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SUMMARY

The human gut microbiome is known to be asso-
ciated with various human disorders, but a major
challenge is to go beyond association studies and
elucidate causalities. Mathematical modeling of the
human gut microbiome at a genome scale is a useful
tool to decipher microbe-microbe, diet-microbe and
microbe-host interactions. Here, we describe the
CASINO (Community And Systems-level INteractive
Optimization) toolbox, a comprehensive computa-
tional platform for analysis of microbial communities
through metabolic modeling. We first validated the
toolbox by simulating and testing the performance
of single bacteria and whole communities in vitro.
Focusing on metabolic interactions between the
diet, gut microbiota, and host metabolism, we
demonstrated the predictive power of the toolbox
in a diet-intervention study of 45 obese and over-
weight individuals and validated our predictions by
fecal and blood metabolomics data. Thus, modeling
could quantitatively describe altered fecal and serum
amino acid levels in response to diet intervention.

INTRODUCTION

Increasing evidence indicates that changes in the composition

of the human gut microbiota affect host metabolism and are

associated with a variety of diseases (Bäckhed et al., 2005;

Qin et al., 2014). Changes in diet have been shown to rapidly

affect the composition of the gut microbiota (David et al., 2014;

Wu et al., 2011). Furthermore, microbiota-diet interactions

impact host physiology through the generation of a number of
320 Cell Metabolism 22, 320–331, August 4, 2015 ª2015 Elsevier Inc
bioactive metabolites (Cotillard et al., 2013; Le Chatelier et al.,

2013; Nicholson et al., 2012; Wu et al., 2014). For example,

short-chain fatty acids (SCFAs), which are generated bymicrobi-

al fermentation of dietary polysaccharides in the gut, are an

important energy source for colonocytes and also function as

signaling molecules, modulating intestinal inflammation and

metabolism (Donohoe et al., 2011; Fernandes et al., 2014;

Samuel et al., 2008; Smith et al., 2013b; Tolhurst et al., 2012).

In addition, dietary proteins and amino acids are important

substrates for microbial fermentation in the colon (Cummings

and Macfarlane, 1997), where they also serve as an important

nitrogen source for the microbiota and support the growth of

the microbiota and the host (Wu, 2009).

By quantifying the release and consumption of metabolites by

the gut microbiota, it may be possible to elucidate interactions

between the gut microbiota and host metabolism (Tremaroli

and Bäckhed, 2012). This information would allow identification

of diagnostic biomarkers and may provide insight into the role

of the gut microbiota in disease progression (Karlsson et al.,

2013; Qin et al., 2014; Zeller et al., 2014). A predictive sys-

tems-level model of the human gut microbiome is required

to elucidate causalities and quantify the interactions between

microbes, host, and diet (Greenblum et al., 2013; Manor et al.,

2014; Shoaie and Nielsen, 2014).

A genome-scale metabolic model (GEM) is an integrative

platform for exploring genotype-phenotype relationships and

metabolic differences between different clinical conditions

(Ghaffari et al., 2015; Henry et al., 2010; Mardinoglu et al.,

2014; Mardinoglu and Nielsen, 2015; Monk et al., 2014; Shoaie

and Nielsen, 2014). We previously reconstructed GEMs to

study the interactions between Bacteroides thetaiotaomicron

and Eubacterium rectale (Shoaie et al., 2013), representatives

of Bacteroidetes and Firmicutes, the two dominant phyla in

the human gut (Huttenhower et al., 2012), and between

Bifidobacterium adolescentis and Faecalibacterium prausnitzii

(El-Semman et al., 2014), also dominant and dietary-responsive
.
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gut microorganisms (Walker et al., 2011). In both studies, we

manually identified the interactions between the bacteria and

quantified the consumption and production rates of the defined

interacting metabolites for each bacterial species. Although

other studies have been conducted for communities of two

and three species (Harcombe et al., 2014; Zomorrodi and Mara-

nas, 2012), these approaches cannot be expanded to simulate

the interactions of a large number of species representing the

complex gut ecosystem. Therefore, we developed the CASINO

(Community And Systems-level INteractive Optimization)

toolbox, which comprises an optimization algorithm integrated

with diet analysis to predict the phenotypes and related dietary

intake within the human gut microbiota. The toolbox was tested

using both data from in vitro experiments and results from a

nutritional intervention study of subjects with varying gut micro-

bial gene richness.

RESULTS

CASINO Toolbox
We first developed an optimization algorithm in the CASINO

toolbox, which is based on a collaborative and a multi-dimen-

sional distributed approach (Grimm et al., 2005). It takes into

account both collaboration between the multiple species and

the fact that each individual species seeks to optimize its growth

individually. Although GEMs are linear models, the presence

of several GEMs in the overall community model means that

the optimization of community biomass production becomes a

non-linear problem. Therefore, we separated the community

model into systems level (representing the community) and

organism level (representing each species), which allowed us

to linearize the optimization problem.

