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1. Introduction

The spectral theory of automorphic Laplacians is approached either from an adelic-
representation theoretic perspective or from the classical perspective of the upper half-
plane H [32]. Within the classical context one can view this theory either through a 
geometric or an arithmetic lens. Seen through the geometric lens, it is natural to begin 
with a consideration of the spectral resolution of the Laplacian on L2 (Y ), where Y is 
a compact surface endowed with a Riemannian metric of constant negative curvature. 
From an arithmetic perspective, it is natural to start with the modular group SL2 (Z) and 
its automorphic Laplacian. In this case, the corresponding modular surface SL2 (Z) \H
is non-compact and the spectral resolution has an absolutely continuous part in addition 
to the discrete one that characterizes the compact case [19]. In certain situations it is 
possible to relate the spectral resolutions of automorphic Laplacians in the compact case 
to the non-compact case. These correspondences are well-known. They are predicted 
by the Jacquet–Langlands correspondence [18], which establishes, among other things, 
that to any nonconstant eigenfunction of the Laplacian on a cocompact arithmetic Fuch-
sian group there corresponds a nontrivial cuspform with the same eigenvalue on some 
non-cocompact but cofinite arithmetic Fuchsian group [14]. This fact, first discovered, 
independently, by M. Eichler and A. Selberg in the 1950s, was first proved in 1970, using 
the language of representation theory, by Jacquet and Langlands [18] and re-proved in 
1972 by Hideo Shimizu [28] using the language of adelic trace formulas.

In this paper, we prove a stronger and more explicit version of this correspondence 
between the compact case and the non-compact case. The main result is a one-to-one 
correspondence between Maass newforms on Γ0(N)\H and Maass newforms on O1\H, 
where O1 is the unit group of a certain quaternion order with discriminant N . We prove 
this for any N with at least two prime divisors of odd order. The main tool used is the 
Selberg trace formula.

The history of the method used in this paper goes back to [14], where Hejhal, using 
an approach based on unpublished work of A. Selberg from the 1950s [27], illustrated 
how a part of the correspondence between spaces of automorphic forms for cocompact 
and non-cocompact Fuchsian groups could be established using completely classical tech-
niques. He showed that a certain integral transform, Θ, mapped Maass waveforms on a 
Fuchsian group of quaternion type to Maass forms of equal eigenvalue on an appropriate 
congruence subgroup Γ0(d) [31].

Hejhal’s work was extended by Bolte and Johansson2 in [6] and [5]. In [6] they worked 
out the details of the spectral correspondence when the cocompact arithmetic Fuchsian 
group is given by a unit group in an arbitrary order in an indefinite rational division 
quaternion algebra. In so doing they showed that Hejhal’s constructions could be ex-
tended to arbitrary orders. They also improved the result concerning the level of the 

2 Johansson is the same person as the second author of this paper.
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congruence group by illustrating that the natural correspondence is between the dis-
criminant of the order and the level of the congruence group.

To be precise, let O be an order in an indefinite rational division quaternion algebra. 
The group of units of norm one, O1, can be considered as a cocompact Fuchsian group 
of the first kind. Bolte and Johansson [6] showed that Maass waveforms for O1, i.e. 
eigenfunctions of the automorphic Laplacian associated with O1, can be lifted to Maass 
cusp forms for the Hecke congruence group Γ0(d), where d is the (reduced) discriminant 
of the order O thus establishing that theta-lifts preserve eigenvalues of the hyperbolic 
Laplacian. It is these theta-lifts that are considered also in this paper. Left unaddressed 
was the question as to whether or not theta-lifts provided isomorphisms between the 
respective Laplace eigenspaces.

In [5] they continued to address this question by concentrating on maximal orders in 
indefinite rational division quaternion algebras. We note that in this case d is necessarily 
the product of an even number of different primes. By exploiting several versions of the 
(classical) Selberg trace formula [26] they showed that the Laplace eigenvalues and their 
multiplicities for the cocompact group O1 and those for the newforms of level d coincide. 
This, however, still did not imply that theta-lifts were isomorphisms between Laplace 
eigenspaces. Strömbergsson [31], in his doctoral thesis, studied this question indepen-
dently and proved that Θ was indeed a bijection between the respective eigenspaces.

In [25] Risager investigated the asymptotic behavior of the counting function of 
Laplace eigenvalues of Maass newforms of a given level M . To be precise: denote by 
ΔΓ the automorphic Laplacian related to Γ and by NΓ(λ) the corresponding spectral 
counting function. We recall that NΓ(λ) is defined as follows:

NΓ(λ) = #{λn ≤ λ : λn ∈ dSpec(ΔΓ)}, (1.1)

where dSpec(ΔΓ) denotes the discrete spectrum of ΔΓ. Let AΓ be the hyperbolic area 
of Γ\H. Since O1 is cocompact NO1(λ) has an asymptotic expansion of the form [12]:

NO1(λ) = AO1

4π λ + O

( √
λ

log λ

)
(1.2)

and for congruence subgroups Γ0(d), NΓ0(d)(λ) has an asymptotic expansion of the 
form [17]:

NΓ0(d)(λ) =
AΓ0(d)

4π λ + O
(√

λlog λ
)
. (1.3)

Risager defined a counting function, Nnew
Γ0(d)(λ), which counts only the newforms when 

d is the product of an even number of different primes [25]. He found that

Nnew
Γ0(d)(λ) = Cd

AΓ0(d)

4π λ + O

( √
λ

log λ

)
(1.4)
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for some constant 0 < Cd ≤ 1. In other words, the asymptotic expansion of Nnew
Γ0(d)(λ) is 

of a form characteristic of that of the cocompact case! We say that counting functions 
for newforms possessing this type of asymptotic character are of cocompact type, i.e. 
Nnew

Γ0(M)(λ) is of cocompact type if it is of the form CMλ + O(
√
λ/ log λ). Risager then 

asked: Are there values of M not equal to the product of an even number of different 
primes for which Nnew

Γ0(M)(λ) is of cocompact type? In [25] he identified the values of M
for which Nnew

Γ0(M)(λ) is of cocompact type:

Theorem 1.1 (Risager). Let M ∈ N and let n, t ∈ N be the positive integers defined 
uniquely by the requirements that n should be squarefree and M = t2n. Then Nnew

Γ0(M)(λ)
is of cocompact type if and only if n, t satisfies one of the following:

(1) n contains at least two primes.
(2) n is a prime and 4||M .

