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Preface

This book constitutes the refereed proceedings of the 7th International Conference on
Social Robotics, ICSR 2015, held in Paris in October 2015. Having started in 2009,
ICSR is now in its seventh edition and serves as a premier international forum for
reporting and discussing the latest progress in the field of social robotics.

For the seventh edition of the conference, the call for papers attracted a record
number of 126 submissions. The 70 revised full papers included in this book were
carefully reviewed and selected based on the reviews of highly qualified professionals
from around the world.

In addition to the main track, the conference program included two Special Sessions
on “Objective Measures in HRI for Social Robotics” and on “Social Assistive Robotics
for Children.”

The conference program highlights included three invited talks by Gordon Cheng on
“Closing the Natural Interaction Loop with Neuroscience-Based Robotics,” by Jac-
queline Nadel on “Toward a Two-Body Perspective in the Interdisciplinary Study of
Nonverbal Communication,” and by Wendy Ju on “Welcome Robot Overlords?”.

The program was complemented by the ICSR Robot Design Competition 2015 and
seven workshops discussing hot topics in social robotics — Evaluation Methods
Standardization in Human–Robot Interaction, Toward a Framework for Joint Action,
First Workshop on Evaluating Child–Robot Interaction, First International Workshop
on Educational Robots (WONDER), Joint Workshop on Assistive Robotics, Bridging
the Gap Between HRI and Robot Ethics Research, Third International Workshop on
Culture Aware Robotics.

August 2015 Adriana Tapus
Elisabeth André

Jean-Claude Martin
François Ferland

Mehdi Ammi
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Abstract. The present case study investigated the effect of applying a humano-
id robot as a teacher assistant to teach a foreign language (English in this case) 
to Iranian children with autism. To do this, there were 4 male autistic children, 
7–9 years old, 3 with high-functioning autism and one with low-functioning 
autism. The humanoid robot NAO was used as the main instrument of this 
study. There were 12 sessions including 10 teaching sessions. This study used a 
pre-test, mid-test, immediate post-test, and delayed post-test design to measure 
the learning gains of the autistic children participating in the robot-assisted lan-
guage learning (RALL) program. The results showed the subjects’ large learn-
ing gains which were fairly persistent according to their performances on the 
delayed post-test. The difference observed between the learning gains of the 
high-functioning and low-functioning participants is also discussed. 

Keywords: Humanoid robot · Autism · High-functioning · Foreign language 
education · RALL 

1 Introduction 

Autism Spectrum Disorder (ASD) is a lifelong developmental disability affecting the 
way a person communicates and relates to people around him/her. People with autism 
have impaired social interaction, social communication and imagination [1]. The  
most recent statistics indicate that 1 out of 88 children born in the United States is 
autistic [2]. It is estimated that more than 30,000 Iranians younger than 19 years old 
suffer from autism disorders [3].  

Researchers have shown that autistic children, despite their lack of ability to inte-
ract with other people, enjoy working with technological tools such as computers, 
smart toys, and robots. There have been many studies regarding the application of 
robots in helping autistic children with imitating, making eye contact, and social inte-
ractions. Based on these studies, humanoid robots seem to have great potential in 
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helping autistic children in overcoming their disorders, ranging from impaired joint 
attention to impaired language development [4-10].  

There have been a few studies conducted regarding teaching a foreign language to 
high-functioning autistic pupils, particularly those autistic individuals who do not 
have considerable learning difficulties, and they all indicate that high-functioning 
autistic children are capable of learning a second/foreign language provided that they 
are granted the opportunity and of course special strategies in teaching [11-14]. 
Learning a second/foreign language is a fairly complex process even for normally 
developing individuals. High-functioning autistic individuals usually do not have 
severe problems in developing first language, but normally have impaired social cog-
nition which makes communicating hard for them and negatively affects their foreign 
language learning. This may be explained by Communicative Language Teaching 
(CLT), one of the most widely used methods of teaching a second/foreign language 
around the world, which states that learning a foreign language requires the learners 
to be engaged in pair and group activities, use the target language, and communicate 
through it. In other words, high-functioning autistic individuals should be encouraged 
to communicate with others to be successful in learning a foreign language. There-
fore, raising their Willingness to Communicate (WTC), motivation, and positive atti-
tude seems to be of great importance. Furthermore, being required to use a foreign 
language when communicating could make autistics individuals anxious. According-
ly, a learning environment that can lower the anxiety levels of autistic individuals 
should also contribute in facilitating the foreign language learning process. 

According to studies conducted on normally-developing language learners [15-23], 
Robot-Assisted Language Learning (RALL) seems to generate motivation and interest 
in learners of a foreign language while at the same time lowering their anxiety levels. 
Accordingly, RALL seems to be one of the best options for high-functioning autistic 
children willing to learn a foreign language. 

There seemed to be a gap in the literature, however, regarding the use of robots to 
teach a second language to high-functioning autistic pupils. Accordingly, the current 
study was conducted to investigate the effect of Robot Assisted Language Learning 
(RALL) on high-functioning autistic children. To put it more precisely this study was 
an attempt to answer the following research question: 

What is the effect of RALL on autistic children’s English vocabulary learning and 
retention? 

2 Methodology 

2.1 Participants 

Three male high-functioning autistic children (referred to as S1, S2, and S3 hereafter) 
9, 8, and 7 years old, respectively, as well as a 7 year-old low-functioning autistic 
child (twin brother of S3, referred to as S4 hereafter) participated in this study. They 
had little or no background in English which was proven by means of an English  
pre-test. It should be noted that the four mentioned participants were the only students 
of this RALL program. 
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2.2 Instruments 

Teaching Instruments: The main instrument of the current study was the humanoid 
robot NAO, made by Aldebaran Robotics, France, and renamed “Nima” for use in the 
Iranian context. Nima was pre-programmed for each teaching session to assist the 
teacher in teaching a particular syllabus and was operated by a human operator sitting 
at a desk on the right side of the class during the teaching sessions. The operator did 
not participate in class activities. Based on the pre-test, the four subjects were consi-
dered as beginning English learners. Accordingly, a fitting book was selected and 10 
teaching scenarios were written based on it. The related flashcards and songs from the 
book were also included in the scenarios. The songs were uploaded in Nima and he 
was programmed to dance to them. In addition, some slides were shown via video 
projector to teach the vocabulary items of interest. Two laptops were also applied: one 
to operate Nima and the other connected to the video projector. Some of the teaching 
instruments are presented in Figure 1 which shows the classroom setting. 

 

 
Fig. 1. Classroom setting. 

Measuring Instruments: Four equivalent but not identical English tests based on the 
covered book were designed: a pre-test, a mid-test, an immediate post-test, and a de-
layed post-test. Each test was made of 63 items including matching, multiple choice 
recognition items and a few open ended questions to test the simple functions taught 
during the course. Moreover, a video recorder was used to record each and every 
session of the program for further qualitative analysis of the participants’ behaviors in 
class. A camera man recorded the sessions, moving if necessary to focus on the par-
ticipants. An audio recorder was also used to record the interviews conducted with the 
subjects’ parents after the program was finished. 
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2.3 Data Collection Procedure 

The Center for the Treatment of Autistic Disorders (CTAD) located in Tehran made it 
possible for our research team to attend some of the group and individual classes for 
high-functioning autistic children before the program started. CTAD believed the re-
searcher needed to observe these classes to tap into what autism really was, how autistic 
children behaved, and how she should handle them later on in the program. The re-
searcher did attend the suggested classes and had more than 20 hours of observation 
before starting to work with the autistic children. The RALL program consisted of  
12 sessions in total including 10 teaching sessions held twice a week. The first session 
was an orientation session held one week before the program started to introduce the 
program to the children and their parents, and to administer the pre-test (Figure 2).  
 

 
Fig. 2. The orientation session. 

The teaching sessions were held two times a week with each session lasting  
45 minutes to one hour and covering half of a chapter of the selected book. Nima 
would spoke only English during the sessions. The teacher used Farsi, the partici-
pants’ mother tongue, to give instructions and provided the translations of the new 
vocabulary items and Nima’s lines. It has been suggested in previous research that 
this approach makes the participants feel more comfortable with learning the new 
material [14]. After five sessions, i.e. at session 6, a midterm exam was administered. 
An immediate post-test was administered at the end of session 10. Two weeks later, a 
farewell session was held to administer the delayed post-test, and interview the par-
ents with several open ended pre-designed questions on their views of the program 
and the changes, if any, they had observed in their children throughout the program. It 
is worth mentioning that each subject took the English tests separately. The teacher 
read each item for each subject and marked or wrote down their answers. Further-
more, all sessions were video-recorded for further qualitative analysis of the partici-
pants’ behaviors. 



 The Effect of Applying Humanoid Robots as Teacher Assistants 5 

3 Results  

The scores (equal to the number of their correct answers) of the pre-test, mid-test, 
immediate post-test, and delayed post-test for each participant and the class average 
are reported in Figures 2 and 3, respectively. The maximum score possible was 63.  
 

 
Fig. 3. Participants’ scores on English tests. 

 
Fig. 4. Class Average. 

The three high-functioning subjects showed great improvement during the pro-
gram. Their scores in the delayed post-test showed a large amount of retention and the 
persistency of their learning gains. S1 and S2 even obtained near full marks in the 
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immediate post-test. In the case of the low-functioning subject, however, less learning 
gains were observed. His level of retention on the delayed post-test was also lower 
compared to those of the high-functioning subjects. 

4 Discussion and Conclusion 

The results of this study indicated that high-functioning autistic children do have the 
ability to learn a foreign language. Due to their increased interest in technological 
tools, autistic children could benefit from using technology in education. Robots can 
be considered a new and interesting technology that can be applied in education and 
specifically in teaching a foreign language. 

High-functioning autistic pupils may need special strategies to be engaged in lan-
guage classes such as routine greetings, and a specific order of seats [11]. We tried to 
use such strategies and they turned out to be helpful in keeping the participants en-
gaged. Using a highly technological tool, i.e. a humanoid robot, could be considered 
as one of the most promising ways of using engagement strategies specific to autistic 
children. 

As mentioned earlier, using robots in language classes seems quite fruitful for 
normally developing students. The findings of this study could broaden the scope of 
the claims made for RALL to autistic children language learning. The use of robots in 
language classes makes it possible to make real use of several language learning ap-
proaches, hypotheses, and theories such as: Asher’s Total Physical Response (TPR) 
approach which emphasizes the role of listening and acting upon it by physical res-
ponses which is currently applied as an activity in language classes [24], Swain’s 
output hypothesis, and Schmit’s noticing theory. According to Swain’s output hypo-
thesis, having language learners use the learned language items has three main func-
tions through which language learning occurs more easily: consciousness raising, 
hypothesis-testing, and reflective functions [25]. In other words, through producing 
output in the target language, learners better notice the newly learned items, check if 
they are using those items correctly by receiving feedbacks, and get the chance to 
reflect on their learnings. Schmit’s noticing theory also emphasizes the importance of 
focal attention and explicit knowledge in language learning.  

Designing real life scenarios and authentic learning situations will also contribute 
to the engagement of the participants in the assigned tasks. For instance, at session 8, 
when the aim of the lesson was to teach the participants to ask someone’s age and 
also to tell their own ages, we held a birthday party for Nima (Figure 4) and had him 
tell his age and ask the children how old they were. Then the vocabulary items were 
taught as gifts we wanted to give Nima.  Each child would put a flashcard of one of 
the newly taught items in a gift box and give it to Nima. Nima had to guess what the 
gift was and the child would help him guess. These meaningful dialogues between 
Nima and the participants were quite effective in engaging them. This lends support 
to the findings of [17] and also [8] indicating that robots are efficient in eliciting ut-
terances, which according to Swain’s output hypothesis could lead to better language 
learning.  
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Fig. 5. Nima at his birthday party. 

