C0(Sn) such that

A∗N (zh; δz
∗, z∗) = L∗N (zh; δz

∗), ∀δz∗ ∈ C0(SN ), (47)

A∗n(zh; δz
∗, z∗) = L∗n(zh; δz

∗, z∗(t+n )), ∀δz
∗
∈ C0(Sn), n < N , (48)

where z∗(t+n ) is known from the previous increment.

Remark. Like in the case of the initial value for the primal problem, we may identify a fictitious “initial value” z∗(t+N )
from the identity

(Φ′[z(t−N ); δz
∗(t−N )], z∗(t+N )) = Q̄′(z(t−N ); δz

∗(t−N )), ∀δz
∗
∈ C0(SN ) (49)

whereby (46) holds also for n = N . Henceforth, we tacitly use this identity independent on whether z∗(t+N ) actually
exists or not; hence, the relation (48) is valid also for n = N .

Let us consider a few important examples of goal functionals Q̄ where it is possible to directly identify z∗(t−N ):

1. Q̄(z(T )) = (Φ[z(T )], ψ), where ψ = ψ(X) is an extraction function on Ω0, then

Q̄′(z(t−N ); δz
∗(t−N )) = (Φ

′
[z(t−N ); δz

∗(t−N )], ψ), ∀δz
∗
∈ C0(SN ) (50)

and from (49) we conclude that the “initial condition” is z∗(t+N ) = ψ .
2. Q̄(z(T )) = ∥Φ[z(T )]∥, where ∥ • ∥ represents the L2 norm on Ω0, then

Q̄′(z(t−N ); δz
∗(t−N )) =

1

∥Φ[z(t−N )]∥
(Φ′[z(t−N ); δz

∗(t−N )],Φ[z(t
−

N )]), ∀δz
∗
∈ C0(SN ) (51)

and from (49) we conclude that the “initial condition” is z∗(t+N ) = Φ[z(t−N )]/∥Φ[z(t
−

N )]∥, which depends on the
primal solution z. �

Finally in this subsection, we give the more explicit expression for the error representation, given generally in (38),
in the particular case that the dG(0)-method has been used for computing the FE-solution zh . In this case we obtain
from (26)

R(zh; z
∗) =

N
n=1

Rn(zh; z
∗), (52)

with

Rn(zh; z
∗) = ∆t


l(z∗)


n − a(nzh;


z∗


n)


− (Φ[nzh] − Φ[n−1zh], z∗(t+n−1)). (53)

2.4. Space–time finite element format of the dual problem

2.4.1. General case: dG(k)-method
When a dG(k)-method is used for the time-integration of the dual problem (48) on incremental form, the FE-

problem becomes: Find z∗h |Sn ∈
nV0

h × P k(In) such that, in sequence for n = N , N − 1, . . . , 1,

A∗n(zh; δz
∗

h, z∗h) = L∗n(zh; δz
∗

h, z∗h(t
+
n )), ∀δz

∗

h ∈
nV0

h × P k(In). (54)

It is noted that this problem is linear in z∗h (due to the introduced linearizations).

2.4.2. Special case: dG(0)-method
In the particular case that dG(0) is employed, we may rephrase (54) as a purely spatial problem for each time step

In (as for the primal problem): For n = N , N − 1, . . . , 1, find nz∗h ∈
nV0

h such that

(Φ′[nzh, δz
∗

h],
nz∗h)+∆t a′(nzh;

nz∗h, δz
∗

h) = (Φ
′
[
nzh, δz

∗

h],
n+1z∗h), ∀δz

∗

h ∈
nV0

h (55)

where n+1z∗h is known from the previous time-step.7

7 We make the tacit interpretation

Φ′[Nzh , δz

∗
h ],

N+1z∗h


= Q′T


Nzh , δz

∗
h


∀δz∗h ∈

NV0
h , whereby (55) is valid also for n = N .
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3. Computational strategy

3.1. Preliminaries

In this section, the novel strategy for sequential adaptive computations will be presented. A few important compu-
tational issues will be discussed subsequently. They can be categorized as:

• Computation of an approximate dual solution z∗. The main strategy is to introduce a hierarchical decomposition
of the dual solution space, leading to additive decomposition of the dual solution into parts that represent space
and time error, respectively. Note: An additive decomposition of the dual solution gives an additive decomposition
of the computed error.
• Efficient strategy for adaptation of the space–time mesh on space–time slabs Sn without the need for recursive

adaptations of the whole time-mesh. The goal is to fully adaptively define the space-mesh and the time-step of
each Sn in a truly sequential fashion for i = 1, 2, . . . , N , whereby it is noted that the number of time intervals, N ,
is a result of the adaptive procedure.

Remark. It is straightforward to incorporate the solution error, in addition to the usual FE-discretization error. The
FE-error is the difference between the exact solution z and the exact solution of the variationally consistent problem
obtained from discretization, denoted zh . The solution error is, in principle, the difference between zh and the actual
computational result, denoted zSOL

h henceforth. This error may have different sources (known or unknown). An
example of such sources is incomplete iterations in a Newton iteration algorithm. �

In order to be specific, although with minor loss of generality, we shall henceforth consider 2D-problems only.
Moreover, we shall assume that the FE-space nVh contains standard piecewise linear approximation on triangular
spatial meshes (as the simplest possible choice),8 while the dG(0)-method is used in time.’

3.2. Computation of the dual solution in space–time

3.2.1. Approximations in the dual problem
As to the practical computation of the dual solution z∗ ∈ D0, we note that two principally different sources of

error arise: (1) The dual problem (37) is linearized such that the secant forms AS(z, zh; z∗, δz∗) and QS(z, zh; δz∗),
which depend on the exact (unknown) solution z, are replaced by the tangent forms A′(zh; z∗, δz∗) and Q′(zh; δz∗)
evaluated at the FE-solution zh . (2) The exact solution z∗ ∈ D0 is approximated with some suitable z̃∗ ∈ D̃0, which
is considered as an enhancement of the ordinary FE-solution z∗h ∈ D0

h . Clearly, z∗h is completely ineffective as a direct
approximation of z∗, since it will not give any contribution to the error in view of the Galerkin orthogonality.

