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Abstract

Motivation: In recent years, genome-scale metabolic models (GEMs) have played important roles

in areas like systems biology and bioinformatics. However, because of the complexity of gene–

reaction associations, GEMs often have limitations in gene level analysis and related applications.

Hence, the existing methods were mainly focused on applications and analysis of reactions and

metabolites.

Results: Here, we propose a framework named logic transformation of model (LTM) that is able

to simplify the gene–reaction associations and enables integration with other developed methods

for gene level applications. We show that the transformed GEMs have increased reaction and

metabolite number as well as degree of freedom in flux balance analysis, but the gene–reaction

associations and the main features of flux distributions remain constant. In addition, we develop

two methods, OptGeneKnock and FastGeneSL by combining LTM with previously developed

reaction-based methods. We show that the FastGeneSL outperforms exhaustive search. Finally, we

demonstrate the use of the developed methods in two different case studies. We could design fast

genetic intervention strategies for targeted overproduction of biochemicals and identify double

and triple synthetic lethal gene sets for inhibition of hepatocellular carcinoma tumor growth

through the use of OptGeneKnock and FastGeneSL, respectively.

Availability and implementation: Source code implemented in MATLAB, RAVEN toolbox and

COBRA toolbox, is public available at https://sourceforge.net/projects/logictransformationofmodel.

Contact: nielsenj@chalmers.se or qhua@ecust.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics Online.

1 Introduction

Genome-scale metabolic models (GEMs), are a useful platform for

systems biology, and have been widely used in industrial biotechnol-

ogy applications. There are many successful stories showing the

usefulness of GEMs in rational design of genetic modifications of

microorganism for improved production of specific metabolites

(Brochado et al., 2010; Choi et al., 2010; Fowler et al., 2009; Kim

et al., 2013; Matsuda et al., 2011; Nocon et al., 2014; Ranganathan

and Maranas, 2010; Ranganathan et al., 2012; Xu et al., 2011).

In addition, GEMs have been used as scaffolds to integrate high
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throughput experimental data (Chandrasekaran and Price, 2010;

Hamilton et al., 2013; Hoppe et al., 2007) and provide new biolo-

gical insight into the physiology of different microorganisms

(Feist and Palsson, 2010; Harrison et al., 2007; Reznik et al., 2013;

Segre et al., 2005; Suthers et al., 2009; Tepper et al., 2013). More

recently, human GEMs have been employed to identify novel prog-

nostic biomarkers and potential drug targets for designing efficient

treatment strategies (Agren et al., 2014; Barabasi et al., 2011;

Jerby-Arnon et al., 2014; Ji and Nielsen, 2015; Mardinoglu et al.,

2013a, b; Mardinoglu and Nielsen, 2012, 2015; Nam et al., 2014;

Ryan et al., 2014; Yizhak et al., 2014).

Although GEMs are widely used, their uses have some limita-

tions in genetic related applications. A number of bi-level linear pro-

gramming methods have been developed for in silico metabolic

engineering, such as OptKnock (Burgard et al., 2003), OptReg

(Pharkya and Maranas, 2006), OptForce (Ranganathan et al.,

2010), Genetic Design through Local Search (GDLS) (Lun et al.,

2009) and Genetic Design through Branch and Bound (GDBB)

(Egen and Lun, 2012) and these methods have only identified poten-

tial targeted reactions (knockouts or up/down regulations) rather

than targeted genes which can be modified in vivo. Moreover, these

reaction-based methods did not consider the genetic interactions in

the context of protein complexes and isoenzymes, which result in

strategies genetically complicated or infeasible. Recently, another

bilevel-based method, OptORF (Kim and Reed, 2010), was de-

veloped for identifying metabolic and regulatory gene that are tar-

gets for knockout or upregulation which may lead to

overproduction of desired chemicals. OptORF employed a three-di-

mensional gene–enzyme reaction array to enable gene level predic-

tion. Nevertheless, this array needs to be systematically defined by

the user for each model, which restrict the widely use of OptORF in

strain design. On the other hand, OptGene and its derived algo-

rithms (Chong et al., 2014; Choon et al., 2014; Patil et al., 2005),

could identify gene knockout strategies. However, these methods

are based on Genetic Algorithm, which is basically random muta-

tion and would probably miss the optimal solution.

