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The metabolism of proliferating cells shows common features even in evolutionary distant organisms such as
mammals and yeasts, for example the requirement for anabolic processes under tight control of signaling
pathways. Analysis of the rewiring of metabolism, which occurs following the dysregulation of signaling
pathways, provides new knowledge about the mechanisms underlying cell proliferation.
The key energy regulator in yeast Snf1 and its mammalian ortholog AMPK have earlier been shown to have
similar functions at glucose limited conditions and here we show that they also have analogies when grown
with glucose excess.We show that loss of Snf1 in cells growing in 2% glucose induces an extensive transcriptional
reprogramming, enhances glycolytic activity, fatty acid accumulation and reliance on amino acid utilization for
growth. Strikingly, we demonstrate that Snf1/AMPK-deficient cells remodel their metabolism fueling mitochon-
dria and show glucose and amino acids addiction, a typical hallmark of cancer cells.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

All proliferating cells need to match growth and cell cycle progres-
sion with nutrient availability to maintain cell size homeostasis [1,2].
Since duplication requires the doubling of all cellular macromolecules,
including proteins, nucleic acids and lipids, the major issue for dividing
cells is the increase in biomass and thus the coordinated performance of
anabolic processes [3].

One of the major challenges to better understand the metabolism
of proliferating cells is its integration with signal transduction pathways.
One of such pathways is centered on the AMP-activated protein kinase
(AMPK), an evolutionary conserved regulator of cellular energy homeo-
stasis in eukaryotes [4]. AMPK is activated by an increase in AMP levels,
which signals a decrease in energy production, and executes an energy-
saving program by inhibiting protein, carbohydrate and lipid synthesis,
resulting in cell growth and proliferation being switched off [4].

Protein kinase Snf1, the homolog of AMPK in Saccharomyces
cerevisiae, shares evolutionary conserved features with its counterparts
y and Biosciences, University of
in other eukaryotes, such as the heterotrimeric structure of the holoen-
zyme and the deep involvement in energy preservation [5]. Snf1 is
responsible for direct phosphorylation of metabolic enzymes, for
example it phosphorylates and inactivates the glycerol-3-phosphate
dehydrogenase isoform Gpd2 [6] and the acetyl-CoA carboxylase
Acc1 [7], in both cases to preserve the central carbon metabolism from
wasteful processes when nutrients are scarce.

Snf1 catalytic activity is of primary importance in yeast for the
growth in the presence of low glucose and the utilization of alternative
carbon sources, mainly because it mediates the de-repression of a large
regulon of genes normally inhibited by the transcriptional repressor
Mig1 when nutrients are in excess [8]. Therefore, in the past the kinase
has been mostly studied at nutrient limited condition [9–12].

Recently we identified a role for Snf1 in cells grown in 2% glucose,
condition that supports maximal growth rate, showing its involvement
in the regulation of the G1/S transition of the cell cycle [13,14]. It is
therefore evident that Snf1 plays a role even when cells are not under
stress conditions, like nutrient limitation, but also when cells grow in
a favorable environment for proliferation.

Herewe dissect how themetabolic profile of yeast cells is affected by
loss of Snf1 both in 2% and 5% glucose, showing several features of the
metabolic rewiring occurring because of the impairment of a signaling
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pathway controlling single metabolic steps. Moreover, we present
evidences that indicate that the maximal growth rate in 2% glucose is
obtained by snf1Δ cells enhancing the utilization of amino acids supple-
mented in the medium, which is no longer mandatory in 5% glucose.

Our study supports the usefulness of yeast as model organism for
the study of the metabolism of proliferating eukaryotic cells and in
particular for those with alterations in the AMPK signaling pathway.

2. Materials and methods

2.1. Yeast strains and growth conditions

S. cerevisiae strains used in this study are isogenic to BY4741 and are
reported in Table 1. Synthetic medium contained 2% glucose or 5%
glucose, 6.7 g/L of Yeast Nitrogen Base (Difco), 50 mg/L of required
nutrients, at standard pH (5.5). In these conditions cells exhibit expo-
nential growth between OD600nm = 0.1 (2*106 cells/mL) and
OD600nm = 1.5 (3*107 cells/mL). Cell density of liquid cultures grown
at 30 °C was determined with a Coulter counter on mildly sonicated
and diluted samples or spectrophotometrically at 600 nm. All analyses
were performed at cell densities between OD600nm = 0.1 (2*106 cells/
ml) and OD600nm = 0.7 (1.3*107 cells/ml). Antimycin A (Sigma) was
added at a final concentration of 1 μg/ml (from a 2 mg/ml stock in
100% ethanol); as a control, a culture grown in the presence of the
same concentration of ethanol was used. For experiments with the
Snf1(I132G)as strain, 25 μM 2NM-PP1 (from a 25 mM stock in 100%
DMSO)was added to inhibit the activity of Snf1 [10]; as a control, a cul-
ture grown in the presence of the same concentration of solvent (0.1%
DMSO) was used. Synthesis of compound 2NM-PP1 was carried out as
previously described [14].