Evidently, there are a number of cases where Nnew
Γ0(M)(λ) is of cocompact type and 

M is not a product of an even number of different primes. The following question thus 
naturally arises: Suppose that Nnew

Γ0(M)(λ) is of cocompact type. Does this imply the 
existence of a cocompact group O1 such that NO1(λ) coincides with Nnew

Γ0(M)(λ)? In 
other words, are there spectral correspondences responsible for the remaining cases of 
Theorem 1.1?

In this paper, building upon the work of Bolte and Johansson [5,6], Strömbergsson [31]
and Risager [25] we provide a classical description of the correspondences anticipated 
above. We show that whenever n contains at least two primes there exists a quaternion 
group O1 such that the positive Laplace eigenvalues, including multiplicities, for Maass 
newforms on O1 coincide with the Laplace spectrum of Maass newforms for the Hecke 
congruence group Γ0(M). Specifically we prove:

Theorem 1.2. Assume that r is a positive integer that is divisible by an even number of 
primes, and that every prime dividing r does so to an odd power. Let u be any positive in-
teger relatively prime to r. Then the positive Laplace eigenvalues, including multiplicities, 
for Maass newforms on O1

r,u\H and Γ0(ru)\H coincide.

The precise definition of the quaternion group O1
r,u follows in the next section. This 

result gives a completely affirmative answer to Risager’s question for case (1) in Theo-
rem 1.1 filling in gaps that have not been proved before [3]. We will return to case (2) 
in the near future.

We prove this result by comparing the geometric side of the Selberg trace formulas 
for the respective groups O1 and Γ0(M). The key component of this comparison is the 
local embedding numbers [9,24,23]. It is the agreement of these local factors which is 
the main ingredient in the proof of the correspondence. The argument can be seen as a 
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non-holomorphic analogue of part of the work by Hijikata, Pizer and Shemanske on the 
basis problem for holomorphic modular forms [16,24].

Prior to establishing the main result, we present the necessary background on quater-
nion orders, Maass waveforms, newforms and the Selberg trace formula.

2. Quaternion orders

A general reference for this section is [34]. See also [8] for more details on the different 
classes of orders.

Let A be a quaternion algebra over Q. We will assume that A is indefinite, i.e. un-
ramified at infinity so that

A∞ = A⊗Q R ∼= M2(R).

The opposite of this is that A is definite. This means that A∞ ∼= H, the unique real 
division algebra defined by

H = 〈1, i, j, k〉R , where i2 = j2 = −1, k = ij and ji = −ij.

We denote the norm and the trace by N : A −→ Q and Tr : A −→ Q. For any 
representation of A in M2(R) this is just the determinant and trace of the matrix.

For any prime p let Qp be the p-adic numbers. For each p we get a completion Ap =
A ⊗Q Qp. The situation for the completion at a finite place p is analogous to the infinite 
case. In the finite case Ap is either isomorphic to M2(Qp) (unramified) or a unique 
division algebra Hp (ramified). This algebra can be represented in matrix form as

Hp
∼= 〈I, x1, x2, x3〉Qp

, with x1 =
(

1
√
ε

−√
ε 0

)
, x2 =

(
0 √

p√
p 0

)
, x3 = x1x2,

where ε ∈ Zp
∗ and 1 − 4ε ∈ Zp

∗ \ (Zp
∗)2 [8].

The algebra A is unramified at almost all places and, since it is unramified at infinity, 
it is ramified at an even number of finite places. Conversely, given an even number (≥ 0) 
of primes, it is always possible to find, up to isomorphism, a unique quaternion algebra 
that ramifies at exactly these primes. The (reduced) discriminant, d(A), of A is the 
product of all the ramified primes. In the special case when A has no ramified primes at 
all, the discriminant of A is equal to 1 and A ∼= M2(Q).

An order O in A is a Z-module such that O is a ring and O ⊗Z Q = A. An order 
is maximal if it is not contained in a larger order. In contrast to the case of number 
fields, the maximal order is not unique. There is always infinitely many maximal orders. 
For example for A = M2(Q), the maximal orders are all the conjugates αM2(Z)α−1

including for example
{(

a b/r
)

: a, b, c, d ∈ Z

}
, for any r ∈ Q \ {0}.
cr d
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If A is indefinite over Q, then this is true in general so all maximal orders are conju-
gated.

For general orders the situation is more complicated, and the best way to analyze 
them is to look at completions Op = O ⊗Z Zp, where Zp are the p-adic integers. The 
(reduced) discriminant, d(O), of an order O is defined as follows: If {e1, e2, e3, e4} is any 
Z-basis of O then

d(O) =
√

|det [Tr (eiej)]|. (2.1)

The (reduced) discriminant is always an integer whose value is independent of the choices 
of e1, e2, e3, e4 and d(A) divides d(O). For any maximal order, d(O) = d(A) and for any 
suborder O1 ⊆ O, d(O1) = d(O)[O : O1].

We define for any order O the unit quotient group O1 as follows:

O1 = {γ ∈ O : N(γ) = 1} /{±I}.

The group O1 will embed as a discrete subgroup in PSL2(R). The group PSL2(R) acts 
by Möbius transformations on the complex upper half plane H. With our restrictions 
on A, the quotient O1\H is an orbifold, that with suitable handling of possible elliptic 
points could be given the structure of a Riemann surface. The surface O1\H is compact 
if and only if A � M2(Q).

