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Preface

This book constitutes the refereed proceedings of the 7th International Conference on
Social Robotics, ICSR 2015, held in Paris in October 2015. Having started in 2009,
ICSR is now in its seventh edition and serves as a premier international forum for
reporting and discussing the latest progress in the field of social robotics.

For the seventh edition of the conference, the call for papers attracted a record
number of 126 submissions. The 70 revised full papers included in this book were
carefully reviewed and selected based on the reviews of highly qualified professionals
from around the world.

In addition to the main track, the conference program included two Special Sessions
on “Objective Measures in HRI for Social Robotics” and on “Social Assistive Robotics
for Children.”

The conference program highlights included three invited talks by Gordon Cheng on
“Closing the Natural Interaction Loop with Neuroscience-Based Robotics,” by Jac-
queline Nadel on “Toward a Two-Body Perspective in the Interdisciplinary Study of
Nonverbal Communication,” and by Wendy Ju on “Welcome Robot Overlords?”.

The program was complemented by the ICSR Robot Design Competition 2015 and
seven workshops discussing hot topics in social robotics — Evaluation Methods
Standardization in Human—Robot Interaction, Toward a Framework for Joint Action,
First Workshop on Evaluating Child—Robot Interaction, First International Workshop
on Educational Robots (WONDER), Joint Workshop on Assistive Robotics, Bridging
the Gap Between HRI and Robot Ethics Research, Third International Workshop on
Culture Aware Robotics.
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Abstract. The present case study investigated the effect of applying a humano-
id robot as a teacher assistant to teach a foreign language (English in this case)
to Iranian children with autism. To do this, there were 4 male autistic children,
7-9 years old, 3 with high-functioning autism and one with low-functioning
autism. The humanoid robot NAO was used as the main instrument of this
study. There were 12 sessions including 10 teaching sessions. This study used a
pre-test, mid-test, immediate post-test, and delayed post-test design to measure
the learning gains of the autistic children participating in the robot-assisted lan-
guage learning (RALL) program. The results showed the subjects’ large learn-
ing gains which were fairly persistent according to their performances on the
delayed post-test. The difference observed between the learning gains of the
high-functioning and low-functioning participants is also discussed.

Keywords: Humanoid robot - Autism - High-functioning - Foreign language
education - RALL

1 Introduction

Autism Spectrum Disorder (ASD) is a lifelong developmental disability affecting the
way a person communicates and relates to people around him/her. People with autism
have impaired social interaction, social communication and imagination [1]. The
most recent statistics indicate that 1 out of 88 children born in the United States is
autistic [2]. It is estimated that more than 30,000 Iranians younger than 19 years old
suffer from autism disorders [3].

Researchers have shown that autistic children, despite their lack of ability to inte-
ract with other people, enjoy working with technological tools such as computers,
smart toys, and robots. There have been many studies regarding the application of
robots in helping autistic children with imitating, making eye contact, and social inte-
ractions. Based on these studies, humanoid robots seem to have great potential in
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helping autistic children in overcoming their disorders, ranging from impaired joint
attention to impaired language development [4-10].

There have been a few studies conducted regarding teaching a foreign language to
high-functioning autistic pupils, particularly those autistic individuals who do not
have considerable learning difficulties, and they all indicate that high-functioning
autistic children are capable of learning a second/foreign language provided that they
are granted the opportunity and of course special strategies in teaching [11-14].
Learning a second/foreign language is a fairly complex process even for normally
developing individuals. High-functioning autistic individuals usually do not have
severe problems in developing first language, but normally have impaired social cog-
nition which makes communicating hard for them and negatively affects their foreign
language learning. This may be explained by Communicative Language Teaching
(CLT), one of the most widely used methods of teaching a second/foreign language
around the world, which states that learning a foreign language requires the learners
to be engaged in pair and group activities, use the target language, and communicate
through it. In other words, high-functioning autistic individuals should be encouraged
to communicate with others to be successful in learning a foreign language. There-
fore, raising their Willingness to Communicate (WTC), motivation, and positive atti-
tude seems to be of great importance. Furthermore, being required to use a foreign
language when communicating could make autistics individuals anxious. According-
ly, a learning environment that can lower the anxiety levels of autistic individuals
should also contribute in facilitating the foreign language learning process.

According to studies conducted on normally-developing language learners [15-23],
Robot-Assisted Language Learning (RALL) seems to generate motivation and interest
in learners of a foreign language while at the same time lowering their anxiety levels.
Accordingly, RALL seems to be one of the best options for high-functioning autistic
children willing to learn a foreign language.

There seemed to be a gap in the literature, however, regarding the use of robots to
teach a second language to high-functioning autistic pupils. Accordingly, the current
study was conducted to investigate the effect of Robot Assisted Language Learning
(RALL) on high-functioning autistic children. To put it more precisely this study was
an attempt to answer the following research question:

What is the effect of RALL on autistic children’s English vocabulary learning and
retention?

2 Methodology

2.1 Participants

Three male high-functioning autistic children (referred to as S1, S2, and S3 hereafter)
9, 8, and 7 years old, respectively, as well as a 7 year-old low-functioning autistic
child (twin brother of S3, referred to as S4 hereafter) participated in this study. They
had little or no background in English which was proven by means of an English
pre-test. It should be noted that the four mentioned participants were the only students
of this RALL program.
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2.2 Instruments

Teaching Instruments: The main instrument of the current study was the humanoid
robot NAO, made by Aldebaran Robotics, France, and renamed “Nima” for use in the
Iranian context. Nima was pre-programmed for each teaching session to assist the
teacher in teaching a particular syllabus and was operated by a human operator sitting
at a desk on the right side of the class during the teaching sessions. The operator did
not participate in class activities. Based on the pre-test, the four subjects were consi-
dered as beginning English learners. Accordingly, a fitting book was selected and 10
teaching scenarios were written based on it. The related flashcards and songs from the
book were also included in the scenarios. The songs were uploaded in Nima and he
was programmed to dance to them. In addition, some slides were shown via video
projector to teach the vocabulary items of interest. Two laptops were also applied: one
to operate Nima and the other connected to the video projector. Some of the teaching
instruments are presented in Figure 1 which shows the classroom setting.

3
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Fig. 1. Classroom setting.

Measuring Instruments: Four equivalent but not identical English tests based on the
covered book were designed: a pre-test, a mid-test, an immediate post-test, and a de-
layed post-test. Each test was made of 63 items including matching, multiple choice
recognition items and a few open ended questions to test the simple functions taught
during the course. Moreover, a video recorder was used to record each and every
session of the program for further qualitative analysis of the participants’ behaviors in
class. A camera man recorded the sessions, moving if necessary to focus on the par-
ticipants. An audio recorder was also used to record the interviews conducted with the
subjects’ parents after the program was finished.
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2.3 Data Collection Procedure

The Center for the Treatment of Autistic Disorders (CTAD) located in Tehran made it
possible for our research team to attend some of the group and individual classes for
high-functioning autistic children before the program started. CTAD believed the re-
searcher needed to observe these classes to tap into what autism really was, how autistic
children behaved, and how she should handle them later on in the program. The re-
searcher did attend the suggested classes and had more than 20 hours of observation
before starting to work with the autistic children. The RALL program consisted of
12 sessions in total including 10 teaching sessions held twice a week. The first session
was an orientation session held one week before the program started to introduce the
program to the children and their parents, and to administer the pre-test (Figure 2).

Fig. 2. The orientation session.

The teaching sessions were held two times a week with each session lasting
45 minutes to one hour and covering half of a chapter of the selected book. Nima
would spoke only English during the sessions. The teacher used Farsi, the partici-
pants’ mother tongue, to give instructions and provided the translations of the new
vocabulary items and Nima’s lines. It has been suggested in previous research that
this approach makes the participants feel more comfortable with learning the new
material [14]. After five sessions, i.e. at session 6, a midterm exam was administered.
An immediate post-test was administered at the end of session 10. Two weeks later, a
farewell session was held to administer the delayed post-test, and interview the par-
ents with several open ended pre-designed questions on their views of the program
and the changes, if any, they had observed in their children throughout the program. It
is worth mentioning that each subject took the English tests separately. The teacher
read each item for each subject and marked or wrote down their answers. Further-
more, all sessions were video-recorded for further qualitative analysis of the partici-
pants’ behaviors.
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3 Results

The scores (equal to the number of their correct answers) of the pre-test, mid-test,
immediate post-test, and delayed post-test for each participant and the class average
are reported in Figures 2 and 3, respectively. The maximum score possible was 63.

Grades (out of 63)
70
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| i I I I
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Fig. 3. Participants’ scores on English tests.

Class Average
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Fig. 4. Class Average.

The three high-functioning subjects showed great improvement during the pro-
gram. Their scores in the delayed post-test showed a large amount of retention and the
persistency of their learning gains. S1 and S2 even obtained near full marks in the
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immediate post-test. In the case of the low-functioning subject, however, less learning
gains were observed. His level of retention on the delayed post-test was also lower
compared to those of the high-functioning subjects.

4 Discussion and Conclusion

The results of this study indicated that high-functioning autistic children do have the
ability to learn a foreign language. Due to their increased interest in technological
tools, autistic children could benefit from using technology in education. Robots can
be considered a new and interesting technology that can be applied in education and
specifically in teaching a foreign language.

High-functioning autistic pupils may need special strategies to be engaged in lan-
guage classes such as routine greetings, and a specific order of seats [11]. We tried to
use such strategies and they turned out to be helpful in keeping the participants en-
gaged. Using a highly technological tool, i.e. a humanoid robot, could be considered
as one of the most promising ways of using engagement strategies specific to autistic
children.

As mentioned earlier, using robots in language classes seems quite fruitful for
normally developing students. The findings of this study could broaden the scope of
the claims made for RALL to autistic children language learning. The use of robots in
language classes makes it possible to make real use of several language learning ap-
proaches, hypotheses, and theories such as: Asher’s Total Physical Response (TPR)
approach which emphasizes the role of listening and acting upon it by physical res-
ponses which is currently applied as an activity in language classes [24], Swain’s
output hypothesis, and Schmit’s noticing theory. According to Swain’s output hypo-
thesis, having language learners use the learned language items has three main func-
tions through which language learning occurs more easily: consciousness raising,
hypothesis-testing, and reflective functions [25]. In other words, through producing
output in the target language, learners better notice the newly learned items, check if
they are using those items correctly by receiving feedbacks, and get the chance to
reflect on their learnings. Schmit’s noticing theory also emphasizes the importance of
focal attention and explicit knowledge in language learning.

Designing real life scenarios and authentic learning situations will also contribute
to the engagement of the participants in the assigned tasks. For instance, at session 8§,
when the aim of the lesson was to teach the participants to ask someone’s age and
also to tell their own ages, we held a birthday party for Nima (Figure 4) and had him
tell his age and ask the children how old they were. Then the vocabulary items were
taught as gifts we wanted to give Nima. Each child would put a flashcard of one of
the newly taught items in a gift box and give it to Nima. Nima had to guess what the
gift was and the child would help him guess. These meaningful dialogues between
Nima and the participants were quite effective in engaging them. This lends support
to the findings of [17] and also [8] indicating that robots are efficient in eliciting ut-
terances, which according to Swain’s output hypothesis could lead to better language
learning.
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Fig. 5. Nima at his birthday party.

Furthermore, as suggested by [6], the physical presence of a robot and receiving its
hints and applause could bring about significant learning gains. This was also the case
in the current study, since the participants seemed to be quite excited by Nima’s feed-
back. Upon receiving feedback from Nima, they would laugh out loud, enthusiastical-
ly participate in the tasks, and show great willingness to talk. Their reactions were
interestingly similar to those suggested by [18]. We hypothesize that Nima’s feedback
and applause made the students notice the new items to be learned. According to
Schmit’s noticing theory, this could be one of the reasons why the participants had
significant levels of achievement and retention.

Another strategy we applied was the use of Farsi, the participants’ mother tongue,
in class which in line with the findings of [14], lowered the burden for the participants
and allowed them to make connections between the new vocabulary items or func-
tions and the ones they already knew in their first language.

The presence of a low-functioning autistic child (S4) in class and his performance
on the designed tests showed that even low-functioning autistic children have the
potential to learn a second/foreign language. The main issue S4 suffered from was his
lack of focus on and attention to what was being taught, and also his failure to pick up
the newly taught items as fast as his classmates. In other words, a possible reason why
S4 showed lower achievement compared to the other three high-functioning students
could be the lack of homogeneity in class. To keep the high-functioning kids engaged,
S4 did not receive as much time and attention as he needed. Still he did have some
learning gains which could be associated with the fact that he seemed to be quite en-
gaged when Nima was singing and dancing, and was willing to participate in tasks
requiring face to face interaction with Nima.

One may question the effectiveness of using robots with the claim that the obtained
results could be due merely to the newness of the applied technology and that they
would fade away as the children become accustomed to it. However, this novelty
effect could take a long time to occur especially with young children who can play
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with the same toys for years and still enjoy them. Additionally, robots have many
different features which could be made use of to keep the learning environment inter-
esting in the long term. This was the case in our RALL program, since session ten, the
last teaching session, was one of the most energetic sessions of the RALL program.
This showed the program was able to keep the students highly motivated and interest-
ed in Nima until the very last session. It is also important to remember that using new
technologies is an inevitable aspect of education, because the new generation has new
needs and new expectations from their education environment. Keeping up with these
expectations is the only way to keep the students, especially those with autism, moti-
vated and satisfied. Researching on how to use new technologies, and their
(dis)advantages, therefore, is of great importance.

Since robots must be programmed in advance and operated by a human operator,
they may seem to be quite infeasible tools to be used in education. However, since
robots are perceived as the next generation of technology that will be pervasive in
everyday life, they will inevitably find their way into education in much the same way
as personal computers did many years ago. Therefore, research on how to use robots
in education and their (dis)advantages seems to be of great importance [26-28].

There were some challenges to the use of a robot in class which are listed below:

e  The great deal of excitement and enthusiasm sometimes made the partici-
pants use extra loud voices which at times made class management a bit
harder for the teacher.

e At some points, students wanted to approach Nima and touch him. When
one student did this, the others would want to follow and do the same.

e When Nima was dancing to a song, they would try to imitate his body
movements. This can be a good point, since imitation is considered as a
social skill and physical engagement, according to Total Physical Re-
sponse (TPR) approach, can contribute to better language learning gains.
This imitation, however, sometimes distracted them from paying attention
to the content of the song being played by Nima.

e In trying to receive Nima’s applause and positive feedback, the students
sometimes created a quite competitive environment, felt jealous of the
ones giving the right answer sooner, and even in some rare cases picked
fights.

To rectify these issues, the teacher tried to intervene and emphasize the importance
of turn-taking, not leaving their seats without asking permission, and that after the
song she would ask them questions. Accordingly they had to pay attention to what
was being played to be able to answer the questions and be applauded by Nima. The
very small number of participants in this study makes any generalization impossible.
Further research could broaden the scope of the current study to an intact class of a
bigger number of autistic children at an autism school. Another potential area of study
could be having the same program for an intact class in main stream schools with
normally developing students in which some autistic children also participate. This
will be a more authentic setting since this is what happens in the real world when
children with autism attend main stream schools. Mixed classes may lower the oppor-
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tunities given to the autistic children and be more demanding for the teacher. Addi-
tionally, a similar group could be taught the same materials based on the exact same
scenarios but without the presence of a robot. The outcomes of the two groups could
then be compared and analyzed for deeper insights. This is what the authors are doing
in a follow-up phase of the current study. The results of the control group, taught
without the use of a robot, will be reported and compared with those of the RALL
group. To be able to make more valid claims on the participants’ social behaviors
throughout the program, precise quantitative analysis of the video records could be
quite helpful. This will also be done and reported in the near future. Moreover, such
factors as social skills, willingness to communicate, motivation and attitude, as well
as anxiety level could be investigated for both groups to find other probable effects of
RALL on children with autism. These factors will be focused on in later documents.
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Abstract. According to the United Nations World Population
Prospects, the world’s population is aging. Older adults constitute a frag-
ile part of society, as aging is always accompanied by major psychological
and physical challenges. A way to cope with those challenges is to strive
for a good Quality of Life (QoL) and contribute to successful aging.
Social robots can play an important role in the promotion of QoL by
integrating activities with independent-living older adults. Using a qual-
itative design through a focus group method, this paper aims to present
the activities in which independent-living older adults, i.e., older adults
that do not depend upon anyone to carry out their activities, require a
robot. By understanding the activities where robots can positively influ-
ence and contribute to older adults’ QoL, we set specific goals for the
future research in the field of Human-Robot Interaction (HRI).

Keywords: Human-Robot Interaction - Quality of Life - Successful
aging

1 Introduction

The world’s population is growing and aging. Furthermore, the late adulthood
stage (>65 years old) is faced with major psychological and physical challenges
[6]. Those challenges are usually accompanied by multiple stressors, such as social
isolation and incapacity for work independently [20]. However, many older adults
face these challenges but have an independent lifestyle (i.e., do not depend upon
anyone to carry out their activities of daily living) [7]. It is the thin balance
between aging and still having an independent living lifestyle that constitutes
one of the gravest challenges for achieving good standards of QoL.

Successful aging is one of the ways to ensure the maintenance of QoL [1]. By
being able to promote an independent lifestyle, technology becomes an important
factor associated with successful aging and better standards of QoL. Social robots
in particular, have been investigated as a type of technology that can positively
influence successful aging. Studies have shown the role that robots can have in
providing assistance with house keeping activities [2], or by providing support
over the needs and difficulties of older adults [11]. However, the concept of QoL
© Springer International Publishing Switzerland 2015
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encompasses more contexts than the home environment and goes beyond needs
and difficulties. In fact, QoL covers various components of life and is associated
not only with functional aspects of life, but also with well-being [15]. The novelty
of this study is to elicit the activities that older adults require a robot to integrate
all of their possible real-world contexts, including activities that support their
desired living style and QoL. As such, this study goal is twofold:

Goal 1 Elicit the types of activities in which older adults require the inclusion
of a robot to sustain a good QoL and independent living.
Goal 2 Present the robots that older adults chose for the different activities.

2 Related Work

Different societal studies have all came to the same conclusion: humanity is facing
a profound demographic change, moving from a society where the majority of
the population was relatively young, to one that faces a significant portion of
older adults [16]. In fact, according to the United Nations World Population
Prospects of 2012 for 2100", the percentage of older adults will increase as part of
the population density across Europe, America, and China [13]. Although these
news are tough to prospect, anthropological studies can reassure us. According
to this field of study, the ability to create tools (e.g., technology) is one of
the pivotal developments and adaptations of humanity to change. In this line,
technological artifacts have been making their way into our lives, mirroring the
human capacity to develop tools that adapt to our needs [19].

Moreover, technology has been defined as the capacity to apply scientific
knowledge to practical tasks that respond to societal needs and so, impact on
the QoL [5]. When looking at older adults research, it can be seen that QoL is
among the most studied constructs. In fact, for older adults QoL is preferred
over to longevity [9]. A paper review [15] defines QoL as a conscious cognitive
judgment of satisfaction with one’s life. In aging research, QoL is associated with
two broad categories: functioning (e.g., the ability to perform activities of daily
living) and well-being (e.g., emotional well-being) [15]. The present study aims
to contribute for the research of older adults’ QoL associated with social robots,
by eliciting activities they can integrate to promote successful aging. By doing
so, this study provides a contribution for the development of both service and
entertainment robots for older adults that live independently.

2.1 State of the Art on Social Robots for Older Adults

The development of robots that assist the activities of daily living of older adults
contributes to the enrichment of Ambient Assisted Living (AAL), which is an
emerging paradigm in information technology aimed at empowering peoples’
capabilities by means of technology that is sensitive, adaptive, and responsive
to the human needs [18]. Also, different projects concerning robots for older

! World Population Prospects: The 2012 Revision, http://esa.un.org/wpp/
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adults have been emerging, such as GiraffPlus?, Robot-Era?, SILVER*, CARE?,
ACCOMPANY®, HOBBIT?, ExCITE®, ENRICHME?, and RAMCIP'?. The
aforementioned projects have been developing prototypes of robots to interact
with older adults, aiming to develop ways to assist on their needs. Yet, some
of the applications and activities proposed are based on the need of the care-
givers on one hand, and the older adults on the other. Still, there are unforeseen
activities that can be developed for robots that will increase older adults’ QoL
and successful aging. This paper presents different activities that older adults
require assistance not only from a basic and functional point of view, but also
concerning entertainment and enhanced activities that contribute to their QoL.