Simulations using CASINO start with an initialization stage that

defines a primary profile of the systems-level topology (i.e.,

which species are present and how do they interact). This leads

to the construction of a community matrix that defines effectors

and receptors, with effectors being species that produce

metabolites and receptors being species that consumemetabo-

lites. Following definition of the topology, the initialization step

calculates metabolite production by each species using organ-

ism-level optimization. Thereafter, CASINO performs iterative

multi-level optimization to calculate the relative uptake of carbo-

hydrates by each species, until the total community biomass

production is optimized. In this study, this calculation is con-

strained by the relative abundance of each species (Figure S1;

Experimental Procedures).

To evaluate CASINO, we used the RAVEN toolbox (Agren

et al., 2013) to update and significantly expand the content

of our previously published GEMs for B. thetaiotaomicron,

E. rectale, B. adolescentis, and F. prausnitzii and to generate a

GEM for Ruminococcus bromii, a representative of Clostridiales

and a key gut symbiont (Ze et al., 2012). All GEMs were manually

curated for functionality based on literature information. We

defined a set of metabolic tasks, e.g., generation of biomass pre-

cursors (Table S1), to further investigate the functionality of the

GEMs and checked that the resulting models could perform

the defined tasks (Experimental Procedures).

The GEMswere functionally validated using experimental data

for each of the five bacteria. We quantified the abundance of the
Cel
bacteria by 16S rRNA qPCR at baseline and after 24 hr of growth

in selected media (Table S2; Supplemental Experimental Proce-

dures). We performed targeted metabolomics to quantify

products of the fermentative activity of the studied bacteria; spe-

cifically, the SCFAs butyrate, acetate, and propionate and 15

different amino acids, as well as consumption of carbohydrates

(glucose, maltose, cellobiose, and starch). Flux constraints were

imposed using the metabolomics profiles of the growth media,

and maximum growth of each bacterial species was set as an

objective function to simulate the predictive power of the corre-

sponding model (Figure 1A; Experimental Procedures). The

experimental data confirmed that the GEMs predicted the meta-

bolism and biomass growth for each bacterial species (Figures

1B–1D). The GEMs correctly predicted that acetate can be pro-

duced by B. adolescentis, B. thetaiotaomicron, and R. bromii;

butyrate can be produced by E. rectale and F. prausnitzii; and

propionate can only be produced by B. thetaiotaomicron (Fig-

ure 1B). Our simulations also predicted that these five bacteria

synthesize significantly higher levels of essential amino acids

(valine, leucine, methionine, lysine, and phenylalanine)

compared to non-essential amino acids (serine, tyrosine, and

threonine) (Figure 1D).

Revealing the Interactions between Constituents of
In Vitro Microbial Communities
To test the performance of CASINO, we simulated the interac-

tions between the microbes in two microbial communities that

differed only in one bacterial species: EBBR (E. rectale,

B. adolescentis, B. thetaiotaomicron, and R. bromii) and FBBR

(F. prausnitzii, B. adolescentis, B. thetaiotaomicron, and

R. bromii) (Figure 2A). The simulated values were validated

by culturing EBBR and FBBR communities in selected media.

We quantified the abundance of individual bacterial species

in each community by 16S rRNA-based qPCR (Table S3). We

also performed targeted metabolomics to quantify the pro-

duction of SCFAs and amino acids and the consumption of

carbohydrates (starch and cellobiose) for each community

(Supplemental Experimental Procedures).

Our model simulations correctly predicted the net production

of the metabolites produced by each community and showed

that the communities synthesized more essential amino acids

than non-essential amino acids (Figure 2B). More importantly,

the simulations enabled quantification of the contribution of

each individual bacterial species to the overall microbial conver-

sion in the communities and showed that two of the species in

each community dominated. Specifically, we predicted that

B. thetaiotaomicron and E. rectale synthesized 41% and 36%

of the amino acids in the EBBR community, respectively, and

that B. thetaiotaomicron and F. prausnitzii synthesized 39%

and 47% of the amino acids in the FBBR community, respec-

tively (Figure S2). We also predicted that E. rectale mainly

contributed to the synthesis of valine, leucine, phenylalanine,

and methionine in the EBBR community, while F. prausnitzii

was the major contributor to the production of valine and leucine

in the FBBR community. Furthermore, the experimental data

showed that substitution of E. rectale with F. prausnitzii

decreased the level of butyrate in the media, due to the higher

capacity of E. rectale for butyrate production (Louis et al.,

2010), and also the model simulations showed a slightly lower
l Metabolism 22, 320–331, August 4, 2015 ª2015 Elsevier Inc. 321
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Figure 1. Validation of the GEMs

(A) Each GEM was validated based on the rRNA and metabolomics data generated by in vitro experiments. The byproducts and the substrate usage were

constrained in the models, and the growth rate was compared with the experimental data.

(B) Predicted and measured SCFA levels by the individual bacteria. Propionate was produced only by B. thetaiotaomicron, while acetate was produced by

Actinobacteria and Bacteroidetes phyla. Butyrate production was mainly produced by the bacteria from the class Clostridia.

(C) Predicted and measured biomass at the end of the fermentations. Growth was set as an objective function for each model, and the predicted growth was

compared with the experimental data.

