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h i g h l i g h t s

• We have studied the possibilities for cloaking of structures using transformational elastodynamics.
• An almost perfect cloak is obtained by letting the size of the structure tend to zero in the fictitious domain.
• Two models for elastodynamic cloaking are considered; the restricted and the unrestricted micropolar medium.
• The more physical unrestricted micropolar medium approaches the restricted case for high couple stiffness.
• The possibility to cloak a cylinder in 2D has been shown, limited by the coefficients in the unrestrictedmicropolarmedium, in numerical

simulations.
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a b s t r a c t

Transformational elastodynamics can be used to protect sensitive structures from harmful
waves and vibrations. By designing thematerial properties in a region around the sensitive
structure, a cloak, the incident waves can be redirected as to cause minimal or no harmful
response on the pertinent structure. In this paper,we consider such transformational cloak-
ing built up by a suitably designed metamaterial exhibiting micropolar properties. First, a
theoretically perfect cloak is obtained by designing the properties of an (unphysical) re-
strictedmicropolar material within the surroundingmedium. Secondly, we investigate the
performance of the cloak under more feasible design criteria, relating to finite elastic pa-
rameters. In particular, the behavior of a physically realizable cloak built up by unrestricted
micropolar elastic media is investigated. Numerical studies are conducted for the case of
buried as well as surface breaking structures in 2D subjected to incident Rayleigh waves
pertinent to seismic loading. The studies show how the developed cloaking procedure can
be utilized to substantially reduce the response of the structure. In particular, the results
indicate the performance of the cloak in relation to constraints on the elastic parameters.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ancient civilizations discovered that by arranging the interface between important structures, e.g. temples, and the un-
derlying ground, it is possible to achieve some protection against seismic waves, that might otherwise damage the struc-
tures. Pliny the Elder describes a successful protective strategy, involving erecting the buildings on foundations with layers
of ‘‘sheepskins with their flecees unshorn’’ and carbon gravel [1]. With this arrangement the buildings could survive many
earthquakes with comparatively little damage, by essentially allowing the ground to slip and slide beneath the buildings.
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Fig. 1. Schematic sketches of the assumedmicrostructure of amicropolar material. (a) A typical representative volume element (RVE) on themicroscale. A
body attached to a connective fabric is embedded in an elasticmaterial. The embedded central body contributes to themicroscalemoment of inertia tensor,
as well as to the macro scale local density. The connective fabric contributes to the microscale couple stiffness tensor. (b) A small part of the micropolar
material consisting of amultitude of connected RVEs. Note that a homogenized continuummodel is used for thematerial and no calculations are performed
on the microstructural level.

A considerably more modern method to control seismic waves is the use of so-called sonic, or phononic, crystals. The
idea is to utilize in an intelligent manner the passband/stopband properties of periodic structures. [2] describes a recent
large scale experimental investigation of this type of approach to seismic protection.

Roughly a decade ago, another possible route to earthquake protection was suggested, also relying on the construction
of a carefully designed foundation. It startedwith the discovery of transformational cloaking, initially for electric impedance
tomography, by Greenleaf, Lassas, and Uhlmann [3]. Soon to followwere extensions of the approach to electrodynamics [4],
elastodynamics [5] and acoustics [6]. By now there is an extensive body of work on elastodynamic and acoustic cloaking.
Many approaches, including active cloaking [7,8], as well as the use of pre-stress [9–11], have been proposed. An approxi-
mate standard model for cloaking is given in [12].

Early on, it was suggested that cloaking could be utilized to protect structures against seismic surface waves [13], by
placing a suitable cloaking layer around the structure to be protected. To put the protecting layer on the surface, rather than
bury it beneath, may be motivated by the fact that at least at some distance from the epicenter of the seismic event causing
the seismic waves, the harmful waves are to a large extent surface waves, so-called Rayleigh waves, rather than bulk waves.
The dominance of surface waves is due to the geometric attenuation in 2D being slower than that in 3D. The type of surface
wave cloak described in [13] is an idealized plate, satisfying a wave equation that might be non-trivial to realize in practice.
Other cloak models for plates may be found in the literature, e.g., in [14,15].

A perhaps more realistic approach to Rayleigh wave cloaking is to take advantage of the fact that a graded restricted
micropolar material may be utilized for cloaking, as described in [16] and generalized in [17]. For a description of the theory
of micropolar continua, see, e.g., [18,19]. The presumed microstructure of a micropolar material is sketched in Fig. 1. Note
that the figure is only for illustration purposes as a homogenized continuum model is used in this paper. ‘Restricted’ here
indicates that the micropolar material is assumed to have infinite micro stiffness, essentially locking the micro rotation to a
constant value, typically zero. As this type of cloak in theory works for any kind of linear elastic bulk wave, it should work
also for a Rayleigh surface wave, as this may be considered as a certain superposition of vertically attenuated P and S waves.
In the present paper this is verified and checked numerically, using the commercial software COMSOL MultiphysicsTM.

The practical feasibility of utilizing gradedmicropolarity for elastodynamic cloaking, hinges to a great extent on howwell
the condition of infinite micro stiffness (a.k.a. couple stiffness) may be approximated. The problem of infinities required in
various cloaking scenarios has been pointed out repeatedly, cf. e.g. [6]. But in practice, the infinite may of course often
be supplanted by the very large. A case in point is partial cloaking by graded fiber-reinforced composites, where the
inextensibility of the fibers may be replaced by a very large stiffness along the fiber direction as compared to the stiffness
perpendicular to the fibers [20]. Similarly, it is of interest to see how well a micropolar cloak with high couple stiffness can
approximate the (potentially perfect) restricted micropolar cloak. There is also the possibility of mapping the hidden object
not to a point (or line) but to a small sphere (or cylinder) so as to avoid infinities due to singular points of the mapping.
While this again would make the cloak less than perfect, this drawback might be offset by making it possible to actually
manufacture. Similar suggestions for partial cloaking may be found in the literature: in [21], it was proposed to map a ball
of small, but finite, radius to the inner boundary, and in [6] and [22] regularization was applied.

