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Flux balance analysis predicts 
essential genes in clear cell renal 
cell carcinoma metabolism
Francesco Gatto1,*, Heike Miess2,*, Almut Schulze2,3,4 & Jens Nielsen1

Flux balance analysis is the only modelling approach that is capable of producing genome-wide 
predictions of gene essentiality that may aid to unveil metabolic liabilities in cancer. Nevertheless, 
a systemic validation of gene essentiality predictions by flux balance analysis is currently missing. 
Here, we critically evaluated the accuracy of flux balance analysis in two cancer types, clear cell renal 
cell carcinoma (ccRCC) and prostate adenocarcinoma, by comparison with large-scale experiments of 
gene essentiality in vitro. We found that in ccRCC, but not in prostate adenocarcinoma, flux balance 
analysis could predict essential metabolic genes beyond random expectation. Five of the identified 
metabolic genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, were predicted to be dispensable in 
normal cell metabolism. Hence, targeting these genes may selectively prevent ccRCC growth. Based 
on our analysis, we discuss the benefits and limitations of flux balance analysis for gene essentiality 
predictions in cancer metabolism, and its use for exposing metabolic liabilities in ccRCC, whose 
emergent metabolic network enforces outstanding anabolic requirements for cellular proliferation.

The regulation of metabolism has been recognised to be of central importance in cancer1–3. Several stud-
ies have collectively suggested that cancer selects for cell clones that have reprogrammed their metab-
olism, resulting in distinct cancer type-dependent metabolic phenotypes4–11. These programs enforce 
cancer cell dependence on specific flux distributions, and disruption of the underlying pathways mostly 
results in cell death12–17.

Under these premises, metabolic modelling using flux balance analysis (FBA)18 is the only approach 
that can predict the effect of genetic and environmental perturbations in the disruption of such metabolic 
phenotypes at the genome scale19,20, and applications of these models for studying cancer or metabolic 
diseases have been advocated21–24. Contrary to other systems biology approaches, FBA typically involves 
only limited fundamental assumptions (e.g., mass and charge balance in all reactions, and thermodynam-
ically constrained reaction directionality) and little to no parameter fine-tuning (e.g., non-growth and 
growth-associated ATP maintenance), yet still allows for meaningful genome-wide predictions of gene 
essentiality in a variety of model organisms25,26, provided that a genome-scale metabolic model for the 
organism is available. Nevertheless, a number of algorithms are now available to infer the active meta-
bolic network in human cells27–34, and the constraints required to formulate a plausible FBA can now be 
more readily obtained due the increased availability of high-throughput data. Despite these promising 
conditions, use of FBA to predict gene essentiality in cancer metabolism is still at its infancy, and besides 
the extensive theoretical formulations reported in the literature, few practical studies have so far bene-
fited from the systematic analyses enabled by FBA-based studies35–39.
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In this study, we critically and systematically assessed the benefits and limitations of FBA for per-
forming genome-scale predictions of gene essentiality in cancer metabolism. In particular, we were 
interested in the use of FBA to expose metabolic liabilities in clear cell renal cell carcinoma (ccRCC), 
the most common form of kidney cancer40. This cancer type was chosen as because we have recently 
uncovered that it features a compromised metabolic network41. We also verified whether the accuracy 
of FBA extends to a second cancer type, prostate adenocarcinoma (PC) and analysed the essentiality of 
selected genes in metabolic models of non-malignant tissues. Our findings suggest that FBA is suitable 
to uncover essential genes in cancers whose emergent metabolic network enforces outstanding anabolic 
requirements for cellular proliferation. Hereby we demonstrate that ccRCC depends on the expression 
of AGPAT6, GALT, GCLC, GSS, and RRM2B, which, although essential for cancer cells, are potentially 
nonessential in normal cells.

Results
Strategy used to benchmark predictions of gene essentiality in cancer metabolism. Flux 
balance analysis (FBA) is possibly the only modelling approach that has the potential to predict gene 
essentiality in cancer metabolism at the genome scale39. In this study, we sought to systematically vali-
date whether FBA can be used to determine gene essentiality in cancer cell metabolism by comparing 
predictions with large-scale experimental datasets (Fig. 1). Therefore, the FBA problem was formulated 
to scan for a feasible flux distribution that enables the simultaneous biosynthesis of all human biomass 
components, the so-called biomass equation, in cancers growing in defined serum-containing medium42. 
In these conditions, the metabolic network is free to absorb any medium or serum metabolites (at any 
rate), which include sugars, amino acids, several metabolic intermediates and short chain fatty acids. In 
FBA, the emergence of a feasible flux distribution that can support biomass formation is generally limited 
by the introduction of constraints43,44 that can represent molecular or environmental limitations (e.g., the 
absence of a given enzyme in a cancer type or the unavailability of a nutrient in the microenvironment).

Here, we considered two typical sets of constraints: A) the topology of the cancer specific-metabolic 
network; and B) a profile of experimentally measured fluxes for a number of exchange metabolites (i.e., 
exchange fluxes) in a panel of cancer-specific cell lines (generally more than one cell line for each type of 
cancer). Using either of these two constraints we predicted gene essentiality using FBA by introducing a 
constraint that disables flux in the univocally encoded reaction(s). This constraint is commonly referred 
to as in silico single-gene knockout, and the gene is essential if the in silico single-gene knockout ablates 
biomass production. A gene knockout ablates biomass production if there is no flux distribution that 
allows the biomass equation to carry a flux, or if the knockout results in a substantial flux reduction. 
However, a gene knockout consents biomass production if there is no change in the flux through the bio-
mass equation. Single-gene knockout resulting in no change in biomass production is mostly explained 
due to one of the following reasons: 1) gene redundancy, i.e., more than one gene encodes for the reac-
tion(s) associated with the knockout; 2) pathway redundancy, i.e., there is an alternative pathway with 
the same overall stoichiometry that can compensate for the knockout; or 3) the reaction(s) encoded by 
the knocked-out gene are not active (dead end) at the studied condition. Depending on this outcome, a 
gene is declared essential or nonessential in silico for a certain cancer. If constraint B) is implemented, an 
in silico single-gene knockout may ablate or consent biomass production, depending on which profile of 
exchange fluxes is used as a constraint. In this case, the corresponding gene is declared essential in silico 
for the cancer type only if biomass production is ablated using exchange flux profiles from at least 70% 
of its corresponding cancer cell lines.

In principle, the proposed approach should capture all metabolic liabilities related to biomass for-
mation induced by the network topology and to the activation of metabolic pathways induced by the 
exchange flux profile of a certain cancer. At the same time, it is noteworthy that the FBA problem formu-
lated herein will not uncover other metabolic liabilities known to be associated with cancer survival, for 
example, maintenance of anti-oxidant pools45. To evaluate the gene essentiality predictions, we compared 
these to large-scale experimental data in vitro: in this case, a panel of cancer-specific cell lines derived 
from prostate adenocarcinoma (PC) or clear cell renal cell carcinoma (ccRCC), both cultured in defined 
serum-containing medium. The cells were transfected with a library of siRNA oligonucleotides that target 
approximately 230 metabolic genes. In the PC screen, induction of caspase activity was quantified after 
96 h following transfection, whereas in the ccRCC screen, reduction in cell number was monitored. If at 
least 70% of the cancer cell lines passed a given threshold for caspase activity or cell number reduction, 
then the gene was declared essential in vitro for this cancer type (or nonessential in vitro if vice versa). 
The accuracy of the predictions was calculated using the Matthews correlation coefficient (MCC) and 
the related Fisher’s exact test statistics.

Accuracy of flux balance analysis for gene essentiality in clear cell renal cell carcinoma metab-
olism. We decided to assess in vitro gene essentiality in the metabolism of ccRCC, as this is the most 
common form of kidney cancer40 and it exhibits a strong regulation and dependence on a reprogrammed 
metabolism following transformation46–48. Additionally, we have recently shown that it features a charac-
teristically compromised metabolic network41. The reliance on specific metabolic reactions for survival 
suggests that this cancer may be particularly susceptible to disruptions in the metabolic network. A panel 
of 5 ccRCC cell lines (786-O, A498, 769-P, RCC4, and UMRC2) was transfected with a custom library of 
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siRNA oligonucleotides targeting 230 different metabolic enzymes, transporters, and regulators involved 
in central carbon metabolism. For each siRNA, loss of viability was quantified by determining the mean 
cell number reduction relative to a negative control (non-targeting RISC-free) and a positive control 
(siRNA targeting ubiquitin B). The number of genes declared essential in vitro depends on the threshold 
chosen for the mean cell number reduction. We selected a 30% reduction for benchmarking purposes 
because the quantity of essential genes appears to reach a plateau at this value; note that no siRNA caused 
a cell number reduction greater than 50% (Supplementary Fig. 1). With this threshold, of the 217 tested 
siRNAs that overlap with the human metabolic network49, 20 gene knockdowns caused death in at least 
70% (4 of 5) of the ccRCC cell lines and were thus deemed essential in vitro (Supplementary Fig. 2). In 
contrast, 136 tested siRNAs did not significantly affect cell number in at least 70% of the ccRCC cell lines 
and were conversely deemed nonessential in vitro (Supplementary Data 1). The remaining 61 genes were 
not classified, as their knockdowns had mixed effects across cell lines and therefore were not directly 
attributable to the ccRCC phenotype.