(D) Predicted and measured levels of amino acids by the individual bacteria. Each model also predicted amino acid levels, and the details of 15 significant amino

acids produced are shown for each bacterium. The predicted and experimental values showed that all amino acids could be produced in the range of exper-

imental data with specific optimum solution.

Data are presented as mean ± SD.

See also Tables S1 and S2.
butyrate production by the FBBR community compared with the

EBBR community.

Next, we calculated the centrality scores for each bacterial

species to identify which species have a dominant role in the

overall metabolic conversion in each community (Supplemental

Experimental Procedures). We observed that E. rectale and

B. thetaiotaomicron were the main receptor and effector,

respectively, and thus represent key species (Figure 3A). We

then evaluated the sensitivity of the optimization algorithm in

CASINO by adding bacteria in three steps to each of these

two bacteria, culminating in the reconstruction of the two

in vitro communities. We calculated the SCFA levels for each

step (Figure 3B). Addition of B. adolescentis to E. rectale in

the EBBR community resulted in reduced production of buty-
322 Cell Metabolism 22, 320–331, August 4, 2015 ª2015 Elsevier Inc
rate and increased production of propionate and acetate.

Addition of F. prausnitzii to B. thetaiotaomicron in the FBBR

community resulted in reduced production of propionate and

acetate and increased butyrate production. The levels of the

SCFAs changed further when the other species were added

(Figure 3B).

Analyzing the Effect of Gene Richness and Diet on Gut
Microbiota Composition
To further evaluate CASINO, we examined data from a clinical

study where 45 overweight and obese individuals were sub-

jected to an energy-restricted, high-protein diet with low glyce-

mic index for 6 weeks (Figure 4A; clinical data in Table S4). These

patients had previously been stratified based on their gut
.



A B

Figure 2. Validation of the CASINO Toolbox

(A) Two in silico microbial communities, EBBR (E. rectale + B. adolescentis + B. thetaiotaomicron + R. bromii) and FBBR (F. prausnitzii + B. adolescentis +

B. thetaiotaomicron + R. bromii), were designed and simulated using the CASINO Toolbox. The results were compared with data from triplicate in vitro ex-

periments for EBBR and FBBR communities. In CASINO, the interactions of the bacteria as well as the phenotype of the community were identified using an

optimization algorithm.Growth of each bacterium had local optimum,whereas the community had global optimum. The community optimumwas detected by the

intersection point of the fixed constraints for the community and the calculated dynamic constraints, which was obtained by summation of the local and

community forces.

(B) Predicted and measured levels of SCFA and amino acids by the two in-silico microbial communities including EBBR (E. rectale, B. adolescentis,

B. thetaiotaomicron, and R. bromii) and FBBR (F. prausnitzii, B. adolescentis, B. thetaiotaomicron, and R. bromii). We found that synthesis of essential amino

acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, and valine) produced by the communities is higher than the production of non-

essential amino acids (alanine, glutamate, glycine, proline, serine, and tyrosine).

Data are presented as mean ± SD.

See also Figures S1 and S2 and Table S3.
microbial gene richness into ‘‘low gene count’’ (LGC; n = 18) and

‘‘high gene count’’ (HGC; n = 27), based on a cutoff threshold of

480,000 genes (Cotillard et al., 2013). LGC demonstrated a

worse metabolic profile compared with HGC individuals (Cotil-

lard et al., 2013).

Analysis of metagenomics data before and after the diet inter-

vention showed that six species dominated in all subjects:

Escherichia coli and F. prausnitzii and four species associated

with Clostridia, Bacteroides, Bifidobacteria, and Lactobacillus

(Cotillard et al., 2013). To obtain quantitative data of these

species, we analyzed fecal samples by 16S rRNA qPCR before

and after the dietary intervention (Table S5; Supplemental

Experimental Procedures) and used these results to calculate

the distribution of biomass between the species (Figure 4B).

We observed significant differences in abundance for

B. adolescentis, F. prausnitzi, and E. rectale at baseline and

for B. adolescentis and L. reuteri after 6 weeks between

LGC and HGC individuals. In HGC individuals, levels of

B. thetaiotaomicron significantly increased and L. reuteri and
Cel
F. prausnitzii significantly decreased after 6 weeks of dietary

intervention compared with baseline, whereas a significant

decrease in LGC individuals was only seen for L. reuteri.

Diet Interventions Alter Amino Acid and SCFA Levels in
HGC and LGC Individuals
To simulate the effect of the diet on the overall gut microbiota

metabolism, we used representatives of the most abundant

microbial groups that we had also modeled in vitro, i.e.,

B. thetaiotaomicron, B. adolescentis, F. prausnitzi, E. rectale as

described earlier, and Lactobacillus reuteri, for which we recon-

structed a GEM. We also performed simulations with inclusion

of E. coli, but as this species had nomajor impact on the produc-

tion of SCFAs and amino acids (data not shown), we did not

include this species in our further analysis. Using CASINO, we

simulated the effect of diet on the human gut microbiota com-

position at baseline and after the dietary intervention for 44 of

the subjects (registered diet information in Table S6). To translate

the diets into metabolites that can be utilized by the five gut
l Metabolism 22, 320–331, August 4, 2015 ª2015 Elsevier Inc. 323
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Figure 3. The Network Structure Influence

and Sensitivity Analysis on CASINO

(A) The community of B. thetaiotaomicron,

B. adolescentis, F. prausnitzii, E.rectale, and

R.bromii were tested based on being receptors

(receiving metabolites from the other microbes) or

effectors (producingmetabolites where consumed

by receptors). Two methods of centrality were

tested on these networks (power centrality and

degree centrality). Calculated centrality scores

determined E. rectale as the most important

receptor and B. thetaiotaomicron as the most

important effector.