Moreover, synthetic lethality (SL) analysis, which identifies

combinations of mutations in two or more genes leading to cell le-

thality in silico, could be applied for identification of small hairpin

RNA (shRNA) (Bernards et al., 2006) and CRISPR (Cho et al.,

2013) targets for cancer treatment. However, the huge computa-

tional cost of triple or higher level SL makes it infeasible for its use

in biotechnology applications. There were two methods developed

for efficient identification of synthetic lethal reactions (Pratapa

et al., 2014; Suthers et al., 2009). But when it comes to synthetic

lethal genes analysis, one of them becomes unavailable, while the

other one requires manual identification of ‘appropriate equations’

relating binary variables of genes and reactions, which is time

consuming.

This gene level application problem originates from the gene–-

protein relations (GPRs) information loss in the gene–reaction

association matrix (GRAM). The GRAM is a predefined binary ma-

trix in GEMs, whose ijth elements is 1 if ith reaction is associated

with jth gene and is 0 otherwise. GRAM is the only mathematically

friendly part for most of the existing methods to capture the GPRs

information. However, GRAM does not include any information of

the relationship among gene sets. For example, one cannot know

whether a reaction is associated with a protein complex (AND rela-

tionship in gene set) or with isoenzymes (OR relationship in gene

set) directly from GRAM. Therefore, in order to correctly integrate

GPRs information into the simulation algorithms, one needs to

interpret the information into mathematical expressions, which is

time-consuming and tedious, and sometimes it may even be ex-

tremely difficult to reconstruct the correct relationship.

Here, we introduced a GEM modification algorithm, called logic

transformation of model (LTM), which extended the original GEM

into a logically equivalent with much better genetic applicability.

In this algorithm, pseudo reactions and metabolites were added

into the GEM based on the GPR relationships described in GEMs to

simulate the isoenzyme and protein complex relationships. Hereby

reactions are associated with no more than one gene. Therefore,

GPRs information was included in the stoichiometric matrix of

GEM, and we can directly apply GRAM to all kind of optimiza-

tion programming algorithms, such as OptKnock, OptReg and

OptForce. Furthermore, LTM could extend the use of previously

well designed methods that were only developed for reaction simula-

tions in gene level applications. We developed OptGeneKnock,

which incorporated LTM with a bilevel mixed integer linear pro-

gramming (MILP)-based knockout method. The MILP problem was

then solved by truncated branch and bound, to obtain near optimal

gene knockout strategies with desired phenotype. In addition, by

incorporating LTM with a previous method (Pratapa et al., 2014),

which was developed for efficient identification of reaction SL, a

new method called FastGeneSL was designed for genetic SL analysis.

We showed that FastGeneSL greatly outperformed exhaustive

analysis in gene SL analysis for GEMs of Escherichia coli,

Saccharomyces cerevisiae and hepatocellular carcinoma (HCC).

Finally, we performed two case studies for demonstrating the

capability of the here presented methods. First, we identified gene

targets that may increase the production of desired biochemicals by

designing fast genetic intervention strategies by OptGeneKnock

using two different GEMs of E.coli. Second, we employed

FastGeneSL together with a HCC GEM for gaining biological in-

sight into underlying molecular mechanism of HCC and identifying

potential shRNA targets which may inhibit tumor growth.

2 Materials and methods

2.1 Logic transformation of model
Reaction associated with more than two genes were extended into

a subnetwork which is a logic equivalent based on its original GPR

relationship through the use of LTM. The relationship among genes

in gene sets controlling the same reaction were divided into two

groups, protein complexes and isoenzymes. For example, if a reac-

tion is associated with gene A and gene B, (A and B) means that

both genes are needed to catalyze the reaction, while (A or B) means

that either of these genes can catalyze the reaction and the associated

reaction can only be blocked when both genes are deleted. Pseudo

metabolites and reactions which do not exist in reality were added

into the GEM to simulate the logical relationships of reactions and

their gene sets. In case of (A and B), the reaction was separated into

two pseudo reactions associated with gene A and gene B, respect-

ively (the lower left of Fig. 1). And to keep the original flux bounds,

the flux bounds are set the same as the original reaction. While in

case of (A or B), the reaction was split into two equivalent pathways

which are associated with genes A and B separately, and additional

arm reactions were added to control the overall flux (top right of

Fig. 1). The arm reactions were set the same upper (UBoriginal) and

lower (LBoriginal) bounds with the original reaction, while the

bounds of reactions inside the pseudo network were set differently.

