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Abstract: A numerical method combining complex-k band calculations
and absorbing boundary conditions for Bloch waves is presented. We use
this method to study photonic crystals with Dirac cones. We demonstrate
that the photonic crystal behaves as a zero-index medium when excited
at normal incidence, but that the zero-index behavior is lost at oblique
incidence due to excitation of modes on the flat band. We also investigate
the formation of monomodal and multimodal cavity resonances inside the
photonic crystals, and the physical origins of their different line-shape
features.
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1. Introduction

Photonic crystals (PhCs), known as the semiconductors of electromagnetic waves, have been
shown to exhibit a variety of novel properties and promising applications [1-5]. Recently, PhCs
with Dirac cones have attracted widespread interest [6-11]. In 2011, X. Huang et al. [7] pro-
posed a PhC structure with a square lattice. By modulating the lattice parameters, they found
Dirac cones at the center of the Brillouin zone and, at the Dirac point, the PhC behaves similarly
to a zero-index material. However, due to the symmetry of the lattice, a flat band crossing the
Dirac point corresponding to magnetic longitudinal modes inevitably appears, and it is known
that off-normal incident waves can excite modes from this flat band.

Fig. 1. (a) The band structure for TM modes (electric field parallel to the rod axis). There
is a triple degeneracy at the Γ point and the Dirac frequency is 23.05161 GHz. (b) The
full band structure in the 1st Brillouin zone. (c) The real lattice and its reciprocal lattice of
the PhC. The embedded rods are made of alumina, with ε = 9.8, µ = 1. The radius of the
cylinder is r = 1.59 mm, and the lattice constant is a = 4.66153r.

The purpose of this paper is to have a thorough study on the flat band Bloch modes us-
ing a newly developed method. Traditional methods employed for the study of PhCs include
band calculations and reflection/transmission spectra measurements [12]. However, band cal-
culations only give information on the number of Bloch modes and on the field structure of the
modes. Scattering measurements give the macroscopic properties of a finite PhC while miss-
ing information on the details of the Bloch modes, such as how different modes interact and
how each mode gets coupled into the radiated waves. In this paper, we resolve these shortcom-
ings based on a new computational technique implemented in the commercial electromagnetics
package COMSOL Multiphysics. In Section 2, we give an overview of the PhC under inves-
tigation, its Dirac cones, and its flat band. In Section 3, we calculate the complex-k band of
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such a PhC and we demonstrate numerically how the flat band contributes to the behavior of
the PhC, resulting in deviations from the the zero-index medium response when illuminated
by a wave with a non-zero ky (wave vector component parallel to the interface). In Section 4,
by importing the numerical fields calculated in Section 3 and showing how to perfectly excite
and absorb Bloch waves in the simulations, we study how the flat band modes couple and con-
tribute to the transmission spectrum features using a semi-analytical formulation. We also have
a brief discussion on the origin of the different line-shape features of the resonances and how
the losses affect them.

2. 2D photonic crystals with Dirac cones

Fig. 2. (a) The transmission spectrum versus the incident angle. The PhC is finite in the
propagation direction (x direction), in which 11 rows are present (refer to Fig. 4 for a visual
sketch). (b) A cut-plane of the Dirac frequency over the full band. There are intersections
with the middle band. (c) A top view of the cut-plane and the intersections. Each blue
horizontal straight dash line indicates a certain ky (component of the wave vector parallel
to the interface between the air and PhC), or the incident angle. Numbers of the horizontal
straight lines correspond to peaks in (a). It is shown that peak 1 corresponds to the zero-
index mode with kx = ky = 0, due to the coupling with the linear branch. Peak 2 to 10
indicate there are 2 propagating modes with their reflective counterparts in the PhC, while
peak 11 corresponds to only 1 propagating mode and its reflective counterpart, both due to
the coupling with the flat band.

We present a detailed numerical study of the PhC with Dirac cones [7]. In our simulations,
we took a square lattice in which alumina rods are periodically surrounded by vacuum. The
permittivity and permeability of the alumina rods are chosen as 9.8 and 1, respectively. To reach
the critical requirement on the geometrical parameters to obtain the accidental degeneracy, we
set a = 4.66153r. This structure has a Dirac cone at the Γ point of its reciprocal lattice, i.e., at
the center of the Brillouin zone. The band diagram showing the Dirac cone is plotted in Fig. 1.

