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1 The section condition — background and motivation

The section condition in doubled geometry [1–26] and exceptional geometry [27–46] is the

subject of much discussion. On the one hand, it is indispensable for the gauge transforma-

tions — the generalised diffeomorphisms — to work, and thus it is integral to a geometric

understanding of extended theories. On the other hand, this also means that not much is

known of the geometric principles behind M-theory when one goes beyond the BPS sector

where it is satisfied (massless modes on top of windings, roughly speaking). The string-

theoretic origin of the double field theory section condition is well understood, as it is a

truncation of the level matching condition to this sector. No corresponding explanation of

the section condition in exceptional field theory has been proposed.

The section condition is of course what locally makes the extended theory equivalent to

a supergravity theory. Seen as a condition on generalised momenta (momenta and winding

charges), it has a rôle as a BPS condition. The momenta are constrained to belong to

non-maximal orbits under the “structure group” (O(d, d) or En(n)). Applied to a single

momentum this is known as the “weak section condition”, which for a momentum in the

module R1 reads

P 2|R2 = 0 . (1.1)

Here, R1 andR2 are the first two modules in the tensor hierarchy [47]. In a second-quantised

theory, such a constraint does not make sense, since it does not respect multiplication of

fields, and one is led to the “strong section condition”, stating that any two derivatives,

acting on any field (or gauge parameter) fulfill the relation

∂ ⊗ ∂|R2 = 0 . (1.2)

This implies that all derivatives belong to a common “section”, a maximal vector space

of solutions. In a perturbative quantum theory, it is important not to over-interpret the
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constraint. A choice of global section is not allowed, and only stated sharing a common

vertex in an amplitude diagram will obey a relative section condition [48]. Non-vanishing

amplitudes, and terms in effective actions, may contain external momenta with no common

section. Such a situation seems to go beyond proposals for mild relaxations of the section

condition like the one by Lee [49]. It has indeed been appreciated that higher derivative

terms typically call for modifications of the section condition [50].

2 The twistor variables

The idea of the present paper is to find a parametrisation of momenta in terms of twistor

variables [51–61], which simultaneously solves the section condition and the mass-shell

condition. This turns out to be natural in such a formalism (in fact, we are not aware of a

reasonable way of similarly parametrising solutions to the section condition only). Indeed,

it is only taken together that they carry meaning as a BPS condition. One may then

consider going off-shell in twistor space, which typically entails going off the “spin shell”.

It is possible that systematic relaxation of the twistor constraints will lead to a kind of

higher spin theory. In any case it looks like an interesting way of investigating the section

condition and its possible relaxations.

We will also investigate how locality is implemented in twistor space through incidence

relations, and show that they force multi-particle twistors to share a common section.

They are however not forced to be orthogonal, which we take as a consistency check of the

formalism. We will give the full details for the model case of E4(4) ≈ SL(5), and indicate

more briefly how the transformations work for E5(5) ≈ Spin(5, 5) and E6(6).

2.1 SL(5)

We now restrict to the structure group (corresponding to the duality group) E4(4) ≈ SL(5).

Instead of letting the 4 dimensions of a vector space solution (the M-theory solution) to the

section condition have Euclidean signature, as they have when they are internal coordinates

in a compactification, we want Minkowski signature on solutions to the section condition.

This can be achieved by choosing the local (“Lorentz”) subgroup to be SO(2, 3),1 or,

when spinors are included, its double cover Spin(2, 3) ≈ Sp(4,R). Also in the type IIB

solution [62], this real form allows for a section with Minkowski signature.

The momenta are a priori in the module 10 of SL(5), which can be written P[mn], or

equivalently P[ab] or P(αβ), where m,n = 1, . . . , 5 are fundamental indices of SL(5), and

a, b = 1, . . . , 5 and α, β = 1, . . . , 4 vector and spinor indices, respectively, of Spin(2, 3). It is

assumed that there is some generalised vielbein (typically flat) to convert between curved

and flat indices.

1This choice is not unique. Solutions to the weak section condition are elements in the Grassmannian

of 2-planes in 5 dimensions. Vector spaces of solutions, i.e., solutions to the strong section condition, are

planes intersection along a common line. If this line is time-like, Minkowski signature is obtained. The same

signature may be obtained from SO(1, 4). We prefer the present signuture, which allows for real spinors.
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The section condition and masslessness condition are

P[mnPpq] = 0 ,

PabP
ab = 0 .