Figure 1. Strategy to measure the accuracy of flux balance analysis predictions of gene essentiality 
in cancer metabolism . Left part: the Human Metabolic Reaction (HMR) database was used as a generic 
genome-scale metabolic network to reconstruct a cancer-type specific network based on proteome data 
obtained from cancer specimen (in the example, the reaction A fi B is absent in the cancer-specific model 
due to lack of the matched enzyme at the protein level for that cancer type). Successively, flux balance 
analysis is used to simulate whether a flux towards production of biomass (metabolite E) was feasible after 
every single gene-knockout, using as constraints either the topology of the cancer type-specific metabolic 
network or the measured fluxes for a number of exchange metabolites in different cancer type-derived cell 
lines. In the latter case a gene is deemed essential if it disables biomass production in ≥70% of the cell lines. 
Grey arrows indicate reactions not occurring in the network. Dashed arrows indicate measured fluxes in 
a cell line. Right part: cancer-derived cell lines were cultured and transfected with a library of siRNAs that 
target ~230 metabolic genes and cell number was determined after 4 days. If ≥70% of the cell lines passed 
a given threshold of cell death, the corresponding gene was deemed essential. Bottom: gene essentiality for 
the ~230 genes targeted by the siRNA library was compared in silico vs. in vitro and the accuracy of the 
predictions was calculated by several statistical measures (e.g. the Matthews Correlation Coefficients).
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Next, we predicted in silico gene essentiality using as the sole constraint the topology of the ccRCC 
metabolic network, as defined by a ccRCC genome-scale metabolic network41. We identified 28 essential 
genes and 1,383 nonessential genes (Fig. 2A). Topology-driven gene essentiality was found to be accu-
rate at a statistically significant level (MCC =  0.226, p =  0.043, Fig. 2B). This approach detected two true 
positives (i.e., candidates essential both in silico and in vitro), namely AGPAT6 and GALT (Fig. 2A); the 
expected number of true positives by chance is close to approximately zero ([TP] =  0.174). In this sense, 
we can assume that AGPAT6 and GALT represent bona fide pivotal metabolic nodes in ccRCC, regard-
less of the exchange fluxes, which suggests that their essentiality is due to a loss of alternative redundant 
metabolic pathways or genes in ccRCC. Interestingly, siRNAs corresponding to genes predicted to be 
essential in silico result overall in a mean cell number reduction significantly higher than that for siRNAs 
corresponding to genes predicted not to be essential (p <  0.001, Wilcoxon rank-sum test, Fig. 2C).

Next, we also implemented exchange fluxes from a panel of seven ccRCC cell lines (786-O, A498, 
ACHN, CAK1-1, TK-10, RXF-393, and UO-31) as constraints50,51. Using this approach, eighty-seven 
genes were predicted to be essential in at least 70% (5 of 7) of the cell lines (Fig. 3A). When exchange 
fluxes were considered, the gene essentiality prediction was found to have an increased accuracy, when 
compared to the in vitro data (MCC =  0.235, p =  0.010, Fig. 3B). Additionally, in this case we observed a 
substantial mean cell number reduction for the group of siRNAs targeting genes predicted to be essential 
in silico compared to those predicted to be nonessential (p <  0.001, Fig. 3C). In particular, four additional 
genes were identified as true positives using this approach, namely CAD, DHCR24, FDFT1, and ODC1 
(Fig. 3A). It is likely that the essentiality of these genes is attributable to common metabolic requirements 
among ccRCC cell lines (e.g., a high lactate secretion to glucose uptake ratio or secretion of secondary 
metabolites), which induces dependence on the expression of enzymes that activate the related metabolic 
pathways. Interestingly, the accuracy of these predictions was not preserved if only exchange fluxes were 
considered, but the topology of the ccRCC metabolic network was neglected: we observed no signifi-
cant predictive ability when the generic human metabolic network was used (MCC =  0.086, p =  0.339, 
Supplementary Fig. 3). The results of the accuracy achieved by FBA in these scenarios are reported in 
Table 1.

Taken together, these results suggest that in ccRCC metabolism, FBA is able to predict gene essential-
ity, although to a limited degree. Gene essentiality as exposed by FBA is in turn attributable to a rewiring 
of the metabolic network and exchange fluxes that contribute to biomass production. Conversely, it is 
conceivable that the 14 genes that were found to be essential in vitro but were not captured by FBA are 
essential because the gene products carry out metabolic tasks that are not ascribable to the biomass pro-
duction simulated here. Alternatively, it also possible that redundant pathways available in the metabolic 

Figure 2. Gene essentiality in ccRCC metabolism as predicted by flux balance analysis using the 
metabolic network topology as a sole constraint for biomass formation positively compares to a 
functional RNAi screen targeting ~230 metabolic genes in a panel of ccRCC cell lines . A) Gene 
essentiality in ccRCC according to flux balance analysis using the metabolic network topology as only 
constraint for biomass formation. B) Contingency table for the comparison between the declaration of gene 
essentiality in silico vs. in vitro for those siRNAs in the library that had consensus effect in terms of cell 
number reduction in ≥70% of the cell lines. AGPAT6 and GALT are considered true positives (p =  0.04) 
because their ablation results in cell death in silico and in vitro. C) Boxplots of total cell number reduction 
for the groups of siRNAs predicted to be either essential (red) or non essential (blue) in silico.
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network are not active due to the presence of regulation in vitro or in vivo that is not considered in the 
FBA simulations, as suggested by studies of gene deletion in yeast52.

Accuracy of flux balance analysis for gene essentiality in prostate adenocarcinoma metab-
olism. We next sought to define whether the accuracy of FBA predictions is cancer type-dependent. 
To this end, we used a published dataset that applied the same custom siRNA library in a panel of three 
prostate adenocarcinoma (PC) cell lines (LNcaP, PC3, DU145)53. Cell death was defined by induction of 
caspase activity, and we declared a gene essential in vitro if the corresponding siRNA caused apoptosis 
with a caspase activity z-score ≥  2.5 (i.e., number of standard deviations from control) in at least 2 of 
the 3 cell lines, as adopted in the original study. Using these criteria, 14 metabolic genes were found to 
be essential in the PC cell lines (Supplementary Fig. 4). The topology of a PC specific metabolic net-
work was reconstructed using the same pipeline followed to generate the previously employed ccRCC 
genome-scale metabolic model41 and was used as the sole constraint to perform FBA to predict in silico 
gene essentiality. We identified 37 essential genes, whereas 1,638 genes were classified as nonessential 
(Supplementary Fig. 5A). We also implemented exchange fluxes from a panel of two PC cell lines, PC3 
and DU145, as constraints50,51, which resulted in the classification of 35 additional genes as essential in 
both these cell lines (Supplementary Fig. 5B).

Contrary to the results obtained for ccRCC, the accuracy of FBA predictions in PC was consid-
erably lower when using metabolic network topology as the sole constraint (MCC =  0.082, p =  0.233, 

Figure 3. Gene essentiality in ccRCC metabolism as predicted by flux balance analysis using the profile 
of exchange fluxes from seven ccRCC cell lines in addition to the ccRCC network topology shows 
increased accuracy when compared with the RNAi screen . A) Gene essentiality in ccRCC according to 
flux balance analysis using the profile of exchange fluxes from seven ccRCC cell lines on top of ccRCC 
network topology. Each profile of exchange fluxes representing a ccRCC cell line entails a set of genes 
essential when using that profile. The heatmap features only genes that are essential using at least one flux 
profile. Finally, genes that are essential using at least 70% of the cell line flux profiles are deemed essential in 
silico in ccRCC. B) Contingency table for comparison between the declaration of gene essentiality in silico 
vs. in vitro for those siRNAs in the library that had consensus effect in terms of cell number reduction in ≥  
70% of the cell lines. Other than AGPAT6 and GALT, DHCR24, FTFD1, CAD, and OCD1 are true positives 
(p =  0.007). C) Boxplots of total cell number reduction for the groups of siRNAs predicted to be either 
essential (red) or non essential (blue) in silico.
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Supplementary Fig. 6A), and even worsened with the implementation of exchange fluxes (MCC =  0.039, 
p =  0.635, Supplementary Fig. 6C). However, when only topology was used, we observed a slightly higher 
mean caspase activity for the group of siRNAs targeting genes predicted to be essential in silico (p = 0.011, 
Supplementary Fig. 6B); this did not hold when exchange fluxes were also used as constraints (p =  0.152, 
Supplementary Fig. 6D). The results of the accuracy achieved by FBA in these scenarios are reported 
in Table 1. Interestingly, most genes predicted to be essential in silico participate in the biosynthesis of 
steroids. In particular, the two true positive genes detected by FBA, MVD and NSDHL, belong to this 
pathway. The inefficacy of exchange fluxes to unveil additional liabilities may be due to the low number 
of flux profiles available as constraints for PC (only 2 cell lines), as opposed to ccRCC (7 cell lines). 
However, it is also possible that the altered exchange fluxes in PC cells fuel pathways other than those 
required for biomass production and are therefore not captured by the FBA model used here. One of 
these pathways could indeed involve the synthesis of cholesterol for the production of steroid hormones, 
which play a major role in the development of PC54.