(B) The sensitivity of CASINO optimization was

tested by evaluating the changes in the SCFA

profile upon adding different species to the

community. First, the most important receptor

and effector in the communities were identified

using the result of Figure 3A. 1 mmol/l of glucose

was used for all the simulations, and the SCFA

profiles were predicted. Following identification

of the dominant receptor and effector, the key

species, the other species were added to the

community one by one until the EBBR and FBBR

communities were reconstructed. Comparison

between the simulations showed that the SCFA

profile is very sensitive of the absence and pres-

ence of species with respect to their abundance

and interactions.
bacterial species, we computed the dietary macronutrients of 24

different food items (Table S7) and used this information in a

diet allocation algorithm in CASINO. With this algorithm,

CASINO predicted that there was a decrease in carbohydrate

consumption and an increase in amino acid consumption for

all individuals after 6 weeks of dietary intervention (Figure 4C).

The intake of fiber from bread and potatoes—and, to a lesser

extent, from rice, cereals, and snacks—was decreased, but

fiber from fruits and vegetables was increased in agreement

with the dietary recommendation given to the patient during

the intervention (Figure 4C).

For the simulations, we assumed that carbohydrates and

fibers were hydrolyzed to glucose to the same degree in all sub-

jects, allowing us to calculate the relative amount of glucose

available to the gut microbiome in each subject. We further

assumed that glucose was the limiting substrate for the gut

microbiome. We first used CASINO to quantify the community

interactions and the relative glucose uptake by the individual

species. We used the calculated values of species abundance

in this process. Thereafter, we used CASINO to repeat the

simulations but now allowing the individual species to consume

amino acids in the same ratio as their glucose uptake. The

amount of available amino acids was calculated from the diet

composition using CASINO.

With this approach, we could simulate the profile of three

SCFAs and 14 amino acids produced by the gut ecosystem,

as well as the contribution of each microbial species to the

overall metabolite production of the ecosystem at baseline and

after 6 weeks of dietary intervention for each individual. By

plotting average profiles for all the subjects, we found that
324 Cell Metabolism 22, 320–331, August 4, 2015 ª2015 Elsevier Inc
the levels of the SCFAs and amino acids produced by the gut

microbiota were significantly decreased after dietary interven-

tion when both LGC andHGC groups were combined (Figure 5A,

decrease in the y axis direction), but the greatest reductions

were observed in LGC individuals (Figure 5A, increase in the x

axis direction).

To experimentally evaluate our predictions on altered metab-

olite production by the gut ecosystem, we performed metabolo-

mics analysis of fecal samples obtained from the HGC and LGC

individuals at baseline and after 6 weeks of dietary intervention.

These data confirmed many of the predicted simulations by

CASINO, i.e., alanine, proline, glycine, serine, phenylalanine,

and tyrosine all showed decreased levels in response to the

diet intervention in both HGC and LGC subjects but with a larger

decrease in the LGC subjects (Figure 5B, shift down-ward right).

To test the significance of these changes for each group of sub-

jects and between the two time points, we calculated p values

using a Student’s t test, and, except for alanine, these changes

were significant for the different groups (Figure 5C). Measured

serine levels were significantly higher in LGC than in HGC individ-

uals at baseline but not after 6 weeks of dietary intervention

(Figure 5B), in agreement with the predicted results (Figure 5A).

Also, measured phenylalanine levels were significantly higher

in LGC individuals than in HGC individuals at baseline but lower

in LGC individuals compared to HGC subjects after 6 weeks of

dietary intervention, in agreement with predicted results.

In addition to predicting changes in some of the metabolites in

response to dietary intervention, the model could also be used

to predict the relative contribution of each bacterial species to

production of specific metabolites, allowing us to quantitatively
.



access how a variation in the gut microbiome correlates with

metabolite production. Thus, we predicted the contribution of

each bacterial species to phenylalanine levels in the gut

ecosystem and showed that 23% of the total phenylalanine is

produced by B. adolescentis and 26% by E. rectale in HGC

individuals at baseline, while this contribution increased for

B. adolescentis to 26% and decreased for E. rectale by 21%

after 6 weeks of dietary intervention (Figure S3). For LGC individ-

uals, the contribution of E. rectale to phenylalanine production

was 29% at baseline and decreased to 15% after 6 weeks of di-

etary intervention (Figure S3).