Furthermore, as suggested by [6], the physical presence of a robot and receiving its 
hints and applause could bring about significant learning gains. This was also the case 
in the current study, since the participants seemed to be quite excited by Nima’s feed-
back. Upon receiving feedback from Nima, they would laugh out loud, enthusiastical-
ly participate in the tasks, and show great willingness to talk. Their reactions were 
interestingly similar to those suggested by [18]. We hypothesize that Nima’s feedback 
and applause made the students notice the new items to be learned. According to 
Schmit’s noticing theory, this could be one of the reasons why the participants had 
significant levels of achievement and retention.  

Another strategy we applied was the use of Farsi, the participants’ mother tongue, 
in class which in line with the findings of [14], lowered the burden for the participants 
and allowed them to make connections between the new vocabulary items or func-
tions and the ones they already knew in their first language.  

The presence of a low-functioning autistic child (S4) in class and his performance 
on the designed tests showed that even low-functioning autistic children have the 
potential to learn a second/foreign language. The main issue S4 suffered from was his 
lack of focus on and attention to what was being taught, and also his failure to pick up 
the newly taught items as fast as his classmates. In other words, a possible reason why 
S4 showed lower achievement compared to the other three high-functioning students 
could be the lack of homogeneity in class. To keep the high-functioning kids engaged, 
S4 did not receive as much time and attention as he needed. Still he did have some 
learning gains which could be associated with the fact that he seemed to be quite en-
gaged when Nima was singing and dancing, and was willing to participate in tasks 
requiring face to face interaction with Nima. 

One may question the effectiveness of using robots with the claim that the obtained 
results could be due merely to the newness of the applied technology and that they 
would fade away as the children become accustomed to it. However, this novelty 
effect could take a long time to occur especially with young children who can play 
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with the same toys for years and still enjoy them. Additionally, robots have many 
different features which could be made use of to keep the learning environment inter-
esting in the long term. This was the case in our RALL program, since session ten, the 
last teaching session, was one of the most energetic sessions of the RALL program. 
This showed the program was able to keep the students highly motivated and interest-
ed in Nima until the very last session. It is also important to remember that using new 
technologies is an inevitable aspect of education, because the new generation has new 
needs and new expectations from their education environment. Keeping up with these 
expectations is the only way to keep the students, especially those with autism, moti-
vated and satisfied. Researching on how to use new technologies, and their 
(dis)advantages, therefore, is of great importance. 

Since robots must be programmed in advance and operated by a human operator, 
they may seem to be quite infeasible tools to be used in education. However, since 
robots are perceived as the next generation of technology that will be pervasive in 
everyday life, they will inevitably find their way into education in much the same way 
as personal computers did many years ago. Therefore, research on how to use robots 
in education and their (dis)advantages seems to be of great importance [26-28]. 

There were some challenges to the use of a robot in class which are listed below: 

 The great deal of excitement and enthusiasm sometimes made the partici-
pants use extra loud voices which at times made class management a bit 
harder for the teacher.  

 At some points, students wanted to approach Nima and touch him. When 
one student did this, the others would want to follow and do the same.  

 When Nima was dancing to a song, they would try to imitate his body 
movements. This can be a good point, since imitation is considered as a 
social skill and physical engagement, according to Total Physical Re-
sponse (TPR) approach, can contribute to better language learning gains. 
This imitation, however, sometimes distracted them from paying attention 
to the content of the song being played by Nima.  

 In trying to receive Nima’s applause and positive feedback, the students 
sometimes created a quite competitive environment, felt jealous of the 
ones giving the right answer sooner, and even in some rare cases picked 
fights.  

To rectify these issues, the teacher tried to intervene and emphasize the importance 
of turn-taking, not leaving their seats without asking permission, and that after the 
song she would ask them questions. Accordingly they had to pay attention to what 
was being played to be able to answer the questions and be applauded by Nima. The 
very small number of participants in this study makes any generalization impossible. 
Further research could broaden the scope of the current study to an intact class of a 
bigger number of autistic children at an autism school. Another potential area of study 
could be having the same program for an intact class in main stream schools with 
normally developing students in which some autistic children also participate. This 
will be a more authentic setting since this is what happens in the real world when 
children with autism attend main stream schools. Mixed classes may lower the oppor-
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tunities given to the autistic children and be more demanding for the teacher. Addi-
tionally, a similar group could be taught the same materials based on the exact same 
scenarios but without the presence of a robot. The outcomes of the two groups could 
then be compared and analyzed for deeper insights. This is what the authors are doing 
in a follow-up phase of the current study. The results of the control group, taught 
without the use of a robot, will be reported and compared with those of the RALL 
group. To be able to make more valid claims on the participants’ social behaviors 
throughout the program, precise quantitative analysis of the video records could be 
quite helpful. This will also be done and reported in the near future. Moreover, such 
factors as social skills, willingness to communicate, motivation and attitude, as well 
as anxiety level could be investigated for both groups to find other probable effects of 
RALL on children with autism. These factors will be focused on in later documents.  
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Abstract. According to the United Nations World Population
Prospects, the world’s population is aging. Older adults constitute a frag-
ile part of society, as aging is always accompanied by major psychological
and physical challenges. A way to cope with those challenges is to strive
for a good Quality of Life (QoL) and contribute to successful aging.
Social robots can play an important role in the promotion of QoL by
integrating activities with independent-living older adults. Using a qual-
itative design through a focus group method, this paper aims to present
the activities in which independent-living older adults, i.e., older adults
that do not depend upon anyone to carry out their activities, require a
robot. By understanding the activities where robots can positively influ-
ence and contribute to older adults’ QoL, we set specific goals for the
future research in the field of Human-Robot Interaction (HRI).

Keywords: Human-Robot Interaction · Quality of Life · Successful
aging

1 Introduction

The world’s population is growing and aging. Furthermore, the late adulthood
stage (>65 years old) is faced with major psychological and physical challenges
[6]. Those challenges are usually accompanied by multiple stressors, such as social
isolation and incapacity for work independently [20]. However, many older adults
face these challenges but have an independent lifestyle (i.e., do not depend upon
anyone to carry out their activities of daily living) [7]. It is the thin balance
between aging and still having an independent living lifestyle that constitutes
one of the gravest challenges for achieving good standards of QoL.

Successful aging is one of the ways to ensure the maintenance of QoL [1]. By
being able to promote an independent lifestyle, technology becomes an important
factor associated with successful aging and better standards of QoL. Social robots
in particular, have been investigated as a type of technology that can positively
influence successful aging. Studies have shown the role that robots can have in
providing assistance with house keeping activities [2], or by providing support
over the needs and difficulties of older adults [11]. However, the concept of QoL
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 11–20, 2015.
DOI: 10.1007/978-3-319-25554-5 2
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encompasses more contexts than the home environment and goes beyond needs
and difficulties. In fact, QoL covers various components of life and is associated
not only with functional aspects of life, but also with well-being [15]. The novelty
of this study is to elicit the activities that older adults require a robot to integrate
all of their possible real-world contexts, including activities that support their
desired living style and QoL. As such, this study goal is twofold:

Goal 1 Elicit the types of activities in which older adults require the inclusion
of a robot to sustain a good QoL and independent living.

Goal 2 Present the robots that older adults chose for the different activities.

2 Related Work

Different societal studies have all came to the same conclusion: humanity is facing
a profound demographic change, moving from a society where the majority of
the population was relatively young, to one that faces a significant portion of
older adults [16]. In fact, according to the United Nations World Population
Prospects of 2012 for 21001, the percentage of older adults will increase as part of
the population density across Europe, America, and China [13]. Although these
news are tough to prospect, anthropological studies can reassure us. According
to this field of study, the ability to create tools (e.g., technology) is one of
the pivotal developments and adaptations of humanity to change. In this line,
technological artifacts have been making their way into our lives, mirroring the
human capacity to develop tools that adapt to our needs [19].

Moreover, technology has been defined as the capacity to apply scientific
knowledge to practical tasks that respond to societal needs and so, impact on
the QoL [5]. When looking at older adults research, it can be seen that QoL is
among the most studied constructs. In fact, for older adults QoL is preferred
over to longevity [9]. A paper review [15] defines QoL as a conscious cognitive
judgment of satisfaction with one’s life. In aging research, QoL is associated with
two broad categories: functioning (e.g., the ability to perform activities of daily
living) and well-being (e.g., emotional well-being) [15]. The present study aims
to contribute for the research of older adults’ QoL associated with social robots,
by eliciting activities they can integrate to promote successful aging. By doing
so, this study provides a contribution for the development of both service and
entertainment robots for older adults that live independently.

2.1 State of the Art on Social Robots for Older Adults

The development of robots that assist the activities of daily living of older adults
contributes to the enrichment of Ambient Assisted Living (AAL), which is an
emerging paradigm in information technology aimed at empowering peoples’
capabilities by means of technology that is sensitive, adaptive, and responsive
to the human needs [18]. Also, different projects concerning robots for older
1 World Population Prospects: The 2012 Revision, http://esa.un.org/wpp/

http://esa.un.org/wpp/
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adults have been emerging, such as GiraffPlus2, Robot-Era3, SILVER4, CARE5,
ACCOMPANY6, HOBBIT7, ExCITE8, ENRICHME9, and RAMCIP10. The
aforementioned projects have been developing prototypes of robots to interact
with older adults, aiming to develop ways to assist on their needs. Yet, some
of the applications and activities proposed are based on the need of the care-
givers on one hand, and the older adults on the other. Still, there are unforeseen
activities that can be developed for robots that will increase older adults’ QoL
and successful aging. This paper presents different activities that older adults
require assistance not only from a basic and functional point of view, but also
concerning entertainment and enhanced activities that contribute to their QoL.

3 Methodology

This study aimed to elicit the activities in which older adults require the presence
of a robot to support their QoL. By doing so, we provide guidelines for the
development of robots that co-exist with older adults, fostering successful aging
and independent life style.

3.1 Participants

A focus group methodology was used (N = 16 participants), with each group
comprised of 5 (except one of the groups that consisted of 6 participants) older
adults with independent lifestyle (12 females, 4 males; M age = 78.69, SD =
12.20). Participants were recruited from a day-home care institution in Lisbon
(Portugal). Most participants lived alone in their home (81.3%), or with their
friends (12.5%), and relatives (6.3%). The focus group sessions were conducted
at the recruitment facilities. Each session lasted 45min and was held by a psy-
chologist and a computer scientist, both working in the field of HRI. The study
followed the ethical norms of conduct for privacy, and all participants signed a
consent form and assented participation. The cases in which participants were
unable to read the consent form (due to their education level or physical impair-
ment), the consent was read to them by a caregiver of the institution.

3.2 Procedure and Methods

Aiming to elicit the types of activities in which older adults envision robotic tech-
nology as an enhancement to their QoL, a qualitative study with focus group
2 GiraffPlus project: http://giraffplus.eu/
3 Robot-Era project: http://www.robot-era.eu/robotera/
4 SILVER project: http://www.silverpcp.eu/
5 CARE project: http://care-project.net/welcome/
6 ACCOMPANY project: http://accompanyproject.eu/
7 HOBBIT project: http://hobbit.acin.tuwien.ac.at/
8 ExCITE project: http://www.aal-europe.eu/projects/excite/
9 ENRICHME project: http://www.enrichme.eu/wordpress/

10 RAMCIP project: http://www.ramcip-project.eu/ramcip/

http://giraffplus.eu/
http://www.robot-era.eu/robotera/
http://www.silverpcp.eu/
http://care-project.net/welcome/
http://accompanyproject.eu/
http://hobbit.acin.tuwien.ac.at/
http://www.aal-europe.eu/projects/excite/
http://www.enrichme.eu/wordpress/
http://www.ramcip-project.eu/ramcip/
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methodology was used [3], designed of three phases: 1) information and sensi-
tizing phase; 2) brainstorm session; 3) choosing robots.

Phase 1: Information and Sensitizing. This phase informed about what a
certain emergent technology is and can become [21]. In this study, we aimed to
inform and sensitize about social robots using a short-film documentary of 6min
that consisted of five chapters:

1. What is a robot? Since our intention is to keep distance from sci-fi culture
when eliciting activities that participants envision doing with a robot, dif-
ferent existing robots such as the industrial Kuka arm11, the social robotic
pet AIBO12, and humanoids like the Geminoid robot13, were introduced by
showing robots interacting with humans or in their context of use.