These results suggest that contrary to ccRCC, FBA fails to accomplish acceptable predictions of gene 
essentiality in PC metabolism. This may reflect the fact that PC cells are more robust in the task of syn-
thesising biomass components. In support of this, Ros and colleagues identified a metabolic liability in 
PC that does not relate to biomass formation, but is involved in detoxification of reactive oxygen species 
(ROS)53. In addition, ccRCC metabolism could represent an ideal situation for the identification of met-
abolic liabilities using FBA because of its highly compromised metabolic network.

Effect of the medium metabolites on the accuracy of flux balance analysis predictions. In 
FBA, the definition of metabolites available for uptake is a decisive constraint for the prediction of gene 
essentiality43. In simulations with microorganisms, the list of metabolites available for uptake mirrors 
the medium composition used in the controlled experimental setup. Because human cancer cell lines 
are normally cultured in serum-containing medium, the list of 150 metabolites adopted so far may 
potentially contain a large number of compounds that can be utilised in silico even though they are not 
utilised in any metabolic reactions by cells in vitro (e.g., bilirubin). To explore the extent to which the 
medium composition affects the accuracy of FBA predictions, we repeated all simulations using Ham’s 
medium, a nutrient poor medium adopted in previous studies to predict in silico gene essentiality of 
cancer cells33,39. This less permissive medium decreases the availability of alternative pathways. Thus, the 
number of essential genes predicted in silico increases for both ccRCC (Supplementary Fig. 7) and PC 
(Supplementary Fig. 8), when only the topology is used as a constraint and when exchange fluxes are 
also considered. However, these genes were mostly not found to be essential in vitro, and therefore the 
accuracy of the FBA predictions was lower for all four scenarios (Supplementary Fig. 9). We conclude 
that a broader definition of the medium improves FBA simulations in human systems and reduces the 
number of false negatives (i.e., genes essential in silico but not in vitro) induced by incorrect assumptions 
regarding the unavailability of certain metabolites to the cells. The results of the accuracy achieved by 
FBA in these scenarios are reported in Table 1.

Cancer type
FBA 

constraints Medium TP FN FP TN

Fisher 
exact 

test p-
value MCC

Clear cell renal cell 
carcinoma

Topology
FBS 2 18 1 135 0.043 0.226

HAM 5 15 12 124 0.046 0.174

Topology + 
Exchange fluxes

FBS 6 14 11 125 0.010 0.235

HAM 6 14 15 121 0.032 0.186

Exchange fluxes FBS 1 19 2 134 0.339 0.086

Prostate adenocarcinoma

Topology
FBS 2 12 12 186 0.233 0.082

HAM 2 12 14 184 0.285 0.068

Topology + 
Exchange fluxes

FBS 2 12 19 179 0.635 0.039

HAM 2 12 27 171 1 0.005

Table 1. Statistical measure of accuracy of the flux balance analysis predictions on gene essentiality 
compared to in vitro results for different set of constraints, media, and cancer types. Key: TP – true positive 
(essential in silico and in vitroin vitro); FN – false negative (non essential in silico, essential in vitro); FP 
– false positive (essential in silico, non essential in vitro); TN – true negative (non essential in silico, non 
essential in vitro); MCC – Matthews Correlation Coefficient.
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Effect of the choice for the cell death threshold in vitro on the accuracy of flux balance anal-
ysis predictions. Given that the definition of gene essentiality in vitro depends on the threshold 
selected for cell death (namely the mean cell number reduction in the ccRCC screen and the caspase 
activity z-score in the PC screen), we performed a sensitivity analysis on these thresholds for all tested 
scenarios (implemented constraints, cancer types, and medium definition). In the case of ccRCC, we 
observed a positive relationship between the accuracy of FBA predictions and the strictness of the defi-
nition of the threshold for cell death, at least up to the point where the number of essential genes in 
vitro is less than 10, which occurs for mean cell number reduction >40% (Supplementary Fig. 10). This 
trend was conserved in all scenarios, with the highest accuracy being achieved when using the topology 
of the ccRCC metabolic network in a serum-containing medium as the sole constraint to perform FBA; 
the lowest accuracy was observed when constraining the exchange fluxes in Ham’s medium. In the case 
of PC, the above trend was not observed for any scenarios (Supplementary Fig. 11). In particular, the 
accuracy of predictions was not noticeably different from a random predictor. Taken together, this indi-
cates that the accuracy of in silico predictions is significant in ccRCC (but not in PC) for a reasonable 
range of thresholds upon which a gene is declared essential in vitro.

Effect of cancer cell line exchange fluxes on the inference of gene essentiality in a certain 
cancer. Because FBA proved powerful in exposing the metabolic liabilities of ccRCC, we decided to 
validate some of the in silico predictions of gene essentiality. In particular, we tested the extent to which 
exchange fluxes from ccRCC cell lines can be used to infer gene essentiality attributable to the ccRCC 
phenotype. To this end, we selected some genes that were differentially classified as essential depending 
on the cell line flux profile, but still classified as essential in ccRCC according to a consensus outcome, 
i.e., essential in > 70% of cell lines. We chose to test the predictions for GCLC, GSS, SLC7A9 (consid-
ered essential in silico for ccRCC because they were classified as such in 5 of the 7 cell lines), and PNP 
(considered nonessential in silico for ccRCC because it was classified as such in 3 of the 7 cell lines). In 
addition, we tested UMPS and RRM2B, which were deemed essential in silico for all ccRCC cell lines 
upon implementation of every exchange flux profile. Next, the corresponding genes were silenced in five 
of the seven cell lines whose exchange fluxes were used to constrain the FBA predictions (786-O, A498, 
CAKI-1, TK10, and UO31). In accordance with the threshold for cell death adopted above, a gene was 
declared essential in vitro for ccRCC if more than 70% of cell lines tested (e.g., at least 4 of 5) exhibited 
at least 30% mean cell number reduction compared to control (Fig. 4).

At the level of gene essentiality in ccRCC, the consensus predictions for RRM2B, GCLC, UMPS, and 
GSS were confirmed in vitro. However, PNP and SLC7A9 knockouts showed mixed effects across cell 
lines in vitro. Hence, the essentiality of these genes in ccRCC could not be inferred from this experiment. 
Overall, this result suggests that ccRCC cell line exchange fluxes can entail some common metabolic 
requirements associated with the ccRCC phenotype, which can be exploited to predict gene essentiality 
in ccRCC metabolism. However, the exchange flux measurements appear to be insufficient per se to 
achieve reliable predictions for a specific cell line. Indeed, we observe that only 17 of the 30 individual 
predictions were replicated in vitro if the cell-line-specific exchange fluxes were used for the prediction 
of essentiality for the corresponding cell line.

Characterisation of gene essentiality in ccRCC metabolism. FBA exposed some metabolic liabil-
ities in ccRCC that are unlikely to have been predicted by chance. Therefore, we sought to characterise 
those genes that were classified in this study as essential in silico and validated in vitro. This list includes 
ten metabolic genes: AGPAT6, CAD, DHCR24, FDFT1, GALT, GCLC, GSS, ODC1, RRM2B, and UMPS. 
First, we predicted whether these gene knockouts would be toxic for the execution of essential metabolic 
functions, i.e., whether the in silico gene knockouts compromise the metabolism of normal cell types. As 
previously described33, we simulated the essentiality of these genes in 83 normal cell types by checking 
whether 56 primary metabolic tasks (e.g., synthesis of cholesterol or oxidative phosphorylation) could 
be carried out in silico upon application of the corresponding in silico gene knockout. In all normal cell 
types, the simulation revealed that knockout of CAD or UMPS ablates the de novo biosynthesis of pyri-
midines, while FDFT1 and DHCR24 knockouts impede the production of cholesterol in normal human 
cell types (Fig. 5A). However, the remaining 6 genes had only minor toxic effects (in <  50% of cell types), 
and can thus be regarded as nontoxic to normal cells.

Next, we specifically checked the toxicity of these gene knockouts in tubular kidney cells, where 
ccRCC is thought to originate from55. In this case, the in silico knockout of ODC1 was found to be toxic 
because it impaired seven essential metabolic tasks in normal kidney cells. On the contrary, AGPAT6, 
GALT, GCLC, GSS, and RRM2B knockouts did not compromise any metabolic task and can thus be 
considered as selectively essential in ccRCC (Fig. 5B). To test the quality of these predictions, we ablated 
GCLC, GSS, RRM2B, and UMPS in an immortalised, non-tumourigenic kidney epithelial cell line (HK-2) 
using RNAi. These four genes were not part of the siRNA screening library but were predicted by FBA to 
be essential both in silico and in vitro. In accordance with the in silico predictions of toxicity, we observed 
cell death when UMPS was knocked out in HK-2 cells, while GCLC, GSS, and RRM2B knockouts caused 
a minor cell number reduction, above the adopted threshold for cell death (Fig. 5C).