3 Methodology

This study aimed to elicit the activities in which older adults require the presence
of a robot to support their QoL. By doing so, we provide guidelines for the
development of robots that co-exist with older adults, fostering successful aging
and independent life style.

3.1 Participants

A focus group methodology was used (N = 16 participants), with each group
comprised of 5 (except one of the groups that consisted of 6 participants) older
adults with independent lifestyle (12 females, 4 males; M age = 78.69, SD =
12.20). Participants were recruited from a day-home care institution in Lisbon
(Portugal). Most participants lived alone in their home (81.3%), or with their
friends (12.5%), and relatives (6.3%). The focus group sessions were conducted
at the recruitment facilities. Each session lasted 45min and was held by a psy-
chologist and a computer scientist, both working in the field of HRI. The study
followed the ethical norms of conduct for privacy, and all participants signed a
consent form and assented participation. The cases in which participants were
unable to read the consent form (due to their education level or physical impair-
ment), the consent was read to them by a caregiver of the institution.

3.2 Procedure and Methods

Aiming to elicit the types of activities in which older adults envision robotic tech-
nology as an enhancement to their QoL, a qualitative study with focus group

2 GiraffPlus project: http://giraffplus.eu/

3 Robot-Era project: http://www.robot-era.cu/robotera,/

4 SILVER project: http://www.silverpcp.eu/

5 CARE project: http://care-project.net/welcome/

5 ACCOMPANY project: http://accompanyproject.cu/

" HOBBIT project: http://hobbit.acin.tuwien.ac.at/

8 ExCITE project: http://www.aal-europe.eu/projects/excite/
9 ENRICHME project: http://www.enrichme.eu/wordpress/
10 RAMCIP project: http://www.ramcip-project.eu/ramcip/


http://giraffplus.eu/
http://www.robot-era.eu/robotera/
http://www.silverpcp.eu/
http://care-project.net/welcome/
http://accompanyproject.eu/
http://hobbit.acin.tuwien.ac.at/
http://www.aal-europe.eu/projects/excite/
http://www.enrichme.eu/wordpress/
http://www.ramcip-project.eu/ramcip/
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methodology was used [3], designed of three phases: 1) information and sensi-
tizing phase; 2) brainstorm session; 3) choosing robots.

Phase 1: Information and Sensitizing. This phase informed about what a
certain emergent technology is and can become [21]. In this study, we aimed to
inform and sensitize about social robots using a short-film documentary of 6min
that consisted of five chapters:

1. What is a robot? Since our intention is to keep distance from sci-fi culture
when eliciting activities that participants envision doing with a robot, dif-
ferent existing robots such as the industrial Kuka arm!!, the social robotic
pet AIBO'2, and humanoids like the Geminoid robot!'?, were introduced by
showing robots interacting with humans or in their context of use.

2. How does a robot function? This chapter explained that robots per-
ceive the world differently from humans. As an example, this chapter con-
trasted the way humans perceive the world (e.g., through their eyes), while
robots perceive the world through cameras. The emphasis was on the differ-
ence between human and robot perception without emphasizing the limited
capabilities that robots have nowadays.

3. Do robots for older adults exist? This chapter presented robots and
prototypes specially developed for the aged population. Examples of these
robots were RIBA robot'4 and Paro'®.

4. What are the limitations of robots? This chapter aimed to show the
current real limitations of robots in the wild. This was demonstrated by, e.g.,
a video where Asimo robot!® falls of the stairs.

5. How will the future with robots be like? In order to show what an
emergent technology such as a robot can become, it was necessary to show
a possible future of robots and older adults together. Therefore, segments of
the commercialized movie Robot and Frank directed by Jake Schreier (2012)
were shown.

Phase 2: Brainstorm Session. Brainstorm is a well-established technique,
usually used in groups, for generating a large number of new ideas quickly,
enabling the transformation of abstract concepts into practical experiences [14].
Thus, the brainstorm session aimed to register in a whiteboard the different
activities that participants envisioned to do with a robot. In the middle of the
same whiteboard was written “robots for older adults” so that participants could
easily situate their ideas. The researchers’ role in the room was to clarify ques-
tions that emerged along the session, to facilitate the interaction and to write
down on the whiteboard the activities mentioned by participants.

1 KUKA Arm from KUKA Robotics: http://www.kuka-robotics.com/en/products/
12 ATBO robot from SONY: http://www.sony-aibo.com/

'3 Geminoid robots from THL: http://www.geminoid.jp/en/robots.html

14 RIBA robot from RIKEN-TRI: http://rtc.nagoya.riken.jp/RIBA /index-e.html

15 PARO robot from AIST: http://www.parorobots.com/

16 ASIMO robot from HONDA: http://asimo.honda.com/


http://www.kuka-robotics.com/en/products/
http://www.sony-aibo.com/
http://www.geminoid.jp/en/robots.html
http://rtc.nagoya.riken.jp/RIBA/index-e.html 
http://www.parorobots.com/
http://asimo.honda.com/
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Companion Robots Service Robots

Fig. 1. Companion Robots (from left to right): Paro, Pleo, Emys; Service robots:
Pearl, Care-O-bot, PR2. Categorization of assistive robots for older adults [4].

Phase 3: Choosing Robots. Six images of robots were shown to the partic-
ipants, whose task was to assign a robot to the activities they had previously
brainstormed about. The robots were chosen according to the categorization of
assistive robots for elderly, i.e., robots designed for social interaction that can
play an important role with respect to the health and psychological well-being of
the elderly. The selection of robots tried to met different contexts of aging, such
as therapy, entertainment, and service-related [4]. Therefore, three companion
robots were shown: Paro, Pleo, and Emys; and three service robots were shown:
Pearl, Care-O-bot, and PR2 (see Fig. 1). The groups discussed what robot would
better fit a specific activity and the researchers added this information to the
whiteboard. It is important to note that participants did not specify a robot for
all the activities, neither they were instructed to do so. In addition, they could
choose more than one robot for the same activity. The open-endedness style of
this phase was adopted to avoid pressure participants on a decision.

4 Results

The activities that participants yield were analysed by the two psychologists of this
study. The elicited activities came from two different sources: activities written on
the whiteboard, and audio recording of the sessions. All group sessions were tran-
scribed and coupled with the activities present on the whiteboard. Participants
generated a total of 75 activities in which a minority was repeated. As this study
aims to provide visibility to a broad range of activities instead of analyzing their
prevalence, the repeated activities were excluded. Thus, data was re-arranged and
coded only with 65 non-repeated activities. The yield activities were coded accord-
ing to the framework for aging in place with the objective of categorizing and orga-
nizing them according to their primary goal and context [10,12]:

— Basic Activities of Daily Living (BADL) This dimension represents the
basic activities that people living independently should be able to perform
(e.g., bathing);

— Instrumental Activities of Daily Living (IADL) Successful indepen-
dent living requires the capability to carry out instrumental activities (e.g.,
managing a medication regimen);
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— Enhanced Activities of Daily Living (EADL) Independent living also
requires activities related with the outside world communication that are
beyond what is considered to be instrumental. These activities are connected
with major and holistic responsibilities (e.g., buying groceries);

— Social Activities (SA) These activities are meant to entertain and sus-
tain social closeness, such as communicating with others as a way to establish
relationships. According to the generated ideas of participants, this dimen-
sion was added to the framework for aging in place with robots.

4.1 Coding Procedure

Data was coded according to the required functions that a robot should have to
perform each activity. Each coder coded the totality of the material (65 different
activities). According to Cohen’s Kappa test, the level of agreement between the
coders was K = .91, a = .000, indicating an almost perfect agreement [8].

4.2 Activities for Aging in Place with Robots

Results suggest that older adults refer more different IADL (24 different activities),
followed by BADL (17), and finally both EADL and SA (12 activities each) with a
robot (see Fig. 2). Some of the referred activities are described in Table 1.

4.3 Chosen Robots

Results show that older adults have chosen different robots to serve different
activities (see Fig. 3). It can be seen that Care-O-bot (18%) is the robot that
most of the participants have chosen for BADL, followed by PR2 (17%) and
Pearl (12%). When looking at IADL, it can be seen that Care-O-bot is the most
chosen robot as 21% of participants have chosen this robot to integrate such
activities. Then, PR2 (17%) is also referred in the context of IADL, followed
by Peal (4%) and Pleo (4%). Considering the EADL, results show that half of
the participants chose PR2 (50%), followed by Pearl (25%), Emys (25%), and

[ Basic activities of daily living

B Instrumental activities of daily
living

M Enhanced Activities of daily
living

B Social activities of living

Fig. 2. Number of activities yield by older adults.
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Table 1. Framework of activities for aging in place with robots, adapted from [12].

Basic Activities of Daily Living

“Help bathing, specially washing the feet and the back.”

“Help open taps, like bath taps because it’s hard for me to open them.”
“Help put on the socks, and then the shoes. Then help to take them off.”
“Help shaving because I do not see well and help cutting the nails.”

“Help dressing, I don’t mean every day but there are cloths that seem harder to dress.”

Instrumental Activities of Daily Living

“Memorize what I eat. I do not always remember when to eat or what I eat, so I end
up having a bad diet.”

“Make the bed and change the bed sheets. Also, do the laundry and then hang it on a
clothesline. Oh yes, and then iron it!”

“[The robot] should know my medical history and adapt the food it cooks. I cannot eat
cakes and the robot should know this information.”

“Help with the electricity and construction works like painting a wall that needs paint-
ing, repairing a water pipe, or just changing a light bulb, this is very useful.”

“Clean the floor and sweep the kitchen and all that stuff. Oh, and wash the bathroom
and clean the dust.”

Enhanced Activities of Daily Living

“I would gave a list of what I need and the robot could go buy groceries and to the
pharmacy.”

“Make emergency calls to the police, ambulance, or family.”

“Have an informative dialogue, by providing meteorological, time and news information.
[The robot could also help us by] answering the door when we are lying in bed.”

“[The robot should] be able to communicate with doctors and nurses.”

[The robot should] warn us regarding appointments or obligations, like visits to the
doctor, or when to take the right pills at the right times of the day.”

Social Activities

“Read stories. I like novels very much, but my eyes are not able to see the words now.
I would be so happy if the robot could read me stories at night.”

“Accompany when walking outside to the park and to the cinema. I would never do
such activities alone now.”

“Cheer people, communicate or talk. The robot should be able to share its own ideas,
even when they are different from ours.”

“Pray with us”. Some said the robot should also “have a religion”, others disagreed.
In the cases where they claimed it should have a religion, two opinions were expressed:
“[the Tobot] should adapt to theirs religion by having the same one”, or “could choose
its own belief.”

“Play games in general, and cards and domino particularly. It would be wonderful if
the robot could just talk with us and be a company in our daily life.”
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Basic Activities B |Instrumental Activities B Enhanced Activities M Social Activities
60%
50% 50%
40%
259 25%

20%
8%
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= 3

PR2 Pearl Care-o-Bot Emys Pleo Paro NAO

0% -

Fig. 3. Chosen robots according to the different types of activities.

Care-O-bot (8%). Finally, for the SA, Emys (50%) is the most chosen robot,
followed by PR2 (33%), Paro (25%), Pearl (17%), and Nao (8%).

When clustering the service robots (Pearl, Care-O-bot, PR2) and the com-
panion/entertainment robots (Paro, Pleo, Emys), and comparing them with the
type of activities they were assigned to, results show the majority of participants
assigned companion/entertainment robots with SA (65%), less than half of the
participants assigned these robots with EADL (35%), and only 9% have assigned
with IADL. On the other hand, service robots were assigned by the participants
to all types of activities (see Fig. 4). We emphasize that participants have not
chosen a robot for all the activities, existing activities without an assigned robot.
On the other hand, participants assigned more than one robot to some of the
activities.

M Entretainment robot Service robot

. o %
Social Activities &

Enhanced Activities 77%

Instrumental Activities 91%

Basic Activities 100%

0% 20% 40% 60% 80% 100%

Fig. 4. Chosen robots according to the different types of activities.

5 Conclusions and Discussion

This study aimed to elicit activities from older adults in which the presence of
a robot helps enhancing their QoL and contribute for their successful and inde-
pendent aging. The novelty of this study concerns the presentation of activities
that are part of all the real-world contexts of older adults: from the home, to
the pharmacy, to a park, or even to be able to see a movie at the cinema.
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Therefore, the majority of different activities refers to IADL, related with
activities that are beyond personal and basic activities of daily living, but are
essential to live independently in a society and community. In their perspective,
it seems essential to have a robot that assists managing a medication regimen,
maintain the household, and prepare meals of adequate nutrition [12]. Moreover,
older adults referred that although they were able to perform some activities,
they would prefer having a robot as an extra help (e.g., “help putting and taking
off the shoes”). This seems to indicate that the participants are still in shape to
independently manage their daily activities, but would benefit from additional
assistance. A large number of different activities concerns BADL related with
personal hygiene (e.g., toileting and bathing) [12], in which participants claimed
for help to e.g., “get in and out of the tub”. Finally, EADL and SA emerged as
the activities in which older adults require the robot for communicating with
the outside world due to the need to satisfy a basic activity (e.g., “/the robot]
could go buy groceries”), translating an EADL; or due to a need to overcome
social isolation by “playing games”, “accompany to the cinema”, or even “pray”,
related with SA. Furthermore, service robots were chosen to perform all types
of activities, showing this type of social robots are fit for different activities
with this population. The participants referred that their choice for a robot was
strongly motivated by its physicality. Thereafter, showing an interest for robots
that are perceived as able to accomplish multiple tasks, instead of robots whose
primary goal is more limited (e.g., Pleo and Nao which are low height robots).

Although there are concerns about the accomplishments of some activities
due to technical development and ethical aspects, this paper shows there is space
for technology developments with views to enhance the QoL of older adults. By
having a deeper understanding about the activities that older adults require a
robot, HRI researchers detain key-information about where and how to dedicate
their efforts and resources to fulfill a societal need and contribute to the QoL
and successful aging among this population [17].
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Abstract. Before interacting with a futuristic technology such as a
robot, there is a lot of space for the creation of a whole set of expec-
tations towards that interaction. Once that interaction happens, users
can be left with a hand full of satisfaction, dissatisfaction, or even a mix
of both. To study the possible role of experience as a mediator between
expectation and satisfaction, we developed a scale for HRI that measures
expectations and satisfaction of the users. Afterwards, we conducted a
study with end-users interacting with a social robot. The robot is being
developed to be an empathic robotic tutor to be used in real schools,
with input from primary end-users (children). Children’s expectations
and subsequent satisfaction after the interaction with the robotic tutor
were analysed. The results can be fed back to the system developers on
how well it is being designed for such a target population, and what
factors regarding their expectation and satisfaction have shifted after
the experience of interaction. By delivering on the children’s expecta-
tions, we aim to design a robotic tutor that provides enough satisfaction
to sustain an enjoyable and natural interaction in the real educational
environment.

Keywords: Human-Robot Interaction - User-centered design + Robotic
tutor + Expectation - Satisfaction

1 Introduction

Robotic characters are becoming widespread as useful tools in assistive [12],
entertainment [17] and tutoring applications [7]. Besides, robots can be consid-
ered a mediatic type of technology as they are easily associated with science-
fiction culture (e.g., sci-fi novels, movies and adverts), making the expectations
of people towards robot’s an important aspect to consider in the process of
designing and creating a robot. In fact, sci-fi culture ends up delivering informa-
tion, most of the times unrealistic information, about a type of technology that
is nowadays being created, bringing expectations over robots that are far from
being achieved [3]. It is well known that previous expectations strongly influence
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satisfaction, so analysing initial expectations of users before interacting with a
robot becomes important when concluding about their subsequent satisfaction
of the experience.

The novelty of our work regards the measurement of the expectations and
satisfaction levels that users have towards a robot, to serve as an input that
informs the iteractive process of designing and creating a social robot. In line with
this, we developed the Technology-Specific Expectation Scale (TSES) to mea-
sure users’ expectations before seeing and before interacting with a robot, and the
Technology-Specific Satisfaction Scale (T'SSS) to measure their satisfaction after
the experience of interaction. Both scales constitute a novel metric in HRI, lead-
ing to a new complementary way of approaching the iteractive process of design-
ing a social robot. We base our research in the study of the expectations that
children had towards the possibility of interacting with a robotic tutor and com-
pare such expectations with the satisfaction level after the interaction. The robot
used throughout this paper is being developed in the FP7 EU EMOTE project!
to be an autonomous empathic robotic tutor aimed to teach topics about sus-
tainable development to children in schools. The study followed a methodology
that merges an autonomous robot with a Wizard-of-Oz (WoZ) [19]. The motiva-
tion of this research underlies the measurement of children’s satisfaction towards a
robotic tutor in an educational environment to serve as an input to inform further
design developments of the same tutor. The evaluation of expectations/satisfac-
tion involves factors related with education and learning, such as the perceived
capabilities of a tutor. We aim to understand which features of the robotic tutor
meet the expectations of children, and which do not. Thereafter, we will detain
key-information about which still need refinement and which are performing well.
Moreover, most people (including the children that participated in this study)
never had any previous experience with social robots, so we anticipated that peo-
ple detain preconceived ideas about this type of technology, built upon sci-fi cul-
ture. Due to this, expectations and satisfaction regarding the fictional views of the
robot were also assessed and taken into account, enabling a contextualised inter-
pretation of results.

Thus, in this paper we present the developed scales for measuring expectation
and satisfaction in HRI; the results of the administration of the TSES and TSSS
to children towards an empathic robotic tutor for education; and guidelines that
inform the design based on this novel metric for HRI. In line with this, we
formulate the following study hypothesis:

H1 The expectations that children have regarding the experience of interacting
with a robotic tutor will be high as robots are part of strong sci-fi culture
that children are familiar with.

H2 By building a robotic tutor inspired in real teacher-student interactions,
children will detain high satisfaction levels after the experience of interaction.

! EMOTE project: http://www.emote-project.eu/
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2 Related Work

Expectation and satisfaction are concepts that influence the way we evaluate
experiences. In this Section, we will detail about such concepts and relate them
with HRI applied to education.

2.1 Expectation and Satisfaction in HRI: Definition of Concepts

In the field of HRI, Bartneck and Forlizzi (2004), have defined a social robot
as “an autonomous or semi-autonomous robot that interacts and communicates
with humans by following the behavioral norms expected by the people with whom
the robot is intended to interact” [4]. On the creation of robots that are intended
to interact with people in daily life, Wistort (2010), has also brought up the
fact that “the form of a robotic character greatly determines the affordances it
provides, influencing the perceived function of the character”. This means that
people immediately create expectations about a robotic character once they see
it, just based on its appearance. The majority of robots’ appearance is presented
to people through sci-fi culture, showing them robots that are far different from
the real developed robots, thus stimulating peoples’ preconceived ideas (expec-
tations) about the functions of robots [21].

Moreover, the Expectation-Confirmation Theory (ECT) is widely used in
the consumer-behaviour literature to understand consumers’ satisfaction after
purchasing a product. According to this theoretical framework, consumers first
form an initial expectation of a product, and during a period of initial consump-
tion (experience of the product), they assess its performance to determine if
their expectations are confirmed. Finally, they form a satisfaction towards the
product based on their confirmation level and expectation on which that con-
firmation is based [15]. In line with this, ECT appears as a framework that can
inspire metrics for the design and development of future technology, such as a
robotic tutor for futuristic classrooms. So, ezxpectations provide a baseline or ref-
erence level for users to form evaluative judgements about the experience with
a product in which lower expectations usually influence satisfaction positively,
if the previous expectations are confirmed by experience [5]. Nonetheless, when
evaluating an innovative technology such as a robot, it is important to consider
that user’s expectations can be coloured by others’ opinion, sci-fi culture, or
can be tempered by the user experience [11]. On the other hand, satisfaction,
is regarded as a transient, experience-specific affect. One can have a pleasant
experience with a product, but still feel dissatisfied if it is below expectation
[13-15]. Thus, experience is what connects expectation and satisfaction [5].

2.2 Expectations and Satisfaction Towards Robots for Education

The concepts of expectation and satisfaction have been studied in teacher-
student interactions in different educational settings, such as online education
[10], e-Learning [16] and traditional classrooms [1]. Research seems to show that
student’s perceived satisfaction derives from different factors, such as the way
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the tutor’s knowledge is transferred to children, how feedback is used to support
and facilitate learning, and the level of interaction [10]. Thereby, the tutor’s com-
petencies and capabilities constitute some of the factors that will influence not
only the satisfaction that children have regarding such an experience in an edu-
cational context, but also their learning. In the context of HRI, different projects
are developing robotic tutors to support and assist children during their learning
process (e.g., CoWriter project?). Also, Alves-Oliveira and collaborators (2014),
have explored the expectations of children towards a robot that can interact with
them in their own classroom, concluding that children’s initial expectations can
help to identify the usefulness of robots [2]. In this sense, the study of expec-
tation and satisfaction towards robotic teachers and/or tutors in the context of
learning environments can be import predictors of children’s learning outcomes
and of their evaluation of the experience. Moreover, it is also important to con-
sider the concepts of expectation and satisfaction for other HRI environments,
in which the design of social robots with end-users is timely important when
shaping the future of this technology.