If UBoriginal>0 and LBoriginal>0, then for all inner pseudo reactions,

UB¼UBoriginal, LB¼0; if UBoriginal<0 and LBoriginal<0, then

UB¼0, LB¼LBoriginal; otherwise, UB¼UBoriginal, LB¼LBoriginal.

Logical transformation of model for gene level applications and analysis 2325
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By setting reaction bounds as above, all kinds of in silico genetic ma-

nipulation (up/down regulation and knockout) would have the same

effect as in the original GEM. For more complex gene sets, this prin-

ciple can also be applied step by step (Supplementary Fig. S1).

However, in order to reduce the number of redundant pseudo reac-

tions, arm reactions were only added to both side of the overall net-

work (the lower right of Fig. 1). This kind of transformation

decomposed reactions with comprehensive GPRs into several

pseudo reactions. Thus, all reactions that are associated with more

than one gene in the GEM were broken down into pseudo reactions

associated with at most one gene.

In order to further elucidate how LTM simplifies the GRAM, we

illustrated the principles of LTM using a toy model (Fig. 2). This toy

model included four exchange reactions and five intracellular reac-

tions. Three intracellular reactions were associated with more

than one gene, and other two were associated with only one gene.

After applying LTM, reactions without gene association (exchange

reactions) and associated with only one gene were kept the same

and other reactions were replaced with an extended subnetwork

according to their GPR associations.

In the extended model, all reactions were associated with no

more than 1 gene. Therefore, the GRAM of the extended model be-

came simple and easy to use for gene target identification. For

example, if ‘g1’ and ‘g3’ were knocked out, the binary reaction

knockout vector could be easily obtained by multiplying GRAM

with a binary gene knockout vector. It should be noticed that, incor-

rect results could be obtained if the same principle is applied to the

original GRAM (Fig. 3).

2.2 OptGeneKnock
We developed OptGeneKnock by applying LTM to previously de-

veloped OptKnock (Burgard et al., 2003). Before the implementa-

tion of OptGeneKnock, GEMs were extended by LTM to obtain the

simplified GRAM. After that, an m*k binary matrix G, which

stands for the new GRAM, was obtained. In this matrix, Gik is 1 if

the ith reaction was associated with kth gene; otherwise, Gik is 0

(Fig. 3). Therefore, the problem of searching the best gene knockout

strategy was converted into a single-level MILP problem that similar

to a previously published study (Egen and Lun, 2012):

Maximize g
0
v

Subject to
Xl

k¼1
xk�C

xk 2 0;1f g k ¼ 1; . . . ; l

Sv ¼ 0

Gx ¼ y

1� yið Þa� vi� 1� yið Þb i ¼ 1; . . . ;m

f
0
v ¼

Xm

i¼1
wibi � liai i ¼ 1; . . . ;m

fi �
Xn

j¼1
k jSij �wi þ li � n i ¼ 0 i ¼ 1; . . . ;m

�Dyi� n i�Dyi i ¼ 1; . . . ;m

w; l�0

where g is the target objective vector, whose ith element is the

weight of the ith reaction that leading to desired overproducing

phenotype; v is the flux distribution vector, whose ith element stands

for the flux of the ith reaction; x is the binary gene knockout vector,

whose kth element is 1 if the kth is mutated and is 0 otherwise; C is

the maximum number of genes that are allowed to be knocked out;

Fig. 1. Simple examples of logical transformation of reactions. Circles repre-

sent metabolites, and arrows stand for reactions. Dashed arrows indicate the

arm reactions. ‘M1’ and ‘R1’ represent 1th pseudo metabolite and reaction,

respectively

Fig. 2. Illustration of LTM using a toy model. Dashed arrows present ex-

change reactions and are marked as ‘b1’ to ‘b4’. Intracellular reactions were

marked as ‘R1’ to ‘R5’, and each has an arrow indicating the direction. ‘g1’ to

‘g7’ were genes. ‘ARx-y’, ‘PRx-y’ and ‘Mx-y’ denote the yth arm reaction,

pseudo reaction and pseudo metabolite of reaction ‘RX’, respectively

Fig. 3. Comparison between GRAMs of toy model before and after LTM.