(2.1)

Note that the section condition is SL(5)-covariant, while the on-shell condition requires a

generalised metric. In the following, I will treat them together and use fundamental Sp(4)

indices. The two conditions are written collectively as

εγδPαγPβδ = 0 , (2.2)

where the section condition in 5 constitutes the ε-traceless part and P 2 = 0 the ε-trace. In

this one-particle picture, it should be remembered that solutions to the section condition

does not project down to a 4-dimensional subspace. Rather, we are dealing with the weak

section condition, whose solutions form a real cône over the Grassmannian of 2-planes in

5 dimensions. This is a 7-dimensional space, and P 2 = 0 brings the dimension down to 6.

The dimension of the space of solutions always equals the dimension of R1 under En−1.

We want a twistor parametrisation that solves the constraint (2.2) by expressing P

as a bilinear in a bosonic spinor. The dimensionality of the space of solutions tells us

immediately that a single real Λα is not enough. A pair is the minimum, and we can put

them in a complex spinor Λα. The twistor parametrisation of the momentum is

Pαβ = Λ(αΛ̄β) . (2.3)

We now insert this into the constraint on P , eq. (2.2), and obtain

εγδPαγPβδ = εγδΛ(αΛ̄γ)Λ(βΛ̄δ) = −1

2
εγδΛ[αΛ̄β]ΛγΛ̄δ . (2.4)

In order for the constraints to be satisfied we need a constraint on Λ,

εαβΛαΛ̄β = 0 . (2.5)

Considering that the parametrisation of the momentum (2.3) also has a U(1) invariance

under Λ→ eiθΛ, the 6 degrees of freedom match the ones in P counted earlier. Note also

that the constraint (2.5) on Λ is equally necessary in order to achieve the section condition

and the on-shell constraint, so it seems that they are naturally linked together in a twistor

description. Eq. (2.5) looks formally identical to the spin-shell constraint obtained from a

massless twistor transform on AdS4 [61], which can be relaxed in order to obtain variables

for higher spin theory. There, however, the spinors Λ and Λ̄ are conjugate to each other,

and the constraint generates the U(1) transformation. Here, Λ, Λ̄ describes only momenta,

and gives a configuration space, not a phase space, for the twistors.

Introducing conjugate variables Wα to Λα, the twistor transform is completed by

Wα = XαβΛ̄β . (2.6)

From this, we derive the constraint

ΛαW
α − Λ̄αW̄

α = 0 , (2.7)
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which is the generator of the U(1) transformation. It is also clear that the twistor transform

is invariant under X → X + kP , so that the choice of base-point X for the world-line is

irrelevant.

In twistor space, locality is represented in terms of incidence relations, some relations

that tell us that (Λ,W ) and (Λ′,W ′) correspond to intersecting world-lines, i.e., that the

respective transforms can be written using the same X. We find immediately that

ΛαW
′α − Λ̄′αW̄

α = 0 . (2.8)

This is not the full answer, though. There will be new constraint in the two-particle phase

space, obtained by acting with the generators (2.8) on the constraint (2.5). This gives a

necessary completion of the incidence relations, namely

εαβΛαΛ̄′β = 0 . (2.9)

We should now check that the strong version of the section condition is satisfied, i.e., that

εγδP[α|γ|P
′
β]δ −

1

4
εαβε

γδεεϕPγεP
′
δϕ = 0 . (2.10)

Here, it is important that the ε-trace remains non-vanishing — we want generically to have

P ·P ′ 6= 0 for the two momenta, only that they lie in the same linear subspace corresponding

to a solution to the strong section condition, i.e., P[mnP
′
pq] = 0. Using the constraint (2.9)

together with the constraints (2.5) on Λ and Λ′, we obtain

εγδP[α|γ|P
′
β]δ ∼ ε

γδΛ[αΛ′βΛ̄γΛ̄′δ] ∼ εαβε
γδΛγΛ′δε

εϕΛ̄εΛ̄
′
ϕ . (2.11)

Antisymmetrisation in four indices implies that the expression is pure ε-trace. (Note that

the expression vanishes if the primes are removed.)

We find it very encouraging, indeed a decisive test of the relevance of the formalism

for exceptional geometry, that the simplest possible form of incidence relations, reducing

to the constraints on a single twistor for coinciding spinors, does precisely what is wanted,

namely solving the strong section condition without yielding orthogonal momenta.

2.2 Spin(5, 5)

The twistor transform for the case of structure group Spin(5, 5) will now be described.

In order to have a section with Minkowski signature, the local subgroup is chosen to be

USp(2, 2)×USp(2, 2). Each factor has an invariant antisymmetric tensor εab and a metric

ηab̄ with signature (2,2). Then the Lorentz group of the section is the diagonal subgroup

USp(2, 2) ≈ Spin(1, 4).