3.2.2. Decomposition of the enhanced functions spaces
We now consider an approximation z̃∗ ∈ D̃0. In order to decompose the error estimate into spatial and temporal

parts, we will consider the influence of the dual approximation on the residual.
One possible strategy is to introduce a hierarchical enhancement upon introducing the decomposition

D̃0
= {z|Sn ∈

nD̃0
} with nD̃0

=
nṼ0

h × P̃ 0(In) = D0
h ⊕∆

(s)
D0

h ⊕∆
(t)
D0

h ⊕∆
(st)
D 0

h (56)

such that z̃∗ can be decomposed additively as

z̃∗ = z̃∗h +∆
(s)
z ∗h +∆

(t)
z ∗h +∆

(st)
z ∗h (57)

with z̃∗h ∈ D0
h,∆

(s)
z ∗h ∈ ∆

(s)
D

0

h,∆
(t)
z ∗h ∈ ∆

(t)
D

0

h and ∆
(st)
z ∗h ∈ ∆

(st)
D

0

h . Hence, we have decomposed z̃∗ into contributions

from the regular FE-space D0
h , a purely spatial enhancement ∆

(s)
z ∗h , a purely temporal enhancement ∆

(t)
z ∗h and a mixed

spatial/temporal enhancement ∆
(st)
z ∗h .

8 Here, we assume the approximation to be numerically stable, i.e., we assume that the Babushka–Brezzi inf-sup condition is satisfied if relevant.
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Fig. 1. Illustration of hierarchical decomposition of the enhanced dual solution on a space–time element (1D-space).

Remark. The linear part z̃∗h ∈ D0
h is not identical to the regular FE-solution z∗h ∈ D0

h , although both z̃∗h and z∗h belong
to the same space D0

h (piecewise linear in space and P 0(In) in time). However, they both qualify in the Galerkin
orthogonality. �

We may now obtain the approximate error representation as

R(zh; z̃
∗)  

≃EFEM

= R(zh;∆
(s)
z ∗h +

1
2
∆
(st)
z ∗h)  

≡
(s)
E FEM

+ R(zh;∆
(t)
z ∗h +

1
2
∆
(st)
z ∗h)  

≡
(t)
EFEM

(58)

where we used the Galerkin orthogonality to drop the contribution from z̃∗h , since R(zh; z̃∗h) = 0.

Remark. Note that we here tacitly choose to split the (higher order) mixed term and divide it between the spatial and
temporal error contributions. �

As to the enhancement in space, we simply choose nṼh as piecewise quadratics on each triangular element. The
straightforward enhancement in time would be to set P̃ 0(In) = P 1(In), corresponding to dG(1). However, in order
to reduce the computational effort, we rather opt for a suitable smoothing procedure based on the dG(0)-solution and
leading to piecewise linear variation in each In , while capturing possible discontinuities at each time node tn . The
space–time decomposition is shown schematically in Fig. 1 for a single space–time element.

3.2.3. Slab-wise computation of the enhanced dual solution
We shall now describe a procedure for computing the components of the dual solution, given in (57), on each

space–time slab Sn .
Firstly, we compute the enhanced solution in space by solving on the enhanced spatial discretization for dG(0) in

time. Based on an end condition at time t+n , we thus compute z̃∗,− ∈ Ṽ0
h such that

(Φ′[nzh, δz
∗
], z̃∗,−)+∆t a′(nzh; z̃

∗,−, δz∗) = (Φ′[nzh, δz
∗
], z̃∗(t+n )), ∀δz

∗
∈ Ṽ0

h (59)

where Ṽ0
h is the space described by higher order elements (piecewise quadratics) than V0

h . Eq. (59) is thus the spatially
enhanced version of Eq. (55).

Using nodal interpolation onto the linear shape functions, defined by Πh , we compute the contributions as

z̃∗h = Πh z̃∗,−, ∆
(s)
z ∗h = (1−Πh) z̃∗,−. (60)
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Fig. 2. Method for computing time-enhancement of the dual solution. Left figure shows the exact, possibly discontinuous, solution and the dG(0)
solution. Right figure shows the Discontinuous Smoothed dG(0) solution.

Secondly, we follow along the lines of Larsson et al. [24] and compute the Discontinuous Smoothed dG(0) approx-
imation as follows: A short backwards time-step approximation z̃∗,+ ∈ Ṽ0

h is computed from

(Φ′[nzh, δz
∗
], z̃∗,+)+ (1− β)∆t a′(nzh; z̃

∗,+, δz∗) = (Φ′[nzh, δz
∗
], z̃∗(t+n )), ∀δz

∗
∈ Ṽ0

h (61)

where, typically, we choose β = 0.99. This step is to capture the discontinuity of the exact dual solution, cf. Fig. 2.
Using linear interpolation in time, we finally identify the components

∆
(t)
z ∗ =

t − tn−1

β∆t
Πh


z̃∗,+ − z̃∗,−


, ∆

(st)
z ∗ =

t − tn−1

β∆t
(1−Πh)


z̃∗,+ − z̃∗,−


. (62)

3.2.4. Solution error in the space–time FE-solution
It is straightforward to account for the solution error that arises due to the fact that the computed solution zSOL

h ≠ zh
in practice. It is then realized that, since zh is never computed, it is necessary to replace the (approximate) dual problem
(48) with the (even more approximate) problem

A∗n(z
SOL
h ; δz∗, z∗) = L∗n(z

SOL
h ; δz∗, z∗(t+n )), ∀δz

∗
∈

nD0, (63)

where, for the sake of simplicity, z∗ denotes the exact solution to the approximate dual problem (63). Note that,
although zSOL

h ∈ D0
h , it does not necessarily satisfy the Galerkin orthogonality, i.e. in general we have