However, as indicated in the supplementary material of [7], the flat band between the two
cones is a longitudinal mode. Thus the PhC no longer has an effective zero-index when modes
from this band are excited. This can be shown by calculating the transmission spectrum. When
the electromagnetic waves are incident from air to an impedance-matched homogeneous dielec-
tric slab with ε = µ → 0, all electromagnetic waves are reflected except at normal incidence,
which can be straightforwardly derived from the Fresnel equation. However, in our PhC, elec-
tromagnetic waves are still allowed to transmit at oblique incidence. Furthermore, the angular
transmission spectrum of the PhC has Fabry-Perot-like features [see Fig. 2(a)]. This indicates
that modes with a non-zero ky have been excited. In the following sections, we present the re-
sults from our numerical investigation on these modes and we explore how these resonances
are formed.
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3. Complex-k band diagram and eigen-wavevector calculation

Generally, the eigenfrequencies of a PhC are calculated at given Bloch vectors, just as we did
in Section 2. However, there are many cases in which knowing the eigenvalues of wave vectors
at a given frequency is more helpful to study a photonic structure [13,14]. In our case, we are
interested in how the modes look like and how they interact in the PhC at a given frequency
(the Dirac frequency) and at a given incident angle. We now show that this information can be
obtained from simulations with the package COMSOL Multiphysics, by specifying the field
equations in their weak form.

In view of the Bloch theorem, the electric field in a periodic photonic structure can be written
as the product of a periodic function and a plane wave envelope function:

E(r) = u(r)exp(−ik ·r)Ê, u(r) = u(r+a) (1)

Taking the weak expression for TM waves (E field parallel to the rod axis) [13], we obtain:

0 =
∫

dΩ[−k2

µ
vu− iv

µ
k ·∇u+

iu
µ
(∇v) ·k− (∇v) ·

∇u
µ

+
εω2

c2 vu]

=
∫

dΩ ·W
(2)

where v is the test function of u. Since we only consider the in-plane (xy plane) wave vector,
there are three degrees of freedom in the weak expression, kx, ky and ω , where ky and ω are
conserved over the air/PhC boundary. To calculate the eigenvalues of kx, we need to prescribe
the other two. We sweep the frequency within a large range containing the Dirac frequency for
both normal (ky = 0) and oblique (ky = 188 m−1) incidence. Figure 3(a) and Fig. 3(b) show
that, for the normal incidence, there is a triply degenerate point at f = 23.05161 GHz with
eigenvalues kx = 0 (black dots). Therefore, the Bloch wave is reduced to the periodic function
u(x,y), and the Bloch phase term turns into a constant independent of the propagation distance.
Around the degeneracy point, the frequency is related linearly to the wave vector, as expected
for a Dirac cone. However, the photonic crystal’s behavior is quite different when we have
a non-zero ky. Figure 3(c) and Fig. 3(d) show that when ky = 188 m−1, the Dirac cone and
the zero-index mode disappear. Instead, more Bloch modes appear—the mode with vanishing
Im(ky) is a propagating mode with propagation constant kx = 41.27 m−1 (or 0.0487 in units of
2π/a); the others with non-zero Im(ky) are attenuated modes.

4. Monomodal and multimodal resonances in the PhC slab

In the preceding sections, we analyzed the eigenmodes for a given frequency and one compo-
nent of the wave vector, and we have concluded that when ky is nonzero, there will be prop-
agating Bloch modes inside the PhC. Therefore, these Bloch modes are likely to be reflected
and transmitted multiple times at the interface between the PhC and air, just like the Fabry-
Perot resonances for plane waves in a homogeneous dielectric slab. We hypothesize that this
is the reason for the peaks appearing in the angular transmission spectrum. To prove this, we
performed two sets of simulations. In one set, we measured the amplitudes and phases of both
incoming and outgoing plane waves [Fig. 4(a)]. From Eout = MfullEin, the transfer function
Mfull was calculated. In the other set, the transfer function under the assumption of multiple
reflections should satisfy:

MFP = tpa ·A · tap + tpa ·(A ·rpa ·A ·rpa) ·A · tap + tpa ·(A ·rpa ·A ·rpa)
2 ·A · tap + · · · · · ·

= tpa ·(I−A ·rpa ·A ·rpa)
−1 ·A · tap

(3)
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Fig. 3. Complex-k band diagram. x-axis: the eigenvalue of the propagating constant. y-
axis: frequency of the EM wave. The black dots denote the real part of the eigen-kx, and
the red dots denote the imaginary part of the eigen-kx. The blue dash shows where the
Dirac frequency lies. (a)&(b): Complex-k band structure for normal incidence (ky = 0) at
different ranges of frequencies. (c)&(d): Complex-k band structure for the incident angle
of 0.4 rad (ky = 188 m−1) at different ranges of frequencies. From (a) and (c), we plot the
extended Brillouin zone, from which we can see the periodicity for the real part of kx.