3 Methodology

This study took place in a school, where children performed a collaborative
learning activity about sustainability in a reserved area of a classroom. For
each session, a pair of children interacted with the robotic tutor. Together with
them, the robot acted as the tutor for the learning environment, and played
EnerCities3, which is a collaborative multiplayer serious game for learning about
sustainability that is being used in the EMOTE project.

3.1 Participants

The study sample consisted of 56 children (30 male, 25 female, 1 unknown)
aged between 14 and 16 years old (M = 14.81, SD = .48). The children that
participated in this research had consent forms signed by their caregivers and
assented to participate in the activity.

3.2 System Architecture and Set-Up

The robotic tutoring system used in the study follows the extended SAIBA model
for intelligent virtual agents [18] and is composed of a NAO Torso robot from
Aldebaran Robotics; an interactive touch table running EnerCities; four video
cameras; two lavaliere microphones; a WoZ interface; and a recorder (Fig. 1.a).
The children interacted with the system (see Fig. 1.b) both through EnerCi-
ties, and through the system’s perceptive capabilities. The system interacts
back through the robotic tutor, which performs social, expressive and game-play

2 CoWriter project: http://chili.epfl.ch/cowriter
3 EnerCities: http://www.enercities.eu/
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related behaviour. The perceptive capabilities of the system includes detecting
and tracking the children’s head location, gaze direction, eyebrow movement
(AU2 and AU4 [9]), and which child is currently speaking. This is all performed
by the Perception Module, using the Kinect and the lavalier microphones.

Wizard
Room
(Physical)

Interaction System
(Virtual) T~
Enercities
Al

Enercities

)  Skene *_}.
Game
[ Perception NAO Robot NAO

Room
(Physical)

Wizard-of
Oz Interface

Touch Table
- S

a)
Fig. 1. a) Real environment setup. b) System architecture

The multimodal expressive behaviour (e.g., speech, gaze, animation) is man-
aged by Skene which also includes a Gaze-state-machine, allowing the embod-
iment to perform semi-autonomously [18]. It is fed with information from
the Perception Module and students’ game-play actions from FnerCities to
autonomously manage timing and expressive resources.

The robot’s collaborative Al is a module capable of informing the game-
playing and pedagogical decision-making of the robotic tutor that performs
autonomously. The AI also incorporates a social component that continuously
monitors each player’s actions and automatically adjusts the tutor’s strategy in
order to follow the group’s “action tendency” [20]. The Wizard was a researcher
that was in a completely separate room, controlling the robotic tutor’s high-
level expressive behaviour (e.g., the timings to perform pre-defined utterances),
using a specially designed user-interface. The Al selects a game move and makes
it available for the Wizard to perform at the appropriate moment. This allows
the Wizard to control the flow of interaction along with the flow of the game,
without having to decide upon the game state and game actions. Finally, low-
level and contingent behaviours remain autonomously controlled by Skene, which
acts according to the high-level decisions performed by the Wizard and events
triggered from the Perception Module.

3.3 Measures

To evaluate children’s expectations and satisfaction, a TSES was created inspired
in the Bhattacherjee and Premkumar (2004) scale [6]. Our scale was developed
addressing aspects that inform about the state of the robotic tutor’s develop-
ment, in order to support further refinement. The TSES is composed of 10 ques-
tions allocated in 2 dimensions: Capabilities and Fictional view of the robotic
tutor. It was used as a baseline questionnaire to measure children’s expectations
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before seeing and interacting with the robotic tutor. Then, the T'SSS was used as
a post-questionnaire, applied after the interaction, to understand how children’s
subsequent satisfaction performed. Each scale is composed of equal questions to
secure comparison between expectations and satisfaction, with different verbs
tenses to meet different temporal experiences with the robotic tutor 4. Children
could rate their expectation level in the TSES in a 5 point type-Likert scale,
ranging from 1 - Very low expectation; 2 - Low expectation; 3 - Neutral; 4 - High
expectation; 5 - Very high expectation. The same Likert scale was used for the
TSSS, substituting the word “expectation” for “satisfaction”.

In order to understand whether the items of the scale were internally con-
sistent, a Cronbach’s Alpha was run. The scales had a good level of internal
consistency for the 5 items of the Capabilities dimension (o = 0.770) and for the
5 items of the Fictional view dimension (o = 0.749) [8]. Thereafter, the Capa-
bilities dimension served to inform about the expectations that children had
towards the robotic tutor’s capabilities, and how their satisfaction performed
after the interaction experience. An example of a question that aimed to eval-
uate the expectation towards the robotic tutor’s capabilities is the following:
“I think the robotic tutor will be able to understand me.” The Fictional view dimen-
ston relates with impressions created mostly by sci-fi culture, such as movies and
novels, and an example is the following: “I think the robotic tutor will be similar to
the robots | see in movies.”. In addition, two more questions regarding the robotic
tutor’s Competencies were administrated: 1) "l think the robotic tutor will be a
good game companion.”; 2) “I think the robotic tutor will be the one that plays
better.". The latter questions served to understand the perception that children
had on the performance of the robot.

3.4 Procedure

The pair of children was invited into a separate room where they had no contact
whatsoever with the educational setup, including the robotic tutor. This was
a constraint to ensure that children’s expectations were not influenced by any
previous contact. At this point, the TSES was individually and separately applied
to each child. After completion, the pair of children were led to the main room
where the interaction with the robotic tutor took place. Children engaged in
interaction in the real context of use for 20 minutes playing the EnerCities game
with the robotic tutor. For this period of time, children were left alone in the
main room with the robot, being able to freely interact and communicate with
it. A researcher partially controlled the behaviour of the robot from a different
room, in a WoZ methodology experiment, meaning that children were not aware
that a third person controlled some of the behaviours of the robotic tutor. The
game-play ended at the instruction of the robotic tutor. Afterwards, a researcher
invited the participants to enter the same initial room where the TSSS was
individually applied to each children.

* The TSES and the TSSS are available here: http://gaips.inesc-id.pt/~poliveira/
Alves-Oliveiraetal.2015.pdf
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Fig. 2. Expectation and satisfaction of children towards the robotic tutor’s capabilities
and fictional view.

4 Results

To better understand the distribution of the results, data was re-arranged in 3
new categories, with a range of Lower Expectation/Satisfaction (scores below 3
in the initial 5 point type-Likert scale were clustered), Neutral Ezpectation/Sat-
isfaction (scores equal to 3); Higher Expectation/Satisfaction (scores over 3 in
the initial scale were also clustered).

4.1 Expectations and Satisfaction Towards a Robotic Tutor

Results seem to indicate that the children mostly had lower expectations about
the robotic tutor in fictional terms (42.5%) and had higher expectations about
the robotic tutor’s capabilities (54.6%), whereas some of the children were neu-
tral in terms of the expectations both towards the robotic tutor’s capabilities
(25.0%), and fictional view (27.9%) (see Fig. 2), which partially corroborates our
first study hypothesis, which states that expectation of children would be high
as robots are part of sci-fi culture. Regarding the satisfaction levels, results seem
to suggest that when evaluating the robotic tutor after having experienced it,
children’s satisfaction levels seem to follow the expectations they previously had
(see Fig. 2). This suggests that the majority of children who had higher expec-
tations about the robotic tutor’s capabilities (54.6%), seem to sustain higher
satisfaction levels after the interaction (48.6%). Regarding the expectations of
fictional view, results suggest that children had both higher (29.6%) and lower
expectations (42.5%) of sci-fi culture towards the robotic tutor. The subsequent
satisfaction indicates that children continued to have a mix of higher (32.1%) and
lower (39.6%) satisfaction when evaluating this dimension. Thereby, the overall
satisfaction towards the robotic tutor capabilities is higher, with no significant
results between expectation and satisfaction levels. These results corroborate
our second study hypothesis, which states that children will detain high satis-
faction levels when evaluating the capabilities of a robotic tutor, after having
experienced it.

In sum, the results of one iteraction seem to show that the current capa-
bilities of the partially autonomous robotic tutor are at an appropriate level of
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Fig. 3. Differences in expectation and satisfaction with experience.

development to sustain a collaborative educational interaction between an arti-
ficial tutor and students in a school classroom. Children seem to have had a
positive experience of the interaction, as their expectations were accompanied
by high levels of satisfaction. In addition, children’s fictional views had lower
levels, translating to more realistic expectations towards this technology.

A statistically significant difference was also found for the additional ques-
tions regarding aspects of the perceived competence of a robotic tutor, suggesting
the interaction with the robotic tutor elicited a statistically significant change in
the scores of satisfaction in comparison with expectation (Z = -3.127, a = .002).
Therefore, the majority of children expected the robotic tutor to be a good game
companion (75.0%) and after the interaction almost all children revealed higher
satisfaction levels towards the tutor’s competence (94.6%) (see Fig. 3). For the
second question that assesses the competence of the robotic tutor, a significant
result was also found (Z = -2.636, o = .008), revealing that the majority of chil-
dren expected the robotic tutor to play best in the collaborative serious learning
game about sustainability (69.6%), showing a significant decrease in their sat-
isfaction after the interaction (50.0%). This result goes in line with the design
process, as the robotic tutor had been developed to be a peer companion in the
serious game, guiding children through the game rules and dynamics, but at the
same time, having a similar hierarchical role in the game.

5 Conclusions and Future Work

This paper focuses on expectation and satisfaction in HRI and presents a novel
metric for HRI. It aimes to address expectations and satisfaction of children
towards an empathic robot tutor being developed in the EMOTE project to
be included in an educational environment. The study of these concepts is cru-
cial when developing a robotic tutor, as students’ expectations and satisfac-
tion are important in education [1], being predictors of learning outcomes [10].
To measure expectations and satisfaction, a TSES and a TSSS were developed
and applied before and after the experience of the interaction with the robotic
tutor. The results show that children had high expectations about the robotic
tutor’s capabilities, being followed by the same high levels of satisfaction. This
result informs us that the behaviours of the robotic tutor in a 20min-interaction
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in a learning environment seem to meet expectations by their end-users. In addi-
tion, this suggests that state of the development of the partially autonomous
robotic tutor for the classroom seems to be in an appropriate state to enable
small group interactions with children. Results also show that the expectations
regarding the fictional view of the robotic tutor are lower and remain lower after
the interaction, which means that although children are exposed to sci-fi media,
their expectations seem to be adapted to reality.

Overall, the design methodology inspired in real teacher-student interaction
seems to have positive outcomes when testing the robotic tutor in its future envi-
ronment with its future end-users. However, other possible outcomes of results
can emerge when applying the TSES and the TSSS in the design process of
creating a robot. An example of another possible outcome can be finding that
users have high expectations regarding the fictional view of a robot, and high
expectations regarding its capabilities. If the satisfaction level of fictional view
decreases (which means it becomes more adapted to reality and further away
from sci-fi culture) and the satisfaction towards the capabilities of the robot
also decreases, this shows that the capabilities for the social robot do not meet
users’ expectations, suggesting the need for more development and refinement of
its behaviours. Moreover, by looking at the items of the capabilities dimension,
details about the capabilities that do not meet expectations can be identified.

Since the future of HRI will mostly be in people’s homes and personal lives,
our belief is that in order to build and create a valid futuristic technology that
generates a positive experience and provides satisfaction to users, it is essential to
involve them throughout this creative process. By measuring users’ expectations
and satisfaction, we are bringing input from the real-world users and stakeholders
as co-designers of their future technologies.

In the future, we aim to measure expectation and satisfaction in a totally
autonomous robotic tutor to understand how artificial social decisions are per-
ceived by users (e.g., timing), and how satisfied they feel towards them, providing
insights about the design over time. Also, we will explore the relation between
expectations, satisfaction, and children’s learning outcomes.
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Abstract. We present a reactive emotion selection system designed to
be used in a robot that needs to respond autonomously to relevant events.
A variety of emotion selection models based on “cognitive appraisal”
theories exist, but the complexity of the concepts used by most of these
models limits their use in robotics. Robots have physical constrains that
condition their understanding of the world and limit their capacity to
built the complex concepts needed for such models. The system presented
in this paper was conceived to respond to “disturbances” detected in the
environment through a stream of images, and use this low-level infor-
mation to update emotion intensities. They are increased when specific
patterns, based on Tomkins’ affect theory, are detected or reduced when
it is not. This system could also be used as part of (or as first step in the
incremental design of) a more cognitively complex emotional system for
autonomous robots.

Keywords: Social robotics -+ Human Robot Interaction - Emotional
models - Emotion production

1 Introduction

Social environments involve subtle interaction among people and the physical
environment. These interactions, the context in which they take place, and peo-
ple’s mental perception of the world affect the emotions that arise. Different
theories and models of how emotions arise have been proposed in psychology,
such as [11,16,18]. Although these models seem acceptable and cogent to most
of us, the hidden assumptions that authors make in their models [5,15] emerge
when trying to implement them in artificial agents and robots. Computational
frameworks based on these “high-level” models have been implemented [7,10],
but they use abstract concepts that have to be defined in the system.

However, social robots need to be able to operate in real circumstances,
where the information that the system needs to operate is not well defined or
given beforehand and changes over time. Therefore, the robot needs to be able
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to interpret relevant information necessary to be used as input (including by the
above-mentioned frameworks) from its current sensory data and representation
of its environment. Due to sensor limitations (e.g., accuracy, noise) the world
model cannot be a complete nor precise representation of the current situation.
Moreover, the representation used to model the environment could lack details
that are necessary to correctly interpret the situation. The use of “high-level”
computational frameworks for autonomous social robots is thus problematic.

Emotion-based robot architectures have been proposed that ground emotion
elicitation on the robot’s sensory data. For example, the robot presented in [6]
uses data from simple (contact) sensors, interpreted following the model of gen-
eral stimulation patterns proposed by Tomkins [20]. Other robots such as [4,14]
use complex sensory input (vision, voice) and a complex architecture to deter-
mine the robot’s emotional state using some form of appraisal of the current
situation. This paper presents a reactive emotional system that combines
elements of these two approaches. Also based on Tomkins’ theory [12,20], but
using visual input and a complex architecture, the pre-selected emotions com-
pete among them to be triggered. The system has been designed in a modular
way, so to make it easy to combine it with other, more complex models such as
the one suggested by Izard [11]. Our architecture is designed for use by a robot
that needs to respond autonomously to relevant events (e.g., sudden changes in
light conditions, presence of different agents or objects).

The rest of paper is organized as follows. Section 2 provides a brief overview
of particularly relevant work closely related to our architecture. Section 3 outlines
different emotional theories, paying particular attention to the model proposed by
Tomkins. Section 4 describes our emotional system: the design and formulas that
control the system. Finally, Section 5 covers the implementation and results.

2 Related Work

The robotic head Kismet created by Breazeal [4] uses cameras to perceive the
world and head movements to interact with people. Kismet’s emotions are the
six basic emotions of Ekman [8]: happiness, sadness, surprise, fear, disgust, and
anger. The emotion selection process can be summarized as a cyclic sequence
of perceiving an event and appraising it [3]. The appraisal phase is where the
change of emotion can be done.

Canamero and Fredslund developed the LEGO humanoid robot Feelix that
expresses emotions on its face based on physical (tactile) stimulation [6]. A tac-
tile sensor is used to determine the stimulation which could fall in one of the
following cases: short (less than 0.4 sec), long (up to 5 sec), and very long (over
5 sec). The events generated from the stimulation are used to determine the
emotion activation based on the state of a finite state machine that implements
general emotion activation patterns (cf. Fig 1) drawn from Tomkin’s theory of
emotions [20], that we have also used in this paper. Feelix could detect stim-
ulation patterns for and display the following emotions: anger, sadness, fear,
happiness and surprise.



A Reactive Competitive Emotion Selection System 33

MEXI is a robotic face that is capable to interact with people through
emotions [9]. MEXI is capable to understand people emotions through image
analysis of data coming from two cameras, and its speech recognition system.
MEXT’s architecture lacks of any deliberative component, but it uses emotions
and drives to control its behaviours. Its emotion system obtains information
from the behaviour system and external perceptions to come up with the new
values for each emotion. Each emotion is represented by a value between 0 and
1, updated according to the current perception. The considered emotions are:
anger, happiness, sadness and fear.

The architecture described in [13] uses a mixture of hard-coded emotions
and emotions learned by association. Their emotion system uses inputs from the
deliberative and reactive architectural layers to select one of the emotions: fear,
anger, surprise, happiness, and sadness. Each one of these emotions is triggered
according to perceived events, internal state, and goals of the robot in the cur-
rent movement. The emotion selected by the emotion system affects the way
each behaviour is performed.

The emotional model proposed by Malfaz and Salichs [14] uses appraisals
to select an emotion. Happiness is related to the fact that something “good”
happens to the agent (e.g., interpreted as the reduction of a need), and sadness
to something “bad” (e.g., interpreted as the increment of a need). Fear is related
to the possibility that something bad happens to the agent and it is activated
when something dangerous could be expected by the agent.

3 Tomkins’ Emotion Theory

There are many theories of emotion, differing in assumptions and the components
involved in the process. They can be classified in different ways. For example [15,19]
use the following categories:

— Adaptational: based on the idea that emotions are an evolving system used
to detect stimuli that are of vital importance.

— Dimensional: organize emotions according to different characteristics, usu-
ally valence (pleasantness-unpleasantness) and arousal. One of the most
widely used is the Russel’s circumplex model of affect [17].

— Appraisal: argues that emotions arise from the individual’s judgement, based
on its believes, desires, and intentions with respect to the current situation.
EMA [10] and Fatima [7] frameworks fall in this category.

— Motivational: studies how motivational drives could generate emotions.

— Clrcuit: supports the fact that emotions correspond to a specific neuron path
in the brain.

— Discrete: are theories based on Darwin’s work, the expression of emotion in
man and animals. These theories use as a pillar the idea of the existence of
a basic emotions.

— Other approaches are lexical, social constructivist, anatomic, rational, and
communicative.
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In practice, these theoretical categories overlap. The difference among these the-
ories is mainly in how the process and inputs are considered in each one.

Tomkins’ theory [12,20], on which we base our model, integrates various per-
spectives. For Tomkins, the affect system evolved to solve the problem of over-
whelming information present in the environment to which people are exposed.
His theory states that people cannot manage to be conscious of all the infor-
mation available from the environment, therefore the affect system comes to
select what information could be relevant to be aware of in a given moment.
For example, someone could focus on reading a book, ignoring the rest of events
that are happening, but suddenly there might be a loud sound that gets his/her
attention. This kind of behaviour could be obtained through the activation of
different systems. He recognizes four systems closely related to affect:

— Puain is a motivator for very specific events that take place on our bodies.

— Drive deals with the basic needs that human body could need (e.g. urination,
breathing).

— Cognitive interprets the world and make inference from it.

— Affect is focus on get person attentions to specific stimuli.

More importantly, Tomkins suggested that affect in certain situations could
make that pain and drive systems are omitted, while the affect and cognitive
could work together. Because affection has a main role in human subsistence,
he describes nine affects that could be triggered depending on brain activity.
Figure 1 shows activation patterns for relief, sadness, happiness, anger, interest
and fear. For instance, sustained low stimulation leads to sadness, while a very
highly increasing stimulation leads to fear, and a less steep increase in stim-
ulation leads to interest. Moreover, the time windows for these emotions are
different; for instance fear arises faster than happiness.

stimulation

happiness (cnjoyl\n@m)

sadness

time

Fig. 1. Patterns for relief, sadness, happiness, anger, interest and fear, after Tomkins.
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4 Emotional System

As suggested by Izard [11], among others, emotion elicitation can be performed
at different levels, and at some of these levels we are not aware of the process.
Our system focuses on the “reactive”, “pre-aware” part of emotion elicitation
(and selection, in our case) using as an input gray scale images from a web cam.
Our system does not take in consideration any cognitive information from the
environment; instead, we compare two consecutive images to determine changes
in pixels in order to detect disturbances in the environment that could be of
interest for the robot. This difference (the quantity of pixels that have changed
over a threshold) is given as input to the stimulation calculator to determine the
“stimulation” that is later used by the emotion generator to update the inten-
sity of each emotion. This update is done searching for the patterns suggested
by Tomkins (Fig. 1). The previous process is always modulated by the time
delay between the two images considered. This delay is of vital importance in
the system because it could not be determined with certainty beforehand. Using
this delay in the equation makes the system behave in the same way regardless
of whether the delay is short or long. Consequently, the system gives different
values of “stimulation” depending on the delay between the images.