In order to define the orders that we will use for the correspondence, we need some 
information about the local theory of orders. We will use two different classes of local 
orders. The first is the well known class of Eichler orders. Any Eichler order E(1)

pn satisfy

E
(1)
pn

∼=
(

Zp Zp

pnZp Zp

)

for some n ≥ 1 and have d(E(1)
pn ) = pn. Obviously these only occur in Ap

∼= M2(Qp).
The other class of orders, E(−1)

pn , occur both in M2(Qp) and Hp. In M2(Qp) we have

E
(−1)
p2n

∼=
{(

a b

c d

)
∈ M2(Zp) : a ≡ b + d (mod pn), c ≡ bε (mod pn)

}
, (2.2)

where ε ∈ Zp
∗ and 1 + 4ε ∈ Zp

∗ \ (Zp
∗)2 [8]. (If 1 + 4ε ∈ (Zp

∗)2, then the order is 
isomorphic to E(1)

p2n .) We see that [M2(Zp) : E(−1)
p2n ] = p2n so d(E(−1)

p2n ) = p2n. In Hp a 
maximal order is

Op
∼= 〈I, x1, x2, x3〉Zp

, with x1 =
(

1
√
ε

−√
ε 0

)
, x2 =

(
0 √

p√
p 0

)
, x3 = x1x2,

where ε ∈ Zp
∗ and 1 − 4ε ∈ Zp

∗ \ (Zp
∗)2 and in this case

E
(−1)
2n+1

∼= 〈I, x1, p
nx2, p

nx3〉Z ,
p p
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so [Op : E(−1)
p2n ] = p2n and hence d(E(−1)

p2n+1) = p2n+1 [8]. (If 1 − 4ε ∈ (Zp
∗)2, then the 

algebra is unramified and the order is isomorphic to E(1)
p2n+1.) Note in particular that 

E
(−1)
p = Op is a maximal order in Hp.
Given local orders Op for all primes p with Op

∼= M2(Zp) for almost all p, then it is 
always possible to find a global order O such that O ⊗Z Zp = Op for all primes p. We 
only need the existence, but for the reader unfamiliar with quaternion orders we give 
some simple examples. For Eichler orders it is obvious that

EN =
{(

a b

c d

)
∈ M2(Z) : c ≡ 0 (mod N)

}

has (EN )p ∼= E
(1)
pn for all primes p with pn‖N . It is a little more complicated when 

Op
∼= E

(−1)
pn for at least one p, but it is possible to use the explicit descriptions of the 

local orders to find a global order. For example in the simple case with d(O) = 32n and 
O3 ∼= E

(−1)
32n we can choose ε = 1 and get

O ∼=
{(

a b

c d

)
∈ M2(Z) : a ≡ b + d (mod 3n), c ≡ b (mod 3n)

}
.

In particular, note that O1 is a congruence subgroup of level 3n, i.e. it contains Γ(3n), 
since the conditions for O are obviously fulfilled when a ≡ d ≡ 1 and b ≡ c ≡ 0. It is 
clear from (2.2), that in fact it will be true in general that the unit group of any order 
we consider in M2(Q) will be a congruence subgroup.

We will need two classes of global orders and we describe them as two subclasses of 
one class of orders. Let r ∈ N be such that all primes dividing r do so to an odd power, 
and let A be the quaternion algebra ramified at exactly all primes dividing r. Since we 
assume that A is indefinite, the number of primes dividing r is even. Now let u ∈ N be 
such that gcd(r, u) = 1. We define Or,u to be an order in A such that

(Or,u)p ∼=

⎧⎪⎪⎨
⎪⎪⎩

E
(−1)
p2n+1 if p2n+1‖r,

E
(1)
pn if pn‖u,

M2(Zp) if p � ru.

We will consider the two different natural subclasses of these orders for which r = 1 or 
r > 1. If r = 1, then A = M2(Q) and O1,u ∼= Eu are the usual Eichler orders, so in 
particular E1

u = Γ0(u)/{±I}. When r > 1, A is a division algebra with maximal order 
Or1,1 where r1 is the product of the distinct primes dividing r = r1r

2
2.

The main result of this paper relates Maass waveforms corresponding to Or,u to those 
corresponding to O1,ru.
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3. Maass waveforms

The spectral theory of hyperbolic surfaces has its origins in the efforts by Atle Selberg 
to use the techniques of harmonic analysis in the study of automorphic forms [15]. Its 
development was influenced, in part, by the work of Hans Maass [21] who studied non-
analytic automorphic functions. We outline below the elements of the theory that are 
necessary for our purposes. A comprehensive reference for what follows is [17].

Let A be an indefinite rational quaternion algebra and O be any order in A such that 
d(O) = d. Let O1\H and Γ0(d)\H be the Riemann surfaces related to O1 and Γ0(d)
respectively and let L2 (O1\H

)
and L2 (Γ0(d)\H) be the corresponding Hilbert spaces 

of square integrable functions on O1\H and Γ0(d)\H respectively. Further, let

ΔΓ = −y2
(

∂2

∂x2 + ∂2

∂y2

)
(3.1)

be the Laplace–Beltrami operator (hyperbolic Laplacian) on the respective Hilbert 
spaces.

A (cuspidal) Maass waveform on Γ\H is a function f ∈ L2 (Γ\H) such that:

(i) f(γz) = f(z) for all γ ∈ Γ,
(ii) f vanishes at the cusps of Γ, and
(iii) ΔΓf = λf for some λ > 0.

Maass waveforms are real analytic eigenfunctions of the hyperbolic Laplacian and their 
eigenvalues (together with 0) constitute the discrete spectrum of ΔΓ. These functions give 
a basis for L2 (Γ\H) on Γ\H. The spectrum of ΔΓ, denoted by Spec (ΔΓ), decomposes 
into discrete and continuous parts. We will identify these components by dSpec (ΔΓ) and 
cSpec (ΔΓ) respectively. It should be noted that solutions to the equation ΔΓf = λf

on hyperbolic surfaces have deep connections to physics. They are used to describe 
mathematical models of quantum chaos [4] and they also play a role in the study of 
cosmology [2].