Serum Metabolomics Confirm Model Predictions and
Associate with Clinical Parameters
Although the model simulations could correctly predict

changes in several of the metabolites in the feces, we noted

that the model simulations did not accurately predict changes

in all the measured metabolites, which may be a result of

differential absorption by the host. Therefore, we evaluated

whether the model could predict changes in the serum. We

used metabolomics to analyze serum of the 45 subjects at

baseline and after 6 weeks of dietary intervention and found

an excellent correspondence between the model predictions

(Figure 5A) and the measured changes (Figure 6A). The serum

levels of ten detected amino acids decreased in response to

the dietary intervention in the LGC subjects (Figure 6A).

Furthermore, in agreement with the model predictions, there

was a decrease in acetate in response to the diet intervention

in all subjects (Figure 6A). In addition, we observed that phenyl-

alanine levels were higher in LGC subjects, compared to HGC

subjects at baseline, but that the level of phenylalanine

decreased in LGC subjects after 6 weeks of dietary intervention

(Figures 6A and 6B). We also observed that levels of valine,

leucine, and alanine were higher in LGC subjects at baseline

(Figures 6A and 6B).

To evaluate whether these changes in serummetabolite levels

may have any clinical relevance, we analyzed the correlations

between the levels of the ten amino acids in the serum and

bioclinical parameters of the subjects at baseline (Figure 6C).

Here, we found that the serum phenylalanine levels were

positively correlated with clinical variables related to body

corpulence (BMI [body mass index], DXA [dual-energy X-ray

absorptiometry]-measured fat mass, waist circumference, lep-

tin), insulin resistance, blood lipid homeostasis (serum triglycer-

ides and cholesterol), and low-grade inflammation (human

sensitive C-reactive protein; hsCRP). The serum levels of valine

and leucine were also positively correlated with BMI.

Model-Based Diet Design to Improve Metabolism
of LGC Individuals
Finally, assuming that LGC subjects have a non-optimal gut

microbiome metabolism (associated with a clinically altered

metabolism) we wanted to identify which dietary change would

improve the metabolism of their gut microbiome. Therefore, we

made the assumption that an adapted dietary recommendation

in LGC subjects provided at baselinewould enable them to reach

the ‘‘optimal’’ gut microbiome metabolism of HGC subjects after

6 weeks of dietary intervention, which is, indeed, associated with

an improved metabolic phenotype.
Cel
We then used CASINO and the abundance of the five different

species, i.e., B. thetaiotaomicron, B. adolescentis, F. prausnitzi,

E. rectale, and L.reuteri, to predict the relative consumption of

eight essential amino acids by the gut microbiome in the LGC

subjects at baseline (base phenotype in Figure 7A) and in the

HGC subjects at week 6 (improved phenotype in Figure 7A).

From this model analysis, we found that the gut microbiome

of HGC individuals had a higher consumption of these eight

essential amino acids at week 6 compared to that of the LGC

subjects at baseline. An incremental augmentation of these

amino acids would permit to acquire a similar metabolism of

the gut microbiome in LGC and HGC subjects (Figure 7A).

Many different combinations of food sources could fulfill such a

requirement for essential amino acids. However, in an attempt

to identify some overall guidelines, we correlated the difference

between the two different requirements of amino acids with

the composition of these amino acids in different food types

(Table S8). This showed that LGC individuals should significantly

increase consumption of dairy products, vegetables, whitemeat,

fish pulses, eggs, oils, and butter. In the meantime, they should

considerably reduce intake of pastries, bread, and rice to

improveandslightly reduce intakeof cereals andnuts (Figure7B).

DISCUSSION

The overall metabolism of the gut microbiome can bemodeled in

one of twoways: (1) by using a lumpedmodel of all the metabolic

reactions active in the different gut microorganisms or (2) by

compartmentalizing the metabolism according to the individual

microorganisms. The latter is clearly a better reflection of the

true biological system, and it also ensures that redox and energy

balances are constrained within each organism considered.

Therefore, we used this approach to model the metabolism of

the human microbiome and reconstructed GEMs for individual

species from the predominant phyla in the human gut. We iden-

tified which species to include in our analysis based on their

abundance in the gut ecosystem. Thus, we reconstructed

GEMs for five species that are representative bacteria of the

dominant phyla in the human gut, and we hypothesized that

the reactions included in our models cover most of themetabolic

functions that are present in the human gut. Compared with

earlier attempts to model the human gut metabolism using

GEMs, i.e., the COMETS algorithm (Harcombe et al., 2014),

CASINO allows inclusion of several species in the simulations.

Furthermore, it is scalable and enables expansion to include

even more than the five species that we considered in this study.

To evaluate whether we are covering the main metabolic

functions, we simulated the effect of different diets, studied

the interactions between the microbes and host in response

to the diet, and quantified the contribution of each bacterial spe-

cies to the fecal metabolite profiling. The model simulations

matched fecal metabolomics data, but more importantly, it

correctly correlated with changes in serum levels of ten amino

acids and one SCFA (acetate). Thus, the model captures some

major metabolic functions of the human gut microbiome. In the

future, the selection of species to be considered should be

expanded, in particular, to ensure representation of more spe-

cific metabolic functions, such as vitamin biosynthesis and bile

acid metabolism.
l Metabolism 22, 320–331, August 4, 2015 ª2015 Elsevier Inc. 325
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C

Figure 4. The Effect of the 6-Week Diet Interventions in HGC and LGC Individuals

(A) For each food source, the major macronutrients were quantified, and this enabled using the CASINO Toolbox to study the effect of the diet on the gut

microbiota composition of subjects classified on the basis of on their microbial gene richness.