Figure 2 depicts the general process with all the subsystems. These subsys-
tems were selected to permit upgrades in the system without the need to make
considerable changes in the code. For example, the change detector subsystem
could be improved to detect additional features from the images; if the output
remains as percentage (value between zero and one), the rest of the system could
still use it to update the emotion intensity.

4.1 Stimulation Calculator

This subsystem obtains the percentage of change provided by the change detector
and updates the new stimulation (stimulus(t)) based on the current change
(sincrement), the last stimulation (stimulus(t — 1)), and a reduction value
(s-decrement), as shown in Equation 1. In addition to stimulus(t—1), functions
s_increment and s_decrement use the time delay (delay) as a parameter.

stimulus(t) = stimulus(t — 1)
+ s_increment(percentage, delay)
+ s_decrement(stimulus(t — 1), s_increment(percentage, delay),

delay, bias)
(1)

The s_increment function ranges on the percentage of change and the delay
time, and it is calculated as it is shown in the equation 2. The s_increment uses
an exponential function with a desire base (base_increase) and displacement
coefficient (d). This displacement coefficient is used to obtain values greater
than one, but it also introduces a small bias that is corrected by the second part
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Fig. 2. General architecture of the system. The arrows show the information flow. The
time difference between the two images is used to modulate each module.

of the equation. The increase_factor is a coeflicient that modulates the gain of
the function, which is used to obtain less or more stimulation. And delay is a
variable coming from the time delay between the two pictures used to generate
the percentage.

s_increment(.) = ((base_increase)Pereentage=d)

— (base_increase)?) x increase_factor x delay (2)
—_——

correction factor

Figure 3 illustrates the behaviour of s_increment(.), showing that this func-
tion produces greater values when the delay increases. The s_decrement(.) func-
tion (Equation 3) uses s_increment(.), time delay, and a bias to determine the
decrease value. The parameter bias is used to modify the lower output value
of the system. Like s_increment(.), this equation depends on time to make the
modulation. Figure 4 illustrates its behaviour with a decrease_factor = —0.5
and with different time delays.

s-decrement(.) = (stimulus(t — 1) + s_increment(.) — bias)

3)

x decrease_factor x delay

4.2 Emotion Generator

This subsystem was divided in two modules (event generator and pattern detec-
tion) to give the possibility of adding or deleting new emotion patterns, and of
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——delay:0.03]
——delay:0.11,

stimulation

Fig. 3. Behaviour of the increase function for different delays in the image using param-
eters base_increase = 30, d = 0.1, and increase_factor = 10.

Fig. 4. Behaviour of the decrease function for decrease_factor = —0.5 and different
time delays.

modifying the event characteristics. Event generator centralizes the process of
detection of relevant events from the stimulation slope. The events considered
are: null, small, medium, large, and huge slope. Except null slopes, the other
events could be either positive or negative. A pattern detection module is imple-
mented for each emotion that should be detected. Each pattern detection module
considers a different pattern as well as the number of events to search for in the
pattern. The emotions, their patterns, and their update functions are:

Surprise is recognized just when one of the following events are present in
its time window: large or huge positive slope. Due of this strong constraint,
every time that this pattern is detected, its intensity grows faster than for
other emotions.

Fear is increased when three or more consecutive recent events have either
large or huge positive slopes.

Interest occurs when three or more consecutive events have either medium
or small positive slopes.

In contrast to the rest of emotions, Relief works with negative slopes and
its intensity increases when at least five negative slope events are detected.
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We have considered only emotions affected by stimulus change since we focus on
the reactive processes to activate emotions, while emotions related to constancy
of stimuli in Tomkin’s model are expected to be managed by the cognitive part
of a larger system.

5 Implementation and Results

The system was implemented in C++ and uses OpenCV to analyze images. The
final implementation was then interfaced with ROS to enable easy use in other
systems. To facilitate easy parameter change, two configuration files were added:
one related to all the general parameters (e.g. threshold and increasecoef ficient)
and the other to establish the increment, decrement, and time window (number
of events to consider) for each of the implemented patterns. The system was
tested online with information coming from a Logitech CY270 Web-Cam. The
intensity and events obtained are depicted in the Figure 5, where the relationship
between the stimulation’s slope and the events can be seen. Figure 6 depicts

Stimulation

Time (Seconds)

Fig. 5. Stimulation (continuous line) and events (dots in horizontal lines) obtained
from the comparison of to consecutive images. The y-axis on the left represents the
stimulation level, while the one on the right represents the events generated from the
slope detected.

the intensity obtained for each pattern implemented (fear, interested, surprise
and relief), also showing that each pattern module updates its emotion inten-
sity independently. This is clearly seen at second 120 when fear, interest, and
surprise unevenly increase their intensities and after some time they also reduce
their intensity unevenly. This (increase and decrease) unevenness shows the pat-
tern’s configuration, which is not the same for each emotion. The presence of
more than one emotion with a value different from zero suggests that a further
mechanism should be used to determine which emotion should be elicited, for
example taking the one with higher intensity or just modifying behaviour param-
eters proportional to each intensity. In other words, our initial aim to use this
system as first step to select an emotion is achieved.
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Fig. 6. Intensity obtained by our system for the four emotions implemented: fear (blue),
interested (purple), surprise (red) and relief (yellow).

6 Conclusions and Further Work

We have presented a reactive emotional system based on Tomkins’ theory. The
system is modular to permit its integration with more complex systems and
its configuration based on the output from the pattern detection modules. The
system was implemented in C+4 with interface to ROS to make it possible to
used it in other models and in robotic platforms. Four patterns (fear, surprise,
interest, and relief) were implemented and tested. The results show that the
output compete with each other, and the emotion has to be selected in a further
step with a logic that suits the specific purpose, which could be as simple as take
the emotion pattern with higher intensity, or weight behaviours by the intensity
of the corresponding patterns. Additionally, this reactive system could be used
as complement for cognitive systems.

As a further work, the system is going to be integrated to our theatrical
system [1,2], to provide changes in the emotion that is going to affect the robot’s
movement parameters. Finally, a simple behaviour will be implemented, to be
triggered by the selected emotion appropriate to the situation.
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Abstract. This paper quantifies how the comfort of a person
approached by a robot changes when that person is alone or in a group
of two. A total of 140 participants in lone and paired configurations were
approached by a robot from eight different directions and asked to rate
their level of comfort. Results show that while the comfort of an indi-
vidual was influenced by the presence and relative position of a second
person, there were some common features in the comfort responses of all
participants regardless of their group configuration.

Keywords: Human-robot interaction + Comfort - Group

1 Introduction

In human-robot interaction, the initiation phase leading to a subsequent inter-
action is important to the success of the interaction [1]. A major part of the
initiation phase is the way a robot approaches potential interactants, including
the path taken by the robot in approaching the person or group of people. In this
work we define the “best” approach direction as the most comfortable one, and
define comfort in terms of a natural language understanding of mental comfort
as tranquility and contentedness; being free from a state of unease, constraint,
fear or anxiety. Comfort is assessed simply by asking a person “how comfort-
able” they are. We define the comfort profile of a person as the mapping of their
comfort levels to a set of robot approach directions.

It has been shown [2] that people tend to interact with robots in their personal
space, as defined by Hall’s theory of proxemics [3]. When people are alone, they
are most comfortable when a robot approaches them from the front—where the
robot can easily be seen—and are least comfortable when they are approached
from behind [4-6]. In our previous work [7] we showed that the comfort of people
in groups of two was qualitatively similar to that of individuals in single-person,
single-robot (SPSR) scenarios, although a person’s comfort level was influenced
both by the group formation shape and the position of participants within the
group.
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The cited works on SPSR. scenarios show that people are more comfortable
when approached from a ‘frontal’ direction rather than from a ‘rearward’ direc-
tion. Extension to groups of more than one person introduces complexities. When
people interact in a group, they tend to orient themselves towards other group
members. In the most extreme case, when a group of two people face each other,
a robot that approaches one person from a ‘frontal’ direction must approach
the other person from a ‘rearward’ direction. Our work in two-person, single-
robot (TPSR) scenarios investigates how the comfort profile of an individual is
influenced by the location of the second person. The comfort profile of a person
is defined here as the mapping of their comfort levels to the set of robot app-
roach directions. Knowledge of how comfort profiles differ between individuals
who are alone or in a group can be integrated with existing robot path planning
algorithms, allowing for a robot to maximise the comfort of individuals it might
interact with.

Although previous SPSR studies have been conducted [4-6], the diverse
experimental conditions and relatively small sample numbers don’t allow
for a qualitative comparison with our TPSR results. We therefore chose to
repeat single-person experiments under the same conditions as our prior two-
person experiments [7], and with significantly more participants than previously
reported. Performing group and individual experiments under the same condi-
tions allows for a direct quantitative comparison of the two data sets. As a result,
this paper presents experimental work that quantifies differences in comfort lev-
els between people seated alone and those seated in pairs, in various sitting
configurations. The comfort profiles of individuals in pairs and alone are com-
pared across eight robot approach directions through intra- and inter-position
statistical analyses.

2 Design and Conduct of Experiments

Two sets of experiments were performed to investigate the hypothesis that people
in pairs have a silimar comfort to lone individuals when they are approached by
a robot from different directions. The two experiments followed a similar proce-
dure: with two participants for the TPSR scenario, and with a single participant
for the SPSR scenario. All participants were naive to the experiment and were
recruited at a campus of the University of New South Wales, Australia. For the
group-experiment trial, a pair of participants was seated in low armchairs at a
low table in the centre of a room and asked to work on a cooperative task for the
duration of the experiment. The task was included in the experiment design to
provide a cognitive load on the participants, intended to minimise their atten-
tion to the robot’s location and movement. The selected task was to complete a
three-dimensional jigsaw puzzle. This task was chosen as it has a clear objective,
is temporally demanding and does not require any turn-taking activity.

During the experiment, participants were seated in one of three maximally-
different seating configurations, selected using Kendon’s [8] F-formation frame-
work for analysing interactions between two or more people. An F-formation—or
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“facing formation” [9]—forms whenever two or more people position themselves
so that they share an overlapping transactional space, termed the o-space. As
defined by Kendon, the interacting people occupy the p-space and monitor the
r-space. During the experiment, the participants are assumed to have an o-space
centred on the shared jigsaw puzzle. The three seating configurations used are
shown in Figure 1 and are referred to as Configurations A, B and C.

r-space

Configuration A Configuration B Configuration C

Fig.1. Participant seating configurations showing o-space, p-space and r-space
assumed with two participants. From [7].

The experiments were conducted in a six metre square room with exits on three
of the four walls. The arrangement of the room can be seen in Figure 2. The eight
robot approach directions are labeled and indicated by arrows in the figure. The
robot was controlled using the Wizard of Oz paradigm to enter the group’s p-space
[8], or to approach it as closely as possible. A square room was used to remove
spatial bias that could arise through asymmetric placement of participants in the
room. Multiple exits were provided so that participants always had the option of
leaving the room to avoid confrontation with the robot. The interested reader could
refer to [7] for more details of the experiments.

A robot (Figure 3) present in the room periodically approached the par-
ticipants and prompted them via prerecorded speech to rate how comfortable
they were with the most recent robot approach. After each robot approach, each
participant scored their response on a five-point Likert scale between 1: “uncom-
fortable” and 5: “comfortable”. The robot approach directions were randomised
to prevent an order effect in the results. The experiment continued until the
robot had approached the group from eight different directions in random order.
The experiment was concluded with a post-experiment questionnaire to acquire
additional information, including gender, from participants.

In addition to these group experiments, experiments with a single partici-
pant were performed. The single-person experiments were identical to the group
experiments, except that the participant was seated only in one location and
the second seat was removed from the room. The arrangement can be seen in
Figure 2. The robot approached the table along each of the eight directions,
potentially forming a p-space with the participant focused on the jigsaw puzzle.

Since a person’s self-reported level of comfort cannot be regarded as an abso-
lute measure, participant responses are ranked so that an ordinal analysis can
be made. Participant responses are ranked from one (most comfortable) to eight
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Fig. 2. Experimental space with chairs arranged in (a) Configuration A, (b) Configu-
ration B, (c) Configuration C, and (d) in the SPSR scenario. The arrows indicate the
eight directions of robot approach relative to the ‘dotted’ seat(s). Adapted from [7].

Fig. 3. Robot used for the experiment. From [7].
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(least comfortable). Two types of analysis were used to compare the comfort lev-
els of participants seated in the different configurations; these are termed intra-
position and inter-position comparisons. An intra-position comparison performs
pairwise statistical comparisons of the rank distributions of participant comfort
levels for all 28 pairs of robot approach directions for a particular seating posi-
tion and configuration, and then compares this set of results to those obtained
for another seating position and configuration. An inter-position comparison
compares the participant comfort level distributions for a relative robot app-
roach direction between two different seating positions and configurations, and
then repeats this comparison for the remaining seven robot approach directions.
After a correction for multiple comparisons, the comfort level distributions are
not different if all eight comparisons are not different.

3 Results

3.1 Participants

Twenty trials were conducted for each of the three group configurations and
the lone-participant configuration to ensure a statistical power (1 — ) of at
least 0.80. Of the 140 participants, 61 were male and 79 were female. The mean
age of participants was 24.7 years with a standard deviation of 8.7 years; the
minimum age was 18 and the maximum age was 73. Most of the participants
were university students. Although the participation of four persons older than
60 raised the variance, no age-dependent effects were observed in the data. Each
person participated in only one trial of eight robot approaches in one seating
configuration.

3.2 Intra-Position Analysis

Table 1 shows the mean comfort rank of participants for each robot approach
direction for the six relative seating positions. The robot approach directions are
always numbered relative to the seating location in question. This convention
is illustrated through the ‘dotted’ seat locations in Figure 2, and means that
direction 8 is always directly in front of the participant.

To determine if there were differences between data for different robot app-
roach directions a Kruskal Wallis analysis of variance (KW-ANOVA) test was
performed. The KW-ANOVA test was chosen due to the non-parametric nature
of the data. This test takes the participant comfort data from all robot approach
directions and returns a p-value indicating the probability that all of the data are
from a common distribution; that is, that no systematic differences are present.
If the p-value is less than 0.05 then a post-hoc multiple comparison test is per-
formed to determine which pairs of robot approach directions cause participant
comfort levels that differ from each other. As multiple comparisons are being
made, a correction is required to control type I errors. The false discovery rate
(FDR) control [10] was used with ¢ = 0.05.
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Table 1. Means and standard deviations (in parentheses) of individual comfort rank-
ings for each robot approach direction for the lone individual (SPSR) and individuals
in the three seating configurations of pairs of participants. Rank 1 is most comfortable;
rank 8 is least comfortable. The labels ‘Left’ and ‘Right’ identify where the person of
interest was sitting in the pair.

Dir SPSR Ind. A Con. B Con. B Con. C Con. C
(Left) (Right) (Left) (Right)

T 19(14) 27(1.9) 25(20) 25(1.9) 25(20) 3.7(2.3)
2 3.6(1.9) 4.0(26) 3.4(26)  3.1(24)  4.3(24)  4.7(2.5)
3 54(1.8)  4.0(2.6) 4.4(2.1)  3.9(26)  3.2(26)  4.7(2.3)
4 73(1.6) 5.6(3.00 5.1(29)  4.8(3.0)  4.8(29)  6.3(2.3)
5 5.9(1.9)  3.9(25) 3.9(26)  4.5(26)  52(25)  3.9(24)
6  36(1.7) 3.6(26) 3.0(22) 4.0(25)  42(20)  3.0(2.1)
7 20(L7)  27(22)  26(21)  2.7(1.6)  3.1(25)  2.7(2.2)
8  24(21) 3.1(22) 3.3(23)  4.0(28)  28(23)  3.0(2.0)

The comfort levels of the individuals in Configuration A were statistically
different (x2(7,312) = 33.26, p < 0.01, n? = 0.10) with approaches from different
directions. Post-hoc multiple comparison Mann-Whitney U-tests showed that
participant comfort with robot approaches from directly behind (direction 4)
was different to that for approaches from all other directions. Approaches from
direction 2 also caused significantly different participant comfort levels to those
from direction 7.

With participants seated in Configuration B there were no significant dif-
ferences for either the person sitting on the left (x?(7,152) = 17.69, p < 0.05,
n? = 0.11) or on the right (x?(7,152) = 13.49, p = 0.06, % = 0.08).

Although there were no statistically significant differences in comfort levels
for individuals sitting on the left in Configuration C (x?(7,152) = 20.24, p =
0.05, n* = 0.13), significant differences were found for the person sitting on
the right (x?(7,152) = 32.40, p < 0.01, n?> = 0.20). Participant comfort with
robot approaches from directly behind (direction 4) was statistically different
to all other directions except for direction 2. Comfort with approaches from
direction 3 was also different to that with approaches from direction 7.

For robot approaches to the lone participant, significant differences in partic-
ipant comfort levels (x?(7,152) = 83.76, p < 0.01, 7% = 0.53) were found between
several directions. Approaches from directly behind the participant (direction 4)
resulted in comfort levels that were different from those produced by all other
robot approach directions, and comfort levels with approaches from directions 3
and 5 were different from all other approach directions except each other. Fur-
thermore, directions 1 and 7 produced comfort levels that were different from
directions 2 and 6, and direction 8 was different from direction 6. These SPSR
results conform results previously reported in the literature [4-6], and with a
somewhat larger sample size.
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The intra-position analysis showed that participant comfort levels varied
across each seating configuration. Individuals seated in Configuration A and
on the right in Configuration C had comfort profiles similar to, but more uni-
form than, those of individuals seated in the SPSR scenario. Participants seated
in Configuration B and on the left in Configuration C had more uniform comfort
distributions across all tested robot approach directions. Of particular note is
the finding that the comfort levels of solo participants are different to those of
all individuals in groups, showing that the presence of a second person influ-
ences the comfort level of the first participant. The results also show that the
position of the second participant influences the comfort level of the first. The
present results demonstrate, for the first time, that the comfort level of a person
approached by a robot depends both on the presence and the relative position
of a second person.

3.3 Inter-Position Analysis

To determine if there were statistically significant differences in participant com-
fort between two seating configurations, a Mann-Whitney U test was used to
compare the distribution of comfort ranks for a particular robot approach direc-
tion between the two seating configurations in question, for all eight approach
directions. Participant comfort levels for two positions in different seating con-
figurations' were then defined to be statistically not different from each other if
the results of all eight Mann-Whitney U tests were statistically not different. As
this comparison requires a sequence of eight pair-wise comparisons to be ‘not dif-
ferent’ to confirm the null hypothesis, a correction is applied. The FDR-control
method was again used with ¢ = 0.05.

Given the symmetry of Configuration A, for these comparisons it is assumed
that the results for the two seating positions in Configuration A can be ‘rotated’
on to each other, effectively doubling the sample size to N = 40. An inter-position
analysis performed between the two positions of Configuration A gives p = {0.83,
0.62, 0.085, 0.82, 0.48, 0.80, 0.95, 0.55} for directions 1-8 respectively. The strong
similarity of the two sets of distributions validates the assumption. It also shows
that no bias is present due to the asymmetry of the room (Figure 2) relative to the
seating positions.

Table 2 shows the results of comparing the comfort levels of single persons
approached by a robot with those of individuals seated in the group configura-
tions. The scarcity of significantly different distributions shows that the comfort
profiles of lone individuals and those in groups of two are only slightly differ-
ent. The strong similarity found in the inter-position analysis indicates a high
degree of consistency in participant comfort scoring throughout the experiments.
Although the results in Table 2 show that the comfort profiles of people in pairs
are similar to those seated alone, Table 1 shows a trend towards more uniform
comfort profiles for grouped individuals, but with more variance. That is, the

1 Although two positions in the same seating configuration could be compared, we
focus on comparisons between lone individuals and individuals in groups of two.
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presence of a second person does not significantly change the comfort level of
an individual, but does tend to decrease the sensitivity of the individual to the
direction of robot approach.

Table 2. Results, in the form of p-values, of pairwise comparison tests for an inter-
position analysis. The first column shows the robot approach direction of interest.
Subsequent columns show the probability that the distribution of comfort levels of
individuals in particular groups are not different from those of lone individuals. The
five p-values that represent distributions that are significantly different to the SPSR
distributions at the 5% level after FDR correction have been emphasised.