Another question, also related to the potential real-world performance of a micropolar cloak, is the extent to which the
actual size of the microscale affects the performance of the cloak. While this is of course a matter that properly should
be investigated experimentally, it is here suggested that it is possible to get some information on this scale dependence
directly from the finite element analysis of the cloak. Contrary to most other contexts, where mesh dependence effects are
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Fig. 2. The three types of bodies occupying the regionB◦ or the regionB, respectively: Body ① with homogeneous isotropic elastic Cauchymaterial (Lamé
parameters λ◦, µ◦ , and mass density ρ◦); Body ② with anisotropic, inhomogeneous (unrestricted) micropolar medium (stiffness tensor C = C(x), couple
stiffness tensor D = D(x), moment of inertia density tensor ȷ, and mass density ρ = ρ(x)); Body ③ with restricted micropolar medium. Upper row: 3D
case, with P ◦ being a point. Lower row: Plane strain case, with P ◦ being a line perpendicular to the plane of displacements.

undesirable, the mesh dependence of the solution to the Rayleigh wave scattering problem considered in this paper carries
important design information.

As mentioned above, the importance of boundary conditions was recognized early in the history of seismic protection
schemes. In this paper we consider the importance of the boundary conditions for the effectiveness of the (restricted and
general) micropolar cloaks against Rayleigh waves. In particular we analyze the inner boundary conditions between the
cloaked structure and the cloaking layer.

It could be argued that any cloaking type seismic protection would be far to costly to implement, thus making the
considerations of the present paper a very ‘academic’ exercise. While it is no doubt true that any such cloak will be costly,
the cost should of course be weighted against the possible benefits from its use. At present, there are well over four hundred
nuclear power plants being operated worldwide. The number is increasing steadily, with roughly sixty plants presently
under construction in more than a dozen countries. Many existing and planned nuclear power stations are in or near
earthquake zones, and a nuclear plant is often supposed to have a life time in excess of a century. The risk of a seismic event
causing a major nuclear disaster, with enormous ensuing human and financial costs, is therefore probably not negligible.
The cost of constructing cloaking foundations when new nuclear power plants are built might be motivated in this manner.
The time seems ripe for serious consideration of this approach to seismic protection.

2. The cloaking transformation and two kinds of micropolar continua

2.1. Preliminaries

Elastodynamic transformational cloaking theory, of the type introduced by Brun et al. [16], essentially in the systematic
form given by Norris and Shuvalov [17] is described in the present section. It is assumed that all deformations and
deformation gradients are in the linear regime.We consider three different settings as specified in Fig. 2. The first body, Body
①, is a homogeneous, isotropic Cauchy elastic solid, with a point P ◦ removed. The second, Body ②, is an inhomogeneous,
anisotropic ‘unrestricted’micropolar elastic solid,with a ball of radius r0 removed.Hereweuse ‘unrestricted’ to denote that no
couple stiffness nor rotational inertia of the microstructure of the micropolar material is set to infinity, and no ‘hand of god’
type of constraint is imposed on the micropolar microstructure. The third body, Body ③, is an inhomogeneous, anisotropic
restrictedmicropolar elastic solid,with a ball of radius r0 removed. The restrictedmicropolar body has infinite couple stiffness
tensor, and/or infinite micro moment of inertia tensor.
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The homogeneous Cauchy elastic body (the quantities related to which are denoted by a superscript circle ‘‘◦’’), and the
two inhomogeneous micropolar continua are assumed to have identical outer boundaries, Γ . All the bodies thus have a
boundary consisting of two disjoint connected components; an outer, Γ , and an inner boundary, {P ◦

} or Υ , respectively.
Below, we describe in detail the properties of these three bodies. To roughly indicate what we mean by ‘restricted’ and

‘unrestricted’ micropolar continuum, wemay say that in the unrestrictedmicropolar medium, the stiffness tensor, the mass
density and the couple stiffness tensor and the inertia tensor are all finite.

While the situation to be addressed in later sections is that where the bodies are (partially or completely) embedded in
a surrounding homogeneous material and waves are scattered from the bodies, initially only a boundary value problem is
considered.

Thus assume that the same prescribed traction vector field g is applied to Γ for all three bodies. For the homogeneous
body, Body ①, the boundary value problem is

Equation of motion : ∇
◦

• σ◦(x◦, t) = ρ◦ ∂2t u
◦(x◦, t), (x◦, t) ∈ B◦

× [0, T ]. (1a)

Constitutive relation : σ◦(x◦, t) = C◦•
• [∇◦

⊗ u◦(x◦, t)]t , (x◦, t) ∈ B◦
× [0, T ]. (1b)

Initial conditions : u◦(x◦, 0+) = 0 and ∂tu◦(x◦, 0+) = 0, x◦
∈ B◦. (1c)

Outer boundary condition : (σ◦
• n)|Γ = g(x◦, t), (x◦, t) ∈ Γ × [0, T ]. (1d)

Inner boundary condition : To be specified. (See below.) x◦
→ P ◦, t ∈ [0, T ]. (1e)

The double contraction, denoted by ‘‘••’’, is here defined so that, e.g.,

R•
•S = RijSij for R = Rij ei ⊗ ej and S = Sij ei ⊗ ej,

R•
•P = RijPijkℓ ek ⊗ eℓ for R = Rij ei ⊗ ej and P = Pijkℓ ei ⊗ ej ⊗ ek ⊗ eℓ.

u◦ is the displacement vector field, while σ◦ is the stress tensor field. The vector field n is the outward pointing unit normal
field of Γ . g(x◦, t) is the prescribed traction vector field on Γ . For Body ①, the fourth order tensor C◦ is required to be both
minor symmetric and major symmetric, cf. below. Several types of transposition are used here and in the following. One is
the ‘minor’ transposition of second order tensors, used above in Eq. (1b), etc., denoted by superscript ‘‘t’’:

Rt
= Rij ej ⊗ ei for R = Rij ei ⊗ ej.

(In Eq. (2), this transposition is distributed to the individual second order tensor elements, and it is not a transposition of the
block matrix or block vector.)

A typical boundary value problem for the unrestricted micropolar body, Body ②, is

Equation of motion :


I ⊗ ∇ 0
−ϵ I ⊗ ∇


•
•


σ(x, t)
µ(x, t)


=


Iρ(x) ∂2t 0

0 ȷ(x)∂2t


•


u(x, t)
φ(x, t)


, (x, t) ∈ B × [0, T ]. (2a)

Constitutive relation :


σ(x, t)
µ(x, t)


=


C(x) 0
0 D(x)


•
•


∇ ⊗ I −ϵ

0 ∇ ⊗ I


•


u(x, t)
φ(x, t)

t

, (x, t) ∈ B × [0, T ]. (2b)

Initial conditions :


u
φ


t=0+

=


0
0


and


∂tu
∂tφ


t=0+

=


0
0


, x ∈ B. (2c)

Outer boundary condition : (σ • n)|Γ = g(x, t) and (µ• n)|Γ = 0, (x, t) ∈ Γ × [0, T ]. (2d)
Inner boundary condition : To be specified. (See below.) x ∈ Υ , t ∈ [0, T ]. (2e)

Note that the couple tractionµ • n isassumed to vanish on the outer boundary; the endpoints of themicrostructure network
have free ends at Γ . ϵ is the completely antisymmetric (third-order) Levi-Civita tensor.