The discrete spectrum, dSpec (ΔΓ), is infinite and spanned by Maass waveforms (and 
a constant function) both when Γ = Γ0(d) and Γ = O1. Each of the eigenvalues occur 
with finite multiplicity so we have an infinite list of discrete eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · , λn → ∞. (3.2)

If Γ is a cocompact subgroup of PSL2 (R) such as O1, then the Laplace operator ΔΓ
has only a discrete spectrum, i.e. cSpec (ΔO1) is empty. Hence the complete spectrum 
of the hyperbolic Laplacian ΔO1 is of the form (3.2).

If Γ is a non-cocompact but cofinite subgroup of PSL2 (R) such as Γ0(d), then the 
Laplace operator ΔΓ has both a continuous spectrum 

[1
4 ,∞

)c and a discrete spectrum 
contained in [0,∞) [27]. Here c is the number of inequivalent cusps of Γ\H. If Γ is a 
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congruence group, e.g. Γ = Γ0(d), then Selberg proved in the 1950s that the discrete
spectrum is infinite and of the form in (3.2) [33, Chapter 8]. For a generic group Γ of this 
type it is conjectured that dSpec (ΔΓ) = {0}, i.e. that there are no Maass waveforms at 
all [22]. However, for symmetry reasons there are non-congruence groups with infinitely 
many Maass waveforms and numerical computations strongly suggest that there are other 
groups with a positive finite number of Maass waveforms not explained by symmetry of 
the surface [10] (see also [7] where some of the eigenvalues in [10] are refined to high 
precision).

The spectral correspondence that we focus on is the correspondence between 
dSpec

(
ΔΓ0(d)

)
and dSpec (ΔO1) for orders O = Or,u defined in Section 2 with d = ru. 

As noted in the introduction, the spectral counting function

NΓ(λ) = #{λn ≤ λ : λn ∈ dSpec(ΔΓ)}, (3.3)

for Γ = O1 and Γ = Γ0(d) satisfies

NO1(λ) = AO1

4π λ + O

( √
λ

log λ

)
,

NΓ0(d)(λ) =
AΓ0(d)

4π λ + O
(√

λlog λ
)
.

We note again the difference in the error terms between the cocompact and non-
cocompact case. However, we will see that when restricting to the space of newforms 
the main error terms for NΓ0(d)(λ) will cancel and the error terms will be of the same 
magnitude as for NO1(λ). We will then prove that for all orders Or,u there will actually 
be a bijection between the newforms spectra.

4. Newforms

The theory of newforms and oldforms was developed for holomorphic modular forms 
in [1], and the theory is completely analogous for Maass forms [30]. In this section 
we briefly recall the part we need, and also describe the corresponding theory for the 
quaternion orders we consider. We denote the space of Maass forms on Γ\H by MΓ, and 
the subspace of forms with Laplace-eigenvalue λ by MΓ(λ).

4.1. Newforms for Γ0(d)

If Γ1 is a subgroup of Γ2, then obviously MΓ2 is a subspace of MΓ1 . In particular 
MΓ0(N) is a subspace of MΓ0(M) when N | M . However in this case, if f ∈ MΓ0(N)(λ)
then

ga(z) = f(az) ∈ MΓ0(M)(λ) for all a |(M/N) .
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In other words, every Maass form on Γ0(N) gives rise to τ(M/N) Maass forms on Γ0(M), 
where τ(d) is the number of divisors of d. It is easy to check that the ga are linearly 
independent. This construction of course works for all divisors of M , and the subspace 
of MΓ0(M) generated by these functions for all proper divisors of M is called the space 
of oldforms and will be denoted by Mold

Γ0(M). The complement to Mold
Γ0(M) in MΓ0(M) is 

called the space of newforms, Mnew
Γ0(M).

For any λ we get

dim
(
MΓ0(M)(λ)

)
=

∑
d|M

τ

(
M

d

)
dim

(
Mnew

Γ0(d)(λ)
)
.

Inverting this formula, we get

dim
(
Mnew

Γ0(M)(λ)
)

=
∑
d|M

β

(
M

d

)
dim

(
MΓ0(d)(λ)

)
, (4.1)

where β is the inverse (with respect to convolution of arithmetic functions) of τ defined 
by [1, (6.7)]

β(n) =
∑
d|n

μ(d)μ
(n
d

)
.

The function β is multiplicative and for a prime p it satisfies

β(p) = −2,

β(p2) = 1,

β(pk) = 0, if k > 2.

4.2. Newforms for O1
r,u

We will now describe the corresponding situation for Or,u.

Proposition 1. Let Or,u and Os,t be orders in the algebra A with d(A) = r1, so r = r1r
2
2

and s = r1s
2
2 for some integers r2 and s2. Assume that Or,u ⊆ Os,t, which is equivalent 

to s2 | r2 and t | u. If f ∈ MO1
s,t

, then

ga(z) = f(az) ∈ MO1
r,u

for all a |(u/t) .

Proof. We show that ga ∈ MO1 where O = Os,ta from which the result is trivial 
since Or,u ⊆ O. Eichler orders EN are characterized by being the intersection of two 
(conjugated) maximal orders
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EN
∼= σ−1

N M2(Z)σN ∩M2(Z), where σN =
(
N 0
0 1

)
.

Using this (locally) we get

O ∼= Os,t ∩ σ−1
a Os,tσa.