2.2. Gene Chip® analysis

Total RNA concentration and purity of yeast samples was assessed
by spectrophotometer (Nanodrop) evaluating 260nm/280nm and
260nm/230nm ratios. Total RNA integrity was assessed by Agilent
Bioanalyzer. An aliquot (300 ng) of RNA was used for the preparation
of targets for Affymetrix® Yeast Genome 2.0 arrays, according to the
Ambion MessageAmp III RNA amplification kit manual. Affymetrix®
Yeast Genome 2.0 arrays (which contain 10928 genes) were purchased
from Affymetrix (Affymetrix, USA). The staining, washing and scanning
of the arrays were conducted using the Fluidics 450 station, Command
Console Software and GeneChip® Scanner 3000 7G, generating.CEL
files for each array (Affymetrix, USA). The images were scanned by
Affymetrix GeneChip Command Console (AGCC) and analyzed with
the Affymetrix GeneChip Expression Console. The quality control of
the scanned data was first estimated by confirming the order of the
signal intensities of the Poly-A and Hybridization controls using Expres-
sion Console Software (Affymetrix, USA). Raw expression values were
imported as Affymetrix.CEL files into Partek Genomics Suite 6.6 (Partek
Inc., St. Louis, MO, USA), were analyzed and normalized, including the
Preprocessing, Differentially Expressed Genes (DEGs) Finding and
Clustering modules. The.CEL files were uploaded and normalized in
PM (perfect match)-only conditions as a PM intensity adjustment. A
Table 1
Yeast strains used in this work.

Strain Genotype Origin

BY wt MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Open Biosystems
snf1Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 snf1::HPH This study
Snf1as MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 snf1::HPH

[pRS316-SNF1-I132G-3HA (URA3)]
[14]

All strains are isogenic to BY4741.
Robust Multichip Analysis (RMA) quantification method [15] was
used as a probe set summarization algorithm for log transformation
with base 2 (log2) and the Quantile normalization method was chosen
to evaluate the preliminary data quality in the Preprocessing module,
which functions as a data quality control through the Affymetrix
Expression Console Software. The mean signal intensities of all genes
were obtained using a group of arrays for each condition. After normal-
ization, the differentially expressed genes (DEGs) satisfying the
conditions of the Fold Change settings (FC = ± 1.5) from all of the
genes probed in the array were selected in the DEGs Finding module.
Hierarchical cluster analysis was also performed to see how data aggre-
gated and to generate heat maps. The obtained data were stored in the
ArrayExpress database, accession number E-MTAB-3190.

2.3. RNA purification and qReal-time PCR

Total RNA was isolated using a phenol-chloroform protocol, essen-
tially as previously described [13]. Reverse transcription of 0.5 μg of
total RNA was carried out with iScript cDNA Synthesis Kit (BIO-RAD).
Quantitative Real-time PCR for gene expression was performed using
SsoFast EvaGreen Supermix (BIO-RAD), oligos available upon request.
Obtained data were normalized to both ACT1 and CDC34 reference
genes and organized with CFX manager software (Bio-Rad), which
provided statistical analysis. Data are presented as the mean value ±
standard deviation from at least three independent experiments
performed in technical duplicates.

2.4. Metabolites extraction and analysis

Metabolic profiling by 1H-NMR of intracellular and extracellularme-
tabolites was performed as previously described [16]. Fatty acids were
extracted and analyzed by GC-MS as in [17]. Analysis of intracellular or-
ganic acids was carried out as in (Khoomrung et al., in preparation).
Briefly, organic acids were extracted from 3–10 mg of dried biomass
with a 50:50 mixture of aqueous methanol (50% MeOH, 50% H2O) and
chloroform. After vortexing at 2000 r.p.m. for 45 min at −20 °C and
centrifugation, the aqueous phase was recovered and evaporated. The
metabolites were resuspended in 400 μl acetonitrile and 100 μl tert-
butyldimethylsilane (TBDMS, Sigma-Aldrich) and derivatization was
carried out for 2 hours at 80 °C. GC-MS analysis was performed with a
Focus GC ISQ single quadrupole GC-MS (Thermo Fisher scientific,
USA). Quantification of each compound was performed using calibra-
tion curves prepared with specific standards. Extracellular levels of
glucose, ethanol, acetate and amino acids were evaluated by 1H-NMR
on growth media as reported [16].

2.5. ATP and NAD+/NADH assays

ATP was measured using the CellTiter-Glo® Luminescent Assay
(Promega) following the manufacturer’s instructions, using 100 μl of a
OD600nm = 0.3 culture. NAD+ and NADH were measured using the
EnzyChrom™ NAD/NADH Assay Kit (Medibena), following the manu-
facturer’s instructions.