For Body ②, neither the fourth order tensor C, nor D, is required to be minor symmetric. However, both are major
symmetric; cf. below.

A typical boundary value problem for the restricted micropolar body, Body ③, is obtained by forcing φ ≡ 0. The
boundary value problem for Body ③ is thus which closely resembles the problem for the Body ①:

Equation of motion : ∇ • σ(x, t) = ρ ∂2t u(x, t), (x, t) ∈ B × [0, T ]. (3a)

Constitutive relation : σ(x, t) = C •
• [∇ ⊗ u(x, t)]t , (x, t) ∈ B × [0, T ]. (3b)
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Initial conditions : u(x, 0+) = 0 and ∂tu(x, 0+) = 0, x ∈ B. (3c)
Outer boundary condition : (σ • n)|Γ = g(x, t), (x, t) ∈ Γ × [0, T ]. (3d)
Inner boundary condition : To be specified. (See below.) x ∈ Υ , t ∈ [0, T ]. (3e)

A few other types of transposition which we will have occasion to utilize in the following are these: Transposition of
block matrices is instead denoted by superscript ‘T’. If R and P are second order tensors, we thus have

R
P

T

=

R, P


, while


R
P

t

=


Rt

P t


and


R
P

tT

=

Rt, P t


.

The ‘major’ transposition of fourth order tensors is denoted by superscript boldface ‘‘T’’:

PT
= Pijkℓ ek ⊗ eℓ ⊗ ei ⊗ ej for P = Pijkℓ ei ⊗ ej ⊗ ek ⊗ eℓ.

The three tensorswhich, togetherwith the positive scalar fieldρ = ρ(x), specify thematerial properties of themicropolar
material inBody② residing inB, are the positive definite (second order)moment of inertia tensor ȷ = ȷ(x), the (fourth order)
elastic stiffness tensor C = C(x) and the (also fourth order) couple stiffness tensor D = D(x). The fundamental symmetries
of these tensors are

ȷt = ȷ, CT
= C, DT

= D.

The isotropic and homogeneous Body ① occupying B◦ has the stiffness tensor

C◦
= λ◦ I ⊗ I + µ◦ I⊗ I + µ◦ I⊗ I (4)

in terms of the Lamé coefficients λ◦, µ◦. The couple stiffness tensor D in Body ② residing in B we take simply to be

D = α I ⊗ I + γ I⊗ I + β I⊗ I (5)

given in terms of the three parameters α, β, γ . It is thermodynamically admissible for α and β to vanish, for γ > 0.
Here use is made of the usual outer (tensor) product ⊗ as well as of the alternatives ⊗ and ⊗. ⊗ re-arranges the basis

vectors, so that

R ⊗ S = Rij Skℓ ei ⊗ ek ⊗ ej ⊗ eℓ for R = Rij ei ⊗ ej and S = Sij ei ⊗ ej,

making

(R ⊗ S) •
• K = R • K • S t.

⊗ re-arranges the basis vectors in another manner:

R ⊗ S = Rij Skℓ ei ⊗ eℓ ⊗ ej ⊗ ek for R = Rij ei ⊗ ej and S = Sij ei ⊗ ej.

In addition to being major symmetric, the fourth order tensor C◦ is also minor symmetric, i.e. in addition to satisfying the
major symmetry requirement C◦T

= C◦, it satisfies

C◦
= C◦

ijkℓ ei ⊗ ej ⊗ ek ⊗ eℓ = C◦

ijkℓ ei ⊗ ej ⊗ eℓ ⊗ ek = C◦

ijkℓ ej ⊗ ei ⊗ ek ⊗ eℓ.

The necessary and sufficient conditions for the internal energy density of Body ① to be non-negative are

3λ◦
+ 2µ◦

≥ 0, 2µ◦
≥ 0, ρ◦

≥ 0. (6)

An important point to note is that in order to completely specify the solution of the direct problem, it is necessary to
state the boundary conditions also on the inner boundaries, i.e., at P ◦ and at Υ . Without this inner boundary condition, the
direct problem of obtaining the displacement (and in the case of Body ②, the micro rotation on the outer boundary Γ ) from
knowledge of g and the material properties in B◦ or B, is severely ill posed. If the solution to the direct problem either does
not exist or if the existence is non-unique, the point of solving the inverse problem becomes dubious.

2.2. The inner boundary conditions

To be specific, assume that the object to be cloaked inside Υ is a rigid cylindrical body of mass mc per unit length. If
the matter within Γ under any loads on Γ is to respond identically for the cloaked body and the uncloaked line mass, it is
necessary that the total mass within the outer boundary is the same in both cases. This is a consequence of Newton’s second
law in the quasistatic limit. It iswell-knownandwill be discussed in Section 2.3 that the totalmass (per unit length) inB◦ and
in B are the same. Thus the line mass at P ◦ in B◦ has the same mass as the cloaked cylindrical body, i.e. mc per unit length.

Focusing on the plane strain case discussed above, the line mass at the line P ◦ in B◦ may be regarded as the limit of
vanishing radius rc ↓ 0 of a small massive homogeneous rigid cylindrical body centered at P ◦. Modify B◦ by cutting out
the cylindrical body and consider a transformation ψ such the inner boundary cylinder of the modified B◦, of radius rc , is
mapped to the inner boundary cylinder Υ of B, of radius r0. Assume that the transformation at least in some small region
close to r◦

= rc is a rescaling of the radial distance r◦
= |x◦

− z◦ez | from P ◦, i.e.ψ(x◦) = z◦ez + (x◦
− z◦ez)ψ(r◦)/r◦. Here

ex, ey and ez are fixed coordinates in a Cartesian system established in an inertial frame.
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To express the boundary conditions at r◦
= rc and r = r0, define

r◦(t) = x◦(t)ex + y◦(t)ey
u◦

−
(ϕ◦, t) = r◦(t)+ rc ϕ◦(t) eϕ◦

t◦

+
(ϕ◦, t) = σ◦

+
(ϕ◦, t) • er◦

and
r(t) = x(t)ex + y(t)ey
u−(ϕ, t) = r(t)+ r0 ϕ(t) eϕ
t+(ϕ, t) = σ+(ϕ, t) • er .