Subsequently, we attempted to elucidate the putative mechanisms at the flux level underlying the 
essentiality of the AGPAT6, GALT, GCLC, GSS, and RRM2B genes, which were predicted to be toxic to 
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none or only to a few of the normal human cell types, and in particular were predicted to be nontoxic 
to tubular kidney cells. AGPAT6 and GALT were found to be essential when using the topology of the 
ccRCC metabolic network as the sole constraint for FBA, which is indicative of a loss of pathway redun-
dancy in key steps involved in biomass synthesis. In the human metabolic network, the AGPAT6-encoded 
reaction, i.e., the conversion of glycerol-3-phosphate to 1-acyl-glycerol-3-phosphate, is associated with 
additional isoenzymes, AGPAT9, GPAT2, and GPAM. However, according to the Human Protein Atlas, 
which supported the reconstruction of the ccRCC metabolic network, AGPAT6 is the only member of 
the family of lysophosphatidic acid acyltransferase genes appreciably expressed in ccRCC56. Therefore, 
when AGPAT6 is knocked out, the production of glycerolipids, which is required for biomass production, 
becomes unfeasible (Fig. 6A), making AGPAT6 an essential gene in ccRCC.

Regarding GALT, this enzyme is pivotal in the ccRCC metabolic network because it catalyses the sec-
ond step of the Leloir pathway of galactose metabolism (conversion of UDP-galactose to UDP-glucose). 
Examination of the flux space in ccRCC revealed that this reaction fuels the production of UDP-glucose, 
which is needed for the biosynthesis of glycogen. Knockout of GALT thus results in growth ablation due 
to the inability to produce glycogen, here considered to be an essential biomass component. This path-
way can be bypassed via UGP2, which condenses glucose-1-phosphate with UTP to yield UDP-glucose, 
but UGP2 is not expressed in ccRCC (Fig. 6B). The essentiality of GALT in ccRCC is determined by the 
inactivity of this parallel pathway; this represents an example of loss of redundancy within the topology 
of the metabolic network.

Figure 4. Validation of predicted gene essentiality in ccRCC . Five ccRCC cell lines that match the flux 
profile constraints implemented to predict gene essentiality in ccRCC were transfected with siRNA targeting 
SLC7A9, PNP, RRM2B, GCLC, UMPS and GSS. A non-targeting oligonucleotide, OTP (scrambled siRNA), 
was used as negative control. . Each bar represents the mean cell number reduction relative to control 
together with the 95% highest density interval of two experiments performed in triplicate. The consensus 
outcome across cell lines in terms of gene essentiality is shown below each set of bars corresponding to 
a certain silenced gene. Genes that, if silenced, cause a ≥  30% reduction in cell number relative to the 
non-targeting RISC-free siRNA in ≥  70% of ccRCC cell lines are deemed essential in vitro. The consensus 
outcome for each silenced gene is compared to the prediction of essentiality in silico for the corresponding 
gene in ccRCC (compare with Fig. 3A).
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Figure 5. In silico toxicity for the knockouts in normal cells of genes essential in ccRCC . A) Number 
of normal cell types where a certain metabolic task is impaired upon in silico knockout. For each of 
the ten genes found essential in ccRCC according to this study (RRM2B, ODC1, GSS, GCLC, AGPAT6, 
GALT, FDFT1, DHCR24, UMPS, and CAD; columns), it was tested if the corresponding in silico gene 
knockout affects the feasibility of 56 different metabolic tasks (rows) in 83 genome-scale metabolic models 
representing normal, non-tumourigenic cell types. The numbers within the heatmap indicate how many 
of normal cell types (out of the 83) showed a certain metabolic task that was no more feasible upon the 
knockout (white cells indicate that none of the cell lines showed an effect). The knockout of AGPAT6, 
GALT, GCLC, GSS, ODC1, and RRM2B did not impair more than 50% of normal cell types and are hence 
considered non-toxic to normal cells. On the contrary, FDFT1, DHCR24, UMPS and CAD knockouts 
affected some essential metabolic tasks in all normal cell types and are thereby considered toxic to normal 
cells. B) Number of metabolic tasks impaired upon in silico knockouts in a kidney cell in tubule model. In 
addition to FDFT1, DHCR24, UMPS and CAD, OCD1 knockout is predicted to be toxic because it disables 
seven metabolic tasks. On the other hand, knockouts of AGPAT6, GALT, GCLC, GSS, and RRM2B are 
predicted to be non-toxic and these genes are thus considered selectively essential in ccRCC. C) Validation 
of toxicity for GCLC, GSS, RRM2B and UMPS knockouts in a normal kidney epithelial cell line, HK-2. Cells 
were transfected with siRNA targeting RRM2B, GCLC, UMPS and GSS and a non-targeting scrambled 
siRNA, OTP, was used as negative control. Each bar represents the mean cell number reduction relative to 
control together with the 95% highest density interval of two experiments performed in triplicate. In line 
with the predictions, UMPS knockout caused a substantial cell number reduction in HK-2 cells compared to 
knockouts of GCLC, GSS, and RRM2B, thereby indicating a substantially superior toxicity in normal kidney 
epithelial cells.
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The three additional genes, GCLC, GSS, and RRM2B, were classified as essential only when constraints 
on exchange fluxes were implemented. Their essentiality is likely to be due to a loss of redundancy in 
the ccRCC network when metabolite fluxes are constrained by measured uptake and secretion rates. To 
explore how the fluxes were distributed before the implementation of the exchange fluxes, we relieved 
each of these constraints one at the time until biomass production was restored, thereby allowing us to 
associate gene essentiality with a particular exchange flux. We found that RRM2B is associated with the 
flux of 3-ureidopropionate, a product of the uracil degradation pathway, which is secreted by all ccRCC 
cell lines (range: 0.016 to 0.102 fmol cell−1 h−1) (Fig. 6C, left). This secretion rate is not matched by the 
uptake rate of either of its two precursors, uracil and deoxyuridine (range: 0.003 to 0.016 and 0.010 
to 0.041 fmol cell−1 h−1, respectively). Thus, it is necessary for cells to activate a flux to degrade UDP 
to sustain the given 3-ureidopropionate secretion rate, and one of these steps is catalysed by RRM2B. 
According to the Human Protein Atlas, the two other genes associated with this step (namely RRM1 and 
RRM2) are not expressed in ccRCC, and thus they cannot compensate for this flux if RRM2B is knocked 
out, making RRM2B essential.

In the case of GCLC and GSS, the essentiality is associated with the secretion of glutamate, which 
occurs at remarkably high rates (approximately 4 to 50 fmol cell−1 h−1) in ccRCC cell lines. The analysis 

Figure 6. In silico elucidation of the mechanisms of essentiality for the five genes selectively essential 
in ccRCC . A) AGPAT6 is essential only in ccRCC because of loss of gene redundancy. In ccRCC, 
the repression of AGPAT9, GPAT2, and GPAM in glycerolipid metabolism renders the pathway solely 
dependent on AGPAT6 to produce essential lipids for biomass. B) GALT is selectively essential because of 
loss of pathway redundancy in ccRCC. Low or no expression of UGP2 forces the flux through GALT to 
produce glycogen in ccRCC. C) RRM2B, GCLC and GSS are essential only in ccRCC because of specific 
metabolic requirements of ccRCC cells that activate the corresponding pathway (flux rates are shown in 
fmol cell−1 h−1). Top: the measured secretion rate of 3-ureidopropionate in ccRCC cell lines is not matched 
by the observed uptake rate of its direct precursors, uracil and deoxyuridine. This forces a flux active in 
the catabolism of UDP (part of the pyrimidine degradation pathway) to compensate for the observed 
3-ureidopropionate secretion rate. One of the pathway steps is uniquely catalyzed by RRM2B, given that 
the other genes associated to this reaction (RRM1 and RRM2) are not expressed in ccRCC. Bottom: ccRCC 
cell lines secrete glutamate at a high rate and the only flux distribution that fits glutamate secretion in the 
ccRCC metabolic network requires the cleavage of extracellular glutathione (GSH). Extracellular GSH is in 
turn derived from de novo GSH intracellular synthesis that is catalyzed by GSS and GCLC. Noteworthy, the 
reduction of reactive oxygen species like H2O2 by GSH is a metabolic function preserved in the predicted 
flux distribution. For each protein, the red shading represents the fraction of ccRCC samples in which the 
protein is expressed according to the Human Protein Atlas.
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of the ccRCC flux space unveiled that elevated rates of extracellular glutamate accumulation derive from 
the catabolism of extracellular glutathione (GSH) carried out by different gamma-glutamyl transferases. 
Indeed, the reconstructed ccRCC metabolic network does not include alternative pathways that support 
the secretion of glutamate, such as the xC

– system. Despite the evidence that the xC
– system, an antiporter 

responsible for cystine uptake via a 1:1 exchange with glutamate, is expressed in the kidney57, no evi-
dence for the encoding gene, SLC7A11, is reported at the protein level by the Human Protein Atlas; it 
was therefore not included in the reconstructed network. In the absence of alternative pathways, the 
only flux distribution returned by FBA that fits glutamate secretion requires the cleavage of extracellu-
lar GSH. This is in turn dependent on the secretion of de novo synthesised intracellular GSH, which is 
catalysed by GSS and GCLC (Fig.  6D, right). The genes are therefore classified as essential to support 
this flux distribution. At the same time, GSH is also utilised to reduce peroxides/reactive oxygen species 
(ROS). In this process, GSH is oxidised and dimerises with another moiety to form GSSG, which can be 
catalytically recycled to GSH. Therefore, this flux distribution also includes the expected role of GSH in 
ROS detoxification. Overall, FBA was able to predict a model that associates the essentiality of GSS and 
GCLC to the observed secretion of glutamate. Nevertheless, we acknowledge that model incompleteness 
(attributable to a lack of functional gene annotation in the metabolic network, as in the case of SLC7A11 
in ccRCC) may be a factor that affects the reliability of this prediction, as recognised in earlier works on 
FBA predicted gene essentiality58,59.