2.6. Enzymatic assays

For enzymatic assays, cells at OD600nm = 0.3 were rapidly collected
by filtration and frozen at−80 °C. Total protein extracts were obtained
disrupting the cells with glass beads in the buffer appropriate for each
assay, protein concentrations were determined using the Bio-Rad pro-
tein assay (Bio-Rad) and enzymatic assays were performed on equal
amount of protein extracts. Hexokinase activity was assayed essentially
as previously described [18]. Enolase and isocitrate dehydrogenase
activities were assayed essentially as described [18]. Malate dehy-
drogenase was assayed essentially as previously described [18].
Glyceraldehyde-3-phosphate dehydrogenase activity assay was



1617R. Nicastro et al. / Biochimica et Biophysica Acta 1853 (2015) 1615–1625
performed essentially as described [19]. Glucose-6-phosphate dehydro-
genase activity was measured essentially as in [20]. Isocitrate lyase ac-
tivity was assayed as in [21]. Glutamate synthase (GOGAT) activity
was assayed as in [22]. Glutamic dehydrogenase activity was assayed
essentially as in [23].

2.7. Oxygen consumption measurement

Oxygen consumption rates were measured according to [24] with
few modifications. Briefly, cells were inoculated in 2% or 5% glucose
containing medium and when they reached the exponential growth
phase (OD600nm = 0.5), the respiratory rate was measured at room
temperature in growth media using a calibrated Clark-type electrode
(Mettler Toledo). The respiratory rate qO2 was expressed as
mmoloxygenmin−1 gdry weight

−1 .

2.8. Statistical analyses

Experiments were carried out at least in biological triplicate. Results
are expressed as mean ± SD and compared using the two-sided
Student’s (t-test). * p b 0.05, ** p b 0.005 and *** p b 0.0005.

3. Results

3.1. Deletion of SNF1 causes a large transcriptional reprogramming in cells
growing in 2% glucose

Protein kinase Snf1 is known for its role in response to stress
conditions and nutrient limitations [5]. We recently highlighted its
requirement also for growth and cell cycle progression at standard
glucose growth condition (2% glucose), requirement that disappeared
with a larger (5%) glucose supply [13,14]. To characterize the poor
growth phenotype of snf1Δ cells in a 2% glucose synthetic medium,
we performed transcriptome analysis (Affymetrix) of wild type and
snf1Δ cells growing in this condition, as well as in 5% glucose.

snf1Δ cells growing in 2% glucose showed extensive transcriptional
reprogramming as compared to the wild type, involving about 1000
genes, with a slight predominance of up-regulated transcripts
(Fig. S1A). Increasing the glucose concentration to 5% greatly reduced
the number of differentially expressed genes to roughly 300 (Fig. 1A).
Strikingly, the DEGs (differential expressed genes) in 5% glucose
resultedmostly in a subset of the DEGs in 2% glucose (Fig. 1A) and high-
ly correlated with these, but with reduced fold changes (Fig. 1B). This
finding indicates that the loss of the slow-growth phenotype of snf1Δ
cells with higher glucose availability correlates with the reversion of
the differential gene expression.

Gene Ontology enrichment analysis of the up-regulated transcripts
in snf1Δ cells growing in 2% glucose showed de-repression of genes
involved mainly in transmembrane transport and in a large number of
metabolic processes (Figs. S1B and S1C). In particular, more than 100
up-regulated genes encoded for transmembrane transporters of amino
acids and other metabolites, mostly targets of the Gcn4 transcription
factor (Fig. S1B). Interestingly, the inhibition of Snf1 catalytic activity
has been shown to cause the de-repression of Gcn4-regulated genes
through the regulation of translation of the transcription factor in cells
growing in low glucose [10]. Our data indicate that this phenomenon
could be extended also to glucose-repressed cells, further supporting
the emerging role of Snf1 also in non-limiting nutrient conditions. The
major part of the remaining up-regulated genes was involved in several
metabolic processes such as redox metabolism, iron homeostasis and
amino acids biosynthesis (Fig. S1C). Further analysis of the subset of
up-regulated genes in snf1Δ cells growing in 2% glucose for enrichment
in KEGGpathways remarkably identifiedmetabolic processes not previ-
ously linked to Snf1, overall glycolysis/gluconeogenesis and associated
sugar metabolisms, as well as known Snf1-controlled pathways such
as fatty acid metabolism (Fig. 1C). Gene Ontology enrichment of
down-regulated genes revealed that the presence of Snf1 is required
for the expression of genes important for mitochondrial functionality
and cell cycle progression (Fig. S1D). In particular, several genes coding
for structural proteins of both the small and large subunits of the
mitochondrial ribosomes were down-regulated in snf1Δ cells grown in
2% glucose, aswell as cell cycle-related genes, mainly involved inmicro-
tubule assembly and mitosis (Fig. S1D).

Notably, genes involved in phosphate metabolism present an inter-
esting response in expression between 2% and 5% glucose in snf1Δ
cells. Genes coding for high affinity phosphate transporters (PHO84
and PHO89), the membrane glycoprotein PHO11 and the transcription
factor SPL2 were inhibited by the deletion of SNF1 in 2% glucose,
while the PHO87 gene coding for the low affinity transporter was up-
regulated in the same condition (Fig. S1B). The same genes switched
behavior in 5% glucose, possibly indicating that the restored growth
due to the higher glucose availability was sensed as not matched by
sufficient phosphate uptake.