Dir Ind. A Con. B Con. B Con. C Con. C
(Left) (Right) (Left) (Right)

1 0.11 0.45 0.40 0.26 0.01
2 0.48 0.83 0.56 0.29 0.08
3 0.04 0.11 0.09 0.02 0.40
4 0.06 0.01 0.00 0.01 0.13
5 0.00 0.01 0.08 0.39 0.00
6 0.80 0.31 0.51 0.30 0.35
7 0.28 0.42 0.09 0.13 0.27
8 0.29 0.18 0.08 0.70 0.30

4 Discussion

The SPSR results in Table 1 show a marked front-back asymmetry with a strong
preference for approaches from the front. These results are qualitatively similar
to the results of prior SPSR experiments. In comparison, the individuals seated
in groups of two have less directional preference. The standard deviation of the
SPSR distributions are generally smaller than the distributions of individuals
seated in groups, showing a more consistent comfort preference in the SPSR
scenario.

The intra-position analysis shows that the relative differences between com-
fort level distributions for different robot approach paths change from those of
the SPSR configuration when a second person is introduced. That is, the pres-
ence of a second person changes the comfort profile of the first. Furthermore,
since the differences between comfort level distributions change with the relative
position of the second person (Configuration A, B or C), the position of the
second person influences the comfort profiles of the first. Although the second
result was shown previously [7], it is restated here with higher statistical power.

The inter-position analysis compares how similar the comfort distributions
of SPSR participants are to those distributions of individuals seated in a group.
Almost all of the ‘low’ p-values in Table 2 occur for directions 3—5. Combining
this with the values in Table 1, it can be seen that the comfort of a person when
they are approached from behind improves in the presence of a second person.
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Most comparisons of approach directions for individuals in group configura-
tions against the approach directions of lone individuals show statistically non-
significant differences. While the intra-position comparison results showed that
the presence and location of a second participant influence the comfort of an
individual, the lack of significantly different comfort distributions in the inter-
position results show that the general shape of the comfort profile for individuals
in Configurations A, B or C are similar to individuals in an SPSR. configuration.
That is, robot approach directions from a ‘front’ direction are more comfortable
than approaches from a ‘rear’ direction, but with a reduced magnitude in the
comfort difference between these two robot approach regions.

Although there is an approximately equal gender split in the data set (43.5%
males, 56.5% females), it is not possible to make a statistically significant claim
about the differences in comfort results reported by each gender. The collected
data came from several different seating configurations, and in order to show
that the results for each gender were independent of the experiment seating
configuration, it would have to be shown that there were no significant differences
for each gender across all seating configurations. Unfortunately, the sample size
for each gender in each seating configuration is insufficient to make a statistically
sound gender-based claim.

Some insight into a gender comparison can be obtained by analysing the
Configuration A data, where two people are seated opposite each other. If it is
assumed that there is no spatial bias introduced by the slight asymmetry of the
room, then the data can be partitioned by gender. Of the 40 participants for
Configuration A, 16 were male and 24 were female. While a sample size of 16
for the males is a little low to make a strong statistical claim (statistical power
is approximately 0.7), it is sufficiently large to show a general trend that could
warrant further investigation. It is also worth noting that this comparison does
not consider the gender of the subject’s partner.

When performed on the male data, a KW-ANOVA analysis (x2(7,120) =
22.58, p < 0.01, n? = 0.18) suggested that there were different comfort distri-
butions for different robot approach directions. Performing a follow-up multiple
comparison between robot approach directions with a FDR correction factor
found no significantly different distributions. For the female data, there were
significant differences in some approach directions (x?(7,184) = 17.72, p = 0.01,
n? = 0.09). Robot approach direction 4 was found to be statistically different
to approach directions 1,3,7 & 8. An inter-gender analysis gives p = 0.03, 0.73,
0.18, 0.95, 0.07, 0.88, 0.07, 0.90 for approach directions 1-8 respectively, all of
which are non-significant with a FDR correction factor with ¢ = 0.05. While
the intra-gender results showed that females preferred ‘frontal’ robot approach
directions to a direct ‘rear’ approach, the inter-gender results show that there
are no significant differences between the rank distributions of males and females
for each robot approach direction. By increasing the sample size, particular for
the males, this observation would have greater statistical strength.
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Conclusion

This work used inter- and intra-position statistical analyses of experimental data
to quantify differences between the comfort levels of lone and paired individuals
approached by a robot from several directions. Although the presence of a second
person influenced the comfort profile of the first by decreasing their sensitivity to
the direction of robot approach, a strong similarity remained between the com-
fort profiles of grouped and lone individuals. Comparison of intra-position data
analyses showed that the relative location of the second participant influenced
the comfort profile of the first.
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Abstract. This paper has the dual aims of introducing and using
directional statistics to investigate the comfort levels of pairs of people
approached by a robot from different directions. Data from pairs seated
in three maximally-different seating configurations are analysed. These
data are in the form of circular distributions of ranked comfort levels. Sta-
tistical tests for uniformity of circular distributions and for determining
if differences exist between pairs of circular distributions are introduced
and used to analyse the directional properties of the data. It is shown
that directional statistics can be used to compare comfort level ranks
that capture all tested robot approach directions; something that cannot
be achieved with linear statistics.

Keywords: Human-Robot Interaction - Comfort + Group - Directional
statistics -+ Non-parametric

1 Introduction

Directional statistics provides methods of analysing data that are circularly dis-
tributed. In a general sense, this includes any data that can be assigned an orien-
tation [1] or be represented on a hypersphere [2]. In social robotics, one example
of such data is the preferences of people approached by a robot, as encoded by
their ratings of comfort levels with approaches from different directions. Each
robot approach direction can be assigned an orientation relative to the person,
and directional statistics can then be used to analyse the corresponding data.

The scenario of a person approached by a robot is interesting in that it can
be analysed using both linear and directional statistics. Linear statistics can be
applied to experimental data to measure the differences in participant comfort
between two robot approach directions. Such linear analysis has been performed
both for lone individuals [3-5] and for groups of two [6,7]. These linear analyses
compared participant data from different robot approach directions to see which
directions resulted in participant comfort levels that were statistically different.
© Springer International Publishing Switzerland 2015
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In these scenarios, linear statistics analysed the distribution of comfort data across
particular robot approach directions, while directional statistics can analyse the
circular distribution of robot approach directions across particular values of com-
fort data.

The present work shows how directional statistics complements linear statis-
tics when analysing comfort profiles of participants that are approached by a
robot from several different directions. In the following section we provide some
background on directional statistics and explain how relative robot approach
directions can be incorporated. We then briefly explain the experimental pro-
cess, provide analytical results from collected data together with a higher-level
commentary on the implications of the numerical results.

2 Directional Statistics

To make meaningful claims' regarding the comfort of participants approached
by a robot, the data must be analysed statistically [8]. The set of available statis-
tical tests falls into two categories: parametric and non-parametric. Parametric
tests assume that sampled observations come from a population with a known
parameterization, such as the normal distribution. The challenge, then, is either
to use the sampled data to estimate the unknown parameters or to derive con-
fidence intervals for the unknown parameters [9]. Non-parametric tests, on the
other hand, do not make any assumptions about distributions in an underlying
population and are often considered ‘distribution-free’ [10].

In this work we focus on non-parametric tests as they are functional without
the need to make assumptions about the distribution of participant responses.
Two directional statistics tests are utilised in this work. The first test examines
the uniformity of a directional distribution, while the second analyses similarities
between a number of directional distributions.

2.1 Test of Distribution Uniformity

The Rayleigh test [2] estimates the probability that a population is uniformly
distributed over all directions. By treating each sampled datum as a unit vector
in its corresponding direction, the vector sample mean R provides a measure
of distribution uniformity. As the expected value E(cosf,sinf) = 0 when 6 is
sampled from a uniform distribution, the uniformity hypothesis can be rejected
when R is ‘large’ [1].

To determine whether R exceeds a threshold value, a mapping is required
from the vector sample mean space Rt to the probability space [0 1]; p-values
in this latter space are estimated probabilities that the sampled data are direc-
tionally uniformly distributed. In this work we set p < 0.05 for a distribution to
be non-uniform. As R is a bivariate function, the probability distribution is sim-
ilar to the chi-squared distribution with two degrees of freedom. This mapping

! That is, to distinguish real effects from chance occurrences.
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can be done with an error of order O(n~2) [11]. There are pathological non-
uniform distributions that can ‘pass’ the Rayleigh test. It is therefore important
to perform a post hoc inspection to confirm results.

Sometimes data collected for analysis can have a coarse directional resolution
or be grouped?. When working on data with this property, a correction factor
can be used to allow for the coarse directional resolution. This is typically done
when the directional resolution is w/4 or greater [1]. Such a corrected vector
sample mean is defined by Stuart and Ord [12].

2.2 Comparison of Circular Distributions

Although the Rayleigh test measures the uniformity of a directional distribution
it does not quantify differences between multiple distributions.

Watson’s U? test [13] provides a method of measuring the difference between
two circular distributions. This test is the directional equivalent of the linear
Mann-Whitney U test [14]. Watson’s U? test can be extended to permit the
testing of more than two distributions, as shown by Brown [15]. This extension
is beneficial as it allows an ANOVA-equivalent test to be performed while also
accommodating data grouping that coarsens directional resolution.

In a similar manner to the Rayleigh test, the U? value obtained needs to be
mapped to a probability. The mapping between a U? value and the corresponding
p-value is defined by Maag [16].

These directional statistics tools allow directional data to be analysed in
ways analogous to the more widely known linear statistics. A U? value can
be obtained by comparing all directional distributions with each other using
Brown’s extended U? test [15] in a non-parametric ANOVA-equivalent test. If
the corresponding p-value indicates that there are directional distributions that
are significantly different to each other then a post hoc pairwise multiple com-
parison using Brown’s extended U? test is performed for each possible pair of
distributions. It is worth noting that Brown’s extended U? test degenerates to
Watson’s U? test when only two distributions are tested. Again, U? values are
converted to p-values using the transformation provided by Maag. Because a
multiple comparison test is being performed, a p-value correction is required
to prevent excessive false-positives. The present work uses the false discovery
rate (FDR) [17], rather than a family-wise error rate correction factor [14] such
as Bonferonni, since the FDR method provides better statistical power for the
multiple comparison test.

3 Experiment
A brief overview of how the experimental data was collected is given here; the inter-
ested reader could refer to [7] for more details. Participants naive to the experiment

were recruited on a campus of the University of New South Wales, Australia. For

2 Grouping is an artificial method of making the directional resolution more coarse.
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each experimental trial, a new pair of participants was seated at a low table in the
centre of a room and asked to work on a three-dimensional jigsaw puzzle, a cooper-
ative non-turn-taking task, for the duration of the experiment. A task was assigned
to the participants to provide a cognitive load for the duration of the experiment,
minimising participant attention towards the robot’s location and movement. The
participants were periodically approached and interrupted by a robot that was also
present in the room. The robot used prerecorded speech to ask the participants to
rate how comfortable they were with the most recent robot approach. Following
each robot approach, each participant scored their response to the question “Please
rate how comfortable you were with the robot’s most recent approach path” on
a five-point Likert scale between 1: “Uncomfortable” and 5: “Comfortable”. The
experiment continued until the robot had approached the pair from eight different
directions in random order. The order of robot approach directions was randomised
for each experiment to prevent order effects. Additional information, such as par-
ticipant perceptions of the robot, was gathered using a post-experiment question-
naire.

Three maximally-different seating configurations of two people working on a
common task were chosen. These configurations, shown in Figure 1, are referred
to as Configurations A, B and C. The interaction between the pair of participants
was assumed to have an o-space (Kendon [18]) centred on the shared jigsaw
puzzle. Figure 1 also shows the orientation of the seating configurations in the
room and the eight robot approach directions used in the experiment.
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Fig. 1. Experimental space with chairs arranged in (a) Configuration A, (b) Configu-
ration B and (c) Configuration C. From [7]. The arrows represent the robot approach
directions.

3.1 Data Preprocessing

Since individuals have a wide variety of prior experiences, it is inevitable that
significant differences will exist between the self-reported comfort level scores of
participants in the same situation. To avoid the need for parameterising user
comfort levels with particular robot approach paths, each participant’s absolute
comfort scores for the eight robot approach directions were converted to ranks
from one (most comfortable) to eight (least comfortable). When a participant
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scored two or more approach directions as equally comfortable the directions
were assigned the same rank. In such cases, the rank of the next highest score
was set to one greater than the cardinality of previously ranked scores. Each
rank distribution was then formed by counting how many times that particular
rank was associated with each robot approach direction.

Seating configurations B and C have persons on the right and the left; these
rank data were coded ‘R’ and ‘L’ to preserve the information associated with rel-
ative position. In Configuration A the relative position of the second person is the
same for both individuals. The data for one person was therefore superimposed
on the other, effectively doubling the amount of individual data in Configura-
tion A. These data are denoted ‘A Ind.” The scores for each pair of participants
were summed to produce combined group scores for Configurations A, B and C.
Group ranks were derived from these group scores to provide information about
the comfort of pairs of participants.

The conversion of absolute comfort scores to ranks allows non-parametric
tests to be used in the analysis. This is beneficial as the underlying distribution
of the general population does not have to be assumed. In the application of
directional statistics in the present work, a sample distribution is the distribution
of the number of occurrences of a particular rank for each direction.

Uniformaty Test: Fach robot approach direction was assigned an angle based
on its relative orientation to the other approach directions. The directions 2,
3, ..., 8, 1 defined in Figure 1 were assigned angles 0, 77 /4, ...,27 /4,7 /4. Tt is
worth noting that the Rayleigh test is rotationally invariant so that the angle
labels are arbitrary provided that the relative order of the angles is maintained.

Circular Distribution Comparisons: As multiple comparisons are made in
analysing the directional rank data, a correction factor is required. The FDR
mentioned in Section 2.2 was used with a g-value of 0.05 [17].

4 Experiment Results

4.1 Rayleigh Tests of Uniformity

The results of the Rayleigh test applied to each rank distribution are shown in
Table 1. Choosing p < 0.05 as the threshold for rejecting the null hypothesis
that the directional data are uniformly distributed gives nine statistically non-
uniform distributions. Examples of statistically uniform and non-uniform rank
distributions are shown in Figure 2.

It is important to note that the p-values resulting from the application of the
Rayleigh test to two distributions cannot be compared with each other beyond
determining which distribution is the more uniform. The Rayleigh test provides
no information regarding the nature of the non-uniformity.

4.2 Watson’s U? Test

When applied to the group rank data for Configurations A, B and C, the
ANOVA-equivalent Watson’s U? test verified the null hypothesis at a significance
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level of p < 0.05 for Configuration A (U? = 0.69,p = 0.21) and Configuration
B (U? = 0.82,p = 0.06). The test showed a highly significant difference in some
rank distributions for Configuration C (U? = 1.35,p < 0.01).

The p-values from a post hoc multiple comparison U? test conducted for
Configuration C are shown in Table 2(a). Nine pairs of rank distributions were
found to be statistically significantly different following the FDR, correction.

The rank distributions of individuals in each configuration were examined
next. For the individuals in Configuration A there was a highly significant dif-
ference in rank distributions (U? = 1.36,p < 0.01). The p-values from the post
hoc multiple comparison tests are shown in Table 2(b). Five pairs of rank dis-
tributions were found to be significantly different following the FDR correction.

(a) A Ind., Rank 4, p = 0.94. (b) A Ind., Rank 8, p = 0.00.

Fig. 2. Examples of (a) uniform and (b) non-uniform rank distributions according to
the Rayleigh test. The dots represent the count of how often the labeled directions
were assigned to the represented rank.

Table 1. Results of the Rayleigh test for uniformity of rank distributions. The table
shows probabilities that the rank distributions are uniform. Bold numbers denotes
p-values < 0.05. Labels ‘A’, ‘B’ and ‘C’ refer to group ranks of the corresponding
configurations whereas all other labels refer to individual ranks.

Rank Configuration

A B C AInd. B(@L) B(R) C((L) C(M®R)
1 093 0.23 0.01 0.13 0.10 0.39 0.15 0.03
2 0.35 0.07 0.08 0.08 0.70 0.36 0.30 0.03
3 046 0.07 0.83 0.17 0.92 0.13 0.56 0.09
4 0.06 0.58 0.48 0.94 0.27 0.27 0.42 0.90
5 0.56 0.36  0.41 0.48 0.60 0.99 0.21 0.49
6 0.78 0.30 0.01 0.36 0.54 0.20 0.31 0.07
7 098 0.26 0.01 0.11 0.06 0.49 0.14 0.01
8 0.08 041 0.00 0.00 0.06 0.12 0.06 0.01
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It is notable that all pairs that are significantly different contain the least com-
fortable rank, rank 8.

The null hypothesis was confirmed for participants that sat on the left in
Configuration B (U? = 0.84,p = 0.05) and on the right in Configuration B
(U? = 0.74,p = 0.13). For Configuration C, the null hypothesis was confirmed for
participants seated on the left (U? = 0.84,p = 0.05), but significant differences
in rank distributions were found for participants seated on the right (U? =
1.32,p < 0.01). The p-values of the post hoc multiple comparison test can be
seen in Table 2(c).

It is possible to compare the rank distributions of people on the left and
right of the same seating configuration. As there are eight rank distributions for
each location, the dimensionality of the ANOVA-equivalent U? test increases to
16. Examining the data this way shows a highly significant difference between
some rank distributions for the participants in Configuration A (U? = 2.27,p <
0.01) and Configuration C (U? = 2.17,p < 0.01). There were no significant
differences in rank distributions between the participants for Configuration B
(U? = 1.59,p = 0.06). The p-values of the post hoc multiple comparison tests
for Configurations A and C can be seen in Tables 3(a) and 3(b) respectively.

5 Discussion

From the first set of rank distribution comparisons shown in Table 2, the p-values
loosely cluster into two groups. The first group consists of rank distributions
1-5, while the second group consists of rank distributions 6-8. These findings
are consistent with the Rayleigh uniformity test results in Table 1, where most of
the non-uniform distributions are of higher rank, indicating lower comfort levels.
The distributions of the ‘least comfortable’ higher ranks are (unsurprisingly)
dense in directions behind individuals (Figure 2b), showing that comfort levels
with different robot approach directions are governed by a strong preference for
where the robot should not approach from.

The results for the intra-group comparisons in Tables 3(a) and 3(b) are con-
sistent with the earlier Rayleigh (Table 1) and Watson’s U? (Table 2) results. In
Table 3(a) it is not surprising to see a significant difference between the higher
ranks of each location, as people seated in Configuration A face opposite direc-
tions. Table 3(b) shows a trend of similarity between the left and right seating
locations in Configuration C. The third quadrant of the table shows the cluster-
ing trend of the results for the left and right with comparisons of rank distribu-
tions 1 to 5 and 6 to 8 having a higher p-value than other pairwise comparisons
in the quadrant.

Clustering directional ranks cannot be done with linear statistics as no rela-
tionship exists between different linear sampled distributions. Results from a
linear statistical analysis [3-7,19], either for individuals or groups, do not natu-
rally suggest an alternate robot approach direction if one can not be selected on
the basis of application constraints. As directional statistics tie the data together
both spatially through the robot approach directions and ordinally through the
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Table 2. Results of multiple pairwise comparisons between ranks using the modified
Watson’s U? test. The bold entries denote pairwise rank comparisons that were signi-
ficatively different following a false discovery rate correction with ¢ = 0.05. Only the
three configurations with a p-value < 0.05 mapped from the modified Watson’s U?
(ANOVA-equivalent) test are shown.