In vectors of gene or reaction knockouts, if ‘g1’ or ‘R1’ is knocked out, the

corresponding binary variable is 1; otherwise, it is 0
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S is the m*n stoichiometric matrix; a, b are the upper and lower

bound vectors, whose ith element records the upper and lower

bound of flux through the ith reaction, respectively; f is the biolo-

gical objective vector, whose ith element is the weight of the ith reac-

tion in biological objective; k is the dual variable for the equality

constraints; l and v are the dual variables for the lower and upper

bounds, respectively; n is the dual variable corresponding to the con-

straint vi¼0 if xi¼1 and D is a scalar which is set to 100. In this

MILP problem, the gene knockout vector, x, was easily converted to

a reaction blocking vector, y, by simply multiplying with the G ma-

trix. The problem was then solved by the truncated branch and

bound algorithm from a previous study (Egen and Lun, 2012).

2.3 FastGeneSL
We developed FastGeneSL which accelerates the identification of

synthetic lethal genes by prescreening the gene candidates by apply-

ing LTM to FastSL (Pratapa et al., 2014; Suthers et al., 2009). First,

we extended the GEM by LTM to simplify the GPR relationships.

As a result, we could easily find genes from reaction sets. Then, the

principle of FastSL is applied. The biological objective was opti-

mized, and the flux distribution was obtained. Here, reactions carry-

ing non-zero fluxes, Rf, were selected, and then genes associated to

these reactions, Gf, were also screened. It should be noted that, all

essential genes were included in Gf. Therefore, it was possible to

perform exhaustive gene single mutations within Gf and calculate

the flux distributions for each mutant. As a result, Gf was divided

into two parts, Gf0, if the flux to biological objective is below cutoff

(set to 5% of maximum in this study), and Gf1, otherwise. Thus,

Gf0 is the essential gene group, and Gf1 is the candidate group for

double gene SL analysis. In double gene SL analysis, the flux distri-

butions with single mutation within Gf1 were selected one at a time.

Similar to the previous process, Gf0’ and Gf1’ were screened for

every mutant. Consequently, all the synthetic lethal gene pairs were

identified by combining each Gf0’ with the selected gene in Gf1. As

described, triple, tetra and high-order synthetic lethal gene sets can

be obtained in the same way.

2.4 Models and simulations
An E.coli core metabolic model (Orth et al., 2010) was used as a

platform for demonstrating the basic feature of the LTM. In add-

ition, GEMs of E.coli, iAF1260 (Feist et al., 2007), and S.cerevisiae,

Yeast 7.11 (Aung et al., 2013), which are manually reconstructed

and commonly used models, were directly employed for knockout

simulation and genetic SL analysis, respectively. In the case of

microaerobic succinate production in E.coli GEM iAF1260, the glu-

cose uptake was set to 10 mmol/(gDW*h), and the O2 intake was set

to 5 mmol/(gDW*h). For comparison with OptORF, we also em-

ployed a updated E.coli GEM from iJR904 (Reed et al., 2003) to

simulate ethanol production under anaerobic condition, and the up-

take of glucose and O2 were set to 18.5 mmol/(gDW*h) and

0 mmol/(gDW*h), respectively. In addition, genes encoding ATP

synthase were excluded from knockout so that all conditions were

consistent with the original study (Kim and Reed, 2010). For the

shRNA targets identification, a generic human HCC, liver cancer

GEM was used (Agren et al., 2014). However, since there are a lot

of gene sets with unknown gene–reaction relationships (isoenzymes

or protein complex), in order to get more reliable results, all these

relationships were treated as ‘or’ in HCC GEM to make it a stronger

case against shRNA. We also performed toxicity test for the identi-

fied targets through the use of GEM for healthy hepatocytes within

liver tissue, iHepatocytes2322 (Mardinoglu et al., 2014) and tested

if the identified targets disrupt the biological tasks known to occur

in normal human liver tissue. These 256 metabolic tasks were

defined based on the known biological functions of the healthy

hepatocytes (Mardinoglu et al., 2014).