2. How does a robot function? This chapter explained that robots per-
ceive the world differently from humans. As an example, this chapter con-
trasted the way humans perceive the world (e.g., through their eyes), while
robots perceive the world through cameras. The emphasis was on the differ-
ence between human and robot perception without emphasizing the limited
capabilities that robots have nowadays.

3. Do robots for older adults exist? This chapter presented robots and
prototypes specially developed for the aged population. Examples of these
robots were RIBA robot14 and Paro15.

4. What are the limitations of robots? This chapter aimed to show the
current real limitations of robots in the wild. This was demonstrated by, e.g.,
a video where Asimo robot16 falls of the stairs.

5. How will the future with robots be like? In order to show what an
emergent technology such as a robot can become, it was necessary to show
a possible future of robots and older adults together. Therefore, segments of
the commercialized movie Robot and Frank directed by Jake Schreier (2012)
were shown.

Phase 2: Brainstorm Session. Brainstorm is a well-established technique,
usually used in groups, for generating a large number of new ideas quickly,
enabling the transformation of abstract concepts into practical experiences [14].
Thus, the brainstorm session aimed to register in a whiteboard the different
activities that participants envisioned to do with a robot. In the middle of the
same whiteboard was written “robots for older adults” so that participants could
easily situate their ideas. The researchers’ role in the room was to clarify ques-
tions that emerged along the session, to facilitate the interaction and to write
down on the whiteboard the activities mentioned by participants.
11 KUKA Arm from KUKA Robotics: http://www.kuka-robotics.com/en/products/
12 AIBO robot from SONY: http://www.sony-aibo.com/
13 Geminoid robots from IHL: http://www.geminoid.jp/en/robots.html
14 RIBA robot from RIKEN-TRI: http://rtc.nagoya.riken.jp/RIBA/index-e.html
15 PARO robot from AIST: http://www.parorobots.com/
16 ASIMO robot from HONDA: http://asimo.honda.com/

http://www.kuka-robotics.com/en/products/
http://www.sony-aibo.com/
http://www.geminoid.jp/en/robots.html
http://rtc.nagoya.riken.jp/RIBA/index-e.html 
http://www.parorobots.com/
http://asimo.honda.com/
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Fig. 1. Companion Robots (from left to right): Paro, Pleo, Emys; Service robots:
Pearl, Care-O-bot, PR2. Categorization of assistive robots for older adults [4].

Phase 3: Choosing Robots. Six images of robots were shown to the partic-
ipants, whose task was to assign a robot to the activities they had previously
brainstormed about. The robots were chosen according to the categorization of
assistive robots for elderly, i.e., robots designed for social interaction that can
play an important role with respect to the health and psychological well-being of
the elderly. The selection of robots tried to met different contexts of aging, such
as therapy, entertainment, and service-related [4]. Therefore, three companion
robots were shown: Paro, Pleo, and Emys; and three service robots were shown:
Pearl, Care-O-bot, and PR2 (see Fig. 1). The groups discussed what robot would
better fit a specific activity and the researchers added this information to the
whiteboard. It is important to note that participants did not specify a robot for
all the activities, neither they were instructed to do so. In addition, they could
choose more than one robot for the same activity. The open-endedness style of
this phase was adopted to avoid pressure participants on a decision.

4 Results

The activities that participants yield were analysed by the two psychologists of this
study. The elicited activities came from two different sources: activities written on
the whiteboard, and audio recording of the sessions. All group sessions were tran-
scribed and coupled with the activities present on the whiteboard. Participants
generated a total of 75 activities in which a minority was repeated. As this study
aims to provide visibility to a broad range of activities instead of analyzing their
prevalence, the repeated activities were excluded. Thus, data was re-arranged and
coded only with 65 non-repeated activities. The yield activities were coded accord-
ing to the framework for aging in place with the objective of categorizing and orga-
nizing them according to their primary goal and context [10,12]:

– Basic Activities of Daily Living (BADL) This dimension represents the
basic activities that people living independently should be able to perform
(e.g., bathing);

– Instrumental Activities of Daily Living (IADL) Successful indepen-
dent living requires the capability to carry out instrumental activities (e.g.,
managing a medication regimen);
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– Enhanced Activities of Daily Living (EADL) Independent living also
requires activities related with the outside world communication that are
beyond what is considered to be instrumental. These activities are connected
with major and holistic responsibilities (e.g., buying groceries);

– Social Activities (SA) These activities are meant to entertain and sus-
tain social closeness, such as communicating with others as a way to establish
relationships. According to the generated ideas of participants, this dimen-
sion was added to the framework for aging in place with robots.

4.1 Coding Procedure

Data was coded according to the required functions that a robot should have to
perform each activity. Each coder coded the totality of the material (65 different
activities). According to Cohen’s Kappa test, the level of agreement between the
coders was K = .91, α = .000, indicating an almost perfect agreement [8].

4.2 Activities for Aging in Place with Robots

Results suggest that older adults refermore different IADL (24 different activities),
followed by BADL (17), and finally both EADL and SA (12 activities each) with a
robot (see Fig. 2). Some of the referred activities are described in Table 1.

4.3 Chosen Robots

Results show that older adults have chosen different robots to serve different
activities (see Fig. 3). It can be seen that Care-O-bot (18%) is the robot that
most of the participants have chosen for BADL, followed by PR2 (17%) and
Pearl (12%). When looking at IADL, it can be seen that Care-O-bot is the most
chosen robot as 21% of participants have chosen this robot to integrate such
activities. Then, PR2 (17%) is also referred in the context of IADL, followed
by Peal (4%) and Pleo (4%). Considering the EADL, results show that half of
the participants chose PR2 (50%), followed by Pearl (25%), Emys (25%), and

Fig. 2. Number of activities yield by older adults.
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Table 1. Framework of activities for aging in place with robots, adapted from [12].

Basic Activities of Daily Living

“Help bathing, specially washing the feet and the back.”

“Help open taps, like bath taps because it’s hard for me to open them.”

“Help put on the socks, and then the shoes. Then help to take them off.”

“Help shaving because I do not see well and help cutting the nails.”

“Help dressing, I don’t mean every day but there are cloths that seem harder to dress.”

Instrumental Activities of Daily Living

“Memorize what I eat. I do not always remember when to eat or what I eat, so I end
up having a bad diet.”

“Make the bed and change the bed sheets. Also, do the laundry and then hang it on a
clothesline. Oh yes, and then iron it!”

“[The robot] should know my medical history and adapt the food it cooks. I cannot eat
cakes and the robot should know this information.”

“Help with the electricity and construction works like painting a wall that needs paint-
ing, repairing a water pipe, or just changing a light bulb, this is very useful.”

“Clean the floor and sweep the kitchen and all that stuff. Oh, and wash the bathroom
and clean the dust.”

Enhanced Activities of Daily Living

“I would gave a list of what I need and the robot could go buy groceries and to the
pharmacy.”

“Make emergency calls to the police, ambulance, or family.”

“Have an informative dialogue, by providing meteorological, time and news information.
[The robot could also help us by] answering the door when we are lying in bed.”

“[The robot should] be able to communicate with doctors and nurses.”

[The robot should] warn us regarding appointments or obligations, like visits to the
doctor, or when to take the right pills at the right times of the day.”

Social Activities

“Read stories. I like novels very much, but my eyes are not able to see the words now.
I would be so happy if the robot could read me stories at night.”

“Accompany when walking outside to the park and to the cinema. I would never do
such activities alone now.”

“Cheer people, communicate or talk. The robot should be able to share its own ideas,
even when they are different from ours.”

“Pray with us”. Some said the robot should also “have a religion”, others disagreed.
In the cases where they claimed it should have a religion, two opinions were expressed:
“[the robot] should adapt to theirs religion by having the same one”, or “could choose
its own belief.”

“Play games in general, and cards and domino particularly. It would be wonderful if
the robot could just talk with us and be a company in our daily life.”
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Fig. 3. Chosen robots according to the different types of activities.

Care-O-bot (8%). Finally, for the SA, Emys (50%) is the most chosen robot,
followed by PR2 (33%), Paro (25%), Pearl (17%), and Nao (8%).

When clustering the service robots (Pearl, Care-O-bot, PR2) and the com-
panion/entertainment robots (Paro, Pleo, Emys), and comparing them with the
type of activities they were assigned to, results show the majority of participants
assigned companion/entertainment robots with SA (65%), less than half of the
participants assigned these robots with EADL (35%), and only 9% have assigned
with IADL. On the other hand, service robots were assigned by the participants
to all types of activities (see Fig. 4). We emphasize that participants have not
chosen a robot for all the activities, existing activities without an assigned robot.
On the other hand, participants assigned more than one robot to some of the
activities.

Fig. 4. Chosen robots according to the different types of activities.

5 Conclusions and Discussion

This study aimed to elicit activities from older adults in which the presence of
a robot helps enhancing their QoL and contribute for their successful and inde-
pendent aging. The novelty of this study concerns the presentation of activities
that are part of all the real-world contexts of older adults: from the home, to
the pharmacy, to a park, or even to be able to see a movie at the cinema.
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Therefore, the majority of different activities refers to IADL, related with
activities that are beyond personal and basic activities of daily living, but are
essential to live independently in a society and community. In their perspective,
it seems essential to have a robot that assists managing a medication regimen,
maintain the household, and prepare meals of adequate nutrition [12]. Moreover,
older adults referred that although they were able to perform some activities,
they would prefer having a robot as an extra help (e.g., “help putting and taking
off the shoes”). This seems to indicate that the participants are still in shape to
independently manage their daily activities, but would benefit from additional
assistance. A large number of different activities concerns BADL related with
personal hygiene (e.g., toileting and bathing) [12], in which participants claimed
for help to e.g., “get in and out of the tub”. Finally, EADL and SA emerged as
the activities in which older adults require the robot for communicating with
the outside world due to the need to satisfy a basic activity (e.g., “[the robot]
could go buy groceries”), translating an EADL; or due to a need to overcome
social isolation by “playing games”, “accompany to the cinema”, or even “pray”,
related with SA. Furthermore, service robots were chosen to perform all types
of activities, showing this type of social robots are fit for different activities
with this population. The participants referred that their choice for a robot was
strongly motivated by its physicality. Thereafter, showing an interest for robots
that are perceived as able to accomplish multiple tasks, instead of robots whose
primary goal is more limited (e.g., Pleo and Nao which are low height robots).

Although there are concerns about the accomplishments of some activities
due to technical development and ethical aspects, this paper shows there is space
for technology developments with views to enhance the QoL of older adults. By
having a deeper understanding about the activities that older adults require a
robot, HRI researchers detain key-information about where and how to dedicate
their efforts and resources to fulfill a societal need and contribute to the QoL
and successful aging among this population [17].
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Abstract. Before interacting with a futuristic technology such as a
robot, there is a lot of space for the creation of a whole set of expec-
tations towards that interaction. Once that interaction happens, users
can be left with a hand full of satisfaction, dissatisfaction, or even a mix
of both. To study the possible role of experience as a mediator between
expectation and satisfaction, we developed a scale for HRI that measures
expectations and satisfaction of the users. Afterwards, we conducted a
study with end-users interacting with a social robot. The robot is being
developed to be an empathic robotic tutor to be used in real schools,
with input from primary end-users (children). Children’s expectations
and subsequent satisfaction after the interaction with the robotic tutor
were analysed. The results can be fed back to the system developers on
how well it is being designed for such a target population, and what
factors regarding their expectation and satisfaction have shifted after
the experience of interaction. By delivering on the children’s expecta-
tions, we aim to design a robotic tutor that provides enough satisfaction
to sustain an enjoyable and natural interaction in the real educational
environment.

Keywords: Human-Robot Interaction · User-centered design · Robotic
tutor · Expectation · Satisfaction

1 Introduction

Robotic characters are becoming widespread as useful tools in assistive [12],
entertainment [17] and tutoring applications [7]. Besides, robots can be consid-
ered a mediatic type of technology as they are easily associated with science-
fiction culture (e.g., sci-fi novels, movies and adverts), making the expectations
of people towards robot’s an important aspect to consider in the process of
designing and creating a robot. In fact, sci-fi culture ends up delivering informa-
tion, most of the times unrealistic information, about a type of technology that
is nowadays being created, bringing expectations over robots that are far from
being achieved [3]. It is well known that previous expectations strongly influence
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 21–30, 2015.
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satisfaction, so analysing initial expectations of users before interacting with a
robot becomes important when concluding about their subsequent satisfaction
of the experience.