(legend continued on next page)
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A

B

C

Figure 5. The Effect of the 6-Week Diet In-

terventions in Predictions and Fecal Metab-

olomics of HGC and LGC Individuals

(A) Summary of average phenotypic predictions for

baseline and after 6 weeks. The group of metab-

olites at the top right denotes the predictions at

baseline, and the group at the bottom left repre-

sents predictions after 6 weeks of dietary inter-

vention. Subtracting the log10 average metabolite

fluxes for HGC from LGC is represented on the

x axis, and the summation is represented on the

y axis. The x axis shows the ratio of predicted

metabolite levels between HGC and LGC, and the

y axis shows the sum of predicted metabolite

levels in the two groups. The colors show the

metabolites’ distance from zero on the y axis (from

dark blue at the top to dark red at the bottom).

(B) Metabolomics analysis of fecal samples ob-

tained from HGC and LGC subjects. The differ-

ences are shown for 14 detected amino acids as

well as for butyrate.

(C) p values based on Student’s t test for specifi-

cation of significantly changed metabolites for four

different comparisons.
The consistency between model predictions of metabolite

productions and measurement of changes in metabolite levels

in feces and serum suggests that ourmodeling correctly predicts

the overall carbon fluxes in the gut ecosystem. Furthermore, our

simulations enabled quantification of how the individual species

compete for nutrients and produce different metabolites that

may serve as nutrients for other species or be absorbed by the

host. Studying the gut metabolism with our holistic approach
(B) Abundance of species before and after diet interventions in HGC and LGC subjects. Data are shown as box

B. adolescentis (jade), L. reuteri (brown), F. prausnitzi (blue), and E. rectale (green). The heatmap shows the p

levels (each row associated with the corresponding species indicated in the left part of the figure). Data a

biomass.

(C) A diet algorithm was developed and implemented for prediction of the macromolecules present in differen

of diets to three main categories of macronutrients carbohydrates, fiber, and amino acids.

See Tables S5, S6, and S7.
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also enabled understanding of metabolic

shifts under different clinical conditions

and hereby could provide a direct link be-

tween the gut microbiome metabolism

and serum chemistry.

Thus, our simulations suggest that the

gut microbiome may contribute to altered

levels of several amino acids in the serum,

including phenylalanine and branched-

chain amino acids. This is in line with an

early report, using germ-free mice,

showing that the microbiota of the large

intestine increased the free amino acid

level in the gastrointestinal tract (Macfar-

lane et al., 1988). A later study showed

that bacteria in the human large intestine

take up peptides and amino acids and

convert these to different amino acids

and SCFAs (Smith and Macfarlane,
1998). This study also showed that the production of amino acids

was dependent on the composition of starch, proteins, and pep-

tides and, hence, will be dependent on the dietary composition.

Further confirmation of our findings is documented in a recent

review on the role of microbial amino acid metabolism in host

metabolism that provides a summary on a number of findings

related to the role of the microbiota in the large intestine on

production of not only SCFAs but also amino acids that are
plots with E. coli (red),B. thetaiotaomicron (yellow),

values for four different comparisons of the species

re presented as mean ± SD. grBiomass, grams of

t food sources, and this allowed further conversion
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Figure 6. The Serum Metabolomics Vali-

dated the Predictions and Fecal Metabolo-

mics

(A) Metabolomics of the serum samples obtained

from HGC and LGC individuals. The ten amino

acids and acetate were quantified at the baseline

and at week 6.

(B) p values based on Student’s t test for specifi-

cation of significantly changed metabolites be-

tween HGC and LGC at baseline and week 6.

(C) Correlation of the ten quantified amino

acids in serum with different clinical parameters

of HGC and LGC subjects. The figure shows

significant correlations (p < 0.05), with the color

code specifying the slope of the correlation.

Fat mass was measured by biphotonic absorp-

tiometry (DXA). MIP1b, macrophage inflam-

matory protein 1b; sCD14, soluble CD14; hsCRP,

human sensitive CRP; HOMA-IR, homeo-

static model assessment � insulin resistance =

Glucose 3 Insulin=22:5 ; BMI, body mass index

(kg/m2); Disse index = 123 ½2:5 3 ðHDL=Total
CholesterolÞ � FFA� � Insulin; MIP1b: macro-

phage inflammatory protein 1b; hsCRP, human

sensitive CRP; NEFA, non-esterified fatty acids.

See also Table S4.
subsequently taken up by the host (Neis et al., 2015). However,

further experiments are required to validate the direct contribu-

tion of the gut microbiome to host amino acid metabolism.

In our study, obese individuals with a LGC microbiome, asso-

ciated with more impaired metabolic phenotype compared with

those with HGC, had elevated levels of these amino acids.