R(zSOL
h ; δzh) ≠ 0 (64)

for any given δzh ∈
nD0. While it is still possible to make the hierarchical decomposition of z̃∗, described above, the

error representation now becomes

E(z, zSOL
h ) ≃ R(zSOL

h ; z̃∗), (65)

with

R(zSOL
h ; z̃∗)  
≃E

= R(zSOL
h ; z̃∗h)  
≃ESOL

+ R(zSOL
h ;∆

(s)
z ∗h +

1
2
∆
(st)
z ∗h)  

≡
(s)
E FEM

+ R(zSOL
h ;∆

(t)
z ∗h +

1
2
∆
(st)
z ∗h)  

≡
(t)
EFEM

. (66)

Remark. As discussed above, it is possible to compute the hierarchical contributions approximately upon assuming
that z̃∗h ≃ z∗h . In such a case, we have

ESOL ≃ R(zSOL
h ; z∗h), (67)

whereas the different contributions to EFEM are still given formally as in (66). �

A strategy for controlling independently
(s)
E FEM and

(t)
EFEM, as part of an adaptive procedure, is outlined in the next

subsection.
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3.3. Sequential-adaptive strategy for the space–time slabs

Our aim is to device an adaptive strategy in space–time that is computationally efficient. It is then highly desirable
to avoid concurrent space–time remeshing of S = Ω × I . We rather opt for an algorithm that allows for sequential
adaptive space–time remeshing of each Sn = Ω × In , whereby the space-mesh Mspace

h,n and In are determined concur-
rently. In other words, each Sn is adaptively remeshed only once. Although this seems like a modest requirement, it is
not trivial due to the fact that error transport from Sn depends on all other space–time slabs Sn+1, Sn+2, . . . up to the
last point in time for which we wish to control the error.

As the first ingredient in the proposed strategy, we allow for9 the rate of error accumulation (including generation
and transport) to be uniform in time, i.e. the stopping criterion is given, for any considered Sn , as follows:

En
def
= En,SOL + En,FEM ≤ TOL

∆tn
T

(68)

subjected to the constraint condition

α−
(t)
E n,FEM ≤

(s)
E n,FEM ≤ α

+
(t)
E n,FEM (69)

where α+ ≥ α− > 0 are “sufficiently close”. Clearly, α− = α+ = 0.5 would correspond to equilibrated space–time
error on each Sn .

The second (and key) ingredient in the adaptive algorithm is that the dual solution computed on the initial
space–time mesh plays a key role throughout the adaptive procedure, which is outlined as follows:

1. For given initial (say uniform) space–time mesh M H
def
= M(0)

h , compute the FE-solution zH .
2. Based on zH , compute the background dual FE-solution z∗H on M H using the basic FE-method, and carry out

continuous smoothing in time to obtain the time-enhanced solution z̃∗H . This dual solution is now stored.
3. For n = 1, 2, . . . , establish the space-mesh Mspace

h,n and the current time interval In adaptively. This is done, for
each adaptive iteration (k) according to the Box I, cf. also Fig. 3. After convergence of the adaptive procedure, then
the set {Mh,n}

N
n=1 and the set {In}

N
n=1 have been determined.

Remark. It should be noted that, due to the dG-formulation in time, initial conditions for the primal solution, as well
as end-conditions for the dual solution, are naturally given by the L2-projection if the spatial mesh varies from one
slab to another. �

4. Consolidation of binary porous medium

4.1. Strong format in space–time

We consider the problem of consolidation of a poroelastic body (soil), whose mechanical state is determined by the
displacement field u(X, t) and intrinsic pore pressure field p(X, t) for X ∈ Ω0 and t ∈ I . Finite deformations are con-
sidered such that Ω0 represents the initial configuration at t = t0 = 0. The boundary Γ0 of Ω0 is divided into Dirichlet
and Neumann parts in two different ways; Γ0 = Γ (1)

0,D ∪ Γ (1)
0,N = Γ (2)

0,D ∪ Γ (2)
0,N. Firstly, the displacements are prescribed

on Γ (1)
0,D, whereas surface tractions are prescribed on Γ (1)

0,N. Secondly, the (excess) pore pressure is prescribed on Γ (2)
0,D,

whereas the drainage velocity is prescribed on Γ (2)
0,N. It is assumed that no volume loads act in the interior of Ω0 (for

simplicity).
The strong form of the consolidation problem can now be formulated in terms of the two balance equations10:

−P ·
←

∇X = 0 in Ω0 × I, (70)

9 Note that this is merely a choice for distributing the error, and thus designing the discretization in space and time.
10 Henceforth, we introduce the notation

←

∇ for the differential operator acting in the left direction, e.g. P·
←

∇=
3

j=1
∂Pi j
∂X j

Ei in Cartesian

coordinates with basis {E j }
3
i=1.
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1. Compute zh |S(k)n
based on zh(t

−

n−1) that was computed for the previous time slab Sn−1. Then, solve for the enhanced
dual solution z̃∗|

S(k)n
from the decoupled dual problem

A∗n(z
(k)
h ; δz

∗, z̃∗(k)) = L∗n(z
(k)
h ; δz

∗, z̃∗H (t
+
n )),

whereby it is noted that z̃∗(t+n ) has been replaced by the background dual solution z̃∗H (t
+
n ) as the load (or data) for

the current space–time slab.

2. Compute the error contributions E (k)n,SOL,
(s)
E
(k)
n,FEM, etc.

3. Check the stopping criterion in (68): If

E (k)n ≤ TOL
∆t (k)n

T
then exit and take a new time step.