Discussion
In the last decade, increasing evidence supports the notion that cancer cells reprogram their metab-
olism and are therefore susceptible to disruption of the metabolic network3. Despite the promise that 
flux balance analysis (FBA) enables prediction of gene essentiality in cancer metabolism at the genome 
scale21, we have observed a scarcity of methodical studies that assess these potential benefits critically. 
Considering the widespread use of FBA in the systems biology community60, we applied fundamental 
principles of FBA to measure the accuracy of the predictions against large-scale gene essentiality exper-
iments performed in vitro. We evaluated the efficacy of this method for two cancer types, clear cell 
renal cell carcinoma (ccRCC) and prostate adenocarcinoma (PC), for a variety of parameters: types of 
FBA constraints used, complexity of the in silico medium (i.e., the spectrum of metabolites available for 
uptake), and the numerical threshold for cell death applied to the in vitro experiments. A summary of 
the accuracy for all tested scenarios is given in Table 1.

Our findings suggest that FBA is sufficiently accurate to expose metabolic liabilities in ccRCC. The 
highest accuracy was achieved by FBA using a ccRCC-specific metabolic network that was further con-
strained by exchange fluxes determined experimentally across a panel of seven ccRCC cell lines and 
using an in silico serum-containing medium, which allows the flexible uptake of 150 different metabo-
lites (Matthews Correlation Coefficient =  0.235). The accuracy improved with stricter definitions of the 
threshold for cell death in vitro, whereas it worsened when a more restricted medium metabolite com-
position, as found in Ham’s medium, was applied in silico. This medium composition is not representa-
tive of the actual culture conditions used for the in vitro experiments, but had previously been used in 
similar studies39,61. However, FBA was found not to be predictive for gene essentialities in PC, where the 
accuracy was not better than a random predictor (MCC =  0.039, for the same scenario described above).

In general, poor predictions may be ascribed to different assumptions beyond FBA. First, we con-
sidered gene essentialities in metabolism based on the ability to carry flux towards biomass formation. 
Although this is an undisputable requirement for cancer cell proliferation, there is evidence that sur-
vival of cancer cells also depends on other metabolic functions, most notably NADPH production and 
anti-oxidant synthesis45,62. Second, we also classify a gene as essential if the in silico knockout cannot 
satisfy certain cancer type-specific metabolic requirements, here represented by the profiles of exchange 
fluxes in several cancer type-specific cell lines (one such requirement could be lactate secretion in a 
specified range of rates). The number of profiles available for a cancer type may affect the specificity of 
certain metabolic requirements (for PC, only two profiles of exchange fluxes were available), therefore 
biasing the quality of the in silico predictions when these are enforced as constraints in FBA. Third, we 
disregarded enzyme complexes because current human genome-scale metabolic models do not report 
such annotation systematically63,64. Hence, if more than one enzyme is associated to a reaction in the 
model, all genes encoding for these enzymes are automatically excluded from the in silico single-gene 
knockout and classified as redundant. Furthermore, genome-scale metabolic models such as those used 
for this study represent the best models to our knowledge in terms of metabolic reactions occurring in 
a cell, but model incompleteness is known to affect in silico predictions of essential metabolic genes59. 
Finally, the evaluation of the accuracy of the in silico prediction is also affected by the accuracy of the in 
vitro experiments. Indeed, metabolic screens using siRNA libraries may produce false negatives due to 
insufficient silencing and are liable to significant off-target effects that can both positively and negatively 
affect the viability of transfected cells.

As part of this evaluation, FBA unveiled the inherent fragility of ccRCC metabolic processes that con-
tribute to biomass growth or support certain metabolic requirements. A number of recent studies have 
evidenced the centrality of metabolism in ccRCC41,46,47, and these findings further support the notion 
that ccRCC is dependent on specific metabolic genes to sustain proliferation. At the same time, our work 
leverages on a metabolic model for ccRCC and cultured ccRCC cell lines to assess vulnerabilities for this 
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disease. Hence, this approach cannot likely capture the genomic diversity and complexity of ccRCC65,66. 
However, it should prove useful to expose metabolic liabilities that are transversal to the ccRCC pheno-
type. In this context, we describe five genes, AGPAT6, GALT, GCLC, GSS, and RRM2B, which are essen-
tial to ccRCC but are potentially dispensable in normal cell types. In addition, FBA can also be used to 
explore the mechanisms that render a gene essential in silico.

One of the mechanisms by which this essentiality arises is loss of gene redundancy. AGPAT6 is the 
only expressed enzyme isoform that can commit glycerol-3-phosphate into glycerolipid biosynthesis. 
Thus, glycerolipid synthesis is clearly a sensitive pathway in ccRCC, perhaps exacerbated by the lack of 
expression of enzymes within alternative routes due to a loss of heterozygosity in the corresponding gene 
loci, as recently suggested41. Interestingly, some members of the AGPAT family may have a causal role 
in cancer development67, and further work is required to elucidate the roles of these genes in ccRCC. 
A second possible mechanism is loss of pathway redundancy, resulting in enhanced dependence on the 
remaining reactions. This mechanism of gene essentiality revealed by FBA in ccRCC is exemplified by 
GALT, a component of the Leloir pathway. Downregulation of the enzymes of an alternative pathway 
in ccRCC induced dependence on GALT expression. In accordance with the findings of our simula-
tions, there is evidence that UGP2 and GALT homologs provide redundancy for this pathway in yeast68. 
Moreover, it is has been shown that GALT-deficient mice can sustain glycogen synthesis through the 
pathway branch catalysed by the murine homolog of UGP269, thus supporting the predicted mechanism 
that confers essentiality to GALT in ccRCC. The pivotal role of GALT in glycogen biosynthesis may in 
addition underscore the typical phenotype of ccRCC cells, which are characterised by high levels of 
glycogen accumulation. Finally, FBA using flux rates as additional constraints allowed us to identify 
gene essentialities associated with specific exchange fluxes in ccRCC cell lines. The essentiality of GCLC 
and GSS was linked to the secretion of glutamate, whereas the essentiality of RRM2B, an enzyme in 
deoxyribonucleotide metabolism, was linked to the secretion of 3-ureidopropionate. GCLC and GSS 
play a fundamental role in the intracellular detoxification of ROS by catalysing two successive steps in 
the biosynthesis of glutathione70. This biological process plays a prominent role in carcinogenesis71 and 
has been postulated to be of central importance in the rewiring of cancer metabolism45. Therefore, it is 
likely that the essentiality of GCLC and GSS in the in vitro experiments stems from their functions in 
the control of intracellular ROS levels.

Here, we find that de novo synthesis of GSH is also associated with glutamate secretion in the absence 
of other systems that can fulfil this function in ccRCC. Although this may be an artefact due to model 
incompleteness, we show that GCLC-GSS can sustain a flux distribution in which extracellular GSH is 
catabolised into cysteinylglycine and glutamate, therefore explaining the observed glutamate secretion 
in ccRCC cell lines. In a similar fashion, the consistent secretion of 3-ureidopropionate observed in 
ccRCC cell lines combined with an unmatched uptake rate of its direct precursors implies that RRM2B 
is active in supporting uridine-derived 3-ureidopropionate. RRM2B exerts its function in deoxyribonu-
cleoside biosynthesis and in DNA damage repair, and in this role it appears to hinder cancer progres-
sion72–75. Nevertheless, RRM2B function in ccRCC may be different given the lack of expression of RRM1 
and RRM2 for supporting nucleotide biosynthesis. Indeed, this pathway was found to be compromised 
uniquely in ccRCC compared to four other cancer types41.

In conclusion, in this study we show the strength and limitations of FBA for the prediction of gene 
essentiality at a genome scale in cancer metabolism. In addition, we report five metabolic genes selec-
tively essential in a particular cancer type, i.e., ccRCC. Importantly, FBA can be used to identify potential 
mechanisms by which these gene essentialities arise and thereby provide testable hypotheses. We argue 
that accounting for metabolic liabilities other than biomass generation and the integration of additional 
layers of high-throughput data may lead to an even more complete description of the essentiality land-
scape in cancer metabolism.

Materials and Methods
Cell culture and reagents. 786-O, 769-P, A498, CAKI-1, RCC4, TK10, UMRC2, and UO31 clear cell 
renal cell carcinoma (ccRCC) cell lines were maintained (and transfected) in DMEM supplemented with 
4.5 g/l D-Glucose, 0.11 g/l Sodium Pyruvate (Gibco), 4 mM Glutamine (CRUK, Clare Hall, Cell Services), 
100 Units/ml Penicillin / 100 ug/ml Streptomycin (Gibco) and 10% Fetal Bovine Serum (Gibco). For the 
RNAi screen, RCC4, UMRC2, A498, 786-O and 769-P cells were transfected in triplicates in a 96-well 
format with 37.5 nM siRNA SMARTpools (Dharmacon siGENOME) targeting the genes of interest 
using Dharmafect2 as transfection reagent. For the validation experiment for GCLC, GSS, PNP, RRM2B, 
SLC7A9, and UMPS, 786-O, A498, CAKI-1, TK10, and UO31 cells were transfected in two independent 
experiments, triplicates each in a 96-well format with 37.5 nM siRNA SMARTpools (Dharmacon siG-
ENOME) targeting the genes of interest using Dharmafect2 as transfection reagent. For the validation 
experiment for GCLC, GSS, RRM2B, and UMPS, HK-2 cells were transfected in two independent exper-
iments, triplicates each in a 96-well format with 37.5 nM siRNA SMARTpools (Dharmacon siGENOME) 
targeting the genes of interest using Dharmafect2 as transfection reagent. In all cases, after 96 h (with a 
media top up after 24 h), cells were fixed in 80% ethanol over night and subsequently stained with DAPI 
(Sigma). Cell number was determined using an ACUMEN eX3 laser-scanning fluorescent micro plate 
cytometer. For the purpose of data normalization, the non-targeting RISC-free transfection was used 
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as negative control, while ubiquitin B (UBB) and polo-like kinase 1 (PLK1) served as positive killing 
control.