A previous study has shown that phenylalanine is associated

with type 2 diabetes (T2D), and serum levels of this essential

amino acid are 5- to 7-fold higher in individuals at risk of T2D

compared to control subjects (Wang et al., 2011). Furthermore,

the serum level of branched-chain amino acids (valine, leucine,

and isoleucine) has been found to correlate with insulin resis-

tance (Newgard et al., 2009). Circulating levels of leucine, argi-
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nine, valine, proline, phenylalanine, isoleucine, and lysine are

also significantly associated with an increased risk of hypertrigly-

ceridemia in diabetic subjects (Mook-Kanamori et al., 2014), a

phenotype we noted in the subjects with the LGC microbiome.

Thus, our simulations point to two important findings. First,

they suggest that the gut microbiota in LGC individuals may

contribute to increased serum levels of many amino acids that

have been found correlated with metabolic diseases such as

T2D, and we believe that this is consistent with the deteriorated

glucose homeostasis related to insulin resistance observed

for the LGC subjects at baseline both in French and Danish

subjects (Cotillard et al., 2013; Le Chatelier et al., 2013). The

HGC subjects, on the other hand, with their more gene-rich
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Figure 7. Modeling the Dietary Composition

to Transfer LGC Individuals toward

Improved Phenotype

(A) The yellow circles specify the simulated

consumption of the eight essential amino acids

by the gut microbiome of the LGC individuals

at baseline (base phenotype), and the green

circles specify the simulated consumption of

the eight essential amino acids for the HGC

individuals at week 6 (improved phenotype).

(B) After calculating the required amount of

eight essential amino acids at baseline and

improved phenotype, both patterns were

correlated with composition of amino acids

in different food categories. The direction of

the CorrImproved � CorrBase indicates the positive/

C subjects. CorrBase, correlation between pattern amino acids in base

proved phenotype and food).

.



gut microbiome, may have a better conversion of amino acids,

resulting in lower levels of these in the plasma. Furthermore,

the HGC microbiome also has a higher capacity to produce

SCFAs that not only are important energy sources for the colo-

nocytes but also function as signaling molecules, modulating

intestinal inflammation and metabolism (Donohoe et al., 2011;

Fernandes et al., 2014; Samuel et al., 2008; Smith et al.,

2013b; Tolhurst et al., 2012). Second, in agreement with the

original study on the LGC in comparison to the HGC individ-

uals, our simulations highlight the finding that LGC subjects

can benefit from a dietary intervention that improves their gut

microbiome metabolism, paving the way for a personalized

approach in these subjects. Indeed, despite higher levels of

some amino acids at baseline, LGC subjects had a larger

decrease in the levels of a range of metabolites that are posi-

tively correlated with insulin resistance markers and cardiome-

tabolic risk factors.

Using our approach, we also predicted the relative contribu-

tion of each bacterial species to the production of specific me-

tabolites and studied how this variation in the gut microbiome

is correlated with specific metabolite production. Information

generated from CASINO may, therefore, be extended for

rational design of prebiotics as well as for identifying novel bene-

ficial bacteria that can be used to fortify the microbiota to

improve the gut microbiome metabolism. Importantly, rational

design of microbiota interventions requires knowledge of diet,

as demonstrated in a study of children with kwashiorkor, which

showed that a disrupted microbiome can be reversed by dietary

interventions (Smith et al., 2013a). Interestingly, transferring

the microbiota from children with kwashiorkor to germ-free

mice in combination with a Malawian diet resulted in marked

weight loss in recipient mice associated with perturbations in

amino acids. As we demonstrated, CASINO can also be used

to predict dietary changes required to ensure a certain profile

of the gut metabolism, here represented as a specific consump-

tion of eight essential amino acids. The gut microbiome may

change in response to dietary modulation, something that our

simulations are not capturing. This study also emphasizes the

importance of developing accurate tools to properly record

dietary intakes in different populations. With more data, it will

probably be possible to also predict how the diet influences

gut microbiome changes, and CASINO may hereby assist in

the development of a precision medicine approach to treat

metabolic diseases associated with dysfunction of the gut

microbiota.

In conclusion, we demonstrate how we can use model sim-

ulations to predict metabolic interactions within the gut micro-

biome and hereby assist in generating mechanistic insight into

the contribution of individual species of the gut microbiome

to the overall metabolism of the ecosystem and the host.

Furthermore, focused on the diet and on host and gut micro-

biota metabolic interactions, we show how the gut ecosystem

and the individual members of the gut microbiota contribute

to the host metabolism. CASINO may thus constitute a valuable

tool for enriching the information content provided by gut

metagenome analysis, hereby advancing our understanding

on how this important metabolic organ contributes to disease

development, and thus facilitate personalized interventions

based on the microbiome.
Cel
EXPERIMENTAL PROCEDURES

Reconstruction/Updating of GEMs

The B. adolescentis, B. thetaiotaomicron, E. rectale, and F. prausnitzii meta-

bolic models were already published (El-Semman et al., 2014; Shoaie et al.,

2013).These models were validated individually and updated based on exten-

sive bibliometric survey of the literature and databases (Henry et al., 2010). The

R. bromii and L. reuteri metabolic networks were reconstructed based on

automatic and manual curation, considering information available in the litera-

ture and databases. For model reconstructions, updating and quality checks,

the RAVEN toolbox was used (Agren et al., 2013). The defined metabolic task

file was implemented to perform the gap-filling process. This task file includes

synthesis of amino acids, nucleotides, and carbohydrates. A published meta-

bolic model for E. coli was used for simulation (Monk et al., 2013).