Here r◦(t) and r(t) are the instantaneous positions of the centers of mass of the two massive cylindrical bodies, and ϕ◦(t),
ϕ(t) are the angles of rotation of the bodies. u◦

−
(ϕ◦, t) and u−(ϕ, t) denote the displacements of points on the surfaces of the

two bodies, i.e. at radius rc and r0, respectively. t◦
+
(ϕ◦, t) and t+(ϕ, t) are the traction vectors in the micropolar materials

(for radially outward pointing normals) in the limits r◦
↓ rc and r ↓ r0, respectively. Denoting the local force densities

exerted on the bounding surfaces of the cylindrical bodies by f ◦(ϕ◦, t) and f (ϕ, t), Newton’s 3rd Law implies
f ◦(ϕ◦, t) = t◦

+
(ϕ◦, t) and f (ϕ, t) = t+(ϕ, t).

This, together with Newton’s 2nd Law for the rigid cylindrical bodies, yields π

−π

t◦

+
(ϕ◦, t) rc dϕ◦

= mc r̈◦(t) and
 π

−π

t+(ϕ, t) r0 dϕ = mc r̈(t).

Using the bundle map to relate t◦
+
(ϕ◦, t) to t+(ϕ, t) then implies that r̈◦(t) = r̈(t), so if both start out at rest in their

equilibrium positions,
r◦(t) = r(t), t ∈ [0, T ].

This then holds also in the limit of vanishing rc .
From the balance of angular momentum for a rigid body we similarly get the relations π

−π

(rcer◦)× t◦

+
(ϕ◦, t) rc dϕ◦

= I◦c ϕ̈
◦(t) ez and

 π

−π

(r0er)× t+(ϕ, t) r0 dϕ = Ic ϕ̈(t) ez

where I◦c = mcr2c /2 and Ic = mcr20/2 are the moments of inertia of the cylindrical bodies. Here application of the bundle
map implies

Ic ϕ̈(t) =
r0
rc
I◦c ϕ̈

◦(t), t ∈ [0, T ],

i.e., assuming start from rest in equilibrium,

ϕ(t) =
rc
r0
ϕ◦(t), t ∈ [0, T ].

Taking the limit rc ↓ 0 yields ϕ(t) = 0, t ∈ [0, T ], provided that ϕ◦(t) stays bounded in the limit.
Assume that the boundary conditions on Υ are slip boundary conditions, where the tangential part of the traction

vanishes, combined with Newton’s 2nd and 3rd Laws. The inner boundary condition in Eq. (2e) would then include the
following conditions:

er × t+(ϕ, t) = 0 (7)

er • u+(ϕ, t) = er • r(t) (8) π

−π

t+(ϕ, t) r0 dϕ = mc r̈(t), r(0) = 0 = ṙ(0) (9)

while Eq. (1e) should include the rc ↓ 0 limit of the corresponding conditions in the homogeneous domain. And under slip
boundary conditions and quiescent initial conditions, both ϕ◦(t) = 0 (which is bounded) and ϕ(t) = 0 throughout the
time interval for rc ≥ 0. The inner boundary conditions for the macroscopic fields in Eqs. (1e) and (2e) are thus assumed to
be slip boundary conditions, and this ensures that the mappings of the boundary conditions on the macroscopic fields, i.e.
displacement and traction, at the inner boundary does not cause reflections that impair the cloaking effect.

Note that in the present context a large object is made to behave as if it were an infinitely smaller one of the same mass.
Some scattering is then presumed to occur, albeit much less than from an uncloaked large object. It is not unreasonable to
consider the objective of themechanical cloaking to beminimizing the acceleration of the cloaked object, thereby protecting
it from incident waves. The ideal case would be if one could achieve r̈(t) ≡ 0. And in the limit rc ↓ 0, this is in fact the case.

To illustrate in a simple case how the rigid body motion vanishes, consider a fixed-frequency scattering problem where
the couple parameters α and β vanish, and where the couple stiffness γ goes to infinity. This reduces the transformed
problem to the case of a restricted micropolar cloak [17]. Focusing on the boundary conditions at P ◦ and Υ , assume as
above that the body to be cloaked is a homogeneous cylindrical rigid body of massmc (per unit length).
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We specify the boundary conditions on Υ and at P ◦ to be the slip conditions described above. As before we consider the
line mass to be the limiting case of a small, homogeneous, rigid cylindrical body of radius rc , as rc ↓ 0. This is then the limit
of a rigid movable scatterer as its radius tends to zero as compared to the wavelengths involved. A somewhat similar case
is considered in e.g. [23], but the present case exhibits a significant difference.

A useful integral representation of the displacement field is the following:

u◦ inc(r◦)+
1
µ◦


r ′=rc


u◦

+
(r ′) •6◦(r ′, r◦)− G◦(r ′, r◦)•σ◦

+
(r ′)


•er ′ rc dϕ′

=


u◦(r◦), r◦ > rc
0, r◦ < rc .

(10)

(See, e.g., [24], thoughnote amisprint: An erroneous factor of kS in front of surface integral.) Hereu◦ inc is a prescribed incident
displacement field, G◦ is the 2D free-space Green’s dyadic, and 6◦ the 2D free-space Green’s stress triadic, with outgoing
radiation conditions at infinity. In terms of the basis functions defined above, the incident field may be expanded as

u◦ inc(r◦) =


jsm

bjsm χ
reg
jsm(r

◦, ϕ),

at least for r < R where R is some radius within which the incident field has no sources. (We consider only rc < R.) Here
the partial wave basis functions are

χ
reg
1sm(r, ϕ) =

kP
kS


π

2


1
kP

∂

∂r
Jm(kPr)a1sm(ϕ)+

m
kPr

Jm(kPr)a2sm(ϕ)


χ
reg
2sm(r, ϕ) =


π

2


m
kSr

Jm(kSr)a1sm(ϕ)+
1
kS

∂

∂r
Jm(kSr)a2sm(ϕ)


where the Jm are Bessel functions, and kS = ω

√
ρ◦/µ◦, kP = ω

√
ρ◦/(λ◦ + 2µ◦), are the shear and compression wave

numbers, respectively. (This is essentially the wave basis in [24].) Furthermore,

a1sm(ϕ) =
1

√
(1 + δm0)π


ex cosϕ + ey sinϕ

 
δs,even cosmϕ + δs,odd sinmϕ


a2sm(ϕ) =

1
√
(1 + δm0)π


−ex sinϕ + ey cosϕ

 
−δs,even sinmϕ + δs,odd cosmϕ


.