In particular, if γ ∈ O1 then σaγ ∈ Os,tσa so σaγ = γ1σa for some γ1 ∈ O1
s,t. We note 

that σa · z = az, and hence for f ∈ MO1
s,t

and γ ∈ O1

ga(γz) = f(σaγz) = f(γ1σaz) = f(σaz) = ga(z)

so ga ∈ MO1 . �
Analogous to the case of Γ0(N), we define the oldforms, Mold

O1
r,u

, in MO1
r,u

to be 

the space of all ga for all proper divisors a of u, and the newforms, Mold
O1

r,u
, to be its 

complement.
Let r = r1r

2
2 and s = r1s

2
2 as in Proposition 1. For any λ we get

dim
(
MO1

r,u
(λ)

)
=

∑
s2|r2

∑
t|u

τ
(u
t

)
dim

(
Mnew

O1
s,t

(λ)
)
.

Inverting this formula, we get

dim
(
Mnew

O1
r,u

(λ)
)

=
∑
t|u

β
(u
t

) ∑
s2|r2

μ

(
r2
s2

)
dim

(
MO1

s,t
(λ)

)
. (4.2)

Remember that gcd(r, u) = 1 so with M = ru (4.1) can be rewritten as

dim
(
Mnew

Γ0(ru)(λ)
)

=
∑
t|u

β
(u
t

)∑
s|r

β
(r
s

)
dim

(
MΓ0(st)(λ)

)
. (4.3)

5. Selberg trace formula

In this section we introduce the Selberg trace formulas for the groups O1 and Γ0(d). 
These formulas are the main tools with which we will work in order to prove our main re-
sult. The Selberg trace formula establishes a quantitative connection between the Laplace 
spectrum, Spec (ΔΓ), and the geometry of the Riemann surface Γ\H. It is a general iden-
tity connecting geometrical and spectral terms of form:

∑
spectral terms =

∑
geometric terms. (5.1)

The spectral terms come from the discrete and continuous spectra of the automorphic 
hyperbolic Laplacian ΔΓ, and the geometric terms contain the area of a fundamental 
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domain, elliptic points and cusps and a sum over all closed geodesics. The closed geodesics 
are in one-to-one correspondence to the conjugacy classes of hyperbolic elements that 
show up in the explicit versions of the trace formula used here. The formula was developed 
by Selberg in order to establish the existence of infinitely many eigenvalues for subgroups 
of finite index of SL2(Z). It is a non-abelian generalization of the Poisson summation 
formula [19] and one can find a comprehensive classical introduction to the trace formula 
in [12,13,17]. The trace formulas for both types of arithmetic Fuchsian groups under 
consideration are well-known. The result for O1 can be found in [12, ch. V, Thm. 8.1]
and for Γ0(m) in [11].

We recall the known results: In what follows h : C → C always denotes a function 
satisfying,

(1) h(r) = h(−r),
(2) h(r) is holomorphic in the strip |�(r)| ≤ 1

2 + ε, for some ε > 0,
(3) |h(r)| ≤ C(1 + �(r))−2−δ for some C > 0 and δ > 0.

The Fourier transform of h will then be written as

ĥ(u) = 1
2π

+∞∫
−∞

h(r) e−iru dr.

For a group Γ we define E′(t, Γ) to be the number of conjugacy classes in Γ of primitive 
elements with trace t. For t > 2 these are in one-to-one correspondence with closed 
(primitive) geodesics on Γ\H, for t = 2 they correspond to inequivalent cusps and for 
0 ≤ t < 2 they correspond to elliptic points. For elliptic elements (0 ≤ t < 2) mt denotes 
the order of the primitive element with trace t. We also define AΓ to be the hyperbolic 
area of Γ\H. This is everything needed to formulate the trace formulas.

5.1. The Selberg trace formula for cocompact groups O1

Since the unit group O1 is a cocompact Fuchsian group, the Selberg trace formula 
reads as follows with notation defined above:

Proposition 5.1. Let λk = r2
k+1/4 run through all eigenvalues of the hyperbolic Laplacian 

on L2(O1\H), counted with multiplicities. Then

∞∑
k=0

h(rk) = IO1 + EO1 + HO1 (5.2)

where



T.R. Blackman, S. Lemurell / Journal of Number Theory 158 (2016) 1–22 13
IO1 = AO1

4π

+∞∫
−∞

h(r) r tanh(πr) dr, (5.3)

EO1 =
∑

t∈{0,1}

E′(t,O1)
2mt

mt−1∑
k=1

1
sin( kπ

mt
)

+∞∫
−∞

h(r) e−
2kπr
mt

1 + e−2πr dr, (5.4)

HO1 =
∞∑
t=3

E′(t,O1) arccosh( t
2 )

∞∑
k=1

ĥ
(
2k arccosh( t

2 )
)

sinh
(
k arccosh( t

2 )
) (5.5)

is the identity, elliptic and hyperbolic contribution respectively.

5.2. The Selberg trace formula for Hecke congruence groups Γ0(m)

We recall [11, Thm. 9.9] together with [11, (10.2), (10.4)] and use the same notation 
as in Proposition 5.1:

Proposition 5.2. Let μk = r2
k+1/4 run through all eigenvalues of the hyperbolic Laplacian 

on L2(Γ0(m)\H), counted with multiplicities. Then

∞∑
k=0

h(rk) = IΓ0(m) + EΓ0(m) + HΓ0(m) + PΓ0(m) (5.6)

with the identity, elliptic and hyperbolic contribution as in Proposition 5.1 and the 
parabolic contribution is

PΓ0(m) = κ

{
ĥ(0) log(π2 ) − 1

2π

+∞∫
−∞

h(r)
[
Γ′

Γ (1
2 + ir) + Γ′

Γ (1 + ir)
]
dr (5.7)

+ 2
∞∑

n=1

Λ(n)
n

ĥ(2 logn) −
∑
p|m

p prime

∞∑
k=0

log p
pk

ĥ(2k log p)
}
, (5.8)

where κ is the number of cusps of Γ0(m)\H.