The novelty of our work regards the measurement of the expectations and
satisfaction levels that users have towards a robot, to serve as an input that
informs the iteractive process of designing and creating a social robot. In line with
this, we developed the Technology-Specific Expectation Scale (TSES) to mea-
sure users’ expectations before seeing and before interacting with a robot, and the
Technology-Specific Satisfaction Scale (TSSS) to measure their satisfaction after
the experience of interaction. Both scales constitute a novel metric in HRI, lead-
ing to a new complementary way of approaching the iteractive process of design-
ing a social robot. We base our research in the study of the expectations that
children had towards the possibility of interacting with a robotic tutor and com-
pare such expectations with the satisfaction level after the interaction. The robot
used throughout this paper is being developed in the FP7 EU EMOTE project1

to be an autonomous empathic robotic tutor aimed to teach topics about sus-
tainable development to children in schools. The study followed a methodology
that merges an autonomous robot with a Wizard-of-Oz (WoZ) [19]. The motiva-
tion of this research underlies the measurement of children’s satisfaction towards a
robotic tutor in an educational environment to serve as an input to inform further
design developments of the same tutor. The evaluation of expectations/satisfac-
tion involves factors related with education and learning, such as the perceived
capabilities of a tutor. We aim to understand which features of the robotic tutor
meet the expectations of children, and which do not. Thereafter, we will detain
key-information about which still need refinement and which are performing well.
Moreover, most people (including the children that participated in this study)
never had any previous experience with social robots, so we anticipated that peo-
ple detain preconceived ideas about this type of technology, built upon sci-fi cul-
ture. Due to this, expectations and satisfaction regarding the fictional views of the
robot were also assessed and taken into account, enabling a contextualised inter-
pretation of results.

Thus, in this paper we present the developed scales for measuring expectation
and satisfaction in HRI; the results of the administration of the TSES and TSSS
to children towards an empathic robotic tutor for education; and guidelines that
inform the design based on this novel metric for HRI. In line with this, we
formulate the following study hypothesis:

H1 The expectations that children have regarding the experience of interacting
with a robotic tutor will be high as robots are part of strong sci-fi culture
that children are familiar with.

H2 By building a robotic tutor inspired in real teacher-student interactions,
children will detain high satisfaction levels after the experience of interaction.

1 EMOTE project: http://www.emote-project.eu/

http://www.emote-project.eu/
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2 Related Work

Expectation and satisfaction are concepts that influence the way we evaluate
experiences. In this Section, we will detail about such concepts and relate them
with HRI applied to education.

2.1 Expectation and Satisfaction in HRI: Definition of Concepts

In the field of HRI, Bartneck and Forlizzi (2004), have defined a social robot
as “an autonomous or semi-autonomous robot that interacts and communicates
with humans by following the behavioral norms expected by the people with whom
the robot is intended to interact” [4]. On the creation of robots that are intended
to interact with people in daily life, Wistort (2010), has also brought up the
fact that “the form of a robotic character greatly determines the affordances it
provides, influencing the perceived function of the character”. This means that
people immediately create expectations about a robotic character once they see
it, just based on its appearance. The majority of robots’ appearance is presented
to people through sci-fi culture, showing them robots that are far different from
the real developed robots, thus stimulating peoples’ preconceived ideas (expec-
tations) about the functions of robots [21].

Moreover, the Expectation-Confirmation Theory (ECT) is widely used in
the consumer-behaviour literature to understand consumers’ satisfaction after
purchasing a product. According to this theoretical framework, consumers first
form an initial expectation of a product, and during a period of initial consump-
tion (experience of the product), they assess its performance to determine if
their expectations are confirmed. Finally, they form a satisfaction towards the
product based on their confirmation level and expectation on which that con-
firmation is based [15]. In line with this, ECT appears as a framework that can
inspire metrics for the design and development of future technology, such as a
robotic tutor for futuristic classrooms. So, expectations provide a baseline or ref-
erence level for users to form evaluative judgements about the experience with
a product in which lower expectations usually influence satisfaction positively,
if the previous expectations are confirmed by experience [5]. Nonetheless, when
evaluating an innovative technology such as a robot, it is important to consider
that user’s expectations can be coloured by others’ opinion, sci-fi culture, or
can be tempered by the user experience [11]. On the other hand, satisfaction,
is regarded as a transient, experience-specific affect. One can have a pleasant
experience with a product, but still feel dissatisfied if it is below expectation
[13–15]. Thus, experience is what connects expectation and satisfaction [5].

2.2 Expectations and Satisfaction Towards Robots for Education

The concepts of expectation and satisfaction have been studied in teacher-
student interactions in different educational settings, such as online education
[10], e-Learning [16] and traditional classrooms [1]. Research seems to show that
student’s perceived satisfaction derives from different factors, such as the way
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the tutor’s knowledge is transferred to children, how feedback is used to support
and facilitate learning, and the level of interaction [10]. Thereby, the tutor’s com-
petencies and capabilities constitute some of the factors that will influence not
only the satisfaction that children have regarding such an experience in an edu-
cational context, but also their learning. In the context of HRI, different projects
are developing robotic tutors to support and assist children during their learning
process (e.g., CoWriter project2). Also, Alves-Oliveira and collaborators (2014),
have explored the expectations of children towards a robot that can interact with
them in their own classroom, concluding that children’s initial expectations can
help to identify the usefulness of robots [2]. In this sense, the study of expec-
tation and satisfaction towards robotic teachers and/or tutors in the context of
learning environments can be import predictors of children’s learning outcomes
and of their evaluation of the experience. Moreover, it is also important to con-
sider the concepts of expectation and satisfaction for other HRI environments,
in which the design of social robots with end-users is timely important when
shaping the future of this technology.

3 Methodology

This study took place in a school, where children performed a collaborative
learning activity about sustainability in a reserved area of a classroom. For
each session, a pair of children interacted with the robotic tutor. Together with
them, the robot acted as the tutor for the learning environment, and played
EnerCities3, which is a collaborative multiplayer serious game for learning about
sustainability that is being used in the EMOTE project.

3.1 Participants

The study sample consisted of 56 children (30 male, 25 female, 1 unknown)
aged between 14 and 16 years old (M = 14.81, SD = .48). The children that
participated in this research had consent forms signed by their caregivers and
assented to participate in the activity.

3.2 System Architecture and Set-Up

The robotic tutoring system used in the study follows the extended SAIBA model
for intelligent virtual agents [18] and is composed of a NAO Torso robot from
Aldebaran Robotics; an interactive touch table running EnerCities; four video
cameras; two lavaliere microphones; a WoZ interface; and a recorder (Fig. 1.a).
The children interacted with the system (see Fig. 1.b) both through EnerCi-
ties, and through the system’s perceptive capabilities. The system interacts
back through the robotic tutor, which performs social, expressive and game-play

2 CoWriter project: http://chili.epfl.ch/cowriter
3 EnerCities: http://www.enercities.eu/

http://chili.epfl.ch/cowriter
 http://www.enercities.eu/
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related behaviour. The perceptive capabilities of the system includes detecting
and tracking the children’s head location, gaze direction, eyebrow movement
(AU2 and AU4 [9]), and which child is currently speaking. This is all performed
by the Perception Module, using the Kinect and the lavalier microphones.

Fig. 1. a) Real environment setup. b) System architecture

The multimodal expressive behaviour (e.g., speech, gaze, animation) is man-
aged by Skene which also includes a Gaze-state-machine, allowing the embod-
iment to perform semi-autonomously [18]. It is fed with information from
the Perception Module and students’ game-play actions from EnerCities to
autonomously manage timing and expressive resources.

The robot’s collaborative AI is a module capable of informing the game-
playing and pedagogical decision-making of the robotic tutor that performs
autonomously. The AI also incorporates a social component that continuously
monitors each player’s actions and automatically adjusts the tutor’s strategy in
order to follow the group’s “action tendency” [20]. The Wizard was a researcher
that was in a completely separate room, controlling the robotic tutor’s high-
level expressive behaviour (e.g., the timings to perform pre-defined utterances),
using a specially designed user-interface. The AI selects a game move and makes
it available for the Wizard to perform at the appropriate moment. This allows
the Wizard to control the flow of interaction along with the flow of the game,
without having to decide upon the game state and game actions. Finally, low-
level and contingent behaviours remain autonomously controlled by Skene, which
acts according to the high-level decisions performed by the Wizard and events
triggered from the Perception Module.

3.3 Measures

To evaluate children’s expectations and satisfaction, a TSES was created inspired
in the Bhattacherjee and Premkumar (2004) scale [6]. Our scale was developed
addressing aspects that inform about the state of the robotic tutor’s develop-
ment, in order to support further refinement. The TSES is composed of 10 ques-
tions allocated in 2 dimensions: Capabilities and Fictional view of the robotic
tutor. It was used as a baseline questionnaire to measure children’s expectations
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before seeing and interacting with the robotic tutor. Then, the TSSS was used as
a post-questionnaire, applied after the interaction, to understand how children’s
subsequent satisfaction performed. Each scale is composed of equal questions to
secure comparison between expectations and satisfaction, with different verbs
tenses to meet different temporal experiences with the robotic tutor 4. Children
could rate their expectation level in the TSES in a 5 point type-Likert scale,
ranging from 1 - Very low expectation; 2 - Low expectation; 3 - Neutral ; 4 - High
expectation; 5 - Very high expectation. The same Likert scale was used for the
TSSS, substituting the word “expectation” for “satisfaction”.

In order to understand whether the items of the scale were internally con-
sistent, a Cronbach’s Alpha was run. The scales had a good level of internal
consistency for the 5 items of the Capabilities dimension (α = 0.770) and for the
5 items of the Fictional view dimension (α = 0.749) [8]. Thereafter, the Capa-
bilities dimension served to inform about the expectations that children had
towards the robotic tutor’s capabilities, and how their satisfaction performed
after the interaction experience. An example of a question that aimed to eval-
uate the expectation towards the robotic tutor’s capabilities is the following:
“I think the robotic tutor will be able to understand me.” The Fictional view dimen-
sion relates with impressions created mostly by sci-fi culture, such as movies and
novels, and an example is the following: “I think the robotic tutor will be similar to
the robots I see in movies.”. In addition, two more questions regarding the robotic
tutor’s Competencies were administrated: 1) “I think the robotic tutor will be a
good game companion.”; 2) “I think the robotic tutor will be the one that plays
better.”. The latter questions served to understand the perception that children
had on the performance of the robot.

3.4 Procedure

The pair of children was invited into a separate room where they had no contact
whatsoever with the educational setup, including the robotic tutor. This was
a constraint to ensure that children’s expectations were not influenced by any
previous contact. At this point, the TSES was individually and separately applied
to each child. After completion, the pair of children were led to the main room
where the interaction with the robotic tutor took place. Children engaged in
interaction in the real context of use for 20 minutes playing the EnerCities game
with the robotic tutor. For this period of time, children were left alone in the
main room with the robot, being able to freely interact and communicate with
it. A researcher partially controlled the behaviour of the robot from a different
room, in a WoZ methodology experiment, meaning that children were not aware
that a third person controlled some of the behaviours of the robotic tutor. The
game-play ended at the instruction of the robotic tutor. Afterwards, a researcher
invited the participants to enter the same initial room where the TSSS was
individually applied to each children.

4 The TSES and the TSSS are available here: http://gaips.inesc-id.pt/∼poliveira/
Alves-Oliveiraetal.2015.pdf

http://gaips.inesc-id.pt/~poliveira/Alves-Oliveiraetal.2015.pdf
http://gaips.inesc-id.pt/~poliveira/Alves-Oliveiraetal.2015.pdf
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Fig. 2. Expectation and satisfaction of children towards the robotic tutor’s capabilities
and fictional view.