4. Refine the space-mesh, the time interval or both: If

α−
(t)
E
(k)
n,FEM ≤

(s)
E
(k)
n,FEM ≤ α

+
(t)
E
(k)
n,FEM

then refine in space and time uniformly.
Else if

α+
(t)
E
(k)
n,FEM ≤

(s)
E
(k)
n,FEM

then refine in space: M(k)
h,n → M(k+1)

h,n , I (k)n = I (k+1)
n

Else if
(s)
E
(k)
n,FEM ≤ α

−
(t)
E
(k)
n,FEM

then refine in time: I (k)n → I (k+1)
n ,M(k)

h,n = M(k+1)
h,n

Box I. Sequential-adaptive strategy for space–time slab Sn .

Fig. 3. Step k in the adaptation of S(k)n ; enhanced solution z̃∗(k) computed based on the FE-solution z∗(k)h (from Discontinuous Smoothed dG(0)-

method) and data z̃∗H (t
+
n ).

dt


Jnρf


+∇X ·


ρfW


= 0 in Ω0 × I, (71)

whereby (70) represents the total quasistatic equilibrium (without acceleration) of the porous body, whereas (71)
represents mass-conservation of the fluid occupying the pores of the porous body.
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In (70) we introduced the total 1st Piola–Kirchhoff stress, P, which can be split additionally into the solid (or
effective) stress, Ps, and the fluid stress, Pf, measured per unit volume of the bulk (mixture). Moreover, the fluid
stress is expressed in terms of the intrinsic pressure in the fluid, Pf

= −pJnF−T, where J = det (F) with

F def
= I+ u⊗

←

∇X = I+H with the displacement gradient defined as H def
= u⊗

←

∇X , and where n is the porosity.11 In
(71), we introduced (in addition) the intrinsic density of the fluid, ρf, and the Piola–Darcy-seepage velocity W.

Assuming intrinsic incompressibility of the solid particles, i.e. ρs
= ρs

0 = constant, it is possible to conclude from
mass-conservation of the solid phase that

n = n(J ) = 1− J−1 ( 1− n0)⇒ Jn(J ) = J − (1− n0) (72)

where n0 is the initial value of the porosity corresponding to J0 = 1. This is an exact result under the given assump-
tions.

Remark. A further simplification is obtained in the case it is assumed that the fluid is intrinsically incompressible as
well, i.e. ρf

= ρf
0 = constant; then it is possible to cancel ρf from (71), which is rewritten as

dt J +∇X ·W = 0 in Ω0 × I (73)

where we made use of the relation dt (J n(J )) = dt (J − (1− n0)) = dt J from (72). �

What remains is to establish constitutive relations for Ps(F) and W(F,G), where G def
= ∇X p plays the role of

“seepage resistance”. In this prototype model we adopt the Neo-Hookean model for the solid skeleton and (a simplified
version of) Darcy’s law for the seepage:

Ps(F) = 2G J−
2
3


F− 1

3 I1(F)F−T

+ K J (J − 1)F−T, (74)

W(F,G) = −K · G, K = k[J − (1− n0)]C−1. (75)

with I1 = tr

F · FT


. We also assume intrinsic incompressibility of the solid particles (while the pore fluid can be

compressible).
The fluid stress is given as

Pf(F, p) = −p[J − (1− n0)]F−T (76)

and the constitutive law for the pore fluid is chosen as

ϱf(p) = ϱf
0


1+

p

K f


. (77)

We thus introduce the elastic constants G and K for the solid phase, the elastic constant K f and the permeability
constant k. As to the dependency on the independent fields u and p, we note that J = J [u] is a nonlinear differential
operator in u.

In summary, we have

−Ps(F[u]) ·
←

∇X − Pf(F[u], p) ·
←

∇X = 0 in Ω0 × I, (78)

dtΦ[u, p] +∇X · (ϱ
f(p)W(F[u],G[p])) = 0 in Ω0 × I, (79)

where we introduced the “conservation” property (conservation of total fluid mass)

Φ[u, p]
def
= [J [u] − (1− n0)] ϱf(p). (80)

The boundary conditions are given as

u = up on Γ (1)
0,D × I, (81)

11 This is in accordance with the classical mixture theory. The difference to the Porous Media Theory (PMT), advocated by DE BOER [1], is the
expression for the fluid stress, which is Pf

= −pJF−T in the PMT.
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t def
= P · N = tp on Γ (1)

0,N × I, (82)

p = pp on Γ (2)
0,D × I, (83)

q
def
= W · N = qp on Γ (2)

0,N × I, (84)

whereas the initial condition is chosen as

Φ[u0, p0] = n0ϱ
f
0

def
= ϱ̂f

0. (85)

For convenience, and without loss of generality, we may set u0(X)
def
= u(X, t−0 ) = 0 and p0(X)

def
= p(X, t−0 ) = 0.

4.2. Variational format in space–time

Using the generic format in Section 2, we may establish the spatially weak form, given in (1), as follows

a(u)(u, p; δu) = l(u)(δu), (86)

(dtΦ[u, p], δp)+ a(p)(u, p; δp) = l(p)(δp), (87)

where we introduced the forms

a(u)(u, p; δu) =

Ω0

(δu⊗
←

∇X ) : P(F, p) dΩ0

=


Ω0

(δu⊗
←

∇X ) :

Ps(F)+ Pf(F, p)


dΩ0, (88)

a(p)(u, p; δp) =

Ω0

(∇Xδp) · ϱf(p)W(F,G) dΩ0, (89)

l(u)(δu) =

Γ (1)

0,N

δu · tp dΓ0, (90)

l(p)(δp) = −

Γ (2)

0,N

δp qp dΓ0 (91)

with F = F[u] and G = G[p].
The forms An(z; δz) and Ln(z(t

−

n−1); δz), given generically in (13) and (15), respectively, can thus be expanded as

An(z; δz) =


In


(dtΦ[z], δp)+ a(u)(z; δu)+ a(p)(z; δp)


dt +


Φ[z(t+n−1)], δp(t+n−1)


, (92)