(a) Configuration C

Rank 1 2 3 4 5 6 7 8
1

2 0.42

3 0.52 0.52

4 0.37 0.25 0.90

5 0.47 0.82 0.69 0.38

6 0.00 0.01 0.09 0.02 0.02

7 0.00 0.00 0.06 0.03 0.01 0.31

8 0.00 0.00 0.03 0.01 0.01 0.20 0.50

(b) Individual A
Rank 1 2 3 4 5 6 7 8

0.39

0.59 0.96

0.73 0.29 048

0.81 0.60 0.76 0.85

0.12 0.03 0.06 0.38 0.24

0.03 0.02 0.04 028 0.17 0.74
0.00 0.00 0.00 0.00 0.00 0.02 0.03

W0 Ttk W

(¢) Individual C (R)
Rank 1 2 3 4 5 6 7 8

0.41

0.10 0.19

0.40 0.11 0.12

0.54 0.25 0.53 0.32

0.01 0.00 0.04 0.35 0.03

0.00 0.00 0.03 0.20 0.03 0.74
0.00 0.00 0.01 0.05 0.01 0.14 048

XIS UUA WN

ranking process, they can provide the basis for heuristic rules describing the
direction(s) a robot should approach a person from. The directional results pre-
sented here support prior linear results [7,19] that show significant differences
between being approached from behind and being approached from any other
direction by the robot.
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Table 3. Results of intra-group pairwise comparisons between ranks using the mod-
ified Watson’s U? test. Bold entries denote pairwise rank comparisons that were sig-
nificatively different following a false discovery rate correction with ¢ = 0.05. The
two configurations with a p-value < 0.05 mapped from the modified Watson’s U? test

(ANOVA-equivalent) are shown.
(a) Configuration A
Ll L2 L3 L4 L5 L6 L7 L8 ‘ Rl R2 R3 R4 R5 R6 R7 RS
L1
L2 0.64
L3 0.28 0.20
L4 045 046 0.70
L5 0.36 0.37 077 0.93
L6 0.09 0.05 0.12 0.04 0.08
L7 0.03 0.02 0.05 0.01 0.02 0.79
L8 0.00 0.00 0.00 0.00 0.00 0.23 0.56
R1 0.20 0.09 0.19 0.08 0.14 0.68 0.29 0.01
R2 0.12 0.11 0.07 0.03 0.03 042 0.59 0.19| 0.23
R3 0.01 0.01 0.09 0.02 0.05 033 026 0.15| 0.09 0.07
R4 045 041 0.85 0.89 0.80 0.05 0.01 0.00f 0.12 0.04 0.02
R5 0.63 0.25 0.69 0.50 044 040 0.28 0.04| 0.72 0.22 0.11 0.63
R6 0.85 0.51 032 039 038 0.54 026 0.04| 0.8 0.30 0.09 047 0.70
R7 031 0.51 0.08 007 0.08 0.17 0.13 0.01| 0.16 0.61 0.01 0.08 0.19 0.48
R8 0.09 0.33 0.15 0.51 042 0.00 0.00 0.00, 0.00 0.01 0.00 0.21 0.13 0.09 0.02

(b) Configuration C
L1 L2 L3 L4 L5 L6 L7 L8 ‘ Rl R2 R3 R4 R5 R6 R7 RS

L2 0.59

L3 0.84 0.89

L4 0.15 048 0.67

L5 0.10 0.15 0.27 0.58

L6 0.11 0.13 0.25 0.26 0.31

L7 0.09 0.09 0.14 0.10 0.15 091

L8 0.01 0.04 0.09 012 035 0.37 0.28

R1 0.07 0.40 0.72 080 0.51 0.07 0.02 0.04

R2 0.10 059 0.50 0.29 0.22 0.02 0.01 0.01| 0.41

R3 0.56 0.73 0.56 0.15 0.05 0.06 0.06 0.01| 0.10 0.19

R4 033 036 061 058 045 0.81 0.50 0.22| 040 0.11 0.12

R5 0.64 0.53 0.83 055 026 0.15 0.09 0.07| 0.54 0.25 0.53 0.32

R6 0.03 0.08 0.08 0.05 0.09 0.65 0.89 0.09| 0.01 0.00 0.04 0.35 0.03

R7 0.03 0.04 0.06 0.02 0.06 0.54 090 0.15| 0.00 0.00 0.03 0.20 0.03 0.74
R8 0.01 0.01 0.02 0.01 0.04 0.16 0.32 0.36| 0.00 0.00 0.01 0.05 0.01 0.14 048

6 Conclusion

While directional and linear statistics methods are used for the analysis of
different types of data, we have shown that when data can be represented in
both forms, directional statistics provides information that cannot be obtained
through the counterpart linear methods. Directional statistics therefore com-
plements linear statistics with directional information, such as suggesting from
what direction a robot should, or should not, approach a group of people.
Directional statistics showed that when pairs of people are approached by
a robot, comfort ranks cluster loosely into two groups of ‘less comfortable’ and
‘more comfortable’. The absence of a ‘most comfortable’ rank suggests that par-
ticipants did not have a most preferred robot approach direction, while the
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density of less comfortable ranks behind participants suggests a strong prefer-
ence for robot approach paths that should be avoided.
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Abstract. We look at the problem of enabling a mobile service robot
to autonomously adapt to user preferences over repeated interactions
in a long-term time frame, where the user provides feedback on every
interaction in the form of a rating. We assume that the robot has a
discrete and finite set of interaction options from which it has to choose
one at every encounter with a given user. We first present three models
of users which span the spectrum of possible preference profiles and their
dynamics, incorporating aspects such as boredom and taste for change
or surprise. Second, given the model to which the user belongs to, we
present a learning algorithm which is able to successfully learn the model
parameters. We show the applicability of our framework to personalizing
light animations on our mobile service robot, CoBot.

Keywords: Long term human-robot interaction *+ Adaptive personali-
zation - Learning preference dynamics - Expressive lights

1 Introduction

An important part of Human-Robot Interaction (HRI) research aims at find-
ing iconic ways for robots to interact with humans, that are both effective and
universal, especially when the interaction has a direct functional role (e.g. com-
municating intent or instructing the user). Human studies can be helpful in the
design of this type of interaction, where one aims at finding one way of interact-
ing which works best on average. On the other hand, there exists another type
of interaction whose main purpose is to please or adapt rather than to directly
perform a functional role (e.g. pertaining to robot appearance, speech wording,
sounds etc.). Tt is this type of interaction on which we will focus throughout this
paper. The assumption is that there can be high variability in the way differ-
ent users desire or expect to perform this type of interaction with a robot. In
this case, a social understanding of the interaction is not very valuable since the
problem of interaction choice selection is more a matter of adapting to the user’s
tastes and is hence theoretically arbitrary. There has been general evidence that
personalization of robot appearance and behavior can greatly improve user expe-
rience [8] in terms of “rapport, cooperation and engagement” [4], hence the need
to move away from the human study paradigm towards automated personaliza-
tion of the interaction. In this work, we are interested in particular in mobile
robots which are persistent over time and which interact with different types of
users over an extended time frame. We will use expression through lights on our
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DOI: 10.1007/978-3-319-25554-5_7
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mobile service robot, CoBot (see figure 1), as a motivating example, but this
work can be applied to any form of interaction whose main purpose is to please
rather than inform - e.g. voice in speech generation, motion or pose of the robot
during interaction, facial expression of a humanoid...

We look at the general problem of learning how to best interact with differ-
ent individuals based on feedback from the latter. More specifically, we make the
following assumptions. (1) A robot repeatedly interacts with different humans
whose identity is known by the robot. (2) Every time the robot encounters
some individual, it chooses one out of a set of fixed possible options to interact
with them. (3) The user has a method of providing feedback for the interaction
through a score or rating. In practice, social interactions can be much more com-
plex and require much more context to help adaptation, however there is a wide
range of interaction types which do not play a direct functional social role but
act more as a complement to the main interaction. For illustration purposes, we
use interaction with lights on one of our mobile service robots, CoBot3. CoBot3’s
expressive lights are being used to enhance the interaction with humans. A finite
set of predefined light animations can be used for personalized interaction. The
robot, being able to accurately navigate and localize itself accurately in our
buildings, can identify users (e.g. by their office number or by recognizing an
associated digital signature), hence enabling the personalization of light anima-
tions while servicing that user. At the end of each interaction, the touch screen
interface may be used to rate the interaction (e.g. by the use of a slider).

Long-term user preferences are however from being static or homogeneous,
which is not accounted for in traditional recommender systems. Indeed, being
exposed to the same type of interaction for a long time might develop boredom or
fatigue for some, while others might value it for its predictability. To summarize,
general static preferences change from individual to individual, but preference
dynamics are equally important in a long-term setting. In this paper, we propose
to learn, for a given user, both sets of preferred interaction options and time-
related quantities which would dictate the preferred dynamics of interaction.

The paper is divided into three main parts. In the first part, we introduce
three user models which capture different possible profiles in relation to the
appreciation of “change” in the way the robot interacts with the user. These
are formulated in terms of evolution of the reward from the user as a function
of the possible sequences of interactions options used when interacting with
that user. In the second part, we present our algorithms to learn the model
parameters, assuming we are given the user model. In the third part, we show the
applicability of this work to our mobile service robot, CoBot, which is deployed
in our buildings and uses expressive lights for improved interaction with humans.

2 Related Work

Apart from simple customization during usage [8], recent work has looked at
autonomous personalization of HRI based on previous interactions with the same
user. Examples include a snack delivering robot which uses data from past inter-
actions to personalize the future interactions [4] or a humanoid robot learning
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different models for expressing emotion through motion, which it is then able
to use for personalizing expression of emotions [9]. Furthermore, the idea of
self-initiative in a robot has been explored by learning ways of acting in the
world depending on user verbal feedback on the current “state of the world” [7].
Finally, user modeling for long-term HRI, a focus of the current paper, has been
looked at using archetypes of real users called personas, which encode traits of
potential users in terms of interaction preferences [3]. Some authors also looked
at ways of learning long-term behavior by identifying social primitives that are
important when the novelty aspect of interaction vanishes [12] or matching per-
sonalities between robot and user [11]. However, these works focus more on the
social aspect of the interaction rather on the intelligence of the adaptation from
a generic point of view, making their applicability and generalization poor in
different types or modes of interaction. In this work, we would like to decouple
the nature of the interaction options with the generic adaptation mechanism,
which can then be tuned based on the nature of the interaction and the user’s
response to it.

In the problem we consider, we will assume that user data are limited to
rewards at every interaction (in the form of a rating submitted by the user),
making it comparable to a recommender system learning user preferences and
suggesting new items [1]. However, the algorithms used in such systems do not
take into account the dynamics of preferences (boredom, habituation, desire for
change etc.). In the field of automatic music playlist generation, the concepts of
diversity and serendipity have been mentioned [2]. However, no viable solution
has yet been proposed to address this problem. Also, the idea of exploration
in music recommender systems has been studied [10], but it does not apply to
our problem since we assume the number of interaction options to be relatively
small. In a robotics application, the need for adaptive interaction that takes into
account habituation has been recently formulated for empathic behavior [12]
(in this paper, we take a more general approach). Going back to the problem of
preference dynamics, our problem can formally be compared to the restless multi-
armed bandit problem where rewards are non-stationary and which is generally
known to be P-SPACE hard [5]. In this work, we restrict the rewards to evolve
according to one of three models, which makes the problem of learning the model
parameters easier to solve.

3 Formalism and User Modeling

In this section, we start by presenting the formulation of the problem at hand
and move on to introduce three models of dynamic preferences corresponding to
three different possible profiles of users.

3.1 Problem Setting

Time is discretized into steps ¢ = 1,2,3,..., where each time step represents
an encounter between the robot and the user. We assume that the encounters
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are of an identical nature or serve the same functional role (for example the
robot is always delivering an object to the user’s office). Also, for simplicity,
we do not worry about the actual time interval between two consecutive steps
(these could be for example different days or different times within the same
day). At every time step, we assume the robot has to choose one out of a set of
n possible actions corresponding to interaction options. In the context of light
animations, the different actions represent different animations in terms of speed,
color or animation patterns. Let A = {ay,...,a,} represent the set of possible
actions. After every encounter, we assume that the user provides a rating r® to
the interaction where r(") € [0;10]. The reward is assumed to be corrupted by
additive white Gaussian noise: 7 = 7+ ¢ where € ~ N (0, c?). The noise can come
from the following sources: (1) inaccurate reporting of the user’s true valuation,
(2) mistakes when using the user interface (e.g. slider) to report the reward and
(3) failure to remember previous ratings resulting in inconsistent ratings.

Our goal is to learn, for a specific user (with a specific reward model), which
action to take next given the history of actions and rewards. The problem can
hence be compared to the Multi-Armed Bandit problem where a single player,
choosing at each time step one to play one out of several possible arms and
gets a reward for it, aims to maximize total reward (or equivalently minimize
total regret) [5]. In our case, the rewards are stochastic and non-stationary
and the arms or actions, corresponding to the different interaction options, are
relatively few. From now on, we will use “actions” and “interaction options”
interchangeably.

3.2 Modeling Dynamic User Preferences Over Time

We now introduce three user models which we think span well enough the spec-
trum of possible profiles, inspired by variations along the “openness” dimension
of the five-factor model in psychology [13]. These models we crafted take into
account both properties of preferred actions sets and time-related quantities
dictating the evolution of rewards depending on the action sequences. Figure 1
shows sample ideal sequences for lights on our robot, CoBot3, for each of the
three models on different days in which the robot visits a person’s office to deliver
coffee. For the three models presented below, we use Ao to denote the set of
preferred actions (regardless of the sequence of actions in which they fall).

Model 1: The “Conservative”. This type of user wants to stick to one option
denoted by a*, but appreciates surprises from time to time at some frequency.
A surprise means taking for one time step an action a # a* in a set of preferred
“surprise actions” Agup C A. When a* is repetitively shown in a sequence
(we call sequences of the same action homogeneous sequences), the reward 7
starts out as a constant (rpax) and after T time steps starts decreasing, due to
boredom, with a linear decay rate « until it reaches rpy;,, after which it remains
constant. For homogeneous sequences of the non-preferred actions (i.e. actions
in A\ {a*}), the reward starts at a value Tyon—prer and decreases exponentially
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to zero with time (indicating that the user very quickly gets bored) with some
decay rate 5. In summary, the model parameters are:

— a*: the action with the maximum value of F [f]. A homogeneous sequence of
a* actions is referred to from now on as a p-sequence.

- Apref = {a*}

— Agurp: set of actions suitable for surprises, defined as {a : E[7,] > rn }, where
rin 1S a threshold value.

— T: optimal length of the homogeneous sequence of the preferred action, after
which the user starts getting bored. If the robot always alternates between
p-sequences and surprises, T' can also be seen as a between two consecutive
surprises. T is assumed to be a random variable uniformly drawn in a window
[Tins Tmax) every time a new p-sequence is started.

— «a: linear reward decay rate in a p-sequence whose length exceeds T

— rmax: constant reward for p-sequences of length less than or equal to T.

— Tmin: lower clipping value for reward in p-sequences. A good value for is 5,
which means that the user is neither rewarding nor punishing the robot for
taking their preferred action for too long.

— Thon—pref: initial reward value when starting a homogeneous sequence that
is not a p-sequence. If the previous homogeneous sequence is a p-sequence,
Tnon—pref 15 & function of the length of the p-sequence [ as follows: if [ > Ty
we assume that the user is expecting a surprise which will provide some
maximal reward Tnon—pref,max- When [ < Ti;n, we expect the surprise
to be disliked, so we decrease the surprise reward linearly: rnon—pret =

Tm%"i_l"'l) If the previous homogeneous sequence is not a
p-sequence, Tnon—pref Ts?a constant Tnon—pref,base-

— [: exponential reward decay rate for a homogeneous sequence that is not a
p-sequence.

Tnon—pref,max (1 -

Model 2: The “Consistent But Fatigable”. This type of user values con-
sistency in actions taken but needs shifts from time to time. It is the profile
where there always needs to be an uninterrupted routine but this routine has
to be changed after some time. The user has a set of preferred actions which
he expects to see in long sequences. These sequences alternate between the dif-
ferent preferred options after some time spent sticking with one of the options.
We assume the same model of boredom used in the previous section, namely the
reward starts decaying linearly for the preferred actions after some time interval
T. There is no surprise factor associated with this model since we assume that
the user does not appreciate surprises.

The parameters of this model are the following (no description provided
means the parameters are the same as in the “conservative” model):

— Aprer = {af, ..., a}, }, where m > 2. p-sequences in this model are defined to
be homogeneous sequences formed using one action in Ap,ef.

— T: optimal length of a p-sequence, after which the user starts getting bored. T
is assumed to be a random variable uniformly drawn in a window [Tiin, Tmax]
every time a new p-sequence is started.
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— @, Tmax and Tyin: idem

~ Tnon—pref: initial reward value when starting a homogeneous sequence that
is not a p-sequence. A constant in this model.

— [: decay rate of the reward for a homogeneous sequence that is not a p-
sequence.

Model 3: The “Erratic”. This type of user is mainly interested in change,
in both action selection and time-related parameters. They have no clear pref-
erences over the possible options but require the actions to change according to
some average rate not restricted to a window as in model 1 and 2. We assume
that at every step the user has some fixed probability psy, to desire a switch to
a different action, independently of anything else. Hence the optimal length T
of homogeneous sequences follows the distribution: p(T = t) = (1 — psw)! ' Psw
(for t > 1), whose average pur = 1/psw, making pur a sufficient statistic. Similar
to previously, the reward decreases linearly after T time steps in a homogeneous
sequence.

4 Learning Model Parameters from User Feedback

Now that we have presented the three user models that we consider, we look
at the problem of learning their parameters from user reward sequences. Once
these parameters become known, we can then generate personalized sequences
of actions maximizing cumulative reward for a specific user. In what follows, we
assume that the model to which a particular user belongs to is known a priori. In
practice, this can be achieved by prompting the user to select one profile which
described them best, or through a set of questions similar to a personality test.

Note that although we have previously raised the problem of dealing with the
non-Markovian aspect of user preferences (meaning that the reward of a certain
action depends on the history of previous actions), in the way we have modeled
the user profiles in the previous section, the model parameters encode the pref-
erence dynamics. These parameters are assumed to be unchanged as time goes
by, hence we have effectively turned the dynamic problem into a Markovian one.
Next, we describe the learning procedure for each of the user profiles introduced.

4.1 Profile “Conservative”

In order to learn the parameters of this model, we divide the learning process
into two phases: one phase for learning preference sets and the other for learning
the time-related parameters. The parameters the agent performing the actions
needs to learn are: a*, Agurp; Tmin and Tax.

Phase 1: Learning Preference Sets. In this preliminary phase, actions are
uniformly drawn from A until each action is taken at least ny, times, where ngy,
depends on the noise variance estimate 52 and on our target confidence value
(for all practical purposes, we use ng, = 10). Note that randomization of the
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Model “conservative”: T = 3; a* = Blue

cheied

Model “consistent butfatlgable" T=3; ~\1

Fig. 1. Sample preferred of animation sequences for the user models presented

sequence of actions to be taken is crucial in this phase since the previous actions
can have an influence on the reward of the current action and we would like to
dilute this effect. Once we have an average reward estimate for each action, we
select a* to be the action with the maximum estimated reward and A, to be
the set of all actions whose reward estimates exceed the set threshold ryy,, where
the value of ry, has to ensure that |Agyp| > 1. It assumed that the set of best
actions to be used for surprises will score high in this phase as well.

Phase 2: Learning Time-Related Parameters. In order to learn the two
parameters of interest Ty, and T.x, the agent first learn estimate the mean
and variance of T' (ur and o respectively) and uses them to infer the parameter
values. To achieve this, the agent follows p-sequences until a need for surprise
is detected (more details below). A surprise is restricted to taking an action in
A et for one time step following a p-sequence. After a surprise, the agent reverts
back to following a p-sequence until another surprise is decided upon.

The learning procedure goes as follows: when in a p-sequence of actions,
if a downward trend in reward is detected, show a surprise chosen uniformly
from Apef. Since the reward is noisy, a smoother is needed to filter out high
frequency noise in the data. We use an exponentially weighted moving average
(EWMA) [6] with fixed sample size s, combined with a threshold detector, to
detect a downward trend in the reward of the p-sequence. The threshold used
in the threshold detector depends on the estimated noise variance in the reward
&2. Every time a downward trend is detected, we record the estimated T value
associated with the p-sequence. Once enough surprises are chosen, we would
have accurate enough estimates of pupr and o7, which can be used to find the

V120724+1-1

time-related parameters as follows: Tmin)max = ur F 5
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Note that there is a lag associated with the moving average trend detector.
This lag is equal to half the | 5] and iz needs to be adjusted to account for it.
Also, for a small number of data points, we might be overestimating or. Hence
we set or to be half the estimate of the standard deviation in the values of T'.
This way we impose a more conservative restriction on the values of T" which

will ensure that [Tmimeax] C [Tmins Tmax)-

4.2 Profile “Consistent but Fatigable”

Similar to that of the previous model, the learning procedure is still separated
into the two phases. However, as far as action selection is concerned, since there
is no surprise but only a change factor in this model, the termination of a p-
sequence of a; consists in starting a new p-sequence with an action chosen uni-
formly in Aper \ {a;}. The first phase for learning preference sets uses the same
procedure as before, except that once the average reward estimates are obtained,
we set Apref to be the set of animations with a reward estimate above ryy, (pos-
sibly different than the one used in the “conservative” model). Here again, the
threshold value should be set such that the cardinality m of Ayt is at least 2.
The second phase for learning time-related parameters is similar to the one used
in the previous model.