The subscript “p” denotes PhC and “a” denotes air. t and r refer to the single-interface trans-
mission and reflection coefficients at the interface between air and the PhC, and A denotes the
phase change of the Bloch mode when traveling from one end of the PhC to the other end.
Generally, all variables in the equation should be a matrix, and the dimension of the matrix
equals the number of the eigenmodes. Strictly speaking, the total field inside the PhC is a com-
plete linear combination of all Bloch modes, including both propagating and evanescent modes.
However, when the PhC waveguide is long enough, the effect of the evanescent modes can be
neglected, and the resonant behavior is determined only by the propagating waves to a high
degree of accuracy. Figure 1 shows the traditional band structure consisting of only the prop-
agating modes. Figure 2(c) shows that peak 2 to 10 correspond to double propagating modes
in the PhC, while peak 11 corresponds to a single propagating mode. In the monomodal case
(peak 11), the matrix is reduced to a scalar, while in the bimodal cases (peak 2 to 10),

tap =

[
t1
ap

t2
ap

]
rpa =

[
r11

pa r12
pa

r21
pa r22

pa

]
A =

[
exp(−ikx1x) 0

0 exp(−ikx2x)

]
tpa =

(
t1
pa t2

pa
)

(4)

The superscripts “1” and “2” denote different eigenmodes. The off-diagonal terms of the re-
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Fig. 4. (a) A sketch for multiple reflections in the PhC. The incoming and outgoing waves
are plane waves. The field inside the PhC is the superposition of a set of Bloch waves. In the
propagating direction (x direction), 11 rows of rods are present. In (b) and (c), |E| is plotted,
with f = 23.05161 GHz and ky = 188 m−1. (b) Plane waves are excited and absorbed at the
leftmost boundary, and the relevant Bloch modes are absorbed at the rightmost boundary.
(c) One Bloch mode is excited and its reflective counterpart is absorbed at the leftmost
boundary; plane waves are absorbed at the right.

flection matrix do not necessarily disappear, since there might be coupling between the two
Bloch modes, or in other words, there might be transitions between different eigenmodes in
the presence of a pertubation. Then the problem of measuring the transfer matrix turns into the
problem of measuring the reflection and transmission coefficients at each interface. To resolve
this, a port that can perfectly excite and absorb Bloch waves was developed. The port bound-
ary condition is based on an orthogonality relation of the eigenmodes of the PhC. We again
implement this via the weak form specification in the COMSOL package.

The weak expression for a general frequency domain EM problem can be separated into the
domain and the boundary part [18], and the boundary term can be simplified as:

Wb = v · [n̂× (
1
µ

∇×E)] =±i
ω

c
vHy (5)

Here, we choose n̂ = −x̂ at the input side (left) and n̂ = x̂ at the output side (right). This
constraint at the boundary allows us to define a port that can excite or absorb any mode, as long
as we can expand it into a linear superposition of all known eigenmodes [(Eq. (11.1) in [15]],
and retrieve each component by taking the inner product between the partial field and the total
field, as long as a valid orthogonality relation is utilized. Note that, in a lossless system, we
shall take Eq. (6) in [16] as the orthogonality relation, while in a lossy case, a generalized form
is essential [Eq. (4) in [18]]. For a succinct summary, the field Hy of the Bloch modes that we
need to excite or absorb reads

Hy = ∑
n
|n >< n|Hy >= ∑

n
hyn

∫
dy(e∗znHy +Ezh∗yn)∫
dy(e∗znhyn + eznh∗yn)

, (6)

where ezn and hyn are the z component of the electric field and the y component of the magnetic
field for the eigenmodes that we import from the calculations discussed in Section 2.
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Fig. 5. Energy transmission(|M|2) vs. incident angle. The black lines denote the transfer
function M which comes from the direct measurement of a full simulation in the air/PhC/air
system. The red dots denote the transfer function M determined from the multiple reflection
assumption. (a) and (b) correspond to a lossless system, where the alumina rods have ε =
9.8. (c) and (d) correspond to a lossy system, where the alumina rods have ε = 9.8+6.8×
10−4i.

Figure 4 shows the setup. We truncate the air/PhC/air system into different sections. In
Fig. 4(b), a plane wave with a given ky is excited at the left and the corresponding Bloch wave is
absorbed by the right port. From this simulation, we can determine tap. In Fig. 4(c), we import
the eigenfield obtained from the complex-k band calculation in Section 3, and then this Bloch
mode is excited and its reflective counterpart is absorbed. From the latter simulation, rpa and tpa
can be obtained.

Figure 5(a) and Fig. 5(b) show a comparison between the energy transmission calculated
from a full simulation and the multiple-scattering assumption. Both results are in excellent
agreement, except for the smallest angles due to numerical precision limitations. Since the
Q-factor is very high the spectrum contains some very narrow peaks for low incident angles
which are difficult to resolve accurately numerically. By adding loss into the system (setting
ε = 9.8+6.8×10−4i for the alumina rods), we effectively lower and broaden those peaks. In
this way, results from both methods coincide perfectly in Fig. 5(c) and Fig. 5(d).