5.3. Comparing trace formulas

It is clear from Propositions 5.1 and 5.2 that in order to prove results about corre-
spondences between discrete spectra for different groups one needs to compare areas AΓ
and numbers E′(t, Γ) for the different groups and also check that the parabolic contri-
butions agree. The area terms are straightforward, but for the numbers E′(t, Γ) we do a 
convenient standard reformulation of the sum in terms of so-called optimal embeddings.

Let K be a quadratic field extension of Q and S an order in K. Assume that there 
is an embedding ι : K −→ A. The order S is said to be optimally embedded into O
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with respect to ι if ι(S) = O ∩ ι(K). There is a one-to-one correspondence between 
conjugacy classes of elements in O1 and optimal embeddings of quadratic orders S into 
the quaternion order O, see [5] or [30] for details. Hence, one may rewrite the elliptic and 
hyperbolic contributions in terms of a sum over quadratic orders that can be optimally 
embedded into O.

The computation of the number of optimal embeddings of S into O, E′(S, O), involves 
local embedding numbers, E(S, O)p, i.e. the number of optimal embeddings of Sp into Op, 
and global factors which are essentially class numbers of S and O. The numbers E(S, O)p
are known for any orders S and O = Or,u and any prime p, and the global factors in our 
case only depend on S and not on Or,u:

Lemma 1. The number of optimal embeddings E′(S, O) of a quadratic order S in an 
order O = Or,u modulo conjugation by elements in O1 satisfy

E′(S,O) = c(S)
∏
p

E(S,O)p,

where E(S, O)p is the number of optimal embeddings of Sp into Op modulo conjugation 
by O∗

p and c(S) only depends on S and not on (r, u).

Proof. This is [20, (3.3)] using the facts that the class number of Or,u is always 1 and 
Or,u always contains elements with norm equal to −1 [20]. �

The number c(S) in Lemma 1 is actually the class number of S divided by 2 or the 
class number itself depending on whether S contains an element with norm equal to −1
or not. However, we do not need that but only that it is independent of the quaternion 
order Or,u.

Summing up we get that in order to show that the elliptic and/or hyperbolic contri-
butions are equal, it is enough to show that the products of the local embedding numbers 
agree. For convenience we define

E(S,O) =
∏
p

E(S,O)p,

so if one shows that E(S,O1) = E(S,O2) for all quadratic orders S, then the elliptic and 
hyperbolic contributions in the trace formulas for O1

1\H and O1
2\H agree. This is exactly 

what will be done in the next two sections for the part of the spectrum corresponding 
to newforms for O1

1 = Γ0(ru) and O1
2 = O1

r,u.

6. Newforms sieve

In this section we describe how to sieve out the contribution from the newforms to the 
trace formulas and we show how this can be used to prove that the newforms on O1

r,u\H
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and Γ0(ru)\H coincide. We will use the notation introduced earlier that r = r1r
2
2, where 

r1 is the discriminant of the algebra containing Or,u. Also, we will restrict to the case 
u = 1, because, as we will see at the end of this section, it follows for general u from a 
simple multiplicativity argument. We remind the reader that O1,r is the Eichler order of 
level r so that O1

1,r = Γ0(r).
Using the formulas (4.2) and (4.3), it is possible to sieve out the contribution of the 

newforms in the Selberg trace formula. We use the notation λ = r2
λ +1/4. For the Hecke 

congruence groups we get

∑
λ∈Snew

Γ0(r)

h(rλ) =
∑
d|r

β
( r
d

) ∑
λ∈SΓ0(d)

h(rλ), (6.1)

and the corresponding formula for O1
r,1 is

∑
λ∈Snew

O1
r,1

h(rλ) =
∑
d|r2

μ
(r2
d

) ∑
λ∈SO1

r1d2,1

h(rλ). (6.2)

In order to prove that Snew
Γ0(r) = Snew

O1
r,1

, we will compare the corresponding linear combi-
nations of the right hand sides of the trace formulas.

The fact that Nnew
Γ0(ru)(λ) is of cocompact type is equivalent to the fact that the linear 

combination of the parabolic contributions in (5.6) vanish [25]. Hence, we only need to 
consider the identity, elliptic and hyperbolic contribution.

We simplify the notation of the areas to Ad = AΓ0(d) and Ar,u = AO1
r,u

. Combining 
formulas (5.2) and (5.6) with (6.1) and (6.2), it is natural to define

Anew
r =

∑
d|r

β
( r
d

)
Ad and Anew

r,1 =
∑
d|r2

μ
(r2
d

)
Ar1d2,1 (6.3)

and

E(S,O1,r)new =
∑
d|r

β
( r
d

)
E(S,O1,d) and

E(S,Or,1)new =
∑
d|r2

μ
(r2
d

)
E(S,Or1d2,1). (6.4)

We remark that the entities Anew
r and Anew

r,1 are not “areas” and that E(S,Γ0(r))new and 
E(S,Or,1)new are not “embedding numbers” but should just be regarded as functions 
in r. Note that the areas and the embedding numbers are multiplicative functions as well 
as β and μ, and hence these four new functions are also multiplicative in r. For example 
this means that

E(S,Or,1)new =
∏

E(S,Or,1)new
p (6.5)
p|r
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where

E(S,Or,1)new
p =

∑
d|pt

μ

(
pt

d

)
E(S,Or′d2,1)p

with r = r′p2t and p2t+1 exactly divides r.
From (5.2) and (5.6) we see that the right hand sides of the trace formulas (6.1)

and (6.2) for the newforms agree if the areas satisfy

Anew
r = Anew

r,1 (6.6)

and the optimal embedding numbers satisfy

E(S,O1,r)new = E(S,Or,1)new, (6.7)

for all quadratic orders S. The comparison of the embedding numbers is done in the 
next section. The terms corresponding to the areas are simple and straightforward to 
determine, and we conclude this section with this computation.