In this study, Matlab (version 8.0.0.783 (R2012b)) incorporated

with COBRA Toolbox 2.0 (Schellenberger et al., 2011) as well

as RAVEN Toolbox (Agren et al., 2013) was employed for GEM op-

eration and analysis. Flux balance analysis (FBA) which assumes that

the metabolic network is a pseudo steady-state system was used for

flux calculation. The Gurobi solver (version 5.6.3, academic) and

Mosek solver (version 6) were used to solve all the optimizing prob-

lems. All procedures were implemented on a personal computer with

3.00 GHz Intel(R) Core(TM) i7-3540M CPU and 8.00 GB RAM.

3 Results

3.1 Comparison between original model and the

extended logic model
To illustrate the effect of LTM in the model content, we made direct

comparison between the original model and the extended logic

model in several aspects.

First, we compared the number of reactions, metabolites and

genes in five models used in this study before and after applying

LTM. As shown in Table 1, the numbers of reactions and metabol-

ites were increased around 2- to 5-fold, while the number of genes

was kept constant as expected. The explanation to this difference in

fold changes of numbers of reactions and metabolites among differ-

ent GEMs was that the models have different prevalence of protein

complexes and isoenzymes reactions (Supplementary Table S1).

LTM only works on reactions controlled by genes, thus reactions

with more complex gene associations will be extended more.

It should be noticed that, HCC GEM and iHepatocytes2322 had

more significant size increase compared with models of microorgan-

isms, which could be explained by the superior complexity of human

GPRs. However, the size of HCC GEM was still larger than the

iHepatocytes2322 despite the small gene and original reaction num-

bers which is caused by the different way of GPRs interpretation.

Second, differences in FBA performance between the original

and extended models were observed. We did singular value decom-

position (SVD) to the E.coli core model and its extended version and

the singular values were ranked (Fig. 4). It has been shown that the

extended model had bigger singular values, which implies a higher

degree of freedom in the solution space. Explanation to this is that

the split of isoenzyme associated reactions, which offered alternative

Table 1. Model sizes before and after LTM

Models Type Reaction

number

Metabolite

number

Gene

number

E.coli core model Original 95 72 137

Extended 337 273 137

iAF1260 Original 2382 1668 1261

Extended 7287 5372 1261

Yeast 7.11 Original 3490 2220 910

Extended 6780 4742 910

iHepatocytes2322 Original 7930 5686 2322

Extended 20 787 18 097 2322

HCC GEM Original 4820 4099 1779

Extended 26 282 18 030 1779

‘Original’ represents the original model, and ‘Extended’ represents the logic

model after LTM.
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solutions. However, this would not affect the fluxes of the un-

changed reactions (as shown in Fig. 5).

At last, the GPRs of the extended model were validated by

double gene deletion analysis. Growth rate of all combinatory

knockouts of two genes were calculated for both models, and the

result of extended model was exactly the same as that of the original

model (Supplementary Fig. S2), which clearly showed that GPRs

between both models are equivalents.

Therefore, as described above, it was concluded that LTM

increases the number of reactions and metabolites, but it kept the major

characteristics of flux distribution and GPRs of the original model.

3.2 Case study 1: incorporating OptGeneKnock

with truncated branch and bound for fast screening

of gene knockouts
Logic models extended by LTM have simplified GRAM, and thus

enabled identification of gene targets of many previously developed

bilevel MILP-based methods. In this study, we developed a new

method, named OptGeneKnock, by straightforwardly integrating

LTM with a previous method (Egen and Lun, 2012). The previous

one could only deal with predictions of gene set knockouts, which is

actually discovered by reaction knockouts. Searching for the optimal

knockout strategies of reactions (gene sets) and individual genes are

two independent questions (Supplementary Fig. S3). In addition,

only reactions with exactly the same gene sets were simultaneously

blocked, which means that the comprehensive GPRs were not

correctly captured. However, when using OptGeneKnock, these

problems are solved since reactions are only associated with no

more than one gene. Therefore, the in silico gene knockouts can be

performed by solving the MILP problem with truncated branch and

bound.