We can classify all these resonances into three categories. Peak 1 results from the excita-
tion of an impedance-matched zero-index mode, which was the mode of interest in [7]. Peak
11 has a symmetric line shape, which is due to the multiple reflections and transmissions of a
single Bloch mode in the PhC slab, and is the lowest-order resonance for the steep-slope mode
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in Fig. 2(c). The other peaks at small incident angles are of more interest. Their asymmet-
ric, or Fano-like, features indicate that at least two different modes contribute to the spectrum
simultaneously, with one playing the discrete resonant role, and the other working as the con-
tinuous background process [19]. As a first-order approximation, we ignore the coupling (the
off-diagonal term in rpa) between those two eigenmodes, and we calculate the transfer matrix of
each mode separately. Results are displayed in Fig. 6(a). The red resonant curve corresponds to
the small-slope mode in Fig. 2(c). Its Fabry-Perot resonance origin preserves the symmetric line
shape. The blue curve shows a continuous nonresonant feature, contributed by the steep-slope
mode, and modifies the total transmission from symmetric to asymmetric. Since we did not con-
sider the coupling term, the sum of each energy transmission does not add up to the real total.
For a more rigorous analysis, one needs to take superpositions of the two eigen-Bloch modes
to find the exact resonant and background modes, so that the coupling effects are taken into
account. However, it’s apparent that the small-slope mode dominates the bimodal resonance.

Fig. 6. (a) Energy transmission of both Bloch modes in the small incident angle regime,
ignoring the coupling between them. The blue curve corresponds to the steep-slope mode
in Fig. 2(c), while the red curve corresponds to the small-slope mode. (b) Dispersion rela-
tions of two excited modes with different incident angles. The black dashed-dot line marks
the excitation frequency of 23.05161 GHz. Its intersection with the blue curve shows the
propagating and counterpropagating Bloch waves excited at peak 11 in Fig. 2(a). The inter-
section with the red curve shows the two Bloch modes and their counterpropagating parts
at small incident angle with respect to peak 7 in Fig. 2(a).

One might also have found that the small loss added into the system has a much more signif-
icant impact on the bi-modal resonance than the monomodal one, by suppressing the peak into
less than half of its original. This can be understood from the dispersion relations. In Fig. 6(b),
we plot the dispersion relations for two incident angles. The blue curve corresponds to the
eigenmode with larger incident angle of 0.356 rad (peak 11), while the red curve corresponds
to the bi-eigenmodes with smaller incident angle of 0.112 rad (peak 7). It is obvious that the
resonant mode has a much smaller slope (group velocity) in the bimodal case than that in the
monomodal case (approximately 2.7 times smaller in Fig. 6(b)). This slow light effect implies
the existence of a higher density of states, making the field enhancement stronger and the Q-
factor larger in a lossless system. However on the other side, these high Q-factor peaks will
also be more sensitive to system losses, since a slower light is more readily absorbed when
propagating.

In addition, since these peaks are the result of Fabry-Perot resonances, the number of the
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peaks is related to the number of unit cells in the normal direction. As the slab grows thicker (the
number of unit cells in the normal direction increases), the slab will be able to accommodate
more resonant modes, and thus the number of sharp peaks will increase. The positions of the
peaks will shift too. However, there is no one-to-one correspondence between the number of
peaks and the number of unit cells. Recalling that the resonant wavelengths of a Fabry-Perot
cavity are typically functions of the size of the cavity, i.e, for a perfect Fabry-Perot cavity,
a strict standing wave boundary condition has to be met, a similar situation happens to the
monomodal resonance at large incident angles. When there is only one propagating Bloch mode
excited, the denominator of the the transfer matrix in Eq. (3) is commutable and reduces to [1−
r2

paexp(−2 jkxd)]−1. Therefore the position of the monomodal resonance could be estimated
as kxd ∼ nπ , due to the non-zero phase at the boundary and on condition that no higher-order
diffraction happens. In the bimodal case, the simulation becomes more complex, since there will
be no simple standing-wave conditions. However, one can always find the resonant positions
by performing a numerical study of the denominator as we have already shown.

5. Conclusion

In this paper, we reported on a numerical study of the flat band Bloch modes in a photonic
crystal with Dirac cones. We proved numerically that the non-zero ky gives rise to non-zero
index medium behavior. Furthermore, to understand how modes propagate and interact in the
PhCs, we derived the weak expressions and performed the complex-k band and transmission
calculations. Though the explanation of the spectral features turns out to be multiple reflections
of the eigenmodes, the simulation method offers us a way to separate the coupled Bloch modes
in a PhC slab and manipulate each with great freedom. We use this method to explain the phys-
ical origins of the different line-shape features in the transmission spectrum. In addition, our
method allows to study the surface scattering of a truncated PhC by eliminating the back reflec-
tion. We believe that our method of analysis will prove beneficial to understand the scattering
properties of more complicated photonic crystal structure of final extent.
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