Since Anew
r and Anew

r,1 are multiplicative in r, it is enough to compute them for r
a prime power. It is well known that Apt = pt−1(p + 1). In the cocompact case, even 
though there is not any algebra ramified at just one prime, the entity Ap2s+1,1 makes 
sense thanks to multiplicativity. The formula Ap2s+1,1 = (p − 1)p2s can be extracted 
from [20, Section 2]. To be precise, Ap,1 = (p − 1) is equation (2.1) in [20]. Moreover, for 
any allowable (e.g. prime) q

Ap2s+1,1

Ap,1
= [(Opq,1)1p :

(
Op2s+1q,1

)1
p
] = p2s

by (2.3) in [20], since in the notation there we have M = Opq,1, O = Op2s+1q,1, d(Op) =
p2s+1, e(Op) = −1, Ap

∼= Hp and finally R∗
p = N(O∗

p) by (5.3) in [20]. Plugging these 
formulas into (6.3), we get

Anew
pt =

t∑
i=0

β(pt−i)Api =

⎧⎪⎨
⎪⎩

p− 1 t = 1,
p2 − p− 1 t = 2,
(p + 1)(p− 1)2pt−3 t ≥ 3,

(6.8)

and

Anew
p2s+1,1 =

s∑
i=0

μ(ps−i)Api,1 =
{
p− 1 s = 0,
(p + 1)(p− 1)2p2(s−1) s ≥ 1.

(6.9)

We see that Anew
p2s+1 = Anew

p2s+1,1 for all s ≥ 0, and by multiplicativity we have established 
the formula (6.6).
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We end this section with noting that formulas (6.6) and (6.7) will actually prove 
that

Anew
ru = Anew

r,u and E(S,Γ0(ru))new = E(S,Or,u)new. (6.10)

The reason is that if p | u, then (O1,ru)p ∼= (Or,u)p so all local factors at p will be 
identical. Hence, the multiplicativity of the entities in ru implies that they are equal also 
in the more general case.

7. Optimal embeddings

In this section p will be a prime and L a quadratic extension of Qp. Furthermore, 
S0 will be the maximal order in L and Si for i > 0 will be the suborder Si = Zp + piS0
and Δ = Δ(Si) will be the discriminant of Si. Finally O will be an order with Op

∼= E
(−1)
p2t+1

and O1 will be denoted as O1(p2t+1).

7.1. Odd primes

If p is an odd prime, then there are three different classes of quadratic extensions. We 
will have

Δ(Si) =

⎧⎪⎨
⎪⎩

p2i, if L is split,
p2iu, if L is unramified,
p2i+1v, if L is ramified,

where u is a quadratic non-residue and v could be either 1 or u. The formulas for the 
optimal embedding numbers from [24] are in our notation (with the convention that 
p−1 = 0):

Δ = p2i t < i t = i t > i

E(Si,O1(p2t+1))p 0 0 0
E(Si,Γ0(p2t+1))p 2pt 2pi + 2pi−1 2pi + 2pi−1

E(Si,Γ0(p2t))p pt + pt−1 pi + 2pi−1 2pi + 2pi−1

Δ = p2iu t < i t = i t > i

E(Si,O1(p2t+1))p 0 2pi − 2pi−1 2pi − 2pi−1

E(Si,Γ0(p2t+1))p 2pt 0 0
E(Si,Γ0(p2t))p pt + pt−1 pi 0

Δ = p2i+1v t < i t = i t > i

E(Si,O1(p2t+1))p 0 pi 0
E(Si,Γ0(p2t+1))p 2pt pi 0
E(Si,Γ0(p2t))p pt + pt−1 pi + pi−1 0
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Table 1
All nonzero local embedding numbers for newforms for odd prime p for 
O1(p2t+1) and Γ0(p2t+1).

Δ(Si) Relation i and t E(Si,O1(p2t+1))new
p E(Si,Γ0(p2t+1))new

p

p2iu i = t 2pi − 2pi−1 2pi−1 − 2pi

p2i+1v i = t pi −pi

p2i+1v i = t − 1 −pi pi

From these we derive the numbers

E(Si,Γ0(pn))new
p =

∑
d|pn

β

(
pn

d

)
E(Si,Γ0(d))p

= E(Si,Γ0(pn))p − 2E(Si,Γ0(pn−1))p + E(Si,Γ0(pn−2))p

and

E(Si,O1(p2t+1))new
p =

∑
d|pt

μ

(
pt

d

)
E(Si,O1(pd2))p

= E(Si,O1(p2t+1))p −E(Si,O1(p2t−1))p.

In most cases the value of E(Si, Γ0(p2t+1))new
p and E(Si, O1(p2t+1))new

p will be zero, and 
we collect all the non-zero results in Table 1.

7.2. The prime p = 2

If p = 2, then there are five distinct cases. The formulas for the optimal embedding 
numbers from [24] are again in our notation (with the convention that 2−1 = 0):

Δ = 1 t = 0 t > 0
E(Si,O1(22t+1))2 0 0
E(Si,Γ0(22t+1))2 2 2
E(Si,Γ0(22t))2 1 2

Δ = 5 t = 0 t > 0
E(Si,O1(22t+1))2 2 2
E(Si,Γ0(22t+1))2 0 0
E(Si,Γ0(22t))2 1 0

Δ = 22i+2 t ≤ i t = i + 1 t > i + 1
E(Si,O1(22t+1))2 0 0 0
E(Si,Γ0(22t+1))2 2t+1 3 · 2i+1 3 · 2i+1

E(Si,Γ0(22t))2 2t + 2t−1 2i+2 3 · 2i+1
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Δ = 5 · 22i+2 t ≤ i t = i + 1 t > i + 1
E(Si,O1(22t+1))2 0 2i+1 2i+1

E(Si,Γ0(22t+1))2 2t+1 0 0
E(Si,Γ0(22t))2 2t + 2t−1 2i+1 0

Δ = a · 22i+2 t < i t = i t > i

E(Si,O1(22t+1))2 0 2i 0
E(Si,Γ0(22t+1))2 2t+1 2i 0
E(Si,Γ0(22t))2 2t + 2t−1 2i + 2i−1 0

In the final table a is any of the numbers 3, 7, 6, 10 or 14. Again, in most cases the 
values of E(Si, Γ0(22t+1))new

2 and E(Si, O1(22t+1))new
2 will be zero, and we collect all the 

non-zero results in Table 2.