Using the extended logical model of E.coli, we have identified

gene knock-out strategies (one to five knockouts) for anaerobic etha-

nol and microaerobic succinate overproduction with OptGeneKnock

(Table 2). Unlike most of the previous methods (OptKnock et al.), the

strategies obtained by OptGeneKnock were all actual gene targets,

which are user friendly for in vivo validation. Interestingly, the single

deletion of pntB (encoding pyridine nucleotide transhydrogenase beta

subunit) will significantly improve the production of ethanol. In

E.coli, pntA and pntB encode the alpha and beta subunit of mem-

brane-bound pyridine nucleotide transhydrogenase, which couples the

reversible reduction of NADP by NADH. Thus, pntA and pntB in-

volve in two reactions: NADTRHD and THD2. While sthA encodes

a soluble pyridine nucleotide transhydrogenase by the oxidation of

NADPH. Therefore, the deletion of pntB will only block the reaction

THD2, and lead to the overproduction of ethanol (Table 2). In the

case of double deletion, both focA and focB encode the formate trans-

porters. The deletion of focA and focB will block reaction FORt, and

thus block the transport of formate into cytosol. The best single and

double gene knock-out strategies for ethanol production both resulted

in blocking of one reactions, and this clearly showed the difference be-

tween reaction and gene level mutation. In addition, the optimal 5

gene knockout strategy for succinate overproduction obtained re-

sulted in simultaneous blocking of 20 reactions, which is quite diffi-

cult to be predicted by other reaction-based methods. Mutations of

ptsI, pykA and pykF cut off all direct transformation from PEP to

pyruvate, which shifted the flux from pyruvate to the tricarboxylic

Fig. 4. Cumulative fractional contribution versus rank-ordered singular value.

Dashed line represents the behavior of original model, whereas solid line rep-

resents the extend model’s

Fig. 5. Flux comparison of unchanged reactions between E.coli core models

before and after LTM

Table 2. Predicted gene knockout strategies for ethanol and

succinate production in E.coli

Case C Time Knockout genes N G P

Ethanol 1 20 pntB 1 0.46 17.98

2 20 focA, focB 1 0.42 30.74

3 100 focA, focB, pgi 2 0.24 33.47

4 200 focA, focB, pgi, ptsH 16 0.19 34.22

5 200 pflA, focB, pgi, ptsH, gdhA 17 0.17 34.47

Succinate 1 100 sdhD 1 0.40 0.00

2 100 sdhD 1 0.40 0.00

3 800 pykA, pykF, ptsI 18 0.21 0.41

4 3100 pta, eutD, sdhD, atpF 4 0.14 5.55

5 3400 ptsI, focA, focB, pykA, pykF 20 0.19 8.32

In the ‘Case’ column, ‘Ethanol’ means anaerobic ethanol production in

updated iJR904, while ‘Succinate’ stands for microaerobic succinate produc-

tion in iAF1260. ‘C’ represents the maximum number for knockout. ‘Time’

means computational time for obtaining the strategy, and the unit is second.

‘N’ represents the number of reactions blocked by the knockout strategies.

‘G’ and ‘P’ stands for the growth and succinate production rates of the knock-

out mutants, respectively, and the units are mmol/(gDW*h).

2328 C.Zhang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/14/2324/254735 by C
halm

ers U
niversity of Technology. The Library, dept. og M

athem
atics and C

om
puter sciences user on 11 D

ecem
ber 2024

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv134/-/DC1
.
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv134/-/DC1
,


acid (TCA) cycle and hereby enhanced the production of succinate.

On the other hand, knockouts of focA and focB blocked the flux to

formate as byproduct. Since formate is not a common byproduct of

E.coli, the knockout of these two genes may be less important than

the others. This complex gene knock strategies obtained by

OptGeneKnock further proved that the optimal gene-level knockouts

are not limited by the number of reactions affected.

In addition, the results highlighted the great efficiency of

OptGeneKnock. Most of the strategies were obtained within

minutes, and none of them exceeded 1 h. In addition, our ethanol-

producing strategies could result in better solutions (even global

optimal solutions for levels 1–level 3) in all conditions in com-

parison to those obtained by OptORF without regulation

(Supplementary Table S2). Therefore, we concluded that

OptGeneKnock had less computational cost and found better solu-

tions. Thus, the development of OptGeneKnock gave a successful

example showing that LTM could extend previously developed

reaction-based bilevel MILP method to gene level applications.