4 Results

To better understand the distribution of the results, data was re-arranged in 3
new categories, with a range of Lower Expectation/Satisfaction (scores below 3
in the initial 5 point type-Likert scale were clustered), Neutral Expectation/Sat-
isfaction (scores equal to 3); Higher Expectation/Satisfaction (scores over 3 in
the initial scale were also clustered).

4.1 Expectations and Satisfaction Towards a Robotic Tutor

Results seem to indicate that the children mostly had lower expectations about
the robotic tutor in fictional terms (42.5%) and had higher expectations about
the robotic tutor’s capabilities (54.6%), whereas some of the children were neu-
tral in terms of the expectations both towards the robotic tutor’s capabilities
(25.0%), and fictional view (27.9%) (see Fig. 2), which partially corroborates our
first study hypothesis, which states that expectation of children would be high
as robots are part of sci-fi culture. Regarding the satisfaction levels, results seem
to suggest that when evaluating the robotic tutor after having experienced it,
children’s satisfaction levels seem to follow the expectations they previously had
(see Fig. 2). This suggests that the majority of children who had higher expec-
tations about the robotic tutor’s capabilities (54.6%), seem to sustain higher
satisfaction levels after the interaction (48.6%). Regarding the expectations of
fictional view, results suggest that children had both higher (29.6%) and lower
expectations (42.5%) of sci-fi culture towards the robotic tutor. The subsequent
satisfaction indicates that children continued to have a mix of higher (32.1%) and
lower (39.6%) satisfaction when evaluating this dimension. Thereby, the overall
satisfaction towards the robotic tutor capabilities is higher, with no significant
results between expectation and satisfaction levels. These results corroborate
our second study hypothesis, which states that children will detain high satis-
faction levels when evaluating the capabilities of a robotic tutor, after having
experienced it.

In sum, the results of one iteraction seem to show that the current capa-
bilities of the partially autonomous robotic tutor are at an appropriate level of
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Fig. 3. Differences in expectation and satisfaction with experience.

development to sustain a collaborative educational interaction between an arti-
ficial tutor and students in a school classroom. Children seem to have had a
positive experience of the interaction, as their expectations were accompanied
by high levels of satisfaction. In addition, children’s fictional views had lower
levels, translating to more realistic expectations towards this technology.

A statistically significant difference was also found for the additional ques-
tions regarding aspects of the perceived competence of a robotic tutor, suggesting
the interaction with the robotic tutor elicited a statistically significant change in
the scores of satisfaction in comparison with expectation (Z = -3.127, α = .002).
Therefore, the majority of children expected the robotic tutor to be a good game
companion (75.0%) and after the interaction almost all children revealed higher
satisfaction levels towards the tutor’s competence (94.6%) (see Fig. 3). For the
second question that assesses the competence of the robotic tutor, a significant
result was also found (Z = -2.636, α = .008), revealing that the majority of chil-
dren expected the robotic tutor to play best in the collaborative serious learning
game about sustainability (69.6%), showing a significant decrease in their sat-
isfaction after the interaction (50.0%). This result goes in line with the design
process, as the robotic tutor had been developed to be a peer companion in the
serious game, guiding children through the game rules and dynamics, but at the
same time, having a similar hierarchical role in the game.

5 Conclusions and Future Work

This paper focuses on expectation and satisfaction in HRI and presents a novel
metric for HRI. It aimes to address expectations and satisfaction of children
towards an empathic robot tutor being developed in the EMOTE project to
be included in an educational environment. The study of these concepts is cru-
cial when developing a robotic tutor, as students’ expectations and satisfac-
tion are important in education [1], being predictors of learning outcomes [10].
To measure expectations and satisfaction, a TSES and a TSSS were developed
and applied before and after the experience of the interaction with the robotic
tutor. The results show that children had high expectations about the robotic
tutor’s capabilities, being followed by the same high levels of satisfaction. This
result informs us that the behaviours of the robotic tutor in a 20min-interaction
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in a learning environment seem to meet expectations by their end-users. In addi-
tion, this suggests that state of the development of the partially autonomous
robotic tutor for the classroom seems to be in an appropriate state to enable
small group interactions with children. Results also show that the expectations
regarding the fictional view of the robotic tutor are lower and remain lower after
the interaction, which means that although children are exposed to sci-fi media,
their expectations seem to be adapted to reality.

Overall, the design methodology inspired in real teacher-student interaction
seems to have positive outcomes when testing the robotic tutor in its future envi-
ronment with its future end-users. However, other possible outcomes of results
can emerge when applying the TSES and the TSSS in the design process of
creating a robot. An example of another possible outcome can be finding that
users have high expectations regarding the fictional view of a robot, and high
expectations regarding its capabilities. If the satisfaction level of fictional view
decreases (which means it becomes more adapted to reality and further away
from sci-fi culture) and the satisfaction towards the capabilities of the robot
also decreases, this shows that the capabilities for the social robot do not meet
users’ expectations, suggesting the need for more development and refinement of
its behaviours. Moreover, by looking at the items of the capabilities dimension,
details about the capabilities that do not meet expectations can be identified.

Since the future of HRI will mostly be in people’s homes and personal lives,
our belief is that in order to build and create a valid futuristic technology that
generates a positive experience and provides satisfaction to users, it is essential to
involve them throughout this creative process. By measuring users’ expectations
and satisfaction, we are bringing input from the real-world users and stakeholders
as co-designers of their future technologies.

In the future, we aim to measure expectation and satisfaction in a totally
autonomous robotic tutor to understand how artificial social decisions are per-
ceived by users (e.g., timing), and how satisfied they feel towards them, providing
insights about the design over time. Also, we will explore the relation between
expectations, satisfaction, and children’s learning outcomes.
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Abstract. We present a reactive emotion selection system designed to
be used in a robot that needs to respond autonomously to relevant events.
A variety of emotion selection models based on “cognitive appraisal”
theories exist, but the complexity of the concepts used by most of these
models limits their use in robotics. Robots have physical constrains that
condition their understanding of the world and limit their capacity to
built the complex concepts needed for such models. The system presented
in this paper was conceived to respond to “disturbances” detected in the
environment through a stream of images, and use this low-level infor-
mation to update emotion intensities. They are increased when specific
patterns, based on Tomkins’ affect theory, are detected or reduced when
it is not. This system could also be used as part of (or as first step in the
incremental design of) a more cognitively complex emotional system for
autonomous robots.

Keywords: Social robotics · Human Robot Interaction · Emotional
models · Emotion production

1 Introduction

Social environments involve subtle interaction among people and the physical
environment. These interactions, the context in which they take place, and peo-
ple’s mental perception of the world affect the emotions that arise. Different
theories and models of how emotions arise have been proposed in psychology,
such as [11,16,18]. Although these models seem acceptable and cogent to most
of us, the hidden assumptions that authors make in their models [5,15] emerge
when trying to implement them in artificial agents and robots. Computational
frameworks based on these “high-level” models have been implemented [7,10],
but they use abstract concepts that have to be defined in the system.

However, social robots need to be able to operate in real circumstances,
where the information that the system needs to operate is not well defined or
given beforehand and changes over time. Therefore, the robot needs to be able
c© Springer International Publishing Switzerland 2015
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to interpret relevant information necessary to be used as input (including by the
above-mentioned frameworks) from its current sensory data and representation
of its environment. Due to sensor limitations (e.g., accuracy, noise) the world
model cannot be a complete nor precise representation of the current situation.
Moreover, the representation used to model the environment could lack details
that are necessary to correctly interpret the situation. The use of “high-level”
computational frameworks for autonomous social robots is thus problematic.

Emotion-based robot architectures have been proposed that ground emotion
elicitation on the robot’s sensory data. For example, the robot presented in [6]
uses data from simple (contact) sensors, interpreted following the model of gen-
eral stimulation patterns proposed by Tomkins [20]. Other robots such as [4,14]
use complex sensory input (vision, voice) and a complex architecture to deter-
mine the robot’s emotional state using some form of appraisal of the current
situation. This paper presents a reactive emotional system that combines
elements of these two approaches. Also based on Tomkins’ theory [12,20], but
using visual input and a complex architecture, the pre-selected emotions com-
pete among them to be triggered. The system has been designed in a modular
way, so to make it easy to combine it with other, more complex models such as
the one suggested by Izard [11]. Our architecture is designed for use by a robot
that needs to respond autonomously to relevant events (e.g., sudden changes in
light conditions, presence of different agents or objects).

The rest of paper is organized as follows. Section 2 provides a brief overview
of particularly relevant work closely related to our architecture. Section 3 outlines
different emotional theories, paying particular attention to the model proposed by
Tomkins. Section 4 describes our emotional system: the design and formulas that
control the system. Finally, Section 5 covers the implementation and results.

2 Related Work

The robotic head Kismet created by Breazeal [4] uses cameras to perceive the
world and head movements to interact with people. Kismet’s emotions are the
six basic emotions of Ekman [8]: happiness, sadness, surprise, fear, disgust, and
anger. The emotion selection process can be summarized as a cyclic sequence
of perceiving an event and appraising it [3]. The appraisal phase is where the
change of emotion can be done.

Cañamero and Fredslund developed the LEGO humanoid robot Feelix that
expresses emotions on its face based on physical (tactile) stimulation [6]. A tac-
tile sensor is used to determine the stimulation which could fall in one of the
following cases: short (less than 0.4 sec), long (up to 5 sec), and very long (over
5 sec). The events generated from the stimulation are used to determine the
emotion activation based on the state of a finite state machine that implements
general emotion activation patterns (cf. Fig 1) drawn from Tomkin’s theory of
emotions [20], that we have also used in this paper. Feelix could detect stim-
ulation patterns for and display the following emotions: anger, sadness, fear,
happiness and surprise.
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MEXI is a robotic face that is capable to interact with people through
emotions [9]. MEXI is capable to understand people emotions through image
analysis of data coming from two cameras, and its speech recognition system.
MEXI’s architecture lacks of any deliberative component, but it uses emotions
and drives to control its behaviours. Its emotion system obtains information
from the behaviour system and external perceptions to come up with the new
values for each emotion. Each emotion is represented by a value between 0 and
1, updated according to the current perception. The considered emotions are:
anger, happiness, sadness and fear.

The architecture described in [13] uses a mixture of hard-coded emotions
and emotions learned by association. Their emotion system uses inputs from the
deliberative and reactive architectural layers to select one of the emotions: fear,
anger, surprise, happiness, and sadness. Each one of these emotions is triggered
according to perceived events, internal state, and goals of the robot in the cur-
rent movement. The emotion selected by the emotion system affects the way
each behaviour is performed.

The emotional model proposed by Malfaz and Salichs [14] uses appraisals
to select an emotion. Happiness is related to the fact that something “good”
happens to the agent (e.g., interpreted as the reduction of a need), and sadness
to something “bad” (e.g., interpreted as the increment of a need). Fear is related
to the possibility that something bad happens to the agent and it is activated
when something dangerous could be expected by the agent.

3 Tomkins’ Emotion Theory

There are many theories of emotion, differing in assumptions and the components
involved in the process.They canbe classified in differentways. For example [15,19]
use the following categories:

– Adaptational: based on the idea that emotions are an evolving system used
to detect stimuli that are of vital importance.

– Dimensional: organize emotions according to different characteristics, usu-
ally valence (pleasantness-unpleasantness) and arousal. One of the most
widely used is the Russel’s circumplex model of affect [17].

– Appraisal: argues that emotions arise from the individual’s judgement, based
on its believes, desires, and intentions with respect to the current situation.
EMA [10] and Fatima [7] frameworks fall in this category.

– Motivational: studies how motivational drives could generate emotions.
– Circuit: supports the fact that emotions correspond to a specific neuron path

in the brain.
– Discrete: are theories based on Darwin’s work, the expression of emotion in

man and animals. These theories use as a pillar the idea of the existence of
a basic emotions.

– Other approaches are lexical, social constructivist, anatomic, rational, and
communicative.
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In practice, these theoretical categories overlap. The difference among these the-
ories is mainly in how the process and inputs are considered in each one.

