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Abstract  

Dual Fluidized Bed (DFB) gasification is one alternative for the production of biofuels. In a DFB 
gasification process, the bed material plays a crucial role. Primary role of the bed material is to provide the 
heat needed for the gasification reaction. If the bed material, used in the system, is catalytically active it 
can improve the quality of the produced gas. In addition, inorganics originate from the biomass are 
retained in the system in the form of ash, which interacts with the bed material, thus representing catalytic 
potential. As a consequence of being circulated between oxidative and reductive environments, the bed 
material releases some inorganics into the gas phase, thereby influencing the final composition of the 
produced gas. The goal of the present work is to increase our understanding as to how changes in the bed 
material related to reactions with ash components can be utilized to improve the performance of the 
system. In this way, it should be possible to optimize the gasification step, thereby decreasing the cost of 
biofuel production. Moreover, by choosing naturally occurring bed materials not only the cost of the 
process is decreased, but also negative impact on the environment which comes with the disposal of the 
material.    

This work deals with the application of catalytic bed materials in dual fluidized bed systems, both as a 
primary measure in the gasification process itself and as a secondary measure for the reforming of the raw 
gas. Applied directly in the gasification step, the bed material interacts with the inorganics derived from 
the fuel. As a result of this interaction, the bed material changes its physical and chemical properties, 
which has impacts for the gasification process. In the present study, four naturally occurring materials 
were evaluated. In the Chalmers 2–4-MWth gasifier, the effects on the gasification process of interactions 
between the ash and the bed material were studied for quartz-sand and olivine. The effects on the process 
were evaluated with respect to: 1) the composition of the produced gas; 2) tar content; and 3) the 
physicochemical properties of the bed material. The studies yield information about the transport of 
inorganics between the reactors and their influences on the gas composition. Whereas the release of alkali 
during gasification implies a potential for enhancement of the gas quality, the presence of these same 
species represents a risk for agglomeration during combustion. In the Chalmers 12–MWth boiler, ilmenite 
was tested as the bed material and as an alkali getter material. The adsorption of potassium to the ilmenite 
is shown to be non-reversible, and ilmenite shows great promise as a material for decreasing bed 
agglomeration in fluidized bed boilers. As a secondary measure, downstream of the gasifier, manganese 
ore was evaluated for its tar-reforming capability in a dual fluidized bed reactor system, in a process 
known as chemical looping reforming. This material has the ability to reduce tar levels by as much as 
72%, while having high activity towards hydrogen production.  
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1.  Introduction 

1.1. Dual Fluidized Bed  

Energy produced from biomass has attracted strong interest as it represents a potential way of 
decreasing CO2 emissions. Furthermore, increased production of energy from biomass might lead 
to an end to the dependence on fossil fuels [1-5]. Swedish government aim towards energy 
independence and has set the goal to have vehicles fleet that is fossil fuel free by the year 2030 
and zero net emissions of greenhouse gases by the year 2050 [6].  

Biomass gasification, which is a thermochemical process in which solid fuel is converted to gas, 
is a viable technical option to meet increasing demands for energy. The gas that is produced by 
biomass gasification contains CO, CO2, CH4, H2, H2O, and N2, together with some light 
hydrocarbons. In addition, impurities, such as tars and inorganic compounds, are present. 
Depending of the gasification method and fuel used, the concentrations of the gaseous 
components and impurities vary. High levels of tar result in loss of the energy that is chemically 
stored. While condensation of these species in cold regions of the system results in clogging and 
leads to severe operational problems [2, 7-10], inorganics in the fuel, such as potassium, chlorine, 
and sulfur, cause corrosion problems and  are detrimental to the catalysts acting downstream of 
the gasification process.  

A schematic of the biofuel production process starting from biomass is shown in Figure 1, where 
each box represents several operational units. In order for the gas to be used in the final step (the 
product synthesis), it needs to fulfill specific requirements regarding purity, H2/CO ratio, and 
CO2 content. Optimization of the gasification part of the process is the first step towards 
decreasing the cost of the overall process, including increasing of the process efficiency and 
simplifying the gas conditioning process. A major factor is the type of bed material and its effects 
on both solid fuel conversion and gas composition.    

 

Gasification
Gas 

conditioning
Gas upgrading 
and synthesis

Biomass Biofuel

 

Figure 1. Schematic of biomass involvement in the biofuel production process via gasification 
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Figure 18. EDX maps of the distributions of iron, titanium, calcium, and potassium in the cross-section of an ilmenite particle 
from sample I. 

 

    

Figure 19. EDX maps of the distributions of iron, titanium, calcium, and potassium in the cross-section of an ilmenite particle 
from sample II. 

 

To understand the interaction between potassium and ilmenite particles, leaching with deionized 
water was carried out on the particles extracted from the process. Thereafter, the particles were 
analyzed by SEM/EDX and the results are presented in Figure 20. As the elemental distribution 
within the particles remains the same and the analysis of the leachate shows that both K and Ca 
are leachable only to some extent, the conclusion is that the potassium is stored permanently 
inside the particle.       