3.3 Comparison between FastGeneSL and

exhaustive search
We also developed a method called FastGeneSL for efficient gene SL

analysis by combining LTM with FastSL which is a previous reac-

tion-based method (Pratapa et al., 2014). GEMs pretreated by LTM

which simplifies the GPRs is a prerequisite for FastGeneSL. Firstly,

we performed both FastGeneSL and an exhaustive search for double

gene SL analysis of iAF1260 and Yeast 7.11. Compared to the

exhaustive algorithm, FastGeneSL was nearly 20 times faster while

obtaining the same results (Supplementary Table S3). In addition,

triple gene SL analysis was implemented by FastGeneSL for both

GEMs as well as GEM for HCC, and the computational costs of ex-

haustive search were calculated (Table 3). FastGeneSL was much

faster than exhaustive search (up to more than 100 times) and thus

enabled triple gene SL analysis for large GEMs. Furthermore,

FastGeneSL showed an increased improvement in both double and

triple SL analysis for Yeast 7.11 (910 genes), iAF1260 (1261 genes)

and HCC GEM (1779 genes), which suggested it can be applied

to more comprehensive models. Therefore, FastGeneSL is another

successful example showing that LTM could extend the use of

existing reaction-based methods to gene level analysis.

3.4 Case study 2: identification of shRNA/CRISPR

targets for cancer therapy with FastGeneSL
We exhibited the applicability of FastGeneSL in novel shRNA

and CRISPR targets identification. These both techniques are used

in suppression of the expression of genes in biotechnology applica-

tions. Gene SL analysis could help us find potential shRNA/CRISPR

targets that can inhibit or kill the growth of the tumor while keep

normal cells alive. In this study, we used HCC GEM for identifying

the shRNA/CRISPR targets (Agren et al., 2014) and performed a

toxicity test using healthy hepatocytes model iHepatocytes2322

(Mardinoglu et al., 2014).

Essential genes as well as double and triple synthetic lethal genes

sets were identified by applying LTM and FastGeneSL to HCC

GEM. 67 essential genes as well as 85 double and 175 triple syn-

thetic lethal gene sets were found to inhibit the growth of HCC

tumors. We also performed in silico toxicity test to reveal the effect

of these identified targets in healthy hepatocytes. We found that

34 of the essential genes as well as 44 of double and 95 of triple

synthetic lethal gene sets did not disrupt any of the 256 biological

functions that are known to occur in healthy hepatocytes

(Supplementary Table S4). Hence, we suggested that these identified

targets can be used for designing novel effective cancer treatment

strategies.

The result of gene SL analysis also provided biological insight

into the metabolism of HCC. In cancer cells, glutamine can be con-

verted to citrate via conversions to glutamate, a-ketoglutarate

and isocitrate which partially reverses the TCA cycle in the process.

This glutamine-derived citrate could then be incorporated in the

fatty acid biosynthesis (FAB) which is an essential pathway for

tumor growth. Through our analysis, we found that the targeting

genes involved in glutaminolysis including glutamate dehydrogen-

ases (GLUD1 and GLUD2), glutamic-oxaloacetic transaminase

(GOT2), glutamic-pyruvate transaminase (GPT1) as well as gluta-

minase (GLS) in synthetic lethal gene sets can be used to inhibit

or kill the growth of HCC tumors.

We identified the citrate synthase (CS), pyruvate carboxylase

(PC) and pyruvate dehydrogenase (PDHA2) in synthetic lethal gene

sets as potential targets for inhibition of the HCC tumor growth.

Pyruvate transported into the mitochondria is converted to acetyl-

CoA by PC and PDHA2. Next acetyl-CoA is converted to citrate by

CS and exported to the cytosol where citrate is reconverted to ace-

tyl-CoA. This cytosolic acetyl-CoA can then enter the FAB and thus

serve as a substrate for the production of lipids in HCC. Previously,

it has been shown that fatty acid synthase which overexpressed in

tumor cells is a general feature for tumor cells (Flavin et al., 2010).