7.3. Summing up

It is clear from Tables 1 and 2 that

E(Si,O1(p2t+1))new
p = −E(Si,Γ0(p2t+1))new

p

for any i, t and prime p. Since it is always an even number of primes that divide r for the 
orders Or,1 the difference in sign will cancel and (6.5) and the corresponding formula for 
E(S,Γ0(r))new implies that

E(S,Γ0(r))new = E(S,Or,1)new

for any S and r.

8. The correspondence

Finally, we present our main result: That is, in most cases, the Jacquet–Langlands 
correspondence between newforms for Hecke congruence groups and newforms for certain 
quaternion orders is a bijection.

Table 2
All nonzero local embedding numbers for newforms for O1(22t+1) and 
Γ0(p2t+1). Here a is any of the numbers 3, 7, 6, 10 or 14.

Δ(Si) Relation i and t E(Si,O1(22t+1))new
2 E(Si,Γ0(22t+1))new

2

5 i = t = 0 2 −2
5 · 22i+2 i = t − 1 2i+1 −2i+1

a · 22i+2 i = t 2i −2i

a · 22i+2 i = t − 1 −2i 2i
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Theorem 8.1. Assume that r is a positive integer that is divisible by an even number of 
primes, and that every prime dividing r does so to an odd power. Let u be any positive in-
teger relatively prime to r. Then the positive Laplace eigenvalues, including multiplicities, 
for Maass newforms on O1

r,u\H and Γ0(ru)\H coincide, i.e. Snew
Γ0(ru) = Snew

O1
r,u

.

Proof. As has been noted in Section 6, it is enough to consider the case u = 1. It now 
suffices to show that

∑
λ∈Snew

Γ0(r)

h(λ) =
∑

λ∈Snew
O1

r,1

h(λ) (8.1)

for an arbitrary test function h.
We recall that

∑
λ∈Snew

Γ0(r)

h(λ) =
∑
d|r

β
( r
d

) ∑
λ∈SΓ0(d)

h(λ), (8.2)

and that the corresponding formula for O1
r,1 is

∑
λ∈Snew

O1
r,1

h(λ) =
∑
d|r2

μ
(r2
d

) ∑
λ∈SO1

r1d2,1

h(λ). (8.3)

In order to prove that Snew
Γ0(r) = Snew

O1
r,1

, we will compare the corresponding linear combi-
nations of the right hand sides of the trace formulas.

The linear combinations of the area terms are given by Anew
r and Anew

r,1 defined in (6.3). 
These were proved to be equal at the end of Section 6.

The terms that contain embedding numbers are given by E(S,Γ0(r))new and 
E(S,Or,1)new defined in (6.4). That these agree is clear from Table 1 and Table 2
as explained in Section 7.

Finally the terms from the parabolic contribution for Γ0(r) vanish. This is proved 
in [25] and is by definition equivalent to Γ0(r) being of cocompact type. Hence all the 
linear combinations of the right hand sides of the trace formulas agree. �

A direct and obvious consequence of Theorem 8.1 is the following correspondence 
between Maass newforms on orders in different quaternion algebras.

Corollary 1. Assume that r1 and r2 are positive integers each divisible by an even number 
of primes, and that every prime dividing r1 or r2 does so to an odd power. Let u1 and u2

be any positive integers relatively prime to r1 and r2 respectively such that r1u1 = r2u2. 
Then the positive Laplace eigenvalues, including multiplicities, for Maass newforms on 
O1

r ,u \H and O1
r ,u \H coincide, i.e. Snew

O1 = Snew
O1 .
1 1 2 2 r1,u1 r2,u2
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The smallest example matching the corollary is

Snew
O1

6,5
= Snew

O1
10,3

= Snew
O1

15,2
.

Theorem 8.1 covers all cases where Γ0(N) is of cocompact type except when N = 4pu2

with p a prime and u odd. The obvious idea in this case is to look at orders in the 
quaternion algebra with discriminant 2p. It is easy to check that the orders considered in 
this paper will not work. The order O2p,u2 which corresponds to Γ0(2pu2) gives too few 
Maass forms and the order O8p,u2 which corresponds to Γ0(8pu2) gives too many. We 
also note that numerical calculations comparing the beginning of the newform spectra 
for Γ0(12) and Γ0(24) reveal no relation, so there is no reason to believe that part of the 
newform spectrum corresponding to Γ0(4pu2) will correspond to a subset of the newform 
spectrum corresponding to Γ0(8pu2).

The only other class of orders that we find reasonable to consider are those with 
Eichler invariant equal to 0 [8]. Here we find suborders of O2p,u2 of index 2, so the 
discriminant is a promising 4pu2. However when we compute the area term in the trace 
formula we find a leading term that is twice the one we want. Thus, unless there are 
some non-trivial “oldforms” showing up, our claim is that there is no order in the case 
N = 4pu2 that gives the same correspondence as in Theorem 8.1, but we have no proof 
of it. There could for example be a phenomenon analogous to the one for Γ0(9), where 
all newforms actually are forms, or twists of forms, corresponding to groups strictly
containing Γ0(9) [29]. Hence, we definitely do not exclude the possibility of finding a 
correspondence with an adjusted notion of newforms in the case N = 4pu2. However, 
without adjustment we believe that:

Conjecture 1. In the case N = 4pu2 with p a prime and u odd there is no quaternion 
order with a natural correspondence between newforms as the one in Theorem 8.1.

Of course we would be very happy if someone proves us wrong.
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