Quantification of cell death. In the case of ccRCC, cell death was quantified in terms of reduction of 
cell number upon siRNA transfection in cells scaled to the effect of the negative and positive controls. For 
each replicate, 9 positive killing controls (UBB) and 12 negative controls (RISC-free) were transfected. 
In a given cell line c for a given replicate r, the cell number reduction caused by siRNA s was linearly 
interpolated as in equation (1):
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Then for each cell line, the mean cell number reduction is computed as the average across replicates. 
We declare a gene essential in vitro in ccRCC if the mean cell number reduction upon transfection of 
the corresponding siRNA for at least 70% of the tested cell lines is above 30%. For all these genes, we 
verified that the associated mean cell number reduction is statistically significantly greater than 0 (one 
sided t-test, p <  0.05). This data is collected in Supplementary Data 1. In the case of PC, processed data 
containing caspase activity z-score was retrieved from the study53. We declare a gene essential in vitro 
in PC if the caspase activity z-score upon transfection of the corresponding siRNA for at least 2 of the 3 
tested cell lines is above 2.5, as adopted in the original study.

Statistical tests. The Fisher’s Exact Test was carried out using the total number of tested siRNA in 
the library that could be compared to the in silico single gene-knockout test as the universe and it was 
performed in R. The 95% highest density interval (HDI) for cell number variation relative to RISC-free 
control was calculated by Bayesian estimation under the following assumptions: data are sampled from a 
t-distribution of unknown and to be estimated normality (i.e. degrees of freedom); high uncertainty on 
the prior distributions; the marginal distribution is well approximated by a Markov chain Monte Carlo 
sampling with no thinning and chain length equal to 100’000. The estimation was performed using the 
BEST R-package76 (the above assumptions are reflected by the default parameters).

Flux balance analysis. The ccRCC genome-scale metabolic model (iRenalCancer1410) was down-
loaded at www.metabolicatlas.org. The PC genome-scale metabolic model (iProstateCancer1675) was 
reconstructed using the same pipeline as for iRenalCancer141041. The models are inherently mass and 
charge balanced, and reaction directionalities to reflect thermodynamic constraints were not modified. 
Apart from changing a misannotated reaction incorrectly associated with OGDH to its correct associ-
ated gene, ODC1, no other modifications to the models were operated. The lists of metabolites availa-
ble for uptake or secretion in the serum-containing medium (FBS) or in Ham’s medium are given in 
Supplementary Data 2. For FBS, this list was compiled by merging the list of metabolites exchanged in 
cell line cultures growing in fetal bovine serum medium according to Jain and coworkers51 and other 
compounds known to be present in this medium42. In the case of ccRCC, 94 metabolites could be 
matched with a preexisting uptake reaction in the network, 6 metabolites are present in the extracellular 
compartment but did not have a preexisting uptake reaction, and 51 metabolites are only present in the 
cytosolic compartment. We added an exchange reaction for each of the latter 57 metabolites, modeled 
as energy-free diffusion (i.e. = >  metA[s/c]). In the case of PC, 92 metabolites could be matched with a 
preexisting uptake reaction in the network, 7 metabolites are present in the extracellular compartment 
but did not have a preexisting uptake reaction, and 46 metabolites are only present in the cytosolic com-
partment. We added an exchange reaction for each of the latter 53 metabolites, modeled as energy-free 
diffusion (i.e. = >  metA[s/c]). For Ham’s medium, the list was retrieved from33. In both the case of 
ccRCC and PC, 38 metabolites could be matched with a preexisting uptake reaction in the network, 1 
metabolite is present in the extracellular compartment but did not have a preexisting uptake reaction, 
and 4 metabolites are only present in the cytosolic compartment. We added an exchange reaction for 
each of the latter 5 metabolites, modeled as energy-free diffusion (i.e. = >  metA[s/c]). Unless cell line 
specific exchange fluxes were used, all the above exchange reaction can span any real value from –1000 
to +1000, while any other exchange reaction was bounded to 0 for uptake. It should be noticed that this 
is a critical step for the simulations which follow: the possibility to freely exchange these metabolites 
allows to take in account all the extremely different metabolic states that a cell may adopt in response 
to the availability of these metabolites (e.g. lactate may be either secreted as a by-product of glycolysis 
or absorbed and catabolized as a carbon source). For both ccRCC and PC, the used biomass equation 
is the built-in reaction in iRenalCancer1410, which was in turn adapted from35. This reaction accounts 
for all major macromolecular components in the biomass (e.g., membrane lipids, proteins, etc.), and the 
respective stoichiometric coefficient is reflective of the contribution of each component in 1g of cancer 
biomass. The simulation of a single gene knockout using FBA was performed by formulating the linear 
program problem (2) for each gene g in the model:
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where vobj is the flux through the biomass equation, µ is the experimental growth rate (for simulation 
using cell line specific fluxes) or an arbitrary number (for simulation without specific constraints on the 
exchange reaction), S is the stoichiometric matrix of the model (that is a m x n matrix where m is the 
number of metabolites and n is the number of reactions and each (i,j) entry is the stoichiometric coeffi-
cient of the metabolite corresponding to row i in the reaction corresponding to column j), v is the vector 
containing the values of the fluxes through each reaction in the model, and α  (resp. β ) are the lower 
(resp. upper) bound for the exchange flux corresponding to each metabolite measured in51 and adjusted 
by50. These bounds were implemented only in the simulations using cell line specific fluxes. For a given 
cell line, they were calculated for each measured metabolite j as σ± ·v 2j v j

, where v and vσ  are the 
mean and the standard deviation of the corresponding exchange flux in the two replicate measurements. 
In the simulations using cell line specific exchange fluxes, the biomass equation coefficients were multi-
plied by a conversion factor equal to 550 pgDW cell−1 to accommodate the fact that exchange fluxes were 
measured in fmol cell−1 h−1 instead of mmol gDW

−1 h−1 as normally assumed in genome-scale metabolic 
modeling77.

The problem was formulated using native functions in the RAVEN Toolbox78 and solved using 
MOSEK v.7. Simulation results are reported in Supplementary Data 3. All constrained simulation-ready 
models are available through the website http://www.metabolicatlas.com/.

Importantly, for the purpose of the study, the optimization part is not relevant. Indeed, we are inter-
ested on whether a feasible region exists upon the constraint imposed by the gene knockout (7), i.e. 
whether the fact that the encoded reactions cannot carry flux implies no flux in the biomass equation. 
However, if also exchange fluxes were implemented to perform FBA (6), we took in account a signifi-
cant reduction (min. 50%) of the optimum (which is upper bounded by the experimental growth rate) 
to classify a gene as essential in silico. Besides this, a gene is deemed essential in silico when there is 
no solution to (2), i.e. there cannot be found a flux distribution such that the biomass equation carries 
flux. This is indeed valuable in light of the consideration above: among all the available metabolic states 
permitted by the availability of serum metabolites, no scenario allows for a flux towards all biomass 
precursors simultaneously.

It should be noticed that, when implementing cell line specific exchange fluxes, a set of numerical 
constraints had to be neglected and converted to ± 1000. This operation is obligated by the fact that some 
measured fluxes are not consistent with the network topology. Thus, either the measured compounds 
are not used by the cellular reaction network or further experimental validation is required. It may also 
be that the model is not complete and it should be updated in an iterative fashion, a process normally 
encountered in genome-scale models79. Examples of these inconsistencies are the conjugated bile acids 
(such as glycochenodeoxycholate) or anthranilate, that were measured to be absorbed by the cancer cell 
lines in Jain et al. study51, yet there is no evidence that these compounds can be degraded in any met-
abolic reaction accounted in the model. In other cases, coupled measured fluxes are stoichiometrically 
unbalanced. To get the minimum set of constraints (6) that had to be lifted to get a feasible solution to 
the problem (2) (neglecting the constraint 7), we formulated a linear program that iteratively searches 
for the minimum sum of the fluxes that must be supplemented to each exchange flux in (6) such that 
all other constraints are satisfied while vobj >  0. In the end, all exchange fluxes in (6) that required a 
supplementary flux (i.e. the imposed bounds in the original problem would be infeasible) were instead 
bounded to ± 1000. This procedure had been repeated for each cell line specific to a certain cancer 
type, and for all successive simulations, only the exchange fluxes that were feasible in all cell lines for 
a given cancer were retained. In ccRCC, 61 and 38 exchange fluxes were coordinately bounded for all 
seven ccRCC cell lines in FBS and Ham’s medium respectively (Supplementary Fig. 12–15). In PC, 60 
and 57 exchange fluxes were coordinately bounded for all two PC cell lines in FBS and Ham’s medium 
respectively (Supplementary Fig. 16–19).

http://www.metabolicatlas.com/
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Characterization of in silico essentiality. The test for toxicity in normal cell types was performed 
as previously described33. Briefly, 83 normal cell type genome-scale metabolic models were downloaded 
at www.metabolicatlas.org. For each model, a list of 56 metabolic tasks was simulated under the con-
straint (7) for each gene classified as essential in silico and validated as such in vitro. If no solution were 
found, the gene knockout is deemed toxic for a certain normal cell type. If more than 50% of the 83 
normal cell types show no toxicity in any metabolic task upon knockout of a gene essential in a cancer, 
than the gene is regarded non toxic to normal cells. Furthermore, if knockout of a gene essential in 
a cancer shows no toxicity in any metabolic task in the supposed cell type of origin, than the gene is 
regarded selectively essential to a cancer.