Tomkins’ theory [12,20], on which we base our model, integrates various per-
spectives. For Tomkins, the affect system evolved to solve the problem of over-
whelming information present in the environment to which people are exposed.
His theory states that people cannot manage to be conscious of all the infor-
mation available from the environment, therefore the affect system comes to
select what information could be relevant to be aware of in a given moment.
For example, someone could focus on reading a book, ignoring the rest of events
that are happening, but suddenly there might be a loud sound that gets his/her
attention. This kind of behaviour could be obtained through the activation of
different systems. He recognizes four systems closely related to affect:

– Pain is a motivator for very specific events that take place on our bodies.
– Drive deals with the basic needs that human body could need (e.g. urination,

breathing).
– Cognitive interprets the world and make inference from it.
– Affect is focus on get person attentions to specific stimuli.

More importantly, Tomkins suggested that affect in certain situations could
make that pain and drive systems are omitted, while the affect and cognitive
could work together. Because affection has a main role in human subsistence,
he describes nine affects that could be triggered depending on brain activity.
Figure 1 shows activation patterns for relief, sadness, happiness, anger, interest
and fear. For instance, sustained low stimulation leads to sadness, while a very
highly increasing stimulation leads to fear, and a less steep increase in stim-
ulation leads to interest. Moreover, the time windows for these emotions are
different; for instance fear arises faster than happiness.

Fig. 1. Patterns for relief, sadness, happiness, anger, interest and fear, after Tomkins.
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4 Emotional System

As suggested by Izard [11], among others, emotion elicitation can be performed
at different levels, and at some of these levels we are not aware of the process.
Our system focuses on the “reactive”, “pre-aware” part of emotion elicitation
(and selection, in our case) using as an input gray scale images from a web cam.
Our system does not take in consideration any cognitive information from the
environment; instead, we compare two consecutive images to determine changes
in pixels in order to detect disturbances in the environment that could be of
interest for the robot. This difference (the quantity of pixels that have changed
over a threshold) is given as input to the stimulation calculator to determine the
“stimulation” that is later used by the emotion generator to update the inten-
sity of each emotion. This update is done searching for the patterns suggested
by Tomkins (Fig. 1). The previous process is always modulated by the time
delay between the two images considered. This delay is of vital importance in
the system because it could not be determined with certainty beforehand. Using
this delay in the equation makes the system behave in the same way regardless
of whether the delay is short or long. Consequently, the system gives different
values of “stimulation” depending on the delay between the images.

Figure 2 depicts the general process with all the subsystems. These subsys-
tems were selected to permit upgrades in the system without the need to make
considerable changes in the code. For example, the change detector subsystem
could be improved to detect additional features from the images; if the output
remains as percentage (value between zero and one), the rest of the system could
still use it to update the emotion intensity.

4.1 Stimulation Calculator

This subsystem obtains the percentage of change provided by the change detector
and updates the new stimulation (stimulus(t)) based on the current change
(s increment), the last stimulation (stimulus(t − 1)), and a reduction value
(s decrement), as shown in Equation 1. In addition to stimulus(t−1), functions
s increment and s decrement use the time delay (delay) as a parameter.

stimulus(t) = stimulus(t − 1)
+ s increment(percentage, delay)
+ s decrement(stimulus(t − 1), s increment(percentage, delay),
delay, bias)

(1)

The s increment function ranges on the percentage of change and the delay
time, and it is calculated as it is shown in the equation 2. The s increment uses
an exponential function with a desire base (base increase) and displacement
coefficient (d). This displacement coefficient is used to obtain values greater
than one, but it also introduces a small bias that is corrected by the second part
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Fig. 2. General architecture of the system. The arrows show the information flow. The
time difference between the two images is used to modulate each module.

of the equation. The increase factor is a coefficient that modulates the gain of
the function, which is used to obtain less or more stimulation. And delay is a
variable coming from the time delay between the two pictures used to generate
the percentage.

s increment(.) = ((base increase)(percentage−d)

− (base increase)d
︸ ︷︷ ︸

correction factor

) ∗ increase factor ∗ delay (2)

Figure 3 illustrates the behaviour of s increment(.), showing that this func-
tion produces greater values when the delay increases. The s decrement(.) func-
tion (Equation 3) uses s increment(.), time delay, and a bias to determine the
decrease value. The parameter bias is used to modify the lower output value
of the system. Like s increment(.), this equation depends on time to make the
modulation. Figure 4 illustrates its behaviour with a decrease factor = −0.5
and with different time delays.

s decrement(.) = (stimulus(t − 1) + s increment(.) − bias)
∗ decrease factor ∗ delay

(3)

4.2 Emotion Generator

This subsystem was divided in two modules (event generator and pattern detec-
tion) to give the possibility of adding or deleting new emotion patterns, and of
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Fig. 3. Behaviour of the increase function for different delays in the image using param-
eters base increase = 30, d = 0.1, and increase factor = 10.

Fig. 4. Behaviour of the decrease function for decrease factor = −0.5 and different
time delays.

modifying the event characteristics. Event generator centralizes the process of
detection of relevant events from the stimulation slope. The events considered
are: null, small, medium, large, and huge slope. Except null slopes, the other
events could be either positive or negative. A pattern detection module is imple-
mented for each emotion that should be detected. Each pattern detection module
considers a different pattern as well as the number of events to search for in the
pattern. The emotions, their patterns, and their update functions are:

– Surprise is recognized just when one of the following events are present in
its time window: large or huge positive slope. Due of this strong constraint,
every time that this pattern is detected, its intensity grows faster than for
other emotions.

– Fear is increased when three or more consecutive recent events have either
large or huge positive slopes.

– Interest occurs when three or more consecutive events have either medium
or small positive slopes.

– In contrast to the rest of emotions, Relief works with negative slopes and
its intensity increases when at least five negative slope events are detected.
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We have considered only emotions affected by stimulus change since we focus on
the reactive processes to activate emotions, while emotions related to constancy
of stimuli in Tomkin’s model are expected to be managed by the cognitive part
of a larger system.

5 Implementation and Results

The system was implemented in C++ and uses OpenCV to analyze images. The
final implementation was then interfaced with ROS to enable easy use in other
systems. To facilitate easy parameter change, two configuration files were added:
one related to all the general parameters (e.g. threshold and increasecoefficient)
and the other to establish the increment, decrement, and time window (number
of events to consider) for each of the implemented patterns. The system was
tested online with information coming from a Logitech CY270 Web-Cam. The
intensity and events obtained are depicted in the Figure 5, where the relationship
between the stimulation’s slope and the events can be seen. Figure 6 depicts

Fig. 5. Stimulation (continuous line) and events (dots in horizontal lines) obtained
from the comparison of to consecutive images. The y-axis on the left represents the
stimulation level, while the one on the right represents the events generated from the
slope detected.

the intensity obtained for each pattern implemented (fear, interested, surprise
and relief), also showing that each pattern module updates its emotion inten-
sity independently. This is clearly seen at second 120 when fear, interest, and
surprise unevenly increase their intensities and after some time they also reduce
their intensity unevenly. This (increase and decrease) unevenness shows the pat-
tern’s configuration, which is not the same for each emotion. The presence of
more than one emotion with a value different from zero suggests that a further
mechanism should be used to determine which emotion should be elicited, for
example taking the one with higher intensity or just modifying behaviour param-
eters proportional to each intensity. In other words, our initial aim to use this
system as first step to select an emotion is achieved.
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Fig. 6. Intensity obtained by our system for the four emotions implemented: fear (blue),
interested (purple), surprise (red) and relief (yellow).

6 Conclusions and Further Work

We have presented a reactive emotional system based on Tomkins’ theory. The
system is modular to permit its integration with more complex systems and
its configuration based on the output from the pattern detection modules. The
system was implemented in C++ with interface to ROS to make it possible to
used it in other models and in robotic platforms. Four patterns (fear, surprise,
interest, and relief) were implemented and tested. The results show that the
output compete with each other, and the emotion has to be selected in a further
step with a logic that suits the specific purpose, which could be as simple as take
the emotion pattern with higher intensity, or weight behaviours by the intensity
of the corresponding patterns. Additionally, this reactive system could be used
as complement for cognitive systems.

As a further work, the system is going to be integrated to our theatrical
system [1,2], to provide changes in the emotion that is going to affect the robot’s
movement parameters. Finally, a simple behaviour will be implemented, to be
triggered by the selected emotion appropriate to the situation.

Acknowledgments. This work was carried out at the Embodied Emotion, Cogni-
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Abstract. This paper quantifies how the comfort of a person
approached by a robot changes when that person is alone or in a group
of two. A total of 140 participants in lone and paired configurations were
approached by a robot from eight different directions and asked to rate
their level of comfort. Results show that while the comfort of an indi-
vidual was influenced by the presence and relative position of a second
person, there were some common features in the comfort responses of all
participants regardless of their group configuration.

Keywords: Human-robot interaction · Comfort · Group

1 Introduction

In human-robot interaction, the initiation phase leading to a subsequent inter-
action is important to the success of the interaction [1]. A major part of the
initiation phase is the way a robot approaches potential interactants, including
the path taken by the robot in approaching the person or group of people. In this
work we define the “best” approach direction as the most comfortable one, and
define comfort in terms of a natural language understanding of mental comfort
as tranquility and contentedness; being free from a state of unease, constraint,
fear or anxiety. Comfort is assessed simply by asking a person “how comfort-
able” they are. We define the comfort profile of a person as the mapping of their
comfort levels to a set of robot approach directions.

It has been shown [2] that people tend to interact with robots in their personal
space, as defined by Hall’s theory of proxemics [3]. When people are alone, they
are most comfortable when a robot approaches them from the front—where the
robot can easily be seen—and are least comfortable when they are approached
from behind [4–6]. In our previous work [7] we showed that the comfort of people
in groups of two was qualitatively similar to that of individuals in single-person,
single-robot (SPSR) scenarios, although a person’s comfort level was influenced
both by the group formation shape and the position of participants within the
group.
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25554-5 5



42 A. Ball et al.

The cited works on SPSR scenarios show that people are more comfortable
when approached from a ‘frontal’ direction rather than from a ‘rearward’ direc-
tion. Extension to groups of more than one person introduces complexities. When
people interact in a group, they tend to orient themselves towards other group
members. In the most extreme case, when a group of two people face each other,
a robot that approaches one person from a ‘frontal’ direction must approach
the other person from a ‘rearward’ direction. Our work in two-person, single-
robot (TPSR) scenarios investigates how the comfort profile of an individual is
influenced by the location of the second person. The comfort profile of a person
is defined here as the mapping of their comfort levels to the set of robot app-
roach directions. Knowledge of how comfort profiles differ between individuals
who are alone or in a group can be integrated with existing robot path planning
algorithms, allowing for a robot to maximise the comfort of individuals it might
interact with.

Although previous SPSR studies have been conducted [4–6], the diverse
experimental conditions and relatively small sample numbers don’t allow
for a qualitative comparison with our TPSR results. We therefore chose to
repeat single-person experiments under the same conditions as our prior two-
person experiments [7], and with significantly more participants than previously
reported. Performing group and individual experiments under the same condi-
tions allows for a direct quantitative comparison of the two data sets. As a result,
this paper presents experimental work that quantifies differences in comfort lev-
els between people seated alone and those seated in pairs, in various sitting
configurations. The comfort profiles of individuals in pairs and alone are com-
pared across eight robot approach directions through intra- and inter-position
statistical analyses.

2 Design and Conduct of Experiments

Two sets of experiments were performed to investigate the hypothesis that people
in pairs have a silimar comfort to lone individuals when they are approached by
a robot from different directions. The two experiments followed a similar proce-
dure: with two participants for the TPSR scenario, and with a single participant
for the SPSR scenario. All participants were naive to the experiment and were
recruited at a campus of the University of New South Wales, Australia. For the
group-experiment trial, a pair of participants was seated in low armchairs at a
low table in the centre of a room and asked to work on a cooperative task for the
duration of the experiment. The task was included in the experiment design to
provide a cognitive load on the participants, intended to minimise their atten-
tion to the robot’s location and movement. The selected task was to complete a
three-dimensional jigsaw puzzle. This task was chosen as it has a clear objective,
is temporally demanding and does not require any turn-taking activity.