There are also mounting evidence to suggest that altered lipid me-

tabolism is a common feature of cancer cells (Zhang and Du, 2012).

FAB requires large amounts of NADPH and the increased activ-

ity of the pentose phosphate (PP) pathway would indeed satisfy the

increased demand for reducing power resulting from induction of

FAB. We identified genes involved in PP pathway including glucose-

6-phosphate dehydrogenase (G6PD), transaldolase 1 (TALDO1)

and transketolase (TKT) as targets for inhibiting/killing the growth

of HCC tumors.

We also identified the genes involved in fatty acid beta-oxida-

tion, cholesterol biosynthesis, amino acid synthesis and amino acid

transportation that are known to have major roles in the formation

of biomass components as anticancer drug targets. Previously, anti-

cancer drug targets involved in the similar pathways were identified

in HCC tumors (Agren et al., 2014) and our analysis confirmed the

potential use of previously identified targets. In addition, SLC38A4

which controls the transportation of amino acids, especially cationic

amino acid was identified as anticancer drug target. This implicated

that HCC tumors had a specific amino acid metabolism that is dif-

ferent from other cancer cells. We observed that the predicted anti-

cancer drug targets for inhibiting/killing the growth of HCC tumors

Table 3. Computational cost of FastGeneSL and exhaustive

algorithm

Model SL level CPU time of

exhaustive search

CPU time of

FastGeneSL

Yeast 7.11 Double �8.0 hours �0.5 hours

Triple �101.4 days* �3.7 days

iAF1260 Double �15.4 hours �0.8 hours

Triple �270.1 days* �2.0 days

HCC model Double �30.8 hours* �2.0 hours

Triple �759.0 days* �6.1 days

Data marked with ‘*’ means time is estimated by the number of linear

programs (LP) required for exhaustive search. Each LP takes an average

of 0.07 s in this estimation. All results were validated with original GEMs,

and the results were consistent before and after LTM.
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correctly captured the general feature of HCC through the use of

our method.

4 Discussion

In this article, we developed a method, called LTM, which trans-

forms a GEM to a logically equivalent extended model to enable

gene level applications. The transformation enlarges the size of

GEMs while keeps the correct GPRs, and the FBA results of ex-

tended models are equivalent to the original models despite the

increased degree of freedom.

We showed the applicability of our method in two different bio-

technology applications. We first showed the utility of LTM in opti-

mization frameworks. The optimization frameworks could be easily

applied to genetic solution prediction by incorporating with LTM.

This implicated the wide application of LTM with many well

designed methods such as OptKnock and OptForce (Burgard et al.,

2003; Ranganathan et al., 2010). We developed OptGeneKnock

by combining OptKnock and LTM as well as truncated branch

and bound algorithm, and showed its capability in designing

gene knockout strategies leading to overproduction of desired

biochemical.

In addition, we developed a gene SL analysis method called

FastGeneSL. This method combined LTM and a previous method

FastSL, and enabled efficient genet SL analysis in GEMs for different

organisms. We demonstrated that the efficiency was greatly im-

proved by FastGeneSL and this enable identification of triple SL

genes in GEMs which was previously infeasible. Next, by employing

FastGeneSL, we identified novel anticancer drug targets that can be

used for inhibition of the HCC tumors and performed in silico tox-

icity test for these identified targets. We found the most prominent

distinguishing metabolic features of HCC and observed that here

identified targets can be used in the drug development process for

efficient treatment of HCC tumors.

By the two biotechnology applications tested in this study, we

could conclude that although the principle of LTM is simple, it

greatly benefits gene level analysis and applications. In addition,

many previous methods (e.g. OptKnock and FastSL) could be ex-

tended to gene level applications (e.g. OptGeneKnock and

FastGeneSL) by incorporating with LTM in a straightforward way.

Furthermore, as GPRs are simplified after LTM, complex gene set

controlled reactions are avoided and it becomes very convenient to in-

tegrate different omics data into extended models. Thus, LTM could

also be used together with multiomic data integrating methods like

GIMME and PROM (Becker and Palsson, 2008; Chandrasekaran

and Price, 2010). In total, we could conclude that LTM is a useful

tool which facilitates the application of GEMs and we are therefore

confident that it will find wide use in the community.
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