Taken together, these data provide a wide picture of the transcrip-
tional re-arrangement occurring in cells lacking Snf1 in a condition in
which the activity of the kinase is not essential for the de-repression
of genes subject to catabolite repression but guarantees a proper
growth, aswell as in thepresence of a larger glucose supply (5% glucose)
in which the presence of Snf1 becomes dispensable.

3.2. Deletion of SNF1 or inhibition of Snf1 catalytic activity causes the up-
regulation of several glycolytic genes

Snf1 is known to regulate the transcription of several metabolic
genes, enhancing the expression of enzymes involved in the utilization
of low glucose levels or of alternative carbon sources [5]. Here we show
that Snf1 also functions as a regulator of glycolytic genes as there is de-
repression of several of these genes in snf1Δ cells growing in 2% glucose
(Fig. 1D). To validate this finding we performed real-time PCR analyses
of glycolytic genes mRNAs, confirming the up-regulation of TDH1 and
ENO1, whileHXK1was downregulated (Fig. 1E). In the previous section,
we highlighted that the loss of the growth defect of snf1Δ cells in 5%
glucose was accompanied by a consistent normalization of the tran-
scriptional phenotype (Fig. S1A). This phenomenon was confirmed
also for glycolytic genes, since all of them showed nearly wild type ex-
pression levels in 5% glucose (Fig. 1E).

To demonstrate that the de-repression of glycolytic genes was
specifically due to the lack of Snf1 catalytic activity, we used a strain
carrying an analog sensitive isoform of Snf1 (Snf1-I132G), which activ-
ity can be inhibited by the ATP analog 2NM-PP1 [10,14] and checked the
mRNA levels of representative genes following addition of 2NM-PP1
(Fig. 1F). Higher levels of TDH1 and ENO1 mRNAs were detectable
already after 1 hour following treatment with the inhibitor, with an
even higher expression after 2 hours (Fig. 1F).

Altogether, these data demonstrate that Snf1 catalytic activity is re-
quired for the transcriptional repression of glycolytic genes and, more
intriguingly, that this response is performed in a glucose-dependent
fashion.

3.3. Lack of Snf1 causes enhanced secretion of fermentation products

Transcription of glycolytic genes has been reported to influence the
enzymatic activity of the corresponding gene products, as shown
using strains lacking the transcription factor Gcr1 or the co-activator
Gcr2 [25]. We therefore wondered whether the observed transcription-
al up-regulation resulted in higher activity of glycolytic enzymes.
Surprisingly, we were unable to detect significant variations of the
activity of hexokinase (HXK), glycerahldehyde-3-phosphate dehydro-
genase (GPDH) and pyruvate kinase (Pyr Kinase) (Fig. 2A).

To determine whether glycolysis was altered in snf1Δ cells, we
measured the glucose consumption in log phase cultures by NMR
spectroscopy. Interestingly, glucose uptake of the mutant strain was at
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value b 0.005. (F) Real-time PCR quantification of TDH1 and ENO1 mRNAs in the Snf1as strain following treatment with 2NM-PP1, DMSO was used as control. ***p-value b 0.0005.
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wt levels in 2% glucose (consumption shown as a function of culture
density), but was appreciably higher, as compared to the wt, in 5%
glucose (Fig. 2B). The unaltered glucose uptake in 2% glucose was
surprising, given the up-regulation of the gene coding for the high
capacity glucose transporter Hxt1 which depends on the impairment of
a known transcriptional regulation exerted by Snf1 [26]. Nevertheless,
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snf1Δ cells produced more glycolytic output products, i.e. ethanol and
acetate, when growing in 2% glucose, but secreted the same amount of
these metabolites as the wt when growing in 5% glucose (Fig. 2C).

These findings indicate that glycolysis is functionally enhanced in
the absence of Snf1, in spite of unaltered glucose uptake, suggesting
that the increased expression of glycolytic genesmay be a transcription-
al adaptation to the metabolic re-arrangement.

3.4. Growth in 5% glucose does not influence the snf1Δ fatty acid biosynthe-
sis deregulation

One of themost extensively characterized phenotypes of snf1Δ cells
is the accumulation of fatty acids, caused by the loss of Snf1-dependent
phosphorylation of the acetyl-CoA carboxylase Acc1 [7,27]. This pheno-
type is of particular interest in the comparison between the metabolic
roles of Snf1 and of its mammalian counterpart AMPK, which for other
aspects diverged during evolution [28]. In yeast, loss of Snf1 and the
consequent carbon overflow into the fatty acid biosynthetic pathway
has been shown to cause inositol auxotrophy mediated by the impair-
ment of INO1 expression [27,29] and a depletion of the intracellular
acetyl-CoA pool, causing a global reduction of histone acetylation [30].
However, no information about fatty acid biosynthesis in yeast at higher
glucose concentration (N2%) is available.

We therefore quantitatively measured the fatty acid composition of
wt and snf1Δ cells growing in 2% and 5% glucose by GC-MS analysis, to
investigate whether the higher glucose supply (5% glucose) influences
fatty acid accumulation in snf1Δ. As previously shown, lack of Snf1
caused accumulation of long chain fatty acids in 2% glucose and interest-
ingly this happened also in cells growing in 5% glucose (Fig. 3).