 

    

Figure 20. EDX maps of the distributions of iron, titanium, calcium, and potassium in the cross-section of an ilmenite particle 
from sample II that was leached for 72 hours. 

 

Fe Ti K Ca 

K Ca Ti Fe 
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In addition, the XRD analysis of the particles before and after the leaching test showed no 
differences in composition. In both cases, the sample contained KTi8O16. Considering the 
presented results, ilmenite offers great potential as an alkali getter material for the combustion 
process.  

3.4. Quartz-sand 

With the aim of studying the influence of biomass ash on the otherwise inert quartz-sand in the 
gasifier of the Chalmers DFB system, experiment where no exchange of the bed inventory over 
four consecutive days was done.  

In Figure 21, the yields of permanent gases versus time of operation (days) in the aging 
experiment are presented. The right-hand y-axes correspond to the yields of the H2S in the raw 
gas, while the yields of H2, CO, CO2, CH4 and C2HX are shown on the left-hand y-axes. Aging of 
the sand in the system caused an increase in the H2 and CO2 yields (points I to IV in Figure 21). 
An increase in H2S yield is apparent over the time of operation. After regeneration of the bed 
inventory (point V in Figure 21), the composition of the raw gas is similar to that detected on the 
first day of operation.      

 

 

  

Figure 21. Composition of the dry raw gas obtained during the experiment (given in mol/kg daf fuel) 

 

28 
 



The influence of ash accumulation on the tar yields in the raw gas can be discussed in terms of 
the results of the SPA analysis (Figure 22). The tar yields are presented for specific groups of tar 
components: naphthalene, 2-ring component, 3-rings components and heavier hydrocarbons and 
phenolic components. Results are presented in g/kgdaf fuel. From Day IA to Day IVA, decreases in 
all the tar groups are observed. The greatest change occurs in the phenolic species, which 
decrease by 21%, and the total tar yield decreases by around 10%.      

 

Figure 22. Compositions of the tar components in the raw gas , presented as yields of specific tar groups in gtar/kg daf fuel 

 

Figure 23 shows the measured yields of sulfur in the produced raw gas (in the form of H2S) in 
two different experiments: (i) a case with regeneration of the bed material, with the experiment 
being done in a separate study; and (ii) a case without regeneration of the bed material, performed 
within the study. In the regeneration case, the experiment lasted 7 days, with around 20 wt% of 
the bed inventory being exchanged on a daily basis. For this case, between points IIIR and VIIR, 
only the boiler was in operation for 3 days. The results are expressed as mole S/kgdaf fuel versus 
days of operation. Figure 23 also shows the amounts of sulfur that enter the system via the fuel 
feed to the gasifier and the total sulfur level (both in the boiler and gasifier fuel feed). Figure 23 
clearly shows that sulfur is accumulated within the system and subsequently released into the 
gasifier. Already on the second day of operation the amount of sulfur in the gas exceeded the 
amount that originated from the fuel fed to the gasifier . On the third day the amount of sulfur in 
the gas exceeded the total amount of sulfur introduced into the system with all the fuel.  

The SO2 concentrations in the exit flue gas from the boiler were also monitored at the boiler exit 
point. Considering that the raw gas from the gasifier was re-directed back to the boiler where the 
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gas was burnt, a relatively high emission level of SO2 should be expected in the boiler flue gas 
exhaust due to the oxidation of the H2S. However, the concentration of SO2 recorded during both 
experiments (bed regeneration and bed aging) in the boiler flue gases were <10 ppm for all days 
of the operation. This low level of SO2 concentrations can be explained as resulting from 
recapturing the sulfur released during combustion of the raw gas by the circulating bed material 
in the boiler. 

 

 

Figure 23. Measured levels of S emissions in the form of H2S in the dry raw gas and the amounts of sulfur added to the system 
with the fuel; kg of S/h vs. days of operation of the gasifier. 

 

With the intention of studying the changes in the bed material during the interaction with ash, 
XRF and SEM/EDX analyses were carried out on the solids extracted during the regeneration 
experiment. Thus, it was possible not only to observe both fresh and old particles in the system, 
but also to gain information about a suitable extent of regeneration of the material.  

The results of the XRF analysis done for points IIR, IIIR, and VIIR are shown in Figure 24a for the 
solids samples extracted from Loop seal 1. In Figure 24b, the differences between the elements in 
the samples extracted at Loop seal 1 and Loop seal 2 are presented. The analysis shows 
enrichment of the bed with ash components over time. This can be interpreted as reflecting ash 
layer formation on sand bed particles and less amount of unreacted quartz present.  When Loop 
seal 1 is compared to Loop seal 2 (Figure 24b), decreases in all the ash components are noted. 
However, silicon increased in percentage. This indicates that attrition of the ash coat of the bed 
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particles is occurring in the gasifier.  Discussing solely sulfur, the elevated concentration of H2S 
measured in the raw gas (Figure 23), together with the trend observed in the XRF analysis, lead 
to the conclusion that the decrease in the sulfur content of the bottom bed material is due to both 
attrition and its release to the gas phase.   