The rigid body motion amplitudes of the cylindrical body of radius rc may then be explicitly calculated, and approximated
for small kSrc :

x◦
= i

√
2µ◦kS
N


2b2,even,1


kPrcH

(1)
0 (kPrc)− 2H(1)1 (kP rc)


+ b1,even,1


2kSrcH

(1)
0 (kSrc)+


r2c k

2
S − 4


H(1)1 (kSrc)


=

−
kS(kP b1,even,1 + kS b2,even,1)

√
2


k2P + k2S

 mc ω2

2π µ

+ O[r2c ]

 1
ln(kSrc)

, when kSrc ≪ 1,

y◦
= i

√
2µ◦kS
N


2b2,odd,1


kPrcH

(1)
0 (kPrc)− 2H(1)1 (kP rc)


+ b1,odd,1


2kSrcH

(1)
0 (kSrc)+


r2c k

2
S − 4


H(1)1 (kSrc)


=

−
kS(kP b1,odd,1 + kS b2,odd,1)

√
2


k2P + k2S

 mc ω2

2π µ

+ O[r2c ]

 1
ln(kSrc)

, when kSrc ≪ 1,

and

ϕ◦
= 0.

Here H(1)m is the cylindrical Hankel function of the first kind and order m, and

N = H(1)1 (kPrc)

2kSH

(1)
0 (kSrc)


πr2c (λ

◦
+ 2µ◦)k2P + ω2mc


+ rcH

(1)
1 (kSrc)


k2S


ω2mc − 4πµ◦


+ π(λ◦

+ 2µ◦)k2P

r2c k

2
S − 4


+ kPH

(1)
0 (kPrc)


H(1)1 (kSrc)


ω2mc


2 − r2c k

2
S


+ 2πµ◦r2c k

2
S


− 2ω2mcrckSH

(1)
0 (kSrc)


.
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We see that, irrespective of the incident wave, r◦(t) ≡ 0 in the limit rc ↓ 0, and since r◦(t) ≡ r(t), perfect protection
against harmful accelerations can be achieved, at least in theory. Some practical (and computational) difficulties, both for
this and the more general case of finite micro stiffness, are dealt with in the numerical section. Note that x◦ and y◦ converge
to zero rather slowly as kSrc → 0. (Slower than any positive power of kSrc .)

It is worth pointing out that for welded boundary conditions, the condition of bounded rigid body rotation is not met, as
in this case

ϕ◦
=

1
rc

4iµ◦ b2,odd,0
ω2mcrcH

(1)
1 (kSrc)+ 4πµ◦r2c kSH

(1)
2 (kSrc)

=
1

kSrc

−
1

4 +
mc ω2

2π µ◦

+ O[k2Sr
2
c ]

 kS b2,odd,0, for kSrc ≪ 1.

Welded inner boundary conditions are thus not as suitable for the task of seismic protection. It is perhaps not so surprising
that slip conditions are the inner boundary conditions of choice, given the historical precedent set by the ancient greeks, as
mentioned in the introduction.

2.3. The cloaking transformation

Here a version of the cloaking transformation discovered by Brun et al. [16] is utilized, in the generalized form given by
Norris and Shuvalov [17]. A description is given in this section, and as the general idea behind transformational cloaking
is by now rather standard, the description is kept rather brief. One way of describing the cloaking transformation for
the present problem is to say that it is a mapping between two vector bundles; one over B◦, and another over B. The
mapping is such that it satisfies what may be called localization of energy, described below, and the special property of the
Brun–Norris transformation is that it in addition preserves the scalar character of the mass density. As pointed out already
in the very first paper on elastodynamic cloaking [5], and clarified further by Norris and Shuvalov, there are (at least) two
components to a cloaking transformation, eachmore or less independently specifiable. One is the transformation (invertible
and differentiable up to some suitable order) between the points of two distinct bodies, a transformation which at the outer
boundary reduces to the identity transformation. The second component is the transformation between the displacement
fields, which is taken to be a linear transformation that may vary from point to point. So there is a transformation mapping
points to points, as well as a what might loosely be called a gauge transformation between vector fields. These components
taken together make up the cloaking transformation, which may be regarded as a vector bundle mapping.

To each point x ∈ B we thus attach a vector space V (x) in which the displacement vector u(x, t) at x lives at any time t ,
and similarly, for each point x◦

∈ B◦ we have a vector space V ◦(x◦). Define

V = {((x, t), u) | x ∈ B, t ∈ [0, T ], u ∈ V (x)} ,
V◦

= {((x◦, t), u◦) | x◦
∈ B◦, t ∈ [0, T ], u◦

∈ V (x◦)} .

V and V◦ are vector bundles. The cloaking transformation is the mapping

Ψ : V◦
−→ V, ((x◦, t), u◦) →


(ψ(x◦), t),At(x◦) • u◦


.

The two-point, second order, tensor field At(x◦), defining a vector field isomorphism at each point x◦
∈ B◦, we assume to be

invertible (i.e, the matrix formed from its components is non-singular at each point). The vector bundle mapping Ψ is thus
a vector bundle isomorphism. Associated with the transformation ψ is the Jacobian two-point tensor of the transformation
ψ = eiψi,

F = (∇◦
⊗ x)t =

∂ψi(x◦)

∂x◦

j
(ei ⊗ ej),

with its Jacobian determinant J = det F , and its inverse,

F−1
= (∇ ⊗ x◦)t =

∂ψ−1
i (x)
∂xj

(ei ⊗ ej),

the Jacobian two-point tensor of the inverse transformation ψ−1.
Assume that the outer boundary data g is given, and that the inner boundary conditions onP ◦ andΥ have been specified.

Introduce the mappings U◦

g : (x
◦, t) → ((x◦, t), u◦(x◦, t)) and U g : (x, t) → ((x, t), u(x, t)), which map spacetime points

in B◦
× [0, T ] and B◦

× [0, T ] to points in V◦ and V , respectively, corresponding to solutions of the respective boundary
value problems in Eqs. (1) and (3).