It is well known that fatty acid elongation requires NADPH [31],
so we speculated that in snf1Δ cells the reducing equivalents for
fatty acid elongation could be obtained from the pentose-phosphate
pathway. Nevertheless, when we measured the activity of glucose-6-
phosphate dehydrogenase (coded by ZWF1), we failed to observe any



Fig. 3. Fatty acids are equally accumulated in 2% and 5% glucose snf1Δ log phase cells. The
most abundant yeast long chain saturated (C16:0 and C:18:0) and un-saturated (C16:1n-7
and C18:1n-9) fatty acids were quantified from cells in exponential phase of growth
(culture density OD600nm=0.3) byGC-MS analysis andnormalized on cellular dryweight.
*p-value b 0.05; **p-value b 0.005.
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significant difference (Fig. S2A). However, our gene chip analysis
evidenced that the genes coding for all the three NADH kinases (POS5,
UTR1, YEF1) were up-regulated in snf1Δ cells growing in 2% glucose
(Fig. S2B), thus suggesting a compensatory mechanism involving de
novo NADPH biosynthesis.
Fig. 4. Absence of Snf1 promotes carbon flow into the TCA cycle and glutamate accumulation
value b 0.005. (B) Intracellular concentration of glycerol evaluated by NMR. *p-value b 0.05; *
GC-MS. *p-value b 0.05. (D) Enzymatic activity of the indicated enzymes in total protein extra
exponential phase of growth (culture density OD600nm = 0.3).
3.5. Lack of Snf1 causes glutamate accumulation and fueling of carbon into
the TCA cycle

Alteration of the Snf1 pathway in respiration-defective cells in
stationary phase has been shown to cause a reshaping of the yeast
metabolome, involving storage carbohydrates and amino acids [32].
To assess whether the observed alterations in both the glycolytic and
the fatty acid biosynthetic pathways could be linked to broad alterations
of the metabolism, we performed a metabolome profiling through
1H-NMR spectroscopy, measuring a panel of intracellular metabolites.
The most evident effect of the lack of Snf1 on metabolite levels in 2%
glucose was the significant accumulation of glutamate, notably the
most abundant metabolite (Fig. 4A). Interestingly, the accumulation of
glutamate was reduced in cells growing in 5% glucose, correlating
with the loss of the slow-growth phenotype of snf1Δ cells (Fig. 4A).

The profiling of intracellular amino acids also showed a slight but
significant accumulation of intracellular methionine and a substantial
reduction in the histidine content (Fig. 4A). The wt and snf1Δ strains
did not show a differential histidine uptake from the media (data not
shown) and the amino acid itself was supplemented in large excess,
thus the observed reduction in histidine content is attributable only to
the alteration of intracellular processes. The only specific utilization of
histidine, except for protein synthesis, is its use as a precursor for thia-
mine biosynthesis. Thiamine, as thiamine diphosphate, is a cofactor in
a number of biochemical reactions, but it is primarily required for the
activity of pyruvate decarboxylase, pyruvate dehydrogenase and α-
ketoglutarate dehydrogenase [33]. Hence, the enhanced glycolytic
phenotype of snf1Δ cells may cause an enhanced thiamine utilization
by pyruvate decarboxylase isoforms, thus accounting for the reduction
in the intracellular histidine pool.
. (A) Intracellular concentration of amino acids evaluated by NMR. *p-value b 0.05; **p-
*p-value b 0.005. (C) Intracellular concentration of TCA cycle intermediates evaluated by
cts. *p-value b 0.05; **p-value b 0.005. All the experiments were performed with cells in
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Another major alteration in snf1Δ cells was the 3-fold reduction in
intracellular glycerol (Fig. 4B). This reduction was evident also for cells
growing in 5% glucose, even if both wt and snf1Δ cells presented higher
levels of glycerol in 5% glucose as compared to 2% glucose, consistent
with the role of glycerol production as a redox valve to dispose excess
cytosolic NADH during exponential growth [34]. Snf1 is known to
phosphorylate and inactivate themajor glycerol-3-phosphate dehydro-
genase isoform Gpd2 in nutrient limited conditions [6], but here we
show a reduction rather than an increase in glycerol content, indicating
that this repressive role of the kinase is negligible in a non-limiting
glucose concentration.

As mentioned above and shown in Fig. 4A, snf1Δ cells accumulate
glutamate. In fermenting yeast cells the biosynthesis of glutamate
occurs via the reaction of ammonia and α-ketoglutarate, thus it seems
likely that cells accumulating this amino acid could increase the activity
of the TCA cycle to supply biosynthetic building blocks. We therefore
performed a targeted GC-MS analysis to measure intermediates of the
TCA cycle and identified different levels of some of them in snf1Δ cells
compared to the wt. In particular, snf1Δ cells accumulated more citrate
both in 2% and 5% glucose, and even more clearly they accumulated
malate when growing in 2% glucose (Fig. 4C), thus suggesting the
hypothesis of an increased fueling of the TCA cycle in the absence of
Snf1.