During the experiment, participants were seated in one of three maximally-
different seating configurations, selected using Kendon’s [8] F-formation frame-
work for analysing interactions between two or more people. An F-formation—or
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“facing formation” [9]—forms whenever two or more people position themselves
so that they share an overlapping transactional space, termed the o-space. As
defined by Kendon, the interacting people occupy the p-space and monitor the
r-space. During the experiment, the participants are assumed to have an o-space
centred on the shared jigsaw puzzle. The three seating configurations used are
shown in Figure 1 and are referred to as Configurations A, B and C.

Configuration CConfiguration A Configuration B

r-space
p-space

o-space

Fig. 1. Participant seating configurations showing o-space, p-space and r-space
assumed with two participants. From [7].

The experiments were conducted in a six metre square room with exits on three
of the four walls. The arrangement of the room can be seen in Figure 2. The eight
robot approach directions are labeled and indicated by arrows in the figure. The
robot was controlled using the Wizard of Oz paradigm to enter the group’s p-space
[8], or to approach it as closely as possible. A square room was used to remove
spatial bias that could arise through asymmetric placement of participants in the
room. Multiple exits were provided so that participants always had the option of
leaving the room to avoid confrontationwith the robot. The interested reader could
refer to [7] for more details of the experiments.

A robot (Figure 3) present in the room periodically approached the par-
ticipants and prompted them via prerecorded speech to rate how comfortable
they were with the most recent robot approach. After each robot approach, each
participant scored their response on a five-point Likert scale between 1: “uncom-
fortable” and 5: “comfortable”. The robot approach directions were randomised
to prevent an order effect in the results. The experiment continued until the
robot had approached the group from eight different directions in random order.
The experiment was concluded with a post-experiment questionnaire to acquire
additional information, including gender, from participants.

In addition to these group experiments, experiments with a single partici-
pant were performed. The single-person experiments were identical to the group
experiments, except that the participant was seated only in one location and
the second seat was removed from the room. The arrangement can be seen in
Figure 2. The robot approached the table along each of the eight directions,
potentially forming a p-space with the participant focused on the jigsaw puzzle.

Since a person’s self-reported level of comfort cannot be regarded as an abso-
lute measure, participant responses are ranked so that an ordinal analysis can
be made. Participant responses are ranked from one (most comfortable) to eight
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Fig. 2. Experimental space with chairs arranged in (a) Configuration A, (b) Configu-
ration B, (c) Configuration C, and (d) in the SPSR scenario. The arrows indicate the
eight directions of robot approach relative to the ‘dotted’ seat(s). Adapted from [7].

Fig. 3. Robot used for the experiment. From [7].
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(least comfortable). Two types of analysis were used to compare the comfort lev-
els of participants seated in the different configurations; these are termed intra-
position and inter-position comparisons. An intra-position comparison performs
pairwise statistical comparisons of the rank distributions of participant comfort
levels for all 28 pairs of robot approach directions for a particular seating posi-
tion and configuration, and then compares this set of results to those obtained
for another seating position and configuration. An inter-position comparison
compares the participant comfort level distributions for a relative robot app-
roach direction between two different seating positions and configurations, and
then repeats this comparison for the remaining seven robot approach directions.
After a correction for multiple comparisons, the comfort level distributions are
not different if all eight comparisons are not different.

3 Results

3.1 Participants

Twenty trials were conducted for each of the three group configurations and
the lone-participant configuration to ensure a statistical power (1 − β) of at
least 0.80. Of the 140 participants, 61 were male and 79 were female. The mean
age of participants was 24.7 years with a standard deviation of 8.7 years; the
minimum age was 18 and the maximum age was 73. Most of the participants
were university students. Although the participation of four persons older than
60 raised the variance, no age-dependent effects were observed in the data. Each
person participated in only one trial of eight robot approaches in one seating
configuration.

3.2 Intra-Position Analysis

Table 1 shows the mean comfort rank of participants for each robot approach
direction for the six relative seating positions. The robot approach directions are
always numbered relative to the seating location in question. This convention
is illustrated through the ‘dotted’ seat locations in Figure 2, and means that
direction 8 is always directly in front of the participant.

To determine if there were differences between data for different robot app-
roach directions a Kruskal Wallis analysis of variance (KW-ANOVA) test was
performed. The KW-ANOVA test was chosen due to the non-parametric nature
of the data. This test takes the participant comfort data from all robot approach
directions and returns a p-value indicating the probability that all of the data are
from a common distribution; that is, that no systematic differences are present.
If the p-value is less than 0.05 then a post-hoc multiple comparison test is per-
formed to determine which pairs of robot approach directions cause participant
comfort levels that differ from each other. As multiple comparisons are being
made, a correction is required to control type I errors. The false discovery rate
(FDR) control [10] was used with q = 0.05.
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Table 1. Means and standard deviations (in parentheses) of individual comfort rank-
ings for each robot approach direction for the lone individual (SPSR) and individuals
in the three seating configurations of pairs of participants. Rank 1 is most comfortable;
rank 8 is least comfortable. The labels ‘Left’ and ‘Right’ identify where the person of
interest was sitting in the pair.

Dir SPSR Ind. A Con. B Con. B Con. C Con. C
(Left) (Right) (Left) (Right)

1 1.9(1.4) 2.7(1.9) 2.5(2.0) 2.5(1.9) 2.5(2.0) 3.7(2.3)
2 3.6(1.9) 4.0(2.6) 3.4(2.6) 3.1(2.4) 4.3(2.4) 4.7(2.5)
3 5.4(1.8) 4.0(2.6) 4.4(2.1) 3.9(2.6) 3.2(2.6) 4.7(2.3)
4 7.3(1.6) 5.6(3.0) 5.1(2.9) 4.8(3.0) 4.8(2.9) 6.3(2.3)
5 5.9(1.9) 3.9(2.5) 3.9(2.6) 4.5(2.6) 5.2(2.5) 3.9(2.4)
6 3.6(1.7) 3.6(2.6) 3.0(2.2) 4.0(2.5) 4.2(2.0) 3.0(2.1)
7 2.0(1.7) 2.7(2.2) 2.6(2.1) 2.7(1.6) 3.1(2.5) 2.7(2.2)
8 2.4(2.1) 3.1(2.2) 3.3(2.3) 4.0(2.8) 2.8(2.3) 3.0(2.0)

The comfort levels of the individuals in Configuration A were statistically
different (χ2(7,312) = 33.26, p < 0.01, η2 = 0.10) with approaches from different
directions. Post-hoc multiple comparison Mann-Whitney U-tests showed that
participant comfort with robot approaches from directly behind (direction 4)
was different to that for approaches from all other directions. Approaches from
direction 2 also caused significantly different participant comfort levels to those
from direction 7.

With participants seated in Configuration B there were no significant dif-
ferences for either the person sitting on the left (χ2(7,152) = 17.69, p < 0.05,
η2 = 0.11) or on the right (χ2(7,152) = 13.49, p = 0.06, η2 = 0.08).

Although there were no statistically significant differences in comfort levels
for individuals sitting on the left in Configuration C (χ2(7,152) = 20.24, p =
0.05, η2 = 0.13), significant differences were found for the person sitting on
the right (χ2(7,152) = 32.40, p < 0.01, η2 = 0.20). Participant comfort with
robot approaches from directly behind (direction 4) was statistically different
to all other directions except for direction 2. Comfort with approaches from
direction 3 was also different to that with approaches from direction 7.

For robot approaches to the lone participant, significant differences in partic-
ipant comfort levels (χ2(7,152) = 83.76, p < 0.01, η2 = 0.53) were found between
several directions. Approaches from directly behind the participant (direction 4)
resulted in comfort levels that were different from those produced by all other
robot approach directions, and comfort levels with approaches from directions 3
and 5 were different from all other approach directions except each other. Fur-
thermore, directions 1 and 7 produced comfort levels that were different from
directions 2 and 6, and direction 8 was different from direction 6. These SPSR
results conform results previously reported in the literature [4–6], and with a
somewhat larger sample size.
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The intra-position analysis showed that participant comfort levels varied
across each seating configuration. Individuals seated in Configuration A and
on the right in Configuration C had comfort profiles similar to, but more uni-
form than, those of individuals seated in the SPSR scenario. Participants seated
in Configuration B and on the left in Configuration C had more uniform comfort
distributions across all tested robot approach directions. Of particular note is
the finding that the comfort levels of solo participants are different to those of
all individuals in groups, showing that the presence of a second person influ-
ences the comfort level of the first participant. The results also show that the
position of the second participant influences the comfort level of the first. The
present results demonstrate, for the first time, that the comfort level of a person
approached by a robot depends both on the presence and the relative position
of a second person.

3.3 Inter-Position Analysis

To determine if there were statistically significant differences in participant com-
fort between two seating configurations, a Mann-Whitney U test was used to
compare the distribution of comfort ranks for a particular robot approach direc-
tion between the two seating configurations in question, for all eight approach
directions. Participant comfort levels for two positions in different seating con-
figurations1 were then defined to be statistically not different from each other if
the results of all eight Mann-Whitney U tests were statistically not different. As
this comparison requires a sequence of eight pair-wise comparisons to be ‘not dif-
ferent’ to confirm the null hypothesis, a correction is applied. The FDR-control
method was again used with q = 0.05.

Given the symmetry of Configuration A, for these comparisons it is assumed
that the results for the two seating positions in Configuration A can be ‘rotated’
on to each other, effectively doubling the sample size to N = 40. An inter-position
analysis performed between the two positions of Configuration A gives p = {0.83,
0.62, 0.085, 0.82, 0.48, 0.80, 0.95, 0.55} for directions 1–8 respectively. The strong
similarity of the two sets of distributions validates the assumption. It also shows
that no bias is present due to the asymmetry of the room (Figure 2) relative to the
seating positions.

Table 2 shows the results of comparing the comfort levels of single persons
approached by a robot with those of individuals seated in the group configura-
tions. The scarcity of significantly different distributions shows that the comfort
profiles of lone individuals and those in groups of two are only slightly differ-
ent. The strong similarity found in the inter-position analysis indicates a high
degree of consistency in participant comfort scoring throughout the experiments.
Although the results in Table 2 show that the comfort profiles of people in pairs
are similar to those seated alone, Table 1 shows a trend towards more uniform
comfort profiles for grouped individuals, but with more variance. That is, the

1 Although two positions in the same seating configuration could be compared, we
focus on comparisons between lone individuals and individuals in groups of two.
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presence of a second person does not significantly change the comfort level of
an individual, but does tend to decrease the sensitivity of the individual to the
direction of robot approach.

Table 2. Results, in the form of p-values, of pairwise comparison tests for an inter-
position analysis. The first column shows the robot approach direction of interest.
Subsequent columns show the probability that the distribution of comfort levels of
individuals in particular groups are not different from those of lone individuals. The
five p-values that represent distributions that are significantly different to the SPSR
distributions at the 5% level after FDR correction have been emphasised.

Dir Ind. A Con. B Con. B Con. C Con. C
(Left) (Right) (Left) (Right)

1 0.11 0.45 0.40 0.26 0.01
2 0.48 0.83 0.56 0.29 0.08
3 0.04 0.11 0.09 0.02 0.40
4 0.06 0.01 0.00 0.01 0.13
5 0.00 0.01 0.08 0.39 0.00
6 0.80 0.31 0.51 0.30 0.35
7 0.28 0.42 0.09 0.13 0.27
8 0.29 0.18 0.08 0.70 0.30

4 Discussion

The SPSR results in Table 1 show a marked front-back asymmetry with a strong
preference for approaches from the front. These results are qualitatively similar
to the results of prior SPSR experiments. In comparison, the individuals seated
in groups of two have less directional preference. The standard deviation of the
SPSR distributions are generally smaller than the distributions of individuals
seated in groups, showing a more consistent comfort preference in the SPSR
scenario.