Ln(z(t
−

n−1); δz) =


In


l(u)(δu)+ l(p)(δp)


dt + (Φ[z(t−n−1)], δp(t+n−1)), (93)

where we used the abbreviation z = (u, p). We may also derive the tangent form A′n(z; δz, δz
∗) in the expanded form

A′n(z; δz, δz
∗) = (8′u[z(t

+

n−1); δu
∗(t+n−1)], δp(t+n−1))+ (Φ

′
p[z(t

+

n−1); δp∗(t+n−1)], δp(t+n−1))

+


In


(dt (8

′
u[z; δu

∗
]), δp)+ (dt (Φ′p[z; δp∗]), δp)

+


a(u)

′
u
(z; δu, δu∗)+


a(u)

′
p
(z; δu, δp∗)

+


a(p)

′
u
(z; δp, δu∗)+


a(p)

′
p
(z; δp, δp∗)


dt, (94)

where we introduced the forms

(8′u[z; δu
∗
], δp) =


Ω0

δpϱf(p)JF−T
: (δu∗ ⊗

←

∇X ) dΩ0, (95)
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(Φ′p[z; δp∗], δp) =

Ω0

δp[J − (1− n0)]
dϱf(p)

dp
δp∗ dΩ0, (96)


a(u)

′
u
(z; δu, δu∗) =


Ω0

(δu⊗
←

∇X ) :

Ls

a(F)+ Lf
a(F, p)


: (δu∗ ⊗

←

∇X ) dΩ0, (97)


a(u)

′
p
(z; δu, δp∗) = −


Ω0

(δu⊗
←

∇X ) : [J − (1− n0)] F−Tδp∗ dΩ0, (98)


a(p)

′
u
(z; δp, δu∗) = −


Ω0

(∇Xδp) · ϱf(p)Ya(F,G) : (δu∗ ⊗
←

∇X ) dΩ0, (99)


a(p)

′
p
(z; δp, δp∗) = −


Ω0

(∇Xδp) ·W(F,G)
dϱf(p)

dp
δp∗ dΩ0

+


Ω0

(∇Xδp) · ϱf(p)Ka(F) · (∇Xδp∗) dΩ0, (100)

where the assumption on an incompressible solid skeleton in (72) and the relation for the fluid stress in (76) were
used. The algorithmic 4th order stiffness tensors Ls

a and Lf
a , the 3rd order tensor Ya and the 2nd order permeability

tensor Ka are given via the relations
Ps′

u [•; δu] =

Ps′

F : δF = Ls
a : (δu⊗

←

∇X ), (101)
Pf

′
u
[•; δu] =


Pf

′
F
: δF = Lf

a : (δu⊗
←

∇X ), (102)

W′u[•; δu] = W′F : δF = Ya : (δu⊗
←

∇X ), (103)

W′p[•; δp] = W′G · δG = −Ka · (∇Xδp). (104)

For the specific choice of constitutive relations given in (74) and (75), i.e. the Neo-Hookean hyperelastic law for the
solid skeleton and Darcy’s permeability law for the fluid seepage, we obtain

Ls
a = G J−

2
3


I⊗I + F⊗F−1

+
2
9

I1(F)F−T
⊗ F−T

−
2
3


F⊗ F−T

+ F−T
⊗ F


+ K J (2J − 1)F−T

⊗ F−T
− Ps
⊗F−1, (105)

Lf
a = −p


JF−T

⊗ F−T
− [J − (1− n0)]F−T

⊗F−1

, (106)

Ya = −kG ·


JC−1
⊗ F−T

− [J − (1− n0)][C−1
⊗F−1

+ F−1
⊗C−1

]


, (107)

Ka = K = k[J − (1− n0)]C−1. (108)

Finally, for the chosen constitutive model of the fluid compressibility (77), we obtain the constant derivative

dϱf(p)

dp
=
ϱf

0

K f . (109)

4.3. Space–time finite element format of primary problem

Upon employing the dG(0)-method, we introduce the finite element spaces nVh =
nUh ×

nPh associated with the
time interval In . The FE-problem thus reads: For n = 1, 2, . . . , N , find nzh = (

nuh,
nph) ∈

nVh such that

R(u)n (nzh; δuh) = ∆t

⟨l(u)(δuh)⟩n − a(u)(nzh; δuh)


= 0, ∀δuh ∈

nU0
h, (110)

R(p)n (nzh; δph) = ∆t

⟨l(p)(δph)⟩n − a(p)(nzh; δph)


− (Φ[nzh]

−Φ[n−1zh], δph) = 0, ∀δph ∈
nP0

h, (111)
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or

∆t a(u)(nzh; δuh) = ∆t ⟨l(u)(δuh)⟩n, ∀δuh ∈
nU0

h, (112)

(Φ[nzh], δph)+∆ta(p)(nzh; δph) = (Φ[n−1zh], δph)+∆t ⟨l(p)(δph)⟩n, ∀δph ∈
nP0

h . (113)

A Newton step then becomes: Find dzh = (duh, dph) ∈
nV0

h such that

∆t


a(u)
′

u
(nz(l)h ; δuh, duh)+∆t


a(u)

′
p
(nz(l)h ; δuh, dph) = R(u)n (nz(l)h ; δuh), ∀δuh ∈

nU0
h, (114)

(8′u[
nz(l)h ; duh], δph)+ (Φ′p[

nz(l)h ; dph], δph)+∆t


a(p)
′

u
(nz(l)h ; δph, duh)

+∆t


a(p)
′

p
(nz(l)h ; δph, dph) = R(p)n (nz(l)h ; δph), ∀δph ∈

nP0
h . (115)

4.4. Error computation and the dual problem

We shall assume that the dG(0)-method is used to compute the primary solution zh = (uh, ph) and that the appro-
priate dual solution z∗ = (u∗, p∗) has been found, whereby u∗(X, t) is the dual displacement and p∗(X, t) is the dual
excess pore pressure. We may then use the error representation in (48) and (49) directly to obtain