To elucidate the mechanism through which a gene is selectively essential in silico, different simulations 
were carried out according to the constraint that first resulted in an unfeasible solution:

1. In the case of genes essential using as a sole constraint to perform FBA the topology of a cancer 
metabolic network, there are two possible explanations. In the first scenario, a reaction essential 
to carry flux towards the biomass equation is encoded by a single gene in the cancer-specific 
metabolic network because all other isoenzymes are not expressed in the cancer (loss of gene 
redundancy). This was the case of AGPAT6, and it was found by constraining the flux of the en-
coded reaction to zero in the generic human metabolic network from which the ccRCC metabolic 
network topology is derived. This constraint results in an unfeasible solution using the generic 
network, suggesting that at least one of the isoenzymes must be expressed to sustain biomass 
formation. In the second scenario, there are two alternative routes to support a flux towards the 
biomass equation, each encoded by a single gene, but just one is expressed in the cancer-specific 
metabolic network (loss of pathway redundancy). This was the case of GALT. To verify this, the 
reaction encoded by GALT was constrained to zero in the generic human metabolic network, and 
then a second round of single gene-knockouts was performed using the GALT-KO generic human 
metabolic network. In the end, the double GALT-UGP2 knockout results in an unfeasible solution 
in the generic human metabolic network, indicative that UGP2 encodes for a potential alternative 
pathway to GALT that is not expressed in ccRCC.

2. In the case of genes essential when using also the exchange fluxes to perform FBA, but non 
essential when the sole topology was used as a constraint, an unfeasible solution is trivially at-
tributable to the implementation of one (or more) of these additional constraints. Therefore, for 
each essential gene, all constraints in (6) are released (set the lower and upper bound to –1000 
and + 1000 respectively) one at the time, until the metabolite whose constraint on the exchange 
flux caused unfeasibility is spotted. For GSS and GCLC, this metabolite is glutamate, while for 
RRM2B 3-ureidopropionate. Further interpretation of the individual mechanisms was achieved 
by following the fluxes around each key metabolite in the simulation, either when no knockout 
was applied or when the knockout was applied neglecting the constraint in the key metabolite 
exchange flux.

The fraction of ccRCC samples where a protein involved in any of the mechanisms above is stained 
with at least a weak signal was retrieved from the Human Protein Atlas v. 1156.

References
1. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell 

proliferation. Science 324, 1029–1033, doi:10.1126/science.1160809 (2009).
2. Ward, P. S. & Thompson, C. B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 

297–308, doi:10.1016/j.ccr.2012.02.014 (2012).
3. Schulze, A. & Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption (vol 491, pg 364, 

2012). Nature 494, 130–130, doi:Doi 10.1038/Nature11827 (2013).
4. Ben-Sahra, I., Howell, J. J., Asara, J. M. & Manning, B. D. Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling 

Through mTOR and S6K1. Science, doi:10.1126/science.1228792 (2013).
5. Robitaille, A. M. et al. Quantitative Phosphoproteomics Reveal mTORC1 Activates de Novo Pyrimidine Synthesis. Science, 

doi:10.1126/science.1228771 (2013).
6. Jeong, S. M. et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by 

inhibiting mitochondrial glutamine metabolism. Cancer Cell 23, 450–463, doi:10.1016/j.ccr.2013.02.024 (2013).
7. Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752, doi:10.1016/j.

ccr.2013.04.018 (2013).
8. Vazquez, F. et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and 

resistance to oxidative stress. Cancer Cell 23, 287–301, doi:10.1016/j.ccr.2012.11.020 (2013).
9. Faubert, B. et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 17, 

113–124, doi:10.1016/j.cmet.2012.12.001 (2013).
10. Yang, L. et al. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol Syst 

Biol 10, 728, doi:10.1002/msb.20134892 (2014).
11. Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108–112, 

doi:10.1038/nature13110 (2014).
12. Patra, K. C. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse 

models of cancer. Cancer Cell 24, 213–228, doi:10.1016/j.ccr.2013.06.014 (2013).
13. Chen, L. et al. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse 

large B cell lymphomas. Cancer Cell 23, 826–838, doi:10.1016/j.ccr.2013.05.002 (2013).



www.nature.com/scientificreports/

1 6Scientific RepoRts | 5:10738 | DOi: 10.1038/srep10738

14. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 
346–350, doi:10.1038/nature10350 (2011).

15. Wheaton, W. W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife 3, e02242, 
doi:10.7554/eLife.02242 (2014).

16. Cunningham, J. T., Moreno, M. V., Lodi, A., Ronen, S. M. & Ruggero, D. Protein and nucleotide biosynthesis are coupled by a 
single rate-limiting enzyme, PRPS2, to drive cancer. Cell 157, 1088–1103, doi:10.1016/j.cell.2014.03.052 (2014).

17. Ding, J. et al. The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain 
cancer cell survival and proliferation. Cell Metab 18, 896–907, doi:10.1016/j.cmet.2013.11.004 (2013).

18. Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nat Biotechnol 28, 245–248, doi:10.1038/nbt.1614 (2010).
19. Joyce, A. R. & Palsson, B. O. Predicting gene essentiality using genome-scale in silico models. Methods Mol Biol 416, 433–457, 

doi:10.1007/978-1-59745-321-9_30 (2008).
20. Suthers, P. F., Zomorrodi, A. & Maranas, C. D. Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst 

Biol 5, 301, doi:10.1038/msb.2009.56 (2009).
21. Jerby, L. & Ruppin, E. Predicting Drug Targets and Biomarkers of Cancer via Genome-Scale Metabolic Modeling. Clinical Cancer 

Research 18, 5572–5584, doi:Doi 10.1158/1078-0432.Ccr-12-1856 (2012).
22. Mardinoglu, A., Gatto, F. & Nielsen, J. Genome-scale modeling of human metabolism - a systems biology approach. Biotechnology 

Journal, doi:10.1002/biot.201200275 (2013).
23. Lewis, N. E. et al. Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 

28, 1279–1285, doi:10.1038/nbt.1711 (2010).
24. Varemo, L., Nookaew, I. & Nielsen, J. Novel insights into obesity and diabetes through genome-scale metabolic modeling. Front 

Physiol 4, 92, doi:10.3389/fphys.2013.00092 (2013).
25. Lewis, N. E., Nagarajan, H. & Palsson, B. O. Constraining the metabolic genotype-phenotype relationship using a phylogeny of 

in silico methods. Nature Reviews Microbiology 10, 291–305, doi:Doi 10.1038/Nrmicro2737 (2012).
26. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular 

functions. Nat Rev Genet 15, 107–120, doi:10.1038/nrg3643 (2014).
27. Becker, S. A. & Palsson, B. O. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4, 

e1000082, doi:10.1371/journal.pcbi.1000082 (2008).
28. Schmidt, B. J. et al. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. 

Bioinformatics 29, 2900–2908, doi:10.1093/bioinformatics/btt493 (2013).
29. Shlomi, T., Cabili, M. N., Herrgard, M. J., Palsson, B. O. & Ruppin, E. Network-based prediction of human tissue-specific 

metabolism. Nat Biotechnol 26, 1003–1010, doi:10.1038/nbt.1487 (2008).
30. Jerby, L., Shlomi, T. & Ruppin, E. Computational reconstruction of tissue-specific metabolic models: application to human liver 

metabolism. Mol Syst Biol 6, 401, doi:10.1038/msb.2010.56 (2010).
31. Wang, Y., Eddy, J. A. & Price, N. D. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. 