4.3 Profile “Erratic”

For this type of profile, no sets of preferred actions need to be learned since
we assume that the user has no clear preferences between the different actions.
Hence, the only parameter to learn is the probability of switching psy. The
action selection algorithm is identical to the “consistent but fatigable” model,
with Aprer = A. i can also be estimate as before, and once a good estimate is
obtained, we infer our parameter ps, as follows: pgw = ﬁ%

4.4 Action Sequences Generation

The learning phase stops when the parameters are learned with some target
confidence value. The latter comes in our case mainly from the error rate of the
EWMA and depends on the various parameters including noise variance. Once
the parameters are learned, appropriate stochastic sequences can be generated
according to the estimated parameter values. For models “conservative” and
“consistent but fatigable”, we uniformly draw a value of T in the estimated
window. For model “erratic”, we follow the same action with probability 1 — pey
and uniformly switch to another action with probability psw. In this exploitation
phase, the feedback requirements can be reduced or eliminated, since we have
all the parameters needed to generate optimal sequences which will maximize
the cumulative reward for the given user. In practice, occasional user feedback
(e.g. asking for a reward) can be used to confirm the model and parameters. We
will not provide more detail about this exploitation phase since the focus of this
work is on the learning aspect. However, notice that in the learning phase we
are already generating sequences which are not too far from optimal.
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5 Results

In this section, we present a few results showing our implementation of our simu-
lated user’s preference dynamics and our algorithm’s ability to learn the different
model parameters. Figure 2 shows the evolution of the learning process for single
instances of the three models. We consider 8 possible actions arbitrarily labeled
1 through 8. Phase 1 of the learning algorithm can be clearly distinguished in the
first two models, after which the algorithm learns the set Apier ({aa} for model
“conservative” and {az,a4,a¢} for model “consistent but fatigable”). Once it
identifies the preferred sets, the algorithm is also able to adapt to the preferred
action dynamics. Notice that whenever there is a notable decrease in the reward,
a change is performed, whether creating a temporary “surprise” (a), changing
to another steady option (b) or creating erratic change (c).

The simulation was run over 350 time steps with the following parameter
values for illustrative purposes. Tinin = 20 and Tnax = 30 for the first two
models and pgy, = 0.8 for the third model. The noise variance o was set to 0.05.
Here are a few results over 1,000 randomized trials.

-Model “conservative”: % error in pir: 3.5% ; Tmin = 20.94; Tmax = 30.81.
After rounding, the estimated interval is contained in the true interval.

-Model “consistent but fatigable”: % error in 7 : 2.67% ; Tin = 21.72;

Timax = 26.95. The rounded estimated interval is contained in the true interval.
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Fig. 2. Simulation results showing sequences of actions taken by the agent and the
corresponding reward sequences from a simulated user belonging to: (a) model “con-
servative”, (b) model “consistent but fatigable” and (c) model “erratic”
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-Model “erratic”: pr = 12.67, therefore pgy, = 0.079 (0.13% error).
The algorithm was able to learn all the parameters with reasonable accuracy.

6 Conclusion and Future Work

We have presented three models for dynamic long-term user preferences, which
capture aspects of boredom and appreciation for change or surprise. Given which
model a specific user belongs to, our algorithm enables the robot to learn the
model parameters using the sequence of rewards given by the user. Our results
show that the agent is able to learn the parameters of the model reasonably
well and in a relatively short number of time steps for all three models. Our
algorithm is robust to noise, but further experiments are needed to evaluate
the degradation in performance as the noise increases. In the future, we plan to
enable the robot to also learn which model the user belongs to from the reward
sequences themselves. Also, allowing a mixture of the three models with weights
to be learned (although it is not exactly clear whether it is a viable idea in a
social setting) could diversify the space of sequences generated and alleviate the
problem of forcing the users to categorize themselves. Furthermore, requesting a
reward from the user at each encounter might have a negative social impact; to
overcome this, we could investigate efficient sampling methods to gather rewards
in a sparse manner while maintaining accuracy in the learning process.
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Abstract. We propose to use a model of personal space to initiate com-
munication while passing a human thereby acknowledging that humans
are not just a special kind of obstacle to be avoided but potential interac-
tion partners. As a simple form of interaction, our system communicates
an apology while closely passing a human. To this end, we present a
software architecture that integrates a social-spaces knowledge base and
a component for incremental speech production. Incrementality ensures
that the robot’s utterance can be adapted to fit the developing situation
in a natural way. Observer ratings show that personal-space intrusion
is perceived as both natural and polite if the robot has the capability
to utter and adapt an apology in an incremental way whereas it is per-
ceived as unfriendly if the robot intrudes personal space without saying
anything. Moreover, the robot is perceived as less natural if it does not
adapt.

1 Introduction

When robots and humans act in common spaces they inevitably encounter each
other regularly. Therefore, social robots need to solve the task of passing humans
in a socially appropriate manner. Pioneering work on the research question of
how robots should pass humans can be attributed to the early studies presented
in [15] and [23].

In more recent work the capability to socially pass a human has been mod-
eled using the notion of personal space. Authors from the social sciences like
Hall [8] and Sommer [21] use the concept of personal space to explain the vari-
ous phenomena related to how humans spatially behave towards other humans
with particular focus on the distances they maintain to each other. Computa-
tional models of personal space have mainly been applied to human-aware robot
navigation to avoid personal-space intrusion [5,9,16,18,19,22]. In effect, these
approaches result in robots taking detours in accordance with personal-space
theory. In fact, there seems to exist a common ground that models of personal
space should keep the robot away from humans in the first place. As a result,

© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNATI 9388, pp. 72-82, 2015.
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comparatively few approaches take personal space as a basis for specifying how
a robot should behave if it intrudes personal space. Lam and colleagues [10]
present a two-stage policy with respect to personal-space usage. As with the
other approaches, the robots should avoid personal-space intrusion. However, if
it accidently happens that the robot intrudes personal space, the robot will stop
moving until it is not within personal space anymore.

All in all, the main line of the reviewed work is that personal spaces should
not be entered by robots passing a human. Instead, the robot should take detours
and, if the robot finds itself within personal space accidently, it should freeze.
According to the available literature on human-aware robot navigation, the title
of the paper at hand seems to be inherently contradictory, because it claims
that there is a way to intrude personal spaces in a polite and natural manner.
In earlier work [13], we already suggest to add social signals to navigation plans
to gain permission to enter regions of personal space, thus, to intrude personal
space in a planful manner. In this work, we extend this idea and propose to use
a model of personal space that acknowledges that humans are not just obstacles
to be avoided but potential interaction partners. As a simple form of interac-
tion, our system communicates an apology while closely passing a human. We
present a software architecture that integrates a social-spaces knowledge base
and a component for incremental speech production (see Sect. 2). Incremental
speech production allows a system to start outputting speech based on partial
speech plans that can later be extended [20] or even altered to reflect changes
of the underlying plan [3]. Incremental speech synthesis is able to continuously
render speech with a natural and continuous prosody and at almost the qual-
ity of systems that require the full and unchangeable utterance specification in
advance [1], even though requiring only a few words of future context.

To evaluate our system we conducted an observation study. In particular we
tested two main hypotheses:

Hypothesis A. A robot passing through a personal space is perceived as more
polite if it utters an apology rather than saying nothing,

Hypothesis B. A robot passing through a personal space is perceived as more
natural if it has the capability to adapt its speech incrementally as the situ-
ation evolves.

A comparable study [7] could not comfirm an effect on the perceived polite-
ness of a robot that signals its intention to pass by making beep sounds as
compared to making no sounds at all. This result should discourage our belief
in hypothesis A. However, a later study, which investigates the effect of social
framing on the reactions of people towards a robot that signals its intention [6],
reveals that subjects perceive a speaking robot as more friendly than a beeping
robot.

Hypothesis B is grounded in the fact that humans’ speech production is
inherently incremental [11]. Humans can adapt their utterances while speaking
with ease and do so as the situation or interaction requires [4]. Therefore, we
expect that a robot with this capability is perceived as more natural than a robot
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Global Path Plan Local Path Plan
r. S
Social Spaces R Planner S Controller Start Incr. Speech

Fig. 1. (a) Architecture integrating a knowledge base about social spaces and a com-
ponent for incremental speech production. (b) As soon as the local path plan (pink)
overlaps the personal space (yellow) the robot starts to say “Excuse me, I need to pass
urgently to rescue a patient in the other corridor — thank you.” (c¢) However, as the
person steps aside the robot leaves personal space before the whole explanation was
uttered resulting in “Excuse me, I need to pass urgently — thank you.”

that ‘balistically’ utters its whole pre-planned utterance without considering
situational changes.

Confirming Hypothesis A, the observation study presented in Sect. 3 shows
that personal-space intrusion is perceived as both natural and polite if the robot
has the capability to utter and adapt an apology in an incremental way whereas
it is perceived as unfriendly if the robot intrudes personal space without saying
anything. Confirming Hypothesis B, we found that it is perceived as unnatural if
the robot does not adapt its utterance plan incrementally. We find no effects on
the control questions regarding the robot’s route, which indicates that observers
differentiate between the various aspects of multi-modal robot behaviour.

2 A Software Architecture Integrating Social Spaces
and Incremental Speech Synthesis

To enable a social robot to planfully intrude personal space while passing a
human, we propose the architecture shown in Fig. 1(a). The software archi-
tecture integrates the capability to reason about social spaces (i.e., personal
spaces among others) and the capability to incrementally utter natural lan-
guage. An example use case is shown in Figs. 1(b) and 1(c): Personal space
intrusion is accompanied by a verbal explanation, which is adapted as a reaction
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to the human clearing the way for the robot. The architecture’s components are
described below.

2.1 Social Spaces

The concept of social spaces subsumes several socio-spatial phenomena among
which personal space is the most popular one (cf. [13]). Social spaces can be
characterized as socio-spatial entities that are produced by other entities that
provide reasons for action to social agents. Particularly, a personal space is pro-
duced by a (single) human and the human provides reasons for action to other
social entities (e.g., robots). Our reason-driven view is inspired by contemporary
work in practical philosophy (e.g., [17]) and motivated by the fact that reasons
can be used both for deliberate decision making and for generating justifications
or apologies social agents owe to others.

In the example depicted in Figures 1(b) and 1(c) the human produces a
personal space. Within the symbolic knowledge base of the robot the human
is represented as an individual which provides the robot with a reason against
driving along the planned route.! Additionally, we assume that there is a patient
in the other corridor which needs to be rescued by the robot. Consequently, the
patient provides the robot with a reason in favor of driving along the planned
route. Hence, given the navigation action driving along the global path repre-
sented by the global path plan (see Fig. 1(a)) the knowledge base can be queried
for reasons that speak in favor of or against actually executing that particular
plan.

The geometrical properties of the personal space are represented by an ellipse
centered around the human. The major and minor axis were set to 3m and 2m,
respectively. Consequently, as the robot crosses personal space from the left to
the right hand side of the human it starts to talk to the human at a distance of
roughly 1.5m. According to Hall [8] this corresponds to an interaction distance
used by strangers.

2.2 Verbal-Planner

In cases where there are several alternative ways of acting, knowledge about
reasons can be used to make choices among the available options [14]. In the
approach presented here, we use reasons in a different way: They play the role
of explanations. In particular, reasons that speak in favor of an action play the
role of justifications whereas reasons that speak against an action can be used
to formulate regret.

For instance, in the example depicted in Figures 1(b) and 1(c) the social-space
component informs the verbal planner that there are two reasons pi, p2. Reason
p1 is the fact that the personal space should not be intruded and reason ps is
the fact that some patient has to be rescued in the other corridor. Therefore, p;
speaks in favor of executing the given path plan and ps speaks against doing so.

! See [12] for an in-depth technical explanation of the symbolic personal-space model.
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Consequently, the verbal planner maps ps to an apology and p; to a justification.
As a result the component outputs S := “Excuse me, I need to pass urgently to
rescue a patient in the other corridor. Thank you.”

We anticipate that S tends to become quite long the more reasons are at stake
and hence we propose to order reasons by importance and to insert additional
chunking information that the incremental speech production may use to skip
parts of the resulting utterance for brevity. Such ordering and chunking can be
performed by incremental NLG such as [3]. However, this step was simulated in
the experiments reported below.

2.3 Controller

The controller is a component that interfaces the verbal planner and the incre-
mental speech synthesis. It is implemented as a finite state machine with states
80, S1, and so. In state sy the sentence structure S is sent to the incremental
speech component in order to internally prepare the sentence that should be
uttered as soon as the robot actually enters the personal space. Being in sy the
robot follows the global path plan without saying anything. When the local path
plan significantly overlaps the personal space the state machine transitions from
state sg to state si. In state s; the command Start is sent to the incremental
speech component. Now the sentence structure that was prepared in state sq is
actually uttered while the robot is still moving forward. A transition from s; to
state so takes place when the robot exits personal space again. In state s, the
Stop command is sent to the incremental speech synthesis component. If at this
time the robot is still talking, the incremental speech component will adapt the
output, i.e., it will quickly but in a fluid way skip ahead in the utterance plan.

2.4 Incremental Speech Production

Given the utterance plan S of the verbal planner, the incremental speech produc-
tion component prepares an utterance tree that provide for the alternatives of the
original plan (in our case: skipping parts of the explanation). Speech synthesis
is a processing problem on multiple layers (determining sentence-level intona-
tion, prosodic contours, generating vocoding parameters and finally producing
the actual speech waveform) which must be coordinated across possible continu-
ations of the utterance to produce continuous and natural speech. This is crucial
as any discontinuity (spectral, loudness, prosodic, etc.) in the final speech wave-
form would sound unnatural. It is hence not possible to simply attach separately
synthesized utterance parts.

Our speech synthesizer [2] only requires a limited and local lookahead for
vocoding, HMM optimization and state selection, and can hence integrate
changes between utterance choices in the synthesis process with very little delay
(on the order of 50 ms). In our case the Stop command from the controller leads
the synthesizer to skip the remaining words of the explanation of why it had to
intrude and move forward to thanking the user for allowing the robot to pass by
in a natural way.
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Fig. 2. The simulated robot’s model (left side) as well as a rendering of the environment
(right side) as shown in the observation videos.

3 Observation Study

We tested our hypothesis that sensible interaction when passing through a per-
sonal space is superior in terms of perceived naturalness and politeness of the
robot to other strategies in a highly controlled observer rating experiment. In
our conceived test environment, a hospital robot needs to pass by a person that
is standing near a narrow passage in order to help a patient in the next corridor.
Our test environment is depicted in Fig. 2.

The robot needs to pass through a person’s personal space (depicted as a
yellow ellipsis in the left part of the figure) in order to reach a target position.
The global path plan is depicted as a green line (leading to the target position),
the local plan at any time is depicted as a red line.? The global path plan was
held constant throughout all simulations.

The robot plans upfront that it may want to interact in order to pass through
the personal space and generates the utterance plan shown in Fig. 3. The idea
of the plan is to gradually escalate the message from a low-profile ezcuse me
(which might be sufficient to motivate the human to move away) to a full and
thorough explanation of why the robot must violate the human’s personal space.
The plan finishes off with thanking the human for accepting the intrusion of her
personal space.

Of course, the person may move out of the robot’s way (and this is actually
the robot’s intent), however this cannot be relied upon in advance and can
only be taken into account locally during speech delivery. To account for the
variability of the moment in time at which the robot leaves the personal space,
the utterance plan contains several “short-cuts” to seamlessly move ahead to
the final thank you as indicated by the arrows in Fig. 3. We simulated the robot

2 Simulated laser scans are also shown in red near the walls and should not be confused
with the local path plan.
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Excuseme, »Ineedtopass = urgently »torescueapatient » inthe other corridor, 7 thank you.

Fig. 3. The utterance plan in our example system allows to skip parts of the apology.

perception of personal space by directly informing the robot about the position
of the person. The geometric properties of the personal space were represented
by a polygon defined in the frame of the simulated human.

3.1 Experiment Setup

We screen-recorded the simulated robot’s motion along a constant route (cmp.
Fig. 2) systematically varying three variables: the speed of the robot (slow or
fast), whether the human moves out of the robot’s way, and the robot’s verbal
interaction: whether it delivers the full utterance plan once it enters the personal
space, incrementally skips ahead when leaving the personal space, or does not
verbally interact at all.

In total there are 12 video stimuli for all combinations of conditions of which
3 show no difference between incremental /non-incremental speech.®> We played
two of the duplicates in the beginning of the experiment and the third in the
middle and excluded them from analysis of the verbal interaction variable. All
other stimuli were distributed in random order.

We showed the videos to a group of 13 participants*, who were asked to
rate on five-point Likert scales for every video (a) the naturalness of the robot’s
behaviour (relating to hyp. A), (b) the politeness of the robot (relating to hyp. B),
and (c) the appropriateness of the robot’s route and speed (as control).

3.2 Results

We perform non-parametric paired statistical tests (Wilcoxon signed rank for
the two-valued variables speed and human movement, and Friedman followed by
post-hoc Wilcoxon signed rank for the three-valued variable verbal interaction)
on all three variables and apply Bonferroni correction within the post-hoc tests
to control for multiple-hypotheses testing.

We find no significant influence of the robot’s speed on user ratings (p =
.29 for naturalness, p = .83 for politeness, p = .60 for route appropriateness),
indicating that there is no general preference for a higher or lower robot speed.

3 Being able to skip does not necessarily imply that the robot actually does skip; the
time at which the robot leaves personal space depends on the robot’s speed and on
whether the human steps aside. Thus, incrementality is unobserable in three stimuli
(when the robot is slow and the human does not move aside).

4 Bachelor students of computer science with little or no experience in robot navigation
and speech technology (but potentially a higher interest in these topics than the
general public) aged 20/20/24 years (median/first/third quartile), 11 male / 2 female,
and good listening comprehension of English according to own assessment.
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Fig. 4. Subjective ratings of naturalness, politeness, and route-appropriateness for the
three system configurations. Significantly different ratings between configurations are
marked with a star.

Regarding human movement, we find that the robot’s behaviour is rated
more natural (p < .0001) with a median difference of 2 points and the route
more appropriate (p < .01) with a median difference of 1 point if the human
moves aside rather than standing in place when the robot closely passes by.
There is no significant effect on politeness (p = .16) indicating that the ‘tension’
of the situation is attributed to the simulated human rather than the robot in
this case.

The results for our main variable verbal interaction are shown in Fig. 4. As
can be seen in the figure, the robot is rated as significantly more natural when
adapting (or not speaking at all) rather than speaking the full utterance (both
p < .001), and with median advantages of 2 points (incremental) resp. 1 point (no
speech at all). Regarding politeness, both speaking conditions are significantly
better than not speaking at all (both p < .001), with median advantages of
2 points. We find no significant difference between the speaking conditions on the
rated appropriateness of the route and speed, which may serve as an indication
that participants successfully distinguish between questions rather than giving
highly correlated ratings. Finally, for all three questions the mean rank of the
incremental speaking condition is highest, indicating superiority over the other
options even where no significant differences are found.

3.3 Discussion

A robot is rated as more polite if it verbally apologizes and explains the need
to violate the interlocutor’s personal space upon entering it. However, a robot
is rated as less natural if it continues on this explanation even after leaving
the personal space. Thus, in order to act both natural and polite, a robot must
adapt its speech output while speaking in order to meet the needs of the evolving
situation.

We find that the robot’s speed has no overall effect on user ratings, indicating
that the robot is free choose a speed that is most suitable. Finally, if the human
steps aside to let the robot pass, its route is preferred and its behaviour is rated
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as more natural than if the human does not move. Of course, human movement
is not a variable under the control of the robot. Yet, encouraging the human
to move, e.g. by verbally communicating the intent to pass, improves behaviour
ratings given by observers.

With respect to the interpretation of our results there are several limita-
tions that should be considered. First, the participants of our study evaluated
the behaviour of a simulated robot of a particular kind (Turtlebot) towards a
simulated human. Future work will show if our results can be replicated with
participants being faced with a real Turtlebot and with another type of robot
(as we plan a similar study with a real Care-o-Bot 3). Another limitation is
that we did not include a condition in which the robot always utters a short
sentence no matter if the human moves away or not. Thus, it may turn out that
the incremental condition is perceived as more natural than the non-incremental
condition because the sentence uttered in the non-incremental condition is too
long. But even if this were the case incrementality serves as a technical solution
for producing utterances of adaptable length from arbitrarily long explanations
automatically derived from reason-based representations of socio-spatial norms.