Rn(zh; z
∗) = ∆t


⟨l(u)(u∗)⟩n + ⟨l(p)(p∗)⟩n − a(u)(nzh; ⟨u∗⟩)

− a(p)(nzh; ⟨p
∗
⟩)


− (Φ[nzh] − Φ[n−1zh], p∗(t+n−1)). (116)

As to the explicit solution of the dual solution, it is given by (48), whereby A∗n and L∗n can be expanded as

A∗n(z; δz
∗, z∗) =


In


−(8′u[z; δu

∗
], dt p∗)+ (Φ′p[z; δp∗], dt p∗)

+


a(u)

′
u
(z;u∗, δu∗)+


a(u)

′
p
(z;u∗, δp∗)

+


a(p)

′
u
(z; p∗, δu∗)+


a(p)

′
p
(z; p∗, δp∗)


dt

+ (8′u[z(t
−
n ); δu

∗(t−n )], p∗(t−n ))+ (Φ
′
p[z(t

−
n ); δp∗(t−n )], p∗(t−n )), (117)

L∗N (z; δz
∗) = Q̄′u(z(t

−

N ); δu
∗(t−N ))+ Q̄′p(z(t

−

N ); δp∗(t−N ))+ Q′u,N (z; δu
∗)+ Q′p,N (z; δp∗) (118)

L∗n(z; δz
∗, z∗(t+n )) = (8′u[z(t

−
n ); δu

∗(t−n )], p∗(t+n ))+ (Φ
′
p[z(t

−
n ); δp∗(t−n )], p∗(t+n ))

+ Q′u,n(z; δu
∗)+ Q′p,n(z; δp∗), n < N (119)

5. Numerical examples

We shall illustrate the sequential-adaptive strategy by computing the response of a partially saturated “sponge”,12

adopting the poro-hyper-elastic formulation described in the previous section. We normalize the problem with respect
to the shear stiffness G, the permeability constant k and the length a. Doing so, we define the dimensionless variables
representing the prescribed vertical load (traction) traction, T̄p, the elastic bulk modulus, K̄ , the fluid compressibility,
K̄ f, the spatial position, X̄, and the time, t̄ , as follows:

T̄p
def
=

1
G

Tp, (120)

12 The notion of a sponge is adopted to illustrate the poro-mechanics behavior in large deformation elasticity. Note that for applications to,
e.g., geo-mechanics problems, the modeling of the solid skeleton would preferably be that of elasto–(visco-)plasticity.
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Fig. 4. Problem description: “Sponge” of size 5 a × 5 a subjected to vertical loading T̄p. The actual deformation at time t̄ = 0.1 is shown for
T̄ amp

p = 0.5.

K̄
def
=

1
G

K , K̄ f def
=

1
G

K f, (121)

X̄ def
=

1
a

X, t̄
def
=

2kG

a2 t. (122)

The dimensionless material data used in the computations are K̄ = 3/2, corresponding to Poisson’s ratio ν = 0 for
the linear response, and K̄ f

= 103, corresponding to a nearly incompressible fluid.
Fig. 4 shows a 2D domain of size 5 a × 5 a that is studied under time-dependent loading in terms of a constant

vertical traction distributed on the upper surface over the spatial length 2 a. The left and lower boundaries are subjected
to symmetry boundary conditions, while the top and right boundaries are free. In particular, the point of interest P1 at
X1 (located on the left boundary at a depth of 0.5 a below the surface) is indicated in the Figure. The non-dimensional
loading is applied in terms of a ramp-function in time

T̄P(t) =


t̄

t̄r
T̄ amp

P 0 < t̄ < t̄r

T̄ amp
P t̄r < t̄,

(123)

where t̄r is the duration of the ramp and T̄ amp
p is the non-dimensional amplitude. Subsequently, we choose t̄r = 0.01

throughout.
We shall now study the accuracy of the pressure at point P1 and time t̄ = 0.1. To this end, we conduct a simulation

up until the time of interest, i.e. the non-dimensional end time is T̄ = 0.1, and we choose the goal quantity

Q(u, p)

= Q̄(u(T̄ ), p(T̄ ))


= p(X̄1, T̄ ). (124)

Following the arguments presented in, e.g., Larsson and Runesson [25], we choose to regularize this measure in space
and time by introducing the slightly modified goal quantity

Q(u, p) =


Ω×I ψ(X̄, t̄)p(X̄, t̄) dΩ × dt̄

Ω×I ψ(X̄, t̄) dΩ × dt̄
. (125)

The weight (or mollifier) function can be multiplicatively decomposed into spatial and temporal weights as follows:

ψ(X̄, t̄)
def
= ψΩ (X̄)ψI (t̄), ψΩ =


1 ∥X̄ − X̄1∥ ≤ rΩ
0 ∥X̄ − X̄1∥ > rΩ

, ψI =


1 t̄ > T̄ − rI

0 t̄ < T̄ − rI ,
(126)

where the radii of influence13 are chosen as rΩ = 0.1 and rI = 0.001.

13 The radii rΩ and rI represent the area in space and time, respectively, over which the pressure is evaluated in the mean sense.
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Fig. 5. Convergence of predicted error for uniform space–time refinement. T̄ amp
P = 0.001 corresponds to (nearly) linear response, whereas

T̄ amp
P = 0.5 corresponds to strongly non-linear response.