During growth on glucose, glutamate biosynthesis from α-
ketoglutarate is performedmainly by the NADPH-dependent glutamate
dehydrogenase Gdh1 [35]. We therefore measured the NADPH-
dependent Gdh1 activity in total cell extracts, which interestingly was
found lower in snf1Δ cells as compared to the wt (Fig. 4D). This finding
was not surprising in light of the drain of NADPH caused by the en-
hanced fatty acid biosynthesis in a snf1Δmutant (Fig. 4A), which adjusts
the NADPH-consuming Gdh1 activity accordingly. Notably, this lower
activity was consistent with the reduction of glycerol accumulation
(Fig. 4B) and ethanol overproduction (Fig. 2C), matching the results
previously obtained with gdh1Δ cells [36].

We also measured the activity of NAD- and NADP-dependent
isocitrate dehydrogenases (IDH and IDP, respectively), which perform
the synthesis ofα-ketoglutarate from isocitrate and thus can be consid-
ered shared reactions between the TCA cycle and the glutamate
biosynthetic pathway. Both enzymatic activities were lower in snf1Δ
cells growing in 2% glucose, but the activities were not affected by
deletion of Snf1 in 5% glucose (Fig. 4D). Besides, the activity of Glt1,
the NADH-dependent glutamate synthase catalyzing the synthesis of
two glutamate molecules from glutamine and α-ketoglutarate, was
unaltered in snf1Δ cells (Fig. 4D). However this alternative glutamate
biosynthetic pathway,which biochemically could account for glutamate
accumulation, is evidently a hotspot, since all the genes coding for the
enzymes of the pathway, in particular GDH2, were up-regulated in
snf1Δ cells (Figs. S3A-B).

3.6. Increased uptake of amino acids in snf1Δ cells supports growth

The down-regulation of the main glutamate biosynthetic pathway
through Gdh1 left unexplained the issue of the origin of the increased
amount of glutamate in snf1Δ cells. We therefore tested the possibility
of glutamate being a product of utilization of other amino acids assaying
the consumption of leucine, methionine and histidine in the medium.
While the consumption of histidine was negligible in every tested
condition (data not shown), leucine and methionine uptake were
significantly higher in snf1Δ cells growing in 2% glucose compared to
the wt, consistently with the enhanced expression of genes encoding
for amino acid transporters (Fig. S1B), while in 5% glucose the uptake
of amino acids was comparable between the mutant strain and its
control (Fig. 5A). Interestingly, leucine is known to be degraded
through the Ehrlich pathway to glutamate and fusels alcohols [37] and
snf1Δ cells transcriptionally up-regulate genes (BAT2, THI3, ADH4,
ADH5) belonging to this pathway (Fig. S3C). Noteworthy, decreasing
the concentration of leucine and methionine in the medium to 1/5th
of the amount normally supplemented impaired the growth of snf1Δ
cells only in 2% glucose, while having no effect on wt cells in this
condition nor on wt and snf1Δ growing in 5% glucose (Fig. 5B). In
keeping with this observation, the addition of leucine and methionine
to a prototrophic snf1Δ strain increased its growth rate, while having
no effect on the isogenic wt strain (Fig. S3D).

Strikingly, lowering the concentration of leucine and methionine in
the medium abolished the accumulation of intracellular glutamate in
snf1Δ cells growing in 2% glucose (Fig. 5C).

Altogether, these data support the hypothesis that snf1Δ cells in 2%
glucose fuel carbon into the TCA cycle from amino acids supplemented
in the medium.
3.7. Oxidative phosphorylation sustains growth and energy production in
the absence of Snf1

The previous findings, that indicate an amino acid utilization
through the TCA cycle in snf1Δ cells in 2% glucose, suggest a respiro-
fermentative metabolism, thus requiring the re-oxidation of mitochon-
drial NADH, whose pool is well known to be separated from the cyto-
plasmic one [38]. To assess the role of mitochondrial activity, snf1Δ
and wt cells in exponential phase of growth were treated with
antimycin A, an inhibitor of the complex III of the electron transport
chain. In 2% glucose the drug further impaired the slow growth pheno-
type of snf1Δ cells, without affecting wt cells (Fig. 6A). Remarkably,
snf1Δ cells completely ceased to be affected by antimycin A when
grown in 5% glucose (Fig. 6B). The same effect was observed in a
snf1Δ strain with a different genetic background (Fig. S4A).

Electron flow through the respiratory chain ultimately leads to the
synthesis of ATP, therefore we wondered whether the inhibition in a
snf1Δ strain could influence energy supply. To assess this issue, we
measured intracellular ATP content in wt and snf1Δ cells treated with
antimycin A for 5 hours, aswell as inmock controls. Although antimycin
A treatment slightly reducedATP content ofwt cells, indicating a limited
role of oxidative phosphorylation in wt fermenting cells, snf1Δ cells
growing in 2% glucose synthesized a significantly larger fraction of
their ATP through this mechanism (Fig. 6C). Consistently with the
observed protective role of glucose on the growth of snf1Δ cells treated
with antimycin A, ATP synthesis was not significantly affected in 5%
glucose, as for the wt strain (Fig. 6C). In addition, snf1Δ cells contained
lower basal ATP levels, indicating that unrequired energy consuming
processes, possibly fatty acid biosynthesis, were draining energy.