 
 

Figure 24. Results of the XRF analysis. (a) Elemental compositions of the bed material samples collected on Days II, III, and VII 
in the regeneration case (left panel); (b) Percentage differences in elemental composition between Loop seal 1 and Loop seal 
2 for sample III. 

 

To conclude regarding the association of the sulfur within the material, an elemental analysis of 
the particle cross-section was performed using SEM/EDX. The results of the line scan for the 
particle extracted from Loop seal 1 are shown in Figure 25 and for the particle extracted from 
Loop seal 2 in Figure 26. Analyzed were particles collected on Day IIIr. Sulfur is detected in the 
outer layer of the ash coat. Potassium, as anticipated from previous research [20, 47], diffuses 
into the core of the quartz particle. Calcium is present as a small fraction in the inner layer, but as 
a larger fraction in the outer layer. Analysis of the solids extracted from Loop seal 2 shows the 
same elemental distribution within the ash layer as was observed for the particles from Loop seal 
1. Potassium is in the core associated with silicon, forming potassium-silicate. The majority of 
the calcium is in the outer layer.    
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Figure 25. Line scan over an ash-coated particle obtained from Loop Seal 1 and the element concentrations in wt%. On the x-
axis, the value of 1 represents the location near the interface of the quartz particle-ash layer, while the value of 14 represents 
the outer surface of the ash layer. 

 

 

 

 

 

 

Figure 26. Line scan of an ash-coated particle collected from Loop Seal 2, and the elemental compositions (in wt%). On the x-
axis, the value of 1 represents the location near the interface of the quartz particle-ash layer, while the value of 15 represents 
the outer surface of the ash layer. 
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As sulfur is located in the part of the ash layer that is rich in calcium, its association with calcium 
can be proposed (see Figures 25 and 26). To determine the phase in which sulfur originates in the 
sample, an XRD analysis was done. However, due to the low level of sulfur (lower then 
confidence level of the equipment), these results cannot be used for the discussion.  

Assuming that sulfur is linked with calcium, as being found in the very outer layer rich with 
calcium, in the oxidative environment, it should be present in the form of sulfate [68, 69]. This 
stable sulfate, carried by the bed material circulation, can be decomposed to calcium-sulfide 
and/or calcium-oxide in the reductive environment that prevails in the upper part of the gasifier, 
as described in previous studies [70, 71].  

In the gasifier, part of the sulfur is released to the gas phase and part will be in the form of sulfide 
that circulates back to the boiler where it is re-oxidized. In the gas phase, sulfur is released in the 
form of H2S, which is subsequently oxidized in the boiler.  
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4. Conclusions 
Given that the bed is vital for the DFB gasification process, careful selection of the appropriate 
bed material is crucial for optimization of the ‘biomass to biogas’ route. A suitable bed material 
that has the required catalytic properties, resulting in  ‘cleaner’ product gas from the gasification 
process would likely decrease the costs associated with the downstream process and might even 
decrease the number of operational units  required for the production of gas of the desired 
composition.    

However, if a secondary cleaning step needs to be introduced natural ores should be the materials 
of choice for the bed material. Careful selection of the material and operational conditions in the 
DFB system (CLR system) might entail simultaneous removal tar and H2S, while the 
regeneration step would prolong the lifetime of the bed material.   

Considering the bed material in a DFB gasification unit, two principal behaviors can be observed: 
the uptake and the release of inorganics from the fuel by the bed. The presence of inorganics may 
influence not only the operation of the process, but also the composition of the produced raw gas. 
Thus, a general conclusion is that it is vital to identify a suitable combination of fuel and bed 
material to be used in the system.  

Given the environmental changes (oxidation/reduction) that the bed material is exposed to in the 
system, inorganics may be released from the ash coat to the gas phase. The focus in DFB systems 
is on heterogeneous reactions. However, the potential for the release of inorganics from the 
material to the gas phase highlights the importance of homogeneous reactions.  

The presented work shows that to optimize the performance of olivine as a bed material in 
biomass gasification, it is necessary to understand fully the roles of the inorganics for its 
activation.   

Other materials, such as ilmenite, tend instead to bond inorganics derived from the fuel, which is 
beneficial with respect to avoiding agglomeration in biomass- and waste-fired boilers. In the 
present study, it is shown that potassium diffuses into the core of the ilmenite particle. Potassium-
titanium oxide, which is a compound that does not allow the release of potassium, is thereby 
formed. Consequently, ilmenite can be regarded as potassium getter material. Hence, used as an 
additive to a quartz bed, it can prevent agglomeration.   
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5. Future work 
In the present work, the impacts of the bed material on the quality of the produced gas and on the 
operation of the overall process have been demonstrated. As discussed above, there is still a need 
for more appropriate materials that are catalytically active and environmentally friendly. In this 
context, natural ores are obviously favored.   

Olivine is shown to be an attractive bed material, although the mechanism underlying its 
activation remains to be elucidated. By studying the influences of different salts on the material 
separately, deeper knowledge of this subject can be acquired.   
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