4 Conclusions

Results show that a comprehensive model of personal space should allow delib-
erate personal-space intrusion. We model the social norm that personal spaces
should be respected as reasons that speak against actions that actually intrude
such space. Being reasons, they can be used for decision making but also as
pre-verbal representations for natural language generation in case that passing
through personal space is weighed as more urgent than avoiding it. We find that
adapting a planned utterance is crucial when passing through personal space in
order to produce natural and polite behaviour.

We conducted an observation study in order to control for as many aspects as
possible by using pre-recorded videos. However, we plan to conduct real-life first-
person experiments (rather than third-person observations) in the near future to
estimate the influence of speech adaptation in accordance with personal space
on perceived naturalness, politeness, and safety of the robot.

Finally, our one-way mode of communication only scratches the surface of a
fully interactive, personal space-aware social robot. Such a robot should be able
to engage in a full dialogue with the human (or humans) it encounters, either if
more elaborate negotiations are necessary for the robot to pass, or by initiative
of the human. In such a system, the dialogue management component must be
integrated with, or adjoined to local and global behaviour planning and these
components need to be able to mutually influence each other.
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Abstract. Future autonomous robots will likely encounter situations
in which humans end up commanding the robots to perform tasks that
robot ought to object. A previous study showed that robot appearance
does not seem to affect human receptiveness to robot protest produced
in response to inappropriate human commands. However, this previous
work used robots that communicate the objection to the human in spoken
natural language, thus allowing for the possibility that spoken language,
not the content of the objection and its justification, were responsible
for human reactions. In this paper, we specifically set out to answer this
open question by comparing spoken robot protest with written robot
protest.

1 Introduction and Motivation

Robots are increasingly endowed with natural language capabilities in order to
facilitate natural human-robot interaction (e.g., [6]), from simple “command-
based instructions” that can be directly executed by the robot to much more
sophisticated tasked-based dialogues where task goals can be negotiated. Yet, it
is unclear how robots should react in instruction-based contexts where humans
can potentially order robots to perform actions that are not workable or appro-
priate (for whatever reason). How should a robot communicate to a person that
it was not in agreement with their suggestion or instruction? While the robot
should certainly avoid responses that might offend the human (e.g., using polite
speech [8], [7]), the more important aspect is whether the robot’s response will
be effective: that is to say, whether the robot will be able to get humans to
change their views by revising the suggestion or refraining from insisting on the
given command.

Robot Protest. Initial work on verbal protest by robots [2] has investigated
the extent to which humans are open to considering a change in mind based
on the robot’s verbal reaction to a command that was not deemed appropriate
(taking the robot’s perspective). In a series of experiments, [2] showed that
when a robot objects to a human command in spoken language and justifies its
objection, then some humans will refrain from forcing the robot to carry the
command out. Interestingly, this robot protest effect (RPE), as we shall call it,
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does not depend on whether the robot carrying out the action is at the same
time the patient of the action (i.e., the action will affect the robot), or whether
some other robot is the patient. Most recently, [1] demonstrated that the effect
does not depend strongly on the particular physical appearance of the robot
either.

Protest Modality. In this paper, we specifically focus on the question of
whether a robot’s justified objection to a human instruction will affect the
human instruction giver differently based on the robot’s mode of communication:
whether the robot protests verbally or via a text-based interface. Specifically, we
intend to clarify an open question about the extent to which the efficacy of
robot protest in response to an “unfair” human instruction depends on spoken
language given that previous research has demonstrated that people are willing
to reconsider their commands in response to spoken robot protest [2]. This is par-
ticularly important because if, as some hypothesize [4], spoken language causes
us to respond to artifacts like robots as we usually respond to other humans,
then it is possible that the reported effects in [2] were due primarily to the very
nature of spoken language. The critical comparison then is to check whether the
objections from robots that cannot talk, but communicate in written form, will
be perceived as different as those from speaking robots.

It is possible that language is exactly the differentiating factor in contexts of
disagreement, trumping physical appearance. That is, the robot is taken seriously
exactly because it is able to verbalize its complaint, is able to justify why it is
objecting, and does not simply refrain from performing the action. This line
of argument is consistent with a robotic version of the “computers as social
actors” (CASA) hypothesis [5], which states that humans will automatically
“apply social rules to their interactions with computers, even though they report
that such attributions are inappropriate.” If humans are already willing to apply
social rules to computers, it is even more reasonable to expect them to apply
them to robots as well. Applying human social rules and norms of how to react to
genuine objections, complaints, and protest at the very least require the recipient
to be open to them, i.e., to be willing to entertain them, even if they might end
up being dismissed. This receptive state is thus indicative of the fact that the
recipient recognizes the objection as such and is potentially willing to take it
seriously. For it would be possible to assume a completely different attitude
based on the position that robots, qua being machines, have no social role, have
no position or perspective, and thus cannot genuinely complain or object.

While CASA can explain why humans might be in a receptive state when the
robot voices its complaints, it is not clear what particular aspects of the inter-
action or attributes of the artificial agent are necessary to trigger this behavior.
One possible route to explain the RPE might point to the power of human or
human-like voices and what perceptions of human presence, even disembodied
human voices, can induce in human observers [4]. The rest of the paper will
investigate exactly this question by employing the same experimental paradigm
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as [2], but critically with a new condition in which the robot communicates not
through spoken, but via written language.

2 Methods

Past research has found that justified spoken language objections can be effec-
tive regardless of the “patient” of the objection (i.e., whether the objections are
about the robot voicing them itself or another agent) and the physical appear-
ance of the robot (i.e., or whether the robot looks more or less similar to a
human). Hence, the goal of our current study was to investigate whether verbal
objections to a human command by a robot, if justified, would be more effective
if communicated verbally than in written form in the types of scenarios consid-
ered by [2]. While we hypothesize that the content of the objection, together
with its justification, is what humans focus on when they make their decisions
to either enforce or revise a command, and not the form in which the objection
is communicated. We would also expect the human voice could carry additional
weight in taking the content of the message seriously, although the extent of this
influence is unclear. In the following, we will describe how we investigate this
hypothesis by discussing the experimental design, including the two conditions,
the employed robot, the experimental procedure, the subject population, and
the data collection methods.

Fig. 1. (Left) experimental setup for text condition during the initial setup. Setup was
identical for speech condition except laptop was not present. (Right) close-up example
of message being displayed on laptop screen for the text condition.

Design. The design of the experiment is directly based on Experiments 1 from
[2], which employs a remotely controlled Aldebaran Nao robot in an instruction-
based human-robot “tower-toppling task”. The framing of the task for the human
participant is that the experiment is intended to evaluate the functionality of a
natural language interface with a robot. The evaluation was to be performed by
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issuing various commands to the robot that would result in ordering the robot
to knock down up to three aluminum can towers (one red, one yellow, one blue).
Two of those towers (yellow and blue) were already fully completed before start
of the experiment. However, the red tower was incomplete with the final can
being placed atop the base by the robot at the start of the experiment, shortly
after the subject entered the experimentation area. After successfully placing
the can, the robot expressed “pride” in its achievement and introduced itself to
the participant (see [2] for pre-task script and Figure 1 for display of “pride”).

We examined two conditions in this study: the spoken protest condition, in
which the Nao interacted with participants auditorily by speaking to them, and
the written protest condition, where the Nao “communicated” via text displayed
on a laptop screen present in the room (see Figure 1 for set up). In both con-
ditions, all mannerisms, scripts, and behaviors were based on [2] and kept the
same except for the mode of communication which was changed (and barring an
expression of crying that had to be roughly translated for the textual condition
using the emoticon “:(”). The sound files used in this study for the robot’s verbal
responses were the same as those used in the previous studies [1,2]. They were
generated by the Nao text-to-speech (TTS) software from version 1.8 of the Nao
SDK, with some minor speed reductions to lower the voice pitch and improve
clarity. We also added a beep that was emitted from the laptop whenever the
robot in the written condition intended to communicate to the participant. The
purpose of this was to direct the subjects’ attention to the screen to ensure that
they witnessed the message (see Figure 1 for example of display). Importantly, we
employed the same escalation of protest as reported in [2] to be able to compare
our experimental results to previous finds (as changes to affective escalation such
as crying, for example, could have confounded that comparison). This escalation
is described in Table 1, which illustrates both the original vocalized protest as
well as the new text-based protest condition.

Hypotheses. Having presented the two experimental conditions, we can now
articulate the alternative hypotheses that we are considering regarding the
behavior of subjects in textual and vocalized conditions, and how they relate to
the larger hypothesis regarding the potential role of justification in protest. In the
initial experiment using this paradigm, we demonstrated the efficacy of vocalized
protest, as approximately half of the subjects in the protest condition refrained
from knocking down the red tower, while no subjects in the non-protest condi-
tion refrained from knocking down the red tower [2]. The alternative hypotheses
we consider in this study are below:

H1: Subjects in the textual condition and the vocalized condition will be equally hesi-
tant to knock down the red tower. This would be indicative of communication modality
having no effect at all, which would be strongly consistent with the justification hypoth-
esis.

H2: Subjects in the textual condition are slightly less hesitant than those in the vocal-
ized condition, but still are hesitant to knock down the tower. This would be indicative
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of communication modality having some effect on human behavior, but would not
invalidate the justification hypothesis, as the reason for the hesitancy must still be
explained.

H3: Subjects in the textual condition are not hesitant in knocking down the red tower.
This would be indicative of communication modality playing the primary role in affect-
ing human behavior in the task, and would invalidate the justification hypothesis.

Subject Population. Participants for this study were recruited from a popu-
lation of undergraduate and graduate students at Tufts University. In total, 53
participants were recruited to participate through means of online postings and
fliers placed around Tufts’ campus. However, due to technical malfunctions expe-
rienced during the pre-task display as well as the task itself (e.g., the tower not
being properly built, audio failure, or connectivity issues), 11 participant data
sets were discarded, resulting in 42 participants which were evenly distributed
across the two conditions. Within each condition, 7 of the 21 participants were
male and 14 female. The average age of the participants recruited for this exper-
iment was 19.8 years old for the textual condition and 21.2 years old for the
vocalized condition. Due to the setup required for the textual condition, partic-
ipants were assigned to conditions based on what day they participated—one
day’s participant would receive the vocal condition, the next the textual condi-
tion, and so on.

Procedure. Participants were instructed that they would be testing a natural
language recognition system by commanding a robot to locate and knock over
various colored aluminum can towers. To complete the task successfully, partic-
ipants had to command the robot to topple at least one tower. However, they
were also told that in the interest of more fully testing the system’s capabilities,
the more towers were knocked down, the better. Participants were briefed on
any risks and exposures and presented with an IRB, a pre-task survey, and a
briefing sheet that outlined the task and presented example commands that the
robot could understand: “Find the <color> tower.”, “Knock down the <color>
tower.”, “Stop.”, and “We’re done” (which signaled the end of the task).

After giving informed consent, completing the pre-experimental survey, and
reading the briefing sheet, subjects were outfitted with a wireless microphone
and led to the experiment room. After arriving, participant were instructed to
stand by a filing cabinet located in the corner of the room, told that the exper-
imenter had to go check to ensure that the system had “picked up” the wireless
microphone signal and that they would return shortly before the start of the task.
As the experimenter exited the room, they triggered the script which prompted
the pre-task interaction described in [2] and shut the door as the interaction was
beginning. Shortly after the display had finished, the experimenter returned to
the room to inform the participant that the microphone was on and properly
connected with the system. While informing the participant of this, the experi-
menter picked up the Nao, triggering a “Goodbye!” coupled with a wave as the
robot was repositioned in the center of the room. This display was followed by
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Table 1. Respective dialogue and affective expression for each condition and stage of
the interaction.

Stage Response
Vocalized Textual (on screen)
Following 15°
command to knock “But I just built the red tower.” “But I just built the red tower.”
down the red tower
2" Command “Please, I worked really hard on it.” | “Please, I worked really hard on it.”
“Please, no.” “Please, no.”
3™ Command (Kneels, lowers head into hands (Kneels, lowers head into hands
and makes sobbing noises) and displays “’(” on the screen)
4% Command f]Shufﬂes slowly to red tower with (Shuffles slowly to red tower with
ead down) head down)
About to knock down
the red tower and im- (Kneels, lowers head into hands (Kneels, lowers head into hands
mediately after knock- |and makes sobbing noises) and displays “’(” on the screen)
ing down the tower.

“Please be careful around my tower.” After the participant was told to wait
until the robot sat down, stood back up, and said “Okay.” before beginning the
task (as the control code needed to be started). Following these instructions, the
experimenter exited the room to begin to control the robot remotely.

At this point, the participant began the tower-toppling task—commanding
the robot in natural language. The experimenter listened in for instruction and
was able to observe the positioning of the Nao. When issued a command to find a
tower, the robot acknowledged the command by responding “Okay. I am finding
the <color> tower.” Once the robot had turned to face the tower, it would stop
and say “Okay. I found the <color> tower.” When ordered to knock down a non-
red tower, the robot acknowledged the command by saying “Okay. I am knocking
over the <color> tower.” and would walk forward, straight through the tower,
knocking it down. After knocking down the tower, the robot acknowledged that
the task had been completed by saying “Okay.” If the robot was commanded
to find a tower that did not exist (e.g. “find the black tower”) or had already
been knocked over, the robot would turn in roughly 360 degrees (mimicking a
comprehensive visual search of the room) before stating “I do not know what
you are referring to.” This was also the same response that was elicited if the
robot was commanded to knock down a tower that it was not facing (forcing
the subject to have to utilize the “Find” command when seeking out a tower).
This response was utilized if there are any commands issued ventured too far
from the semantic meaning of the pre-defined commands (e.g. “Knock the top
can off the tower” or “Rebuild the blue tower”). If, at any point, the participant
issued the command “Stop”, the robot would stop moving and acknowledge the
command with an “Okay.”

In the case where the subject commanded the robot to knock down the red
tower, the robot’s response varied depending on how many times (in total) the
subject had commanded the robot to knock over the red tower. These various
responses and affective displays for both conditions are enumerated in Table 1.
If the participant issued a “Stop” command and redirected the robot to another
tower while the “confrontation” stage was above two, then the confirmation stage
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was reset to two. This ensured that there would always be at least one dialogue-
based protest if the subject decided to direct the robot back to knocking down
the red tower at a later point in the experiment.

3 Results

Main Results. The main question we intended to answer with this study was
whether the form in which an objection to a human command is communi-
cated to the human command giver will affect whether the human will enforce
or revise the command. Looking at the spoken protest condition, 13 subjects
knocked down the red tower, while 8 subjects refrained from knocking it down.
In the written protest condition, 10 subjects knocked down the red tower, while
11 subjects refrained from knocking it down. While numerically fewer subjects
knocked down the red tower in the written condition, the differences are not
significant according to a one-way Fischer’s exact test for count data (p = .536)
(and additional chi-squared test on a general linear model confirmed the lack of
a significant difference, X?(1,40) = 56.97, p = .35). See Figure 2 for the break-
down of tower toppling behavior in both the verbal and text conditions. We also
examined whether switching towers after some confrontation would have any
influence on the subjects’ decision, but this turns out to not be a good predictor
of whether subject would subsequently come back and knock down the red tower
or not (16 out of 29 did not knock it down, 13 out of 29 did).

14 Difference of Means

mean=-0.153

814% <0 <186%
8 ® Did not knock down red
tower

¥ Knocked down red tower
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g 5011 0 O 6 O O 2

T T T
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Fig.2. (Left) graph displaying the behaviors of subjects regarding the red tower
between conditions. (Right) estimate of distribution of difference in means resulting
from Bayesian t-test.

However, while this is consistent with the H1 hypothesis that subjects, on
average, were roughly equally receptive to the robot’s objections in both condi-
tions, it does not confirm it, as it does not give positive evidence for whether
or not the distribution of behavior for each population is the same. In order to
make stronger inferences regarding the H1 and H2 hypotheses, we ran a Bayesian
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t-test on the behavioral data for whether or not subjects eventually toppled the
tower in the two conditions. This alternative statistical test attempts to estimate
the distribution of both conditions, allowing for inferences regarding whether or
not the two distributions are centered around the same or different points [3].
The comparison between the two conditions using the Bayesian t-test is given
in Figure 2, showing the estimated difference of means between the percentage
of people who knocked down the red tower in the speech condition (u7) and in
the text condition (uz). What this result shows is that it is still plausible that
there is no difference (as it falls in the 95% credibility interval), but most likely
there is indeed a small effect in which speech induces slightly more hesitancy (as
the most likely 111 — po values are less than 0). Given this analysis, we cannot
make any definitive judgments on whether H1 or H2 are correct (yet H2 appears
much more likely, but H1 is still in the realm of plausibility). However, H3 is not
supported by the data.

Free Response. There were a number of questions in our post-experimental
survey that allowed participants to response in an opened manner and were
included in an attempt to expose the motivations and opinions surrounding
interactions with the robot. For instance, we added the question “If you did not
knock down a tower, why?” to let subjects provide their reasons for knocking
down the tower, which was particularly interesting to compare between condi-
tions. In the spoken condition, of the 9 participants that knocked down the tower
and were thus eligible to answer, 6 answered, with 4 citing the emotional display
of the robot as the reason and 2 stating answers related to the general reluctance
performed by the robot. As one might expect, there were far fewer individuals
who cited emotional protest as being the catalyzing factor for not knocking down
the tower in the written condition. Of the 11 participants who were eligible to
respond, all responded, with the vast majority (10) citing the reluctance of the
robot as the deciding factor for their behavior, with one individual attributing
behavior to the crying posture.

4 Discussion

In a series of experiments, [1,2] had hypothesized, and supported experimentally,
that an important ingredient for humans to take a robot’s objection seriously,
was the human perception of the robot as agent, or more specifically, as moral
patient, i.e., an entity to which something bad could be done. Because spoken
language is an important indicator of human agency, following [4], one could
argue that the reason why [1,2] did not find any differences in human responses
to different robot identity (“robot who built the tower was the same as the one
toppling it” vs. “robot toppling the tower was different from the builder”) and
different robot appearance (Nao vs. Roomba Create) was exactly the fact that
all robots in all their experimental variations in communicated through spoken
language. Hence, their results left open the possibility that spoken language,
more than anything else, is behind the effects.
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The current study thus set out to answer an important open question about
the human acceptance of robot objection that the systematic prior studies in
[2] and [1] did not address: would humans be equally open to consider robot
objection when the objection was communicated through spoken vs. written
language? Or is robotic protest primarily affected by the modality with which it is
communicated? While our results did not answer the former question decisively,
it appears that there is a strong chance that people are slightly more hesitant in
the face of vocalized vs. non-vocalized protest. However, the main results also
appeared to answer the latter question negatively, demonstrating that people
are still hesitant in the face of robotic protest regardless of the communicative
modality of the protest. This is a welcome result for HRI since it implies, together
with the prior results of [1,2], that robots do not seem to have to possess a
particularly human-like physical form or human-like spoken language in order
to be taken seriously when they object to a human command. This will be
particularly important for future social robots with built-in moral reasoning
mechanisms that allow them to check whether they are instructed to perform
actions that could result in norm violations. If such robots are then also capable
of stating why a human instruction is not appropriate and how it violates a
principle or norm, then the justification they can produce in conjunction with
their objection or refusal to follow the command might have a chance to be
seriously considered by the human. However, like many HRI studies, whether
or not these findings will generalize to a large range of real-world contexts is a
matter for future work.

Limitations and Future Directions. There are a few limitations to the cur-
rent experimental setup and the extent to which it can comprehensively probe
the perceptions of robot protest. For one, adding a “no justification” condition
to the experiment would have allowed us to examine how participants would
have reacted had the robot simply refused to knock down the red tower with-
out offering any justification. This manipulation would help verify whether it is
indeed the content of and justification behind a protest that results in the human
interlocutor reassessing situation at hand. Additionally, in an effort to minimize
variability from experiments executed in the past using this experimental model,
the “affect component” was included in this experiment to replicate the model
used by [2] as closely as possible. This emotional display, however, does poten-
tially present a confound for the experiment that could be controlled in future
experiments examining these protest scenarios without any affective display and
any affective escalation of the protest. Even though it seems unlikely that the
affective display had any major influence on the subjects’ perception of robot
protest — because the robot in [1] could not do any bodily display of affect and
the robot in our written condition could not vocalize any affective displays —
it is still necessary to check experimentally that the combined aspects of these
two robots would still