Since a direct consequence of the inhibition of electron transport
chain should be a reduction of the capability of mitochondrial NADH
pool to be re-oxidized,wemeasured total NAD+ andNADH intracellular
content (mitochondrial and cytoplasmic) in the same conditions tested
above for ATP content. snf1Δ cells contained significantly lower
amounts of NAD when grown in 2% glucose, with a relative increase
of the reduced form (Fig. 6D). After treatment with antimycin A,
NADH in snf1Δ cells significantly increased, consistent with the
predicted effect of electron transport chain inhibition (Fig. 6D).
However, in the same condition NAD+ content increased accordingly,
indicating a compensatory mechanism probably involving the de novo
NAD(H) biosynthesis. In agreement with the aforementioned results for
growth and ATP, NAD+/NADH levels of snf1Δ cells growing in 5% glucose
were not influenced by antimycin A treatment (Fig. 6D). Remarkably,
antimycin A treatment of snf1Δ cells grown with lower concentrations
of leucine and methionine greatly impaired their growth, in respect to
that of cells grown in standard medium (Fig. 6E). To further confirm
the reliance of snf1Δ cells on respiration, we measured the oxygen con-
sumption in our growth conditions. Strikingly, snf1Δ cells consumed a
significantly increased amount of dissolved oxygen compared to the wt
in 2% glucose (Fig. 6F). On the contrary, oxygen consumption of snf1Δ
cells was not affected in 5% glucose (Fig. 6F).
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4. Discussion

Our work deepens the understanding of the involvement of signal-
ing pathways in the regulation of metabolism of proliferating cells, by
taking a snapshot of Snf1 deficient yeast cells without nutritional
distress. Our analysis showed that even in condition of glucose availabil-
ity, when Snf1 is only partially active (Fig. S4B), the lack of Snf1 causes
rearrangements at multiple levels (summarized in Fig. 7), notably
resembling the lack of proper AMPK activity in mammalian cells [39].

Recent studies provided evidence that the activation of AMPK is
involved in growth control and tumorigenesis and that ablation of
the catalytic subunit AMPKα1 promotes glucose uptake and aerobic
glycolysis to support proliferation of cancer cells [28,40]. Recent
phosphoproteomics data suggest that Snf1 might control glycolysis by
phosphorylating phosphofructokinase and pyruvate dehydrogenase in
glucose non-limiting conditions [41]. Here, we show that glycolysis of
snf1Δ yeast cells is functionally enhanced (Fig. 2), with increased
secretion into the medium of ethanol and acetate as compared to the
wt, although no enhanced glucose consumption can be observed in 2%
glucose. This enhanced glycolytic function is accompanied by transcrip-
tional up-regulation of several genes of the pathway in snf1Δ cells grow-
ing in 2% glucose (Fig. 1), but we suggest that this could be an
adaptation phenomenon induced by themetabolic changes, as observed
also in mammalian cells [42]. Notably, it was recently observed that
mutants of the Snf1 pathway present a thinner cell wall and a higher
susceptibility to agents targeting this structure [43]. This effect is nicely
reverted by deletion of PFK1, which restores the glucose-6-phosphate
pool, which is reduced in snf1Δ cells. In light of our findings, we propose
that the reduced accumulation of cell wall glucose derivatives could be
due to thedraining of glycolytic intermediates and their funneling to the
ending products.

In proliferating cells, a conspicuous amount of carbon is diverted into
lipids to support membrane biosynthesis and as biomass and energy
reservoir [3]. Consistent with its role of keeper of cellular energy,
AMPK has evolved as a negative regulator of fatty acids biosynthesis
to avoid this energetically expensive process when nutrients are scarce
[4] and this feature is conserved also in yeast cells [12,44]. In particular,
both Snf1 and AMPK regulate the first step of fatty acid biosynthesis in a
conserved way by direct phosphorylation of acetyl-CoA carboxylase
(Acc1 and ACC1, respectively) [7,29,45]. Noteworthy, yeast exclusively
use acetate activated in the cytoplasm to provide acetyl-CoA for fatty
acids synthesis, since unlike plants and animals it lacks the citrate
lyase activity to fuel this process through the TCA cycle [46]. Therefore,
given that yeast fully relies on glycolysis for this process, we propose
that snf1Δ cells need to increase the glycolysis (Fig. 2) to sustain the
hyper-accumulation of fatty acids (Fig. 3).

The synthesis of fatty acids is not only expensive in terms of carbon
and energy, but it also exploits the reducing equivalent (NADPH) pool of
the cell [31], therefore it is likely that snf1Δ cells face a problem in
balancing its NADPH/NADP+ ratio. Even if the pentose-phosphate
shunt is the main pathway for NADP+ reduction, it is disadvantageous
for energy generation and we lack direct evidence of its enhancement
in snf1Δ cells. Instead, the limited NADPH pool probably drives snf1Δ
cells to down-regulate the processes which utilize the cofactor, as we
show for glutamate biosynthesis via Gdh1 (Fig. 4D). Interestingly,
excessive glutamate is known to activate its degradation to succinate
via γ-aminobutyric acid (GABA), involving the reduction of NADP+ to
NADPH [47]. Therefore, it is possible that this phenomenon is occurring
in snf1Δ cells, concomitantly obtaining NADPH and fueling the TCA
cycle.