Validation of GEMs

The metabolic models for B. adolescentis, B. thetaiotaomicron, E. rectale,

F. prausnitzii, and R. bromiiwere used to predict the experimental phenotypes

based on the individual in vitro data. The growth for each model was predicted

as an objective function based on the available media components from the

experiments. Measured amino acids and SCFAs secretion were used to

constrain the models for individual simulations. The lower and upper bounds

for the uptake and secretion reactions were assigned based on the SD of

the measured metabolites in experimental data. The results were tested to

determine the consistency of the model through fixation of non-growth-asso-

ciated maintenance ATP.

CASINO Toolbox

CASINO defines the primary topology of the community and identifies an

optimum solution by applying a multi-dimensional optimization procedure in

two successive and connected stages: initialization and community optimiza-

tion. The convexity of the solution space and linearity of the parameters are

maintained by separating the problem into two independent optimizing dimen-

sions, systems level and organism level, with three classes of variables: inputs,

outputs, and connecting parameters. Maximum biomass production was

considered as the objective function at both levels. At the organism level,

each species seeks to maximize its biomass yield, while at the system level,

the community seeks to stay in the optimum balanced condition by synchro-

nizing the competition between species (Figure S1).

The initialization process assumes a structure of the community as a com-

plex network and starts with an activation cascade supporting a specific

threshold. Species are categorized into primary (grows independently by

taking up system-level inputs) and non-primary (growth is dependent on

connecting inputs, i.e., metabolites produced by other species) classes. The

activation begins with identifying primary species within the community and

activates them by providing required resources to grow. The compounds pro-

duced by activated species are added to the resource pool, and the commu-

nity is screened again to find non-primary species that now can grow based on

the updated resource pool. This cascade of activation is repeated until the

whole network has been activated. Now, a feasible profile of community topol-

ogy is constructed, and this results in a definition of the community constraints

matrix and the community objective function. At the end of the initialization

process, the system is locally optimum (species grow on maximum biomass

yield rate) but globally non-optimum (resources distribution between species

do not satisfy community optimum conditions).

Community optimization, a multi-level iterative process, starts based on the

initial feasible space and a community objective function defined by the initial-

ization procedure. In each step, the community-level biomass production is

optimized to find the optimum distribution of resources between species.

Relative carbohydrate uptake rates are calculated in each intermediate

systems-level optimum condition, and these are used by the species to reach

organism-level optimality. Metabolite secretion rates obtained after organism-

level optimization is used to expand the boundaries of the intermediate

feasible space and find a new systems-level optimum. This iterative process

continues until the solution converges to local and global optima.

Objective function in this algorithm is considered asmaximumbiomass yield

(local force) at the organism level and maximum community biomass (commu-

nity force) at the systems level. Summation of these two forces defines the
l Metabolism 22, 320–331, August 4, 2015 ª2015 Elsevier Inc. 329



direction of optimization through expansion of the feasible space. The commu-

nity force is adjusted by centrality scores assigned to each species based on

the network topology of the community established in the initialization proce-

dure. Two centrality degrees, power centrality and degree centrality, are used

to calculate controlling power of species as effectors and receptors.

Maximize S= ½4 3 q0 �: CE : um:d;

where

s = a:X + b:Zin +g:Y + d:Zout

um =
mðiÞ

minðmPLÞ

4= ½a; b; g; d� : Coefficients matrix

q= ½X; Y ; Z� : Inputs; outputs and connecting parameters

PL : Primary species list :

d is a binary vector that activates certain parameter in the objective equation.

This binary vector is corrected by imposing the relative centrality scores of

species. m(i) is the biomass yield of individuals, and mPL is biomass yield of

species belonging to PL.

Statistical Analysis

Peaks obtained from 144 samples (HGC and LGC subjects) at two different

time points (0 hr and 6 weeks) were aligned and subjected to retention time

correction using XCMS (Smith et al., 2006). About 295 features (m/z; mass-

to-charge ratio) with aligned peaks were normalized by the quantile normaliza-

tion method (Amaratunga and Cabrera, 2001). Mass fragmentation spectra of

each featured peak werematched against the reference spectra obtained from

METLIN (Tautenhahn et al., 2012) and the Human Metabolome Database

(HMDB) (Wishart et al., 2013), using the exact template-matching approach

(Pavlidis, 2003). Spectra with 90% match probability were considered for

further analysis. Again, the retention index of the matched peak(s) (m/z) was

verified with metabolites in HMDB (Wishart et al., 2013). Thus, spectral match

and retention index ensure identification and annotation of metabolites.

Intensity (or expression) of 15 metabolites of interest was extracted for HGC

and LGC subjects at two time points. Two sample t tests were performed

for detecting the significant metabolites, and a p value < 0.05 was considered

to be significant. All data are shown as mean ± 1 SD.
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