Remark. The construction of Q is chosen such that, when using the same quadrature for the two integrals, a constant
is evaluated exactly, independent of the quadrature. �

Fig. 5 shows the convergence of the predicted error with increasing number of space–time degrees of freedom,
NDOF, for uniform refinement in space and time. The corresponding effectivity of the error estimation is shown in
Fig. 6 in terms of the effectivity index,

η
def
=

Epredicted

Etrue
, (127)

where Epredicted = R(zSOL
h ; z̃∗) as presented in Eq. (66), and the true error Etrue can be computed using an overkill

solution for (u, p). Here, the dual solution is computed on the same mesh (using a hierarchically refined discretization)
as that of the primal problem for each analysis. The results are shown for (nearly) linear response (with T̄ amp

p = 0.001)
as well as for strongly non-linear response (with T̄ amp

p = 0.5).
Next, we study the performance of the suggested time-sequential adaptive strategy. To this end, we consider the

nonlinear case, defined by T̄ amp
p = 0.5, and choose to study the long-time effect of consolidation in the problem by

running the simulation for a longer time by setting T̄ = 1.0. We shall now consider two different goal functions,
defined by i = 1 and i = 2, as follows:

Qi (u, p) =


Ω×I ψi (X̄, t̄)p(X̄, t̄) dΩ × dt̄

Ω×I ψ(X̄, t̄) dΩ × dt̄
, i = 1, 2 (128)

where the weights are defined by

ψi (X̄, t̄)
def
= ψΩ (X̄)ψI,i (t̄), ψΩ =


1 ∥X̄ − X̄1∥ ≤ rΩ
0 ∥X̄ − X̄1∥ > rΩ

,

ψI,i =


1 t̄ > T̄ − rI,i

0 t̄ < T̄ − rI,i
, i = 1, 2.

(129)

The spatial averaging radius is rΩ = 0.1 (like in the previous example), whereas the two different measures are
distinguished by rI,1 = 0.001 and rI,2 = 0.5, respectively, in the temporal domain. Hence, the difference lies in the
temporal averaging, i.e., Q1 represents the pressure at the end time t̄ = T̄ = 1.0 in a regularized sense, while the Q2
represents the mean pressure during the second half of the time interval. We compare the convergence of the predicted
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Fig. 6. Convergence of effectivity of the error estimator for uniform space–time refinement.

Fig. 7. Convergence of predicted error in Q1 for uniform (solid line) and time-sequentially adaptive (dashed line) space–time refinement.

error for the time-sequential adaptive strategy to that of a uniform space–time refinement for Q1 and Q2 in Figs. 7
and 8, respectively. In these examples, the background dual solution is that computed on the initial mesh.

Remark. NDOF is the total number of degrees of freedom in space–time. The rate of convergence depends strongly
on the “ratio” for refining in space versus time. �

Next, we shall study the resulting space–time meshes for the adaptive strategy, aiming at equi-balanced error
contributions from the spatial and temporal discretization and a total relative error that does not exceed the tolerance
T O L = 0.5%. The initial mesh is composed of 5 equal time steps and N space

DOF = 138 spatial degrees of freedom on
each time-slab. In Figs. 9 and 10, the resulting time-mesh function, defined as the time-step length ∆t̄ as a function
of time, is shown for the quantities Q1 and Q2, respectively. Figs. 11 and 12 show the resulting space-mesh function,
defined as N space

DOF versus time. Finally, Figs. 13 and 14 show a series of snapshots of the spatial mesh at t̄ = 0.1, 0.5
and 1.0 for the two different goal quantities.
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Fig. 8. Convergence of predicted error in Q2 for uniform (solid line) and time-sequentially adaptive (dashed line) space–time refinement.

Fig. 9. The resulting time-mesh function from the time-sequential adaptive strategy for the goal-quantity Q1, showing the development of the
time-step length ∆t̄ with time.

6. Concluding remarks and future work

In this paper we have proposed a novel sequential-adaptive space–time finite element method for the coupled
consolidation problem. This strategy is particularly suitable for linear goal functionals (such as the mean value of the
pore pressure over a chosen finite time interval), in which case the dual loading is independent of the primal solution
(and its approximation). In such cases it offers considerable advantages over the full-fledged concurrent adaptive
strategy. Clearly, the present problem of poro-elasticity is too simple to provide an “acid test” for the significance
of computing the dual solution accurately away from the end-time. The reason is that this problem has “parabolic
character”, so that errors are strongly damped, cf. also below.

As to future developments, the accuracy of the error prediction with respect to the choice of the background
(initial) space–time mesh should be investigated. Our purpose is also to increase the physical realism by including
material nonlinearities in the model, e.g. in terms of plasticity and viscoplasticity. Since it is sufficient to solve a
suitably linearized dual problem, it is believed that the present approach will demonstrate its competitiveness when
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Fig. 10. The resulting time-mesh function from the time-sequential adaptive strategy for the goal-quantity Q2, showing the development of the
time-step length ∆t̄ with time.

Fig. 11. The resulting space-mesh function from the time-sequential adaptive strategy for the goal-quantity Q1, showing the development of the
number of spatial degrees of freedom in the mesh, N space

DOF , with time.

nonlinearities are incorporated. Moreover, dynamics (inertia terms) will be included, which are significant for road
and railway mechanics problems subjected to traffic loading. For such problems it becomes obvious that it is necessary
to solve the dual problem globally in time in an accurate fashion in order to appropriately account for the transport of
error in space–time.

Appendix A. Matrix format of primal problem — generic format

We introduce the basis functions nNi (X) in nVh , such that nzh =
Mn

i=1
nNi (

nZ)i , with nZ = [nZ1, . . . ,
nZ Mn ]

T

as the vector of Mn unknowns in time step n. In matrix notation, we may now rewrite (33) as that of finding
dzh =

Mn
i=1

nNi (dZ)i from

nK (l)dZ = nr (l) with nK
def
=

nB +∆tn
nA (A.1)
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Fig. 12. The resulting space-mesh function from the time-sequential adaptive strategy for the goal-quantity Q2, showing the development of the
number of spatial degrees of freedom in the mesh, N space

DOF , with time.