Referring to the diagram in Fig. 3, one may describe part of the task of finding a cloaking transformation as the task
of specifying the transformation, together with a vector field isomorphism given by At (independent of g) such that the
diagram commutes for any choice of boundary data g . (There are of course more requirements to be met by the cloaking
transformation; see Fig. 3.)
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Fig. 3. A diagram over themappings used in transformational elastodynamic cloaking. To achieve cloaking, the vector field isomorphism should be chosen
so that the diagram commutes for any choice of outer boundary data.

Following the approach of Norris and Shuvalov, onemay assume localization of energy. The kinetic as well as the potential
energy density in the two domains,multiplied by their respective volumemeasures, are then assumed to be locally the same,
at corresponding points in B◦ and B. The potential energy density in B◦ is

U◦
=

1
2
(∇◦

⊗ u◦)
t •

• C◦ •
• (∇◦

⊗ u◦)
t ,

and the kinetic energy density is

T ◦
=

1
2
ρ◦ u̇◦

• u̇◦,

where overdot denotes partial derivative with respect to time. If the potential energy density in B is denoted by U, and the
kinetic energy density by T , then

U◦dV ◦
= UdV , and T ◦dV ◦

= T dV ,

where dV and dV ◦ are the respective volume elements. Thus

U(x, t) =
dV ◦

dV
U◦(x◦, t) =

1
J(x◦)

U◦(x◦, t), and T (x, t) =
1

J(x◦)
T ◦(x◦, t).

By means of the mapping Ψ , U may be expressed as

U =
1
2
(∇ ⊗ u + G • u)t •

• C •
• (∇ ⊗ u + G • u)t . (11)

Here

G = (F−t
⊗A−t) •

• (∇◦
⊗ At),

and the stiffness tensor is given by

C = J Q •
• C◦ •

• QT, where Q =
1
J
A⊗ F .

Wewant the expression for U in Eq. (11), derived through the transformation Ψ , to be identical to the one derived from the
solution to the equation of motion in the inhomogeneous restricted micropolar solid.

A basic requirement of elastodynamics is objectivity, i.e., frame independence. The presence of G • u inthe transformed
potential energy density in Eq. (11) makes the energy expression non-objective. G acts essentially like a connection, and its
presence implies that thematerial would behave as if elastic springs linked thematerial to an absolute undeformed position.
However, for the present case we use the vector field isomorphism given by At

= I, so G ≡ 0. This vector field isomorphism
also ensures that the transformed mass density is scalar, as

ρ =
1
J
ρ◦. (12)

From Eq. (12), a property sometimes called preservation of cloaking space, is obvious: The total mass of the cloaking
material in B, and the total mass of the homogeneous material in B◦ are the same. Since the diffeomorphic transformation
between points in B and B◦ may be chosen in many ways, one may in particular specify it to be such that the mass density
is constant throughout the cloak. The density then scales with the total volumes of in B and B◦. One such transformation
is utilized in the present paper.

Having found a specification for the potential energy density and the kinetic energy density forB, the equation ofmotion
is the Euler–Lagrange equation for the Lagrange density L = U − T :

∂L

∂u
− ∇ •

∂L

∂(∇ ⊗ u)t
−
∂

∂t
∂L

∂u̇
= 0.
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The constitutive relation giving the stress σ may be obtained from the strain energy density as

σ =
∂U

∂(∇ ⊗ u)t
= C •

• (∇ ⊗ u)t .

There is no a priory guarantee that the equation of motion and the constitutive relation so obtained really correspond to
anyphysically realizablematerial. However, it does correspond exactly to the restrictedmicropolarmaterialwith the choices
of stiffness and density indicated. The reason for including also the unrestricted micropolar material in our discussion is in
fact that the physical properties of the restricted micropolar medium are unrealistic. This point may be described in the
following manner: Consider the micro rotation field in an unrestricted micropolar medium. From the mechanics of the
assumed microstructure, one would expect that

φ(x, t) = O

∥ȷ∥−ζ0

 
φ0(t)+ O


∥D∥

−ζ1

φ1(x, t)


, as ∥ȷ∥ → ∞ and/or ∥D∥ → ∞. (13)

(Here the ζi are positive exponents. For simplicity we assume that all elements of the inertia tensor are to grow
proportionally, and similarly for the stiffness tensor.) As the elements of the moment of inertia of the microscale bodies
go to infinity, φ(x, t) vanishes, while if the micro stiffnesses go to infinity, all we may expect is to get a micro rotation field
that is constant in space. But the elements of the moment of inertia tensor of the microscale bodies are bounded by some
multiple of the (local average) density and the square of the linear size of the representative volume element, containing the
microscale body. In practice it may thus not be physically realistic to expect ȷ to be so large that φ(x, t) effectively vanishes.

Even if the couple stiffness could bemade arbitrarily large, Eq. (13) is in fact oversimplified, due to a complication brought
on by possible resonances. For fixed moment of inertia and increasing couple stiffness, a (in theory infinite) number of
resonances are encountered. So while the infimum limit of the micro rotation may be zero, as the couple stiffness goes to
infinity, there is no reason to believe that the limit of the micro rotation is zero. A pertinent question is then as to what
extent an unrestricted micropolar cloak may be used as an effective approximation of the restricted micropolar cloak. This
is a question to be explored numerically.

2.4. The outer boundary conditions

In the discussion above, we have formulated everything as a boundary value problem, where the traction is specified on
the outer boundary Γ . This formulation is useful for discussing the traction-to-displacement maps of the various bodies. As
the focus here is on the scattering properties of the bodies, let us instead consider the bodies in B◦ and B to be embedded
in a homogeneous and isotropic solid, with the properties of the material of the homogeneous reference body, Body ③. To
ensure continuity of the displacement field across Γ , it is required that At

→ I as x approaches Γ from the inside. But in the
present case of the generalized Brun transformation, this is trivially so, since At

≡ I.
The transformationψ is assumed to approach the identity transformation at the outer boundary, but the Jacobian tensor

F need in fact not approach I. (Unless of course the vector field isomorphism is chosen so as to force the Jacobian tensor to
inherit the requirement At

→ I, e.g., if A = F , as for Willis type materials.) This was discovered by Brun et al. for a special
case [25], but is quite general. There may thus be a mismatch both in the stiffness tensor and in the deformation gradient
across the outer boundary of B, and still the continuity of both traction and displacement may hold across the boundary.
That this is true, not only in the special case considered by Brun et al., is seen from the fact that on Γ , for any vector field
isomorphism At,

(C •
• (∇ ⊗ u + G • u)t) • n = (C◦ •

• (∇◦
⊗ u◦)t) • n

irrespective of whether F approaches I. For such vector field isomorphisms At that make G • u vanish, we then have

G • u ≡ 0 ⇒ σ • n = (C •
• (∇ ⊗ u)t) • n = (C◦ •

• (∇◦
⊗ u◦)t) • n = σ◦

• n. (14)

To satisfy requirements of continuity of displacement and traction over the outer boundary of the cloak, the second
component of the vector bundle mapping need thus only approach I in C0 as x → Γ .