The momentum, a chiral spinor 16 under Spin(5, 5), is in the bi-fundamental (4,4)

under USp(2, 2)×USp(2, 2). Even though the fundamental is complex, the bi-fundamental

is pseudo-real, thanks to the existence of the involution

vaa′ → ṽaa′ = (σ(v))aa′ = ηaāηa′ā′ε
āb̄εā

′b̄′ v̄b̄b̄′ . (2.12)
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We can choose P̃ = P . The weak section condition is in 10 of Spin(5, 5), and states that

P is a pure spinor. Together with the condition P 2 = 0, the constraints read

εa
′b′Paa′Pbb′ = 0 , εabPaa′Pbb′ = 0 . (2.13)

The twistor solution of these constraints requires an object in the fundamental of each

component, i.e., λa and µa′ , with the momentum formed as

P = λµt + σ(λµt) . (2.14)

This gives 16 real degrees of freedom. The momentum is invariant under the SU(2) ×R+

transformations
(λ, λ̃)→ (λ, λ̃)M ,

(µ, µ̃)→ (µ, µ̃)(M−1)t
(2.15)

where the matrix M is give by

M =

[
α −β̄
β ᾱ

]
, (2.16)

and where λ̃a = ηaāε
āb̄λ̄b̄ and α, β ∈ C. In order for the transform (2.14) to solve the

constraints (2.13), the twistor variables need to satisfy the scalar constraints

ηaāλaλ̄ā = 0 , ηa
′ā′µa′ µ̄ā′ = 0 . (2.17)

The number of on-shell twistor degrees of freedom is 16−4−2 = 10, matching those of the

null pure spinor P . The discussion of incidence relations etc. can be performed in analogy

with the n = 4 case, and the details will not be given here.

2.3 E6(6)

For n = 6, the structure group is E6(6). The locally realised group leading to a section with

Minkowski signature is USp(4, 4) (with maximal compact subgroup Spin(5)× Spin(5)). It

is convenient to realise this group as an orthogonal group over the quaternions, USp(4, 4) ≈
Spin(2, 2;H). Then, as usual [55, 63, 64], the SU(2) R-symmetry is realised by right multi-

plication with unit quaternions. This is a convenient way of manifesting the (pseudo-)reality

of the fundamental (8,2), equivalent to an “SU(2) Majorana condition”.

A momentum in 27 of E6(6) becomes a hermitean and traceless (4 × 4)-matrix with

entries in H. The constraints on P (the section condition together with “P 2 = 0”) then

simply read

P 2 = 0 , (2.18)

where quaternionic matrix multiplication is implied. The solution space is 16-dimensional,

and consists of null elements in a cone over the Cayley plane [36, 65].

A single “spinor” in (8,2) of USp(4, 4)×SU(2) is not enough, at least two are needed.

The R-symmetry then becomes Spin(2,H) ≈ USp(4) ≈ Spin(5). We represent this “spinor”

Λ as a (4× 2)-matrix. This means that a parametrisation

P = ΛΛ† (2.19)
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will have an invariance under Λ → ΛM , where M is a matrix in Spin(2;H), i.e., MM † =

1 [63]. This takes away 10 degrees of freedom. In order for the constraint (2.18) on P to

be satisfied, Λ has to obey the 6 constraints (in a hermitean (2 × 2)-matrix)

Λ†Λ = 0 . (2.20)

Strictly speaking, the trace should have been subtracted in eq. (2.19), but it already

vanishes due to eq. (2.20). The counting of the twistor degrees of freedom now gives

32− 10− 6 = 16, matching the ones in P .

3 Supertwistors

It is quite straightforward to extend the construction to supersymmetric particles. The

fermionic variables in the supertwistor will arise as invariants under κ-symmetry. It is

therefore desirable to start from an action to be able to keep proper track of the local sym-

metries, especially κ-symmetry. The alternative would be to perform the supersymmetric

extension more ad hoc in the twistor formalism, which seems less satisfactory. This can of

course also be done for bosonic particles.

The construction will be performed specifically for the SL(5) case, and for minimal

supersymmetry. The superparticle action should depend only on the combination

Παβ = Ẋαβ + θ(αθ̇β) . (3.1)

It will eventually equal the momentum. It is invariant under the global supersymmetry

transformations
δεX

αβ = −ε(αθβ) ,

δεθ
α = εα .