Fig. 13. Snapshots of the resulting spatial meshes at times t̄ = 0.1, 0.5 and 1.0 for the goal-quantity Q1.

where the introduced matrices are defined as
n+1,nB


i j
=


Φ′[nzh,

nN j ],
n+1Ni


= (n+1Ni ,Φ′[nzh,

nN j ]), B
def
=

n,nB (A.2)nA


i j = a′(nzh;
nNi ,

nN j ) (A.3)
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Fig. 14. Snapshots of the resulting spatial meshes at times t̄ = 0.1, 0.5 and 1.0 for the goal-quantity Q2.

nr


i = R(nzh;
nNi )

= ∆t

⟨l(nNi )⟩n − a(nzh;

nNi )

−


Φ[nzh] − Φ[n−1zh],

nNi


. (A.4)

Note that the generic coefficient matrix, introduced as K
def
= B + ∆t A, is generally non-symmetrical, in particular

because of the non-symmetry that is normally embedded in B.

Appendix B. Matrix format of dual problem — generic format

Upon inserting nz∗h =
Mn

i=1
nNi (

nZ∗)i ∈ nV0
h into (55), we obtain

(nK )TnZ∗ = (n+1,nB)Tn+1Z∗ + nQ, n < N (B.1)

where the matrices n+1,nB and nA where defined in (A.2) and (A.3), whereas

(nQ)i = Q′n(
nzh;

nNi ). (B.2)

The adjoint character of (B.1) to the primary problem in (A.1) becomes apparent.

Remark. In the first step, n = N , we compute NZ∗ from the equation

NK T NZ∗ = NQ with (NQ)i = Q̄′(Nzh;
NNi )+ Q′N (

Nzh;
NNi ). (B.3)

As pointed out above, the “initial value” N+1Z∗may not even exist. However, if it does exist it can be computed from
the relation

N+1,NB
T

N+1Z∗ = NQ̄, with (NQ̄)i = Q̄′(Nzh;
NNi ). � (B.4)
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Appendix C. Matrix format of primal problem — consolidation

We now introduce the basis functions nN(u)
i (X) in nUh and nN (p)

i (X) in nPh such that

nuh =

M(u)
n

i=1

nN(u)
i (nU )i ,

nph =

M(p)
n

i=1

nN (p)
i (nP)i , (C.1)

are matrix representations, whereby nU and nP are column vectors of M (u)
n and M (p)

n unknowns, respectively, in
the time interval In . In matrix notation, we may now rewrite the system (114) and (115) as that of computing

duh =
M(u)

n
i=1

nN(u)
i (dU )i and dph =

M(p)
n

i=1
nN (p)

i (dP)i from
∆t nS ∆t nC1

nC3 +∆t nC2
nM +∆t nK

 
dU
dP


=

nr (u)
nr (p)


, (C.2)

where the introduced matrices are defined via the component identities

(nS)i j = (a
(u))′u(

nzh;
nN(u)

i , nN(u)
j ) (C.3)

(nC1)i j = (a
(u))′p(

nzh;
nN(u)

i , nN (p)
j ) (C.4)

(nC2)i j = (a
(p))′u(

nzh;
nN (p)

i , nN(u)
j ) (C.5)

(nK )i j = (a
(p))′p(

nzh;
nN (p)

i , nN (p)
j ) (C.6)

(nC3)i j = (Φ′u[
nzh;

nN(u)
j ],

nN (p)
i ) (C.7)

(nM)i j = (Φ′p[
nzh;

nN(p)
j ],

nN (p)
i ) (C.8)

(nr(u))i = R(u)(nzh;
nN(u)

i ) (C.9)

(nr(p))i = R(p)(nzh;
nN (p)

i ). (C.10)

Remark. In the special case of fluid incompressibility, ϱf
= ϱf

0 = constant, then K f
= ∞ and (Φ′p[z; δp∗], δp) = 0,

i.e. M = 0. Since all integrals involving K f vanish, this means that K becomes symmetrical (with the present choice
of seepage model).

Appendix D. Matrix format of dual problem — consolidation

The FE-solution of z∗, denoted by z∗h , is obtained directly from the generic formulation in Section 2.4. For example,
in the case the dG(0)-method is used, we may directly identify from (B.1), with

nu∗h =
M(u)

n
i=1

nN(u)
i (nU∗)i ,

nph =

M(p)
n

i=1

nN (p)
i (nP∗)i , (D.1)

that (nU∗, nP∗) must satisfy the system
∆t (nS)T (nC3)

T
+∆t (nC2)

T

∆t (nC1)
T (nM)T +∆t (nK )T

 nU∗
nP∗


=


(n+1,nC3)

Tn+1P∗ +∆t nQ(u)

(n+1,nM)Tn+1P∗ +∆t nQ(p)


, (D.2)

where nQ(u) and nQ p are column vectors defined by the identities

(nQ(u))i = Q′u,n(
nzh;

nN(u)
i ), (D.3)

(nQ(p))i = Q′p,n(
nzh;

nN (p)
i ). (D.4)
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In the first step, n = N , we obtain the problem
∆t (NS)T (NC3)

T
+∆t (NC2)

T

∆t (NC1)
T (NM)T +∆t (NK )T

 NU∗
NP∗


=


∆t NQ(u)

∆t NQ(p)


, (D.5)

where

(NQ(u))i = Q̄′u(
Nzh;

NN(u)
i )+ Q′u,N (

Nzh;
NN(u)

i ), (D.6)

(NQ(p))i = Q̄′p(
Nzh;

NN (p)
i )+ Q′p,N (

Nzh;
NN (p)

i ). (D.7)
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[20] J. Waeytens, L. Chamoin, P. Ladevèze, Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems,

Comput. Mech. 49 (2012) 291–307.
[21] S. Prudhomme, J.T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput.

Methods Appl. Mech. Engrg. 176 (1999) 313–331.
[22] F. Larsson, P. Hansbo, K. Runesson, Strategies for computing goal-oriented a posteriori error measures in nonlinear elasticity, Internat. J.

Numer. Methods Engrg. 55 (2002) 879–894.
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