3. Numerical simulation

The unrestricted micropolar (imperfect) cloak is arguably more realistic than the restricted micropolar (perfect) cloak.
The latter requires a quantity, the moment of inertia density, to take infinite or at least unrealistically large values. As
mentioned above, the moment of inertia density is bounded by the product of some multiple of the density and the square
of the linear size of the microstructural unit cell.

To model both the restricted and the unrestricted micropolar medium, a commercial software, COMSOL MultiphysicsTM
is used. We may note that COMSOL MultiphysicsTM only has a fully symmetric (both minor and major symmetric) elas-
ticity tensor implemented into the software, presumably reflecting the fact that a majority of ‘commercially interesting FE
problems only require symmetric elasticity. Theminor asymmetry required here can be implemented through somemodifi-
cation in the StructuralMechanicsmodule of COMSOLMultiphysicsTM. However, instead developing amodel within the PDE
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module is more straightforward, and simplifies the switch between the classical Cauchy type continuum and themicropolar
continuum in the following studies. (To validate the implementation, the results from Brun et al. [16,25] were reproduced.)

The slip boundary conditions on the inner boundary of the cloaking layer (cf. Section 2.2) may be implemented in various
ways. Using the built in ‘‘Roller’’ boundary condition in COMSOL proved to be problematic in the current version (v4.3),
instead a very thin elastic layer is inserted between the rigid body and the cloak. The layer has a high stiffness in the normal
direction but essentially vanishing stiffness in the tangential direction. The boundary condition of vanishing micro moment
vector (as discussed in Section 2.4) at the outer and inner boundaries of the cloak, is enforced in a weak sense in the PDE
module.

3.1. Coordinate transformation in 2D—dealing with infinities

As discussed in Section 2.2, when the radius of the inverse map of the cloaked rigid body vanishes, the mass center of the
body becomes immovable. As shown in Fig. 4, this decay to zero is apparent both for Rayleigh waves in the surface-breaking
(Fig. 4(a)) and the sub-surface (Fig. 4(b)) cases, as well as for a bulk wave in the free-space case (Fig. 4(c)). The rate of decay
to zero mobility in Fig. 4(c), is seen to agree well with the analytical results of Section 2.2. In addition, a resonance effect,
to be discussed below, for certain combinations of stiffness and density, is suggested in the figures. The ‘‘rigid’’ cylinder is
modeled as an elastic cylinder with a factor of 1000 times higher stiffness compared to the surrounding material in all of
the numerical calculations, compare this to the situation where a cylinder made of steel is embedded in clay soil.

When the rigid body is mapped to a point or line under the inverse transformation, cf. the upper part of Fig. 5, diverging
stiffnesses and densities in the vicinity of the inner boundary of the cloak are clearly an unphysical feature. A partial cloak
can still be achieved using a coordinate transformation taken from a small but finite sized cylinder into the cloak region, see
the bottom part of Fig. 5. In this way, the material parameters remain finite. The cost for this is that the acceleration of the
center of mass of the partially cloaked rigid body increases as a function of the radius of the reference cylinder, in addition
to the increased scattering due to imperfect cloaking.

Another, related, effect to consider is the connection between the size of the microstructural elements, the mesh size of
the finite element model, and the ‘degree of perfection’ of the cloak: To fully resolve the fields around the circumference
of a line mass or point mass, the surrounding local mesh element size would have to be infinitely small. However, in the
cloaking region we have no reason to consider much smaller mesh sizes than the size determined by the cells of the actual
microstructure. The sizes of the cloakmesh elements, whenmapped back to the neighborhood of the reference cylinder, can
only yield a limited resolution of the radius rc . Thus the ‘degree of perfection’ of the cloak is to an important part determined
by the size of the microstructural elements in the neighborhood of the rigid body.

3.2. Parametric study of the material properties inside the unrestricted micropolar cloak

As discussed in Section 2.3, the restricted micropolar cloak should, if resonances did not complicate matters, correspond
to an infinite moment of inertia, see Eq. (13). However, the moment of inertia is bounded by (a product of) the density and
the squared linear dimension of the microstructural units. Given the bound on the moment of inertia, letting the couple
stiffness grow, should at most lead to a micro rotation that is constant in space throughout the cloak.

In Fig. 6 we consider the influence of these parameters. Fig. 6(a) indicates that the micro rotation for fixed moment of
inertia does tend to a constant value for high couple stiffnesses. Fig. 6(b) illustrates the point that, while the infimum limit
of themicro rotation is zero for fixed couple stiffness as themoment of inertia increases, the resonances prevents any actual
limit to be obtained.

The rightmost tail of the curve in Fig. 6(b) may lead you to believe that the resonances disappear for the highest values
of the moment of inertia. However, the absence of resonances in the tail is due to the fact that the finite dimensional FE
representation can at most resolve a finite number of resonances. Increasing the number of elements, we find that more
resonances appear. Fig. 7 shows how some of the resonances appear in parameter space as sharp mountain ridges. A
finer mesh would here result in more eigenvalues being resolved in the computation and thus in an increased number
of resonance ridges.

3.3. Numerical results

Consider two cases of buried elastic cylinders impinged upon by an elastic surface wave. One case is a cylinder that
is buried completely, but still close to a free surface. The other case is an only half buried, surface breaking, cylinder.
The cylinders are modeled as elastic with a factor of 1000 times higher stiffness compared to the surrounding material,
compare this to the situation where a cylinder made of steel is embedded in clay soil. The incident wave is a Rayleigh wave,
and thus consists of a combination of vertically attenuated plane compression and shear waves. In order to compare the
effectiveness of a (physically much harder to construct) restricted micropolar cloak to that of an unrestricted micropolar
cloak, we compute the acceleration of the center of mass of the cylinders in the time domain. The resulting orbits are shown
in Fig. 8, where also the accelerations for uncloaked cylinders are shown. To avoid problems with unphysical densities
(vanishing or infinite) in the cloaking materials, we chose the transformation such that the mass densities within the cloak
are constant throughout the cloaks.
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(a) Displacement response of a surface breaking cylinder
to an incident Rayleigh wave as rc → 0.