(3.2)

The weak section condition and the masslessness condition must follow from the action,

and are implemented by the introduction of a set of Lagrange multipliers Vαβ in an anti-

symmetric matrix. The action is

S =
1

2

∫
dτVαβVγδΠ

αγΠβδ . (3.3)

The V ’s are non-dynamical, and as long as they are assumed to be non-degenerate, can be

gauge fixed to ε, using the symmetry generated by the primary constraint PαβV ≈ 0. All

following equations are given after that gauge fixing. Clearly, the momentum conjugate to

Xαβ is Pαβ = εαγεβδΠ
γδ, and the constraints (2.2) are reproduced — they are the equations

of motion obtained by variation of the Lagrange multipliers. In addition, the momentum

πα conjugate to θα is constrained by

πα − Pαβθβ ≈ 0 . (3.4)

It is obvious that the momentum, obeying (2.2), will have vanishing determinant, so some

of the fermionic constraints are first class, generating κ-symmetry. It is easily checked that

P has half rank precisely when eq. (2.2) is satisfied, leading to half-BPS excitations, and
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reducing the dynamics to that of an ordinary superparticle in 4 dimensions. The (local)

κ-symmetry may also be verified directly in the action, by inserting

δκX
αβ = κ(αθβ) ,

δκθ
α = κα ,

(3.5)

where Pαβκ
β = 0. Solving this condition with κα = Παβ%β and inserting the variations in

the action gives a result that vanishes modulo constraints.

The twistor parametrisation of the bosonic momentum is identical to the bosonic

twistor transform, eq. (2.3). The relation between the conjugate twistor variables W and

the original superspace variables has to be modified, however. It reads

Wα = XαβΛ̄β + θαξ̄ , (3.6)

where the fermionic variables are constructed as

ξ =
1

2
Λαθ

α , ξ̄ =
1

2
Λ̄αθ

α . (3.7)

The fermionic variables are easily shown to be invariant under κ-symmetry, precisely thanks

to the constraint on Λ, eq. (2.5). They are conjugate to each other, {ξ, ξ̄} = 1 and span the

full fermionic phase space. Global supersymmetry transforms the supertwistor variables

according to
δεΛα = 0 ,

δεW
α =

1

2
εαξ̄ ,

δεξ =
1

2
εαΛα .

(3.8)

4 Outlook

We have constructed twistor transforms for exceptional field theory with structure group

En(n), n = 4, 5, 6. The main idea is that the section condition and the on-shell condition

are natural to treat together.

It is unclear if the series can be continued to higher n (lower n should be simple), but

we have so far not been able to perform the construction for n = 7. This may be connected

to the observation that, in the range where the construction has been worked out, the

number of real components in an unconstrained twistor Λ is 2n−1. Already at n = 6, this

number is 32 and the R-symmetry is Spin(5), which can be identified with the rotation

group of 5 extra coordinates. For n = 7, the size of the module needed seems to go beyond

the M-theory spinor at maximal supersymmetry. The corresponding procedure in double

field theory is the somewhat trivial procedure of performing separate twistor transforms in

the two sectors of O(1, d− 1)×O(1, d− 1) ⊂ O(d, d).

Another limitation is that we have only considered “internal” directions, although in

Minkowski signature, and left the remaining 11 − n directions out of the picture. Includ-

ing them would modify the on-shell condition in a way that will also change the twistor

transform.
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Supersymmetry and superfields in flat superspace is straightforward for the En(n) struc-

ture groups. Supermultiplets have been constructed in component language in a number

of papers, e.g. refs. [35, 39, 43]. Giving a geometric meaning to exceptional superspace

seems more difficult, although some progress has been made in double supergeometry [66].

A very desirable goal would be an understanding of the structure corresponding to pure

spinors for ordinary superspace and supergeometry [67–75]. It seems that precisely the

section condition stands in the way, and needs to be better understood for this goal to be

attained. If at some point the issue is resolved, it should be possible to construct off-shell

supersymmetric actions for extended supersymmetric field theory and supergeometry along

the lines of refs. [76–80].

We do not expect the results to have direct bearing on calculations or on construction

of extended field theories. Rather they may provide an interesting message for field theory

and geometry: that the section condition ultimately should be taken seriously and arise

as equations of motion, on equal footing with “P 2 = 0”. We do not claim that the näıve

way the weak section condition is obtained in section 3 — from Lagrange multipliers in

a world-line formalism — has any direct connection to such a field theory formalism; it

is practical rather than deep. The results may however give some direction concerning

possible relaxation of the section condition, in its weak or strong version. Going off-shell

in the twistor formalism means including an infinite number of fields with different spin.

For ordinary higher spin theory [81–83], this is a natural way to derive a set of variables

(oscillators) for the field theory. Although this applies to AdS twistors [59–61], a similar

statement could be valid in M-theory, and the present formalism seems to provide a possible

starting point for an investigation of this issue.
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