BMC Syst Biol 6, 153, doi:10.1186/1752-0509-6-153 (2012).
32. Vlassis, N., Pacheco, M. P. & Sauter, T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput 

Biol 10, e1003424, doi:10.1371/journal.pcbi.1003424 (2014).
33. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic 

modeling. Mol Syst Biol 10, 721, doi:10.1002/msb.145122 (2014).
34. Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using 

INIT. PLoS Comput Biol 8, e1002518, doi:10.1371/journal.pcbi.1002518 (2012).
35. Frezza, C. et al. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477, 225–228, 

doi:10.1038/nature10363 (2011).
36. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic 

modeling. Mol Syst Biol 10, 721, doi:10.1002/msb.145122 (2014).
37. Yizhak, K. et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst 

Biol 10, 744, doi:10.15252/msb.20134993 (2014).
38. Jerby-Arnon, L. et al. Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic Lethality. Cell 158, 1199–

1209, doi:10.1016/j.cell.2014.07.027 (2014).
39. Folger, O. et al. Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7, 501, doi:10.1038/

msb.2011.35 (2011).
40. Rini, B. I., Campbell, S. C. & Escudier, B. Renal cell carcinoma. Lancet 373, 1119–1132, doi:10.1016/S0140-6736(09)60229-4 

(2009).
41. Gatto, F., Nookaew, I. & Nielsen, J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear 

cell renal carcinoma. Proc Natl Acad Sci U S A 111, E866–875, doi:10.1073/pnas.1319196111 (2014).
42. Freshney, R. I. Culture of animal cells : a manual of basic technique and specialized applications. 6th edn (Wiley-Blackwell, 2010).
43. Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat 

Rev Microbiol 2, 886–897, doi:10.1038/nrmicro1023 (2004).
44. Palsson, B. Systems biology : properties of reconstructed networks. (Cambridge University Press, 2006).
45. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85–95, doi:10.1038/nrc2981 

(2011).
46. Creighton, C. J. et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, doi:10.1038/

nature12222 (2013).
47. Li, B. et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature, doi:10.1038/nature13557 (2014).
48. Nilsson, H. et al. Primary clear cell renal carcinoma cells display minimal mitochondrial respiratory capacity resulting in 

pronounced sensitivity to glycolytic inhibition by 3-Bromopyruvate. Cell Death Dis 6, e1585, doi:10.1038/cddis.2014.545 (2015).
49. Mardinoglu, A. et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Molecular 

Systems Biology 9, doi:10.1038/msb.2013.5 (2013).
50. Dolfi, S. C. et al. The metabolic demands of cancer cells are coupled to their size and protein synthesis rates. Cancer Metab 1, 

20, doi:10.1186/2049-3002-1-20 (2013).
51. Jain, M. et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040–1044, 

doi:10.1126/science.1218595 (2012).
52. Forster, J., Famili, I., Palsson, B. O. & Nielsen, J. Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. 

OMICS 7, 193–202 (2003).
53. Ros, S. et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important 

regulator of prostate cancer cell survival. Cancer Discov 2, 328–343, doi:10.1158/2159-8290.CD-11-0234 (2012).
54. Cai, C. et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is 

upregulated by treatment with CYP17A1 inhibitors. Cancer Research 71, 6503–6513, doi:10.1158/0008-5472.CAN-11-0532 
(2011).



www.nature.com/scientificreports/

17Scientific RepoRts | 5:10738 | DOi: 10.1038/srep10738

55. Kum, J. B. et al. Mixed epithelial and stromal tumors of the kidney: evidence for a single cell of origin with capacity for epithelial 
and stromal differentiation. Am J Surg Pathol 35, 1114–1122, doi:10.1097/PAS.0b013e3182233fb6 (2011).

56. Fagerberg, L. et al. Contribution of Antibody-based Protein Profiling to the Human Chromosome-centric Proteome Project 
(C-HPP). J Proteome Res, doi:10.1021/pr300924j (2012).

57. Burdo, J., Dargusch, R. & Schubert, D. Distribution of the cystine/glutamate antiporter system xc- in the brain, kidney, and 
duodenum. J Histochem Cytochem 54, 549–557, doi:10.1369/jhc.5A6840.2006 (2006).

58. Monk, J., Nogales, J. & Palsson, B. O. Optimizing genome-scale network reconstructions. Nat Biotechnol 32, 447–452, doi:10.1038/
nbt.2870 (2014).

59. Becker, S. A. & Palsson, B. O. Three factors underlying incorrect in silico predictions of essential metabolic genes. BMC Syst Biol 
2, 14, doi:10.1186/1752-0509-2-14 (2008).

60. Hubner, K., Sahle, S. & Kummer, U. Applications and trends in systems biology in biochemistry. Febs Journal 278, 2767–2857, 
doi:10.1111/j.1742-4658.2011.08217.x (2011).

61. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic 
modeling. Mol Syst Biol 10 (2014).

62. Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy 
stress. Nature 485, 661–665, doi:10.1038/nature11066 (2012).

63. Mardinoglu, A. et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic 
fatty liver disease. Nat Commun 5, 3083, doi:10.1038/ncomms4083 (2014).

64. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol 31, 419–425, doi:10.1038/
nbt.2488 (2013).

65. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat Genet 45, 1127–1133, doi:10.1038/
ng.2762 (2013).

66. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. 
Nat Genet 46, 225–233, doi:10.1038/ng.2891 (2014).

67. Agarwal, A. K. Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. 
Curr Opin Lipidol 23, 290–302, doi:10.1097/MOL.0b013e328354fcf4 (2012).

68. Lai, K. & Elsas, L. J. Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-
deficient yeast. Biochem Biophys Res Commun 271, 392–400, doi:10.1006/bbrc.2000.2629 (2000).

69. Leslie, N., Yager, C., Reynolds, R. & Segal, S. UDP-galactose pyrophosphorylase in mice with galactose-1-phosphate 
uridyltransferase deficiency. Mol Genet Metab 85, 21–27, doi:10.1016/j.ymgme.2005.01.004 (2005).

70. Pompella, A., Bánhegyi, G. b. & Wellman-Rousseau, M. Thiol metabolism and redox regulation of cellular functions. (IOS Press, 
2002).

71. Toyokuni, S. Iron and thiols as two major players in carcinogenesis: friends or foes? Front Pharmacol 5, 200, doi:10.3389/
fphar.2014.00200 (2014).

72. Liu, X. et al. Ribonucleotide reductase small subunit M2B prognoses better survival in colorectal cancer. Cancer Research 71, 
3202–3213, doi:10.1158/0008-5472.CAN-11-0054 (2011).

73. Zhang, K. et al. p53R2 inhibits the proliferation of human cancer cells in association with cell-cycle arrest. Mol Cancer Ther 10, 
269–278, doi:10.1158/1535-7163.MCT-10-0728 (2011).

74. Cho, E. C. et al. Tumor suppressor FOXO3 regulates ribonucleotide reductase subunit RRM2B and impacts on survival of cancer 
patients. Oncotarget 5, 4834–4844 (2014).

75. Chang, L., Guo, R., Huang, Q. & Yen, Y. Chromosomal instability triggered by Rrm2b loss leads to IL-6 secretion and plasmacytic 
neoplasms. Cell Rep 3, 1389–1397, doi:10.1016/j.celrep.2013.03.040 (2013).

76. Kruschke, J. K. Bayesian estimation supersedes the t test. J Exp Psychol Gen 142, 573–603, doi:10.1037/a0029146 (2013).
77. Feist, A. M. & Palsson, B. O. The biomass objective function. Curr Opin Microbiol 13, 344–349, doi:10.1016/j.mib.2010.03.003 

(2010).
78. Agren, R. et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. 

PLoS Comput Biol 9, e1002980, doi:10.1371/journal.pcbi.1002980 (2013).
79. Thiele, I. & Palsson, B. O. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5, 93–121, 

doi:10.1038/nprot.2009.203 (2010).

Acknowledgements
The authors wish to thank Dr. M. Jiang, Dr. R. Saunders and Dr. M. Howell (LRI High Throughput 
Screening Facility) for help with performing the RNAi screen. The computations were performed on 
resources provided by the Swedish National Infrastructure for Computing (SNIC) at C3SE. F.G. and 
J.N. acknowledge Knut and Alice Wallenberg Foundation and Chalmers Foundation for sponsoring this 
work.

Author Contributions
F.G. performed the computational analyses and drafted the manuscript. H.M. performed the experiments. 
F.G., H.M., A.S., and J.N. designed the study and edited the manuscript in the final form.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Gatto, F. et al. Flux balance analysis predicts essential genes in clear cell renal 
cell carcinoma metabolism. Sci. Rep. 5, 10738; doi: 10.1038/srep10738 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 

http://www.nature.com/srep


www.nature.com/scientificreports/

1 8Scientific RepoRts | 5:10738 | DOi: 10.1038/srep10738

Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism
	Introduction
	Results
	Strategy used to benchmark predictions of gene essentiality in cancer metabolism
	Accuracy of flux balance analysis for gene essentiality in clear cell renal cell carcinoma metabolism
	Accuracy of flux balance analysis for gene essentiality in prostate adenocarcinoma metabolism
	Effect of the medium metabolites on the accuracy of flux balance analysis predictions
	Effect of the choice for the cell death threshold in vitro on the accuracy of flux balance analysis predictions
	Effect of cancer cell line exchange fluxes on the inference of gene essentiality in a certain cancer
	Characterisation of gene essentiality in ccRCC metabolism

	Discussion
	Materials and Methods
	Cell culture and reagents
	Quantification of cell death
	Statistical tests
	Flux balance analysis
	Characterization of in silico essentiality

	Additional Information
	Acknowledgements
	References



 
    
       
          application/pdf
          
             
                Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10738
            
         
          
             
                Francesco Gatto
                Heike Miess
                Almut Schulze
                Jens Nielsen
            
         
          doi:10.1038/srep10738
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep10738
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep10738
            
         
      
       
          
          
          
             
                doi:10.1038/srep10738
            
         
          
             
                srep ,  (2015). doi:10.1038/srep10738
            
         
          
          
      
       
       
          True
      
   