(b) Displacement response of a sub-surface cylinder to an
incident Rayleigh wave as rc → 0.

(c) Displacement response of a cylinder (in a full space)
to an incident P wave as rc → 0. Comparison of
numerical solution to asymptotic solution.

Fig. 4. The dimensionless mass is m∗
= mk3/ρ, where m is the mass of the rigid-body, k = kS is the wavenumber for an S wave, ρ is density of the

homogeneous medium, u the displacement of the rigid-body and rc is the radius of the rigid-body. The reason that the curves diverge in the right half of
the plot is the fact that only the lowest terms in the analytical expression have been plotted.

As can be seen in both cases in Fig. 8, the restricted micropolar cloak is, as expected, effective in protecting the object
from the incident wave. The unrestrictedmicropolar cloak does indeed for (lowmoment of inertia and) high couple stiffness
well mimic the restricted cloak, showing that the physically more realistic unrestricted micropolar cloak may be used to
protect objects against potentially harmful, surface wave induced accelerations. The effectiveness may easily be increased
by reducing the parameter rc (the radius of the ‘abstract’ inverse image of the cloaked cylindrical body). In practice this
would, as discussed in Section 3.1, demand decreasing the size of the microstructural elements.

In Fig. 8 there are also included worst and best cases obtained by considering also smaller couple stiffnesses. It would
be tempting to try to achieve in particular the very low accelerations that are possible by placing the stiffness very close
to a resonance value. However, this involves a parametrical balancing act, as a slight change in frequency or some other
parameter might flip a small acceleration into a very large one.

In Fig. 9 we see a snapshot of the wave field when steady state conditions have been established, both for an uncloaked
and for a cloaked surface breaking rigid cylinder. As indicated above, the cloak is an unrestricted micropolar one, with a
constant mass density. It is clear in the figure that the reflection from the cylinder is far smaller in the cloaked case, as the
wave mostly passes beneath it. And the acceleration of the cylinder is, as we have already seen, significantly less in the
cloaked case: As the wave field is only slightly affected by the cylinder, the cylinder is only slightly affected by the wave
field. For the sub-surface cylinder, the same effect is apparent in Fig. 10.

4. Concluding remarks

In this paper, we have discussed the possibilities for cloaking of structures using transformational elastodynamics. The
procedure can be summarized in three steps: (i) the ansatz of a topology (dimension) in a fictitious domain that would result
in a required response (Body ①), (ii) the design of a restrictedmicropolar continuum surrounding the structure to be cloaked
that identically mimics the response of the former (Body ③), and (iii) the relaxation of the restricted micropolar continuum
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Fig. 5. A schematic representation of the cloaking transformation. The upper part illustrates the transformation taken from a point, rc = 0 and the bottom
part illustrates the transformation taken from a finite cylinder, rc ≠ 0.

(a) Increasing couple stiffness, constant moment of
inertia.

(b) Increasing moment of inertia, constant couple
stiffness.

Fig. 6. Parametric study of the couple stiffness and the moment of inertia density in the cloaking layer. Here γ is the couple stiffness of the cloaking layer,
j is the moment of inertia density of the cloaking layer, k = kS is the wavenumber for an S wave, ρ is the mass density of the homogeneous medium and
ω is the angular frequency.

to an unrestricted counterpart (Body ②) that corresponds to a physically realizable material. The feasibility of the approach
has been investigated for subsurface and surface-breaking two dimensional structures subjected to Rayleigh waves.

An almost perfect cloak is obtained upon letting the size of the structure tend to zero in the fictitious domain (the
deviation from perfect cloaking is due to the non-vanishing, albeit small, scattering from the point-mass). Numerical as well
as analytical solutions for a cylinder in 2d have been investigated. The relation between the finite element discretization of
a perfect cloak and the exact solution to a problem with finite dimension structure (rc > 0) has been identified. In practice,
the lower limit of the dimension in the fictitious domain is governed by the material data one is able to physically realize.

The relaxation of the theoretical restrictedmicropolarmaterial to a physically soundunrestrictedmicropolarmaterial has
been investigated numerically. Onemay conclude that the limit of high couple stiffness togetherwith highmoment of inertia
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(a) Surface plot showing resonances. (b) Contour plot showing resonances.

Fig. 7. Parametric study of different combinations of the couple stiffness and the moment of inertia density. Here γ is the couple stiffness of the cloaking
layer, j is the moment of inertia density of the cloaking layer, k = kS is the wavenumber for an S wave, ρ is the mass density of the homogeneous medium
and ω is the angular frequency.

(a) Acceleration of a surface breaking cylinder. (b) Acceleration of a sub-surface cylinder.

Fig. 8. Acceleration comparison of a cylinder subjected to Rayleighwaves after long time. Here a is the acceleration of the cylinder, k = kS is thewavenum-
ber for an S wave, ω is the angular frequency, γ is the couple stiffness of the cloaking layer and j is the moment of inertia density of the cloaking layer.

(a) Uncloaked configuration, surface breaking
cylinder.

(b) Cloaked configuration, surface breaking cylinder.

Fig. 9. Results from COMSOL MultiphysicsTM as displacement surface plots, comparing the uncloaked and the cloaked configuration. In (a) the region
between the outer and the inner semi-circles contains the same homogeneous and isotropic material as the surrounding sub-surface material. In (b) the
same region contains a graded unrestricted micropolar cloak.

results in a material approaching that of restricted micropolar. However, the moment of inertia is in practice bounded by
the density and the geometrical size of the microstructure, and can thus not be controlled arbitrarily. For varying the couple
stiffness, it is identified that the highest possible value guarantees the best cloak. For a given frequency, however, lower
couple stiffness can result in an even better cloak.
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(a) Uncloaked configuration, sub-surface cylinder. (b) Cloaked configuration, sub-surface cylinder.

Fig. 10. Comparison between the uncloaked and the cloaked configuration, for a Rayleigh wave impinging on a sub-surface rigid cylinder. In (a) the region
between the outer and the inner circles contains the same homogeneous and isotropic material as the surrounding sub-surface material. In (b) the same
region contains a graded unrestricted micropolar cloak.

Thepossibility to cloak a cylinder in 2Dhas thus been shown, limited only by the coefficients in anunrestrictedmicropolar
media. In order to realize a cloaking procedure in practice, future work will concern the actual design of a microstructure
exhibiting the required micropolar properties investigated in this paper.
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