In the absence of glucose, Snf1 negatively regulates the translation of
the transcription factor Gcn4, thus inhibiting the expression of a regulon
of genes involved in amino acids biosynthesis, as firstly reported by
Shirra and coauthors [10]. In our gene chip analysis, that regulon is
de-repressed even in snf1Δ cells growing in 2% glucose, suggesting
that Snf1 effect on Gcn4 can be extended also to non-limiting nutrient
conditions (Fig. S1B). Furthermore, we show that alterations of amino
acids metabolism are actually relevant for snf1Δ cells, the most evident
being a significant intracellular accumulation of glutamate (Fig. 4A).
Glutamate is pivotal in the biosynthesis of many other amino acids,
and conversely it is one of the products of their degradation. Amino
acids supplemented in the medium can be used by the cells not only
as nitrogen source, but also as carbon source, via degradation to gluta-
mate, and this has been described especially for leucine andmethionine
[48,49]. In this framework, the reliance of snf1Δ cells on leucine and
methionine uptake (Fig. 5A) demonstrated by the impairment of
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growth when these amino acids are reduced in the medium containing
2% glucose (Fig. 5B), links leucine and methionine assimilation to com-
pensation of carbon and energy waste (Fig. 7). Remarkably,
methionine-dependence occurs in many human tumors and
methionine-free diet greatly reduces tumor growth in preclinical
models [50].

Utilization of glutamate as carbon source requires its conversion to
α-ketoglutarate and this process seems to be favored in snf1Δ cells at
least at the transcriptional level (Fig. S3A-B). Continuation of this pro-
cess essentially requires the execution of a part of the TCA cycle, in keep-
ing with the accumulation of malate in snf1Δ cells (Fig. 4C). Moreover,
inhibition of re-oxidation of mitochondrial NADH (treating with
antimycin A) is detrimental for snf1Δ cells in 2% glucose, since it
coordinately affects growth, ATP and NAD+/NADH contents (Fig. 6).
Re-oxidation ofmitochondrial NADH requires the activity of the respira-
tory chain and the final reduction of O2. Indeed, snf1Δ cells growing in
2% glucose showed an increased oxygen consumption (Fig. 6F). It was
recently reported that Snf1 is required to overcome the impaired
respiratory function caused by loss of mitochondrial DNA in stationary
phase [32]. Our findings complement this notion, indicating that lack
of Snf1 causes an increase of cellular dependence of mitochondrial
function.

The common feature of the phenotypes described for snf1Δ cells in
this paper is that they are almost undetectable when cells grow in the
presence of 5% glucose. Even if 2% glucose is non-limiting for fermenta-
tive growth, increase of glucose concentration to 5% results in enhanced
secretion of fermentation metabolites in wt cells (Fig. 2C). In addition,
glucose uptake is higher in snf1Δ cells grown in 5% glucose (Fig. 2B).
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This finding strongly suggests that enhanced glucose metabolism sat-
isfies the requirements of snf1Δ cells and abolishes their reliance on
amino acids utilization. Noteworthy, snf1Δ cells have been shown to
have impaired intracellular acetyl-CoA levels and subsequently reduced
histone acetylation, a phenotype that could be at least partially reverted
by the replenishment of acetyl-CoApool [30]. Increased carbon fluxpro-
vided in 5% glucose could therefore account for increased supply of
acetyl-CoA, which, as described above, is directly subtracted for fatty
acids biosynthesis [46]. This could relieve snf1Δ cells from effects of re-
duced histone acetylation on gene expression, which has been pointed
out as particularly important at growth genes such as Cln3 [51]. This hy-
pothesis well fits our previous findings of snf1Δ cells having a cell cycle
defect in the G1 to S transition, accompanied by the impairment of the
transcription of G1-specific genes [13,14].

In conclusion, here we describe the rewiring occurring in the meta-
bolic network of cells lacking Snf1, showing remarkable resemblances
with mammalian cells deprived of AMPK and identifying a strategy
adopted by these cells to guarantee growth. It has been pointed out
that although AMPK loss of function alone is not sufficient to cause
transformation, mutations of the kinase are not infrequent in cancers
[39]. However, lack of functional AMPK causes ambivalent effects, be-
cause despite the loss of its catalytic activity enhances tumorigenesis,
it also deprives the cells of a critical pathway for the response to envi-
ronmental stresses. It is not surprising, therefore, that AMPK has been
indicated as a target for cancer therapy [52]. In this work we establish
the usefulness of yeast in the study of a signaling pathway which until
now showedmarginal similarities with its relative in higher eukaryotes.
Remarkably, the metabolic strategies adopted by Snf1/AMPK deficient
cells to support proliferation, as the increase of the utilization of
amino acids as carbon source reported here, are reminiscent of the
increased glutamine utilization that is the hallmark of several cancer
cells [53].
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