The intra-position analysis shows that the relative differences between com-
fort level distributions for different robot approach paths change from those of
the SPSR configuration when a second person is introduced. That is, the pres-
ence of a second person changes the comfort profile of the first. Furthermore,
since the differences between comfort level distributions change with the relative
position of the second person (Configuration A, B or C), the position of the
second person influences the comfort profiles of the first. Although the second
result was shown previously [7], it is restated here with higher statistical power.

The inter-position analysis compares how similar the comfort distributions
of SPSR participants are to those distributions of individuals seated in a group.
Almost all of the ‘low’ p-values in Table 2 occur for directions 3–5. Combining
this with the values in Table 1, it can be seen that the comfort of a person when
they are approached from behind improves in the presence of a second person.
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Most comparisons of approach directions for individuals in group configura-
tions against the approach directions of lone individuals show statistically non-
significant differences. While the intra-position comparison results showed that
the presence and location of a second participant influence the comfort of an
individual, the lack of significantly different comfort distributions in the inter-
position results show that the general shape of the comfort profile for individuals
in Configurations A, B or C are similar to individuals in an SPSR configuration.
That is, robot approach directions from a ‘front’ direction are more comfortable
than approaches from a ‘rear’ direction, but with a reduced magnitude in the
comfort difference between these two robot approach regions.

Although there is an approximately equal gender split in the data set (43.5%
males, 56.5% females), it is not possible to make a statistically significant claim
about the differences in comfort results reported by each gender. The collected
data came from several different seating configurations, and in order to show
that the results for each gender were independent of the experiment seating
configuration, it would have to be shown that there were no significant differences
for each gender across all seating configurations. Unfortunately, the sample size
for each gender in each seating configuration is insufficient to make a statistically
sound gender-based claim.

Some insight into a gender comparison can be obtained by analysing the
Configuration A data, where two people are seated opposite each other. If it is
assumed that there is no spatial bias introduced by the slight asymmetry of the
room, then the data can be partitioned by gender. Of the 40 participants for
Configuration A, 16 were male and 24 were female. While a sample size of 16
for the males is a little low to make a strong statistical claim (statistical power
is approximately 0.7), it is sufficiently large to show a general trend that could
warrant further investigation. It is also worth noting that this comparison does
not consider the gender of the subject’s partner.

When performed on the male data, a KW-ANOVA analysis (χ2(7,120) =
22.58, p < 0.01, η2 = 0.18) suggested that there were different comfort distri-
butions for different robot approach directions. Performing a follow-up multiple
comparison between robot approach directions with a FDR correction factor
found no significantly different distributions. For the female data, there were
significant differences in some approach directions (χ2(7,184) = 17.72, p = 0.01,
η2 = 0.09). Robot approach direction 4 was found to be statistically different
to approach directions 1,3,7 & 8. An inter-gender analysis gives p = 0.03, 0.73,
0.18, 0.95, 0.07, 0.88, 0.07, 0.90 for approach directions 1-8 respectively, all of
which are non-significant with a FDR correction factor with q = 0.05. While
the intra-gender results showed that females preferred ‘frontal’ robot approach
directions to a direct ‘rear’ approach, the inter-gender results show that there
are no significant differences between the rank distributions of males and females
for each robot approach direction. By increasing the sample size, particular for
the males, this observation would have greater statistical strength.
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5 Conclusion

This work used inter- and intra-position statistical analyses of experimental data
to quantify differences between the comfort levels of lone and paired individuals
approached by a robot from several directions. Although the presence of a second
person influenced the comfort profile of the first by decreasing their sensitivity to
the direction of robot approach, a strong similarity remained between the com-
fort profiles of grouped and lone individuals. Comparison of intra-position data
analyses showed that the relative location of the second participant influenced
the comfort profile of the first.
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Abstract. This paper has the dual aims of introducing and using
directional statistics to investigate the comfort levels of pairs of people
approached by a robot from different directions. Data from pairs seated
in three maximally-different seating configurations are analysed. These
data are in the form of circular distributions of ranked comfort levels. Sta-
tistical tests for uniformity of circular distributions and for determining
if differences exist between pairs of circular distributions are introduced
and used to analyse the directional properties of the data. It is shown
that directional statistics can be used to compare comfort level ranks
that capture all tested robot approach directions; something that cannot
be achieved with linear statistics.

Keywords: Human-Robot Interaction · Comfort · Group · Directional
statistics · Non-parametric

1 Introduction

Directional statistics provides methods of analysing data that are circularly dis-
tributed. In a general sense, this includes any data that can be assigned an orien-
tation [1] or be represented on a hypersphere [2]. In social robotics, one example
of such data is the preferences of people approached by a robot, as encoded by
their ratings of comfort levels with approaches from different directions. Each
robot approach direction can be assigned an orientation relative to the person,
and directional statistics can then be used to analyse the corresponding data.

The scenario of a person approached by a robot is interesting in that it can
be analysed using both linear and directional statistics. Linear statistics can be
applied to experimental data to measure the differences in participant comfort
between two robot approach directions. Such linear analysis has been performed
both for lone individuals [3–5] and for groups of two [6,7]. These linear analyses
compared participant data from different robot approach directions to see which
directions resulted in participant comfort levels that were statistically different.
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In these scenarios, linear statistics analysed the distribution of comfort data across
particular robot approach directions, while directional statistics can analyse the
circular distribution of robot approach directions across particular values of com-
fort data.

The present work shows how directional statistics complements linear statis-
tics when analysing comfort profiles of participants that are approached by a
robot from several different directions. In the following section we provide some
background on directional statistics and explain how relative robot approach
directions can be incorporated. We then briefly explain the experimental pro-
cess, provide analytical results from collected data together with a higher-level
commentary on the implications of the numerical results.

2 Directional Statistics

To make meaningful claims1 regarding the comfort of participants approached
by a robot, the data must be analysed statistically [8]. The set of available statis-
tical tests falls into two categories: parametric and non-parametric. Parametric
tests assume that sampled observations come from a population with a known
parameterization, such as the normal distribution. The challenge, then, is either
to use the sampled data to estimate the unknown parameters or to derive con-
fidence intervals for the unknown parameters [9]. Non-parametric tests, on the
other hand, do not make any assumptions about distributions in an underlying
population and are often considered ‘distribution-free’ [10].

In this work we focus on non-parametric tests as they are functional without
the need to make assumptions about the distribution of participant responses.
Two directional statistics tests are utilised in this work. The first test examines
the uniformity of a directional distribution, while the second analyses similarities
between a number of directional distributions.

2.1 Test of Distribution Uniformity

The Rayleigh test [2] estimates the probability that a population is uniformly
distributed over all directions. By treating each sampled datum as a unit vector
in its corresponding direction, the vector sample mean R provides a measure
of distribution uniformity. As the expected value E(cosθ, sinθ) = 0 when θ is
sampled from a uniform distribution, the uniformity hypothesis can be rejected
when R is ‘large’ [1].

To determine whether R exceeds a threshold value, a mapping is required
from the vector sample mean space R

+ to the probability space [0 1]; p-values
in this latter space are estimated probabilities that the sampled data are direc-
tionally uniformly distributed. In this work we set p ≤ 0.05 for a distribution to
be non-uniform. As R is a bivariate function, the probability distribution is sim-
ilar to the chi-squared distribution with two degrees of freedom. This mapping

1 That is, to distinguish real effects from chance occurrences.



Understanding Group Comfort Through Directional Statistics 53

can be done with an error of order O(n−2) [11]. There are pathological non-
uniform distributions that can ‘pass’ the Rayleigh test. It is therefore important
to perform a post hoc inspection to confirm results.

Sometimes data collected for analysis can have a coarse directional resolution
or be grouped2. When working on data with this property, a correction factor
can be used to allow for the coarse directional resolution. This is typically done
when the directional resolution is π/4 or greater [1]. Such a corrected vector
sample mean is defined by Stuart and Ord [12].

2.2 Comparison of Circular Distributions

Although the Rayleigh test measures the uniformity of a directional distribution
it does not quantify differences between multiple distributions.

Watson’s U2 test [13] provides a method of measuring the difference between
two circular distributions. This test is the directional equivalent of the linear
Mann-Whitney U test [14]. Watson’s U2 test can be extended to permit the
testing of more than two distributions, as shown by Brown [15]. This extension
is beneficial as it allows an ANOVA-equivalent test to be performed while also
accommodating data grouping that coarsens directional resolution.

In a similar manner to the Rayleigh test, the U2 value obtained needs to be
mapped to a probability. The mapping between a U2 value and the corresponding
p-value is defined by Maag [16].

These directional statistics tools allow directional data to be analysed in
ways analogous to the more widely known linear statistics. A U2 value can
be obtained by comparing all directional distributions with each other using
Brown’s extended U2 test [15] in a non-parametric ANOVA-equivalent test. If
the corresponding p-value indicates that there are directional distributions that
are significantly different to each other then a post hoc pairwise multiple com-
parison using Brown’s extended U2 test is performed for each possible pair of
distributions. It is worth noting that Brown’s extended U2 test degenerates to
Watson’s U2 test when only two distributions are tested. Again, U2 values are
converted to p-values using the transformation provided by Maag. Because a
multiple comparison test is being performed, a p-value correction is required
to prevent excessive false-positives. The present work uses the false discovery
rate (FDR) [17], rather than a family-wise error rate correction factor [14] such
as Bonferonni, since the FDR method provides better statistical power for the
multiple comparison test.

3 Experiment

A brief overview of how the experimental data was collected is given here; the inter-
ested reader could refer to [7] for more details. Participants naive to the experiment
were recruited on a campus of the University of New South Wales, Australia. For

2 Grouping is an artificial method of making the directional resolution more coarse.
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each experimental trial, a new pair of participants was seated at a low table in the
centre of a room and asked to work on a three-dimensional jigsaw puzzle, a cooper-
ative non-turn-taking task, for the duration of the experiment. A task was assigned
to the participants to provide a cognitive load for the duration of the experiment,
minimising participant attention towards the robot’s location and movement. The
participants were periodically approached and interrupted by a robot that was also
present in the room. The robot used prerecorded speech to ask the participants to
rate how comfortable they were with the most recent robot approach. Following
each robot approach, each participant scored their response to the question “Please
rate how comfortable you were with the robot’s most recent approach path” on
a five-point Likert scale between 1: “Uncomfortable” and 5: “Comfortable”. The
experiment continued until the robot had approached the pair from eight different
directions in randomorder.The order of robot approach directionswas randomised
for each experiment to prevent order effects. Additional information, such as par-
ticipant perceptions of the robot, was gathered using a post-experiment question-
naire.

Three maximally-different seating configurations of two people working on a
common task were chosen. These configurations, shown in Figure 1, are referred
to as Configurations A, B and C. The interaction between the pair of participants
was assumed to have an o-space (Kendon [18]) centred on the shared jigsaw
puzzle. Figure 1 also shows the orientation of the seating configurations in the
room and the eight robot approach directions used in the experiment.

Screens

Table

Chair

C
ur
ta
in
s

Operator
Table6

5

87

2

1

4 3
Door

6

5

87

2

1

4 3

6

5

87

2

1

4 3

(a) (b) (c)

Fig. 1. Experimental space with chairs arranged in (a) Configuration A, (b) Configu-
ration B and (c) Configuration C. From [7]. The arrows represent the robot approach
directions.

3.1 Data Preprocessing

Since individuals have a wide variety of prior experiences, it is inevitable that
significant differences will exist between the self-reported comfort level scores of
participants in the same situation. To avoid the need for parameterising user
comfort levels with particular robot approach paths, each participant’s absolute
comfort scores for the eight robot approach directions were converted to ranks
from one (most comfortable) to eight (least comfortable). When a participant
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scored two or more approach directions as equally comfortable the directions
were assigned the same rank. In such cases, the rank of the next highest score
was set to one greater than the cardinality of previously ranked scores. Each
rank distribution was then formed by counting how many times that particular
rank was associated with each robot approach direction.

Seating configurations B and C have persons on the right and the left; these
rank data were coded ‘R’ and ‘L’ to preserve the information associated with rel-
ative position. In Configuration A the relative position of the second person is the
same for both individuals. The data for one person was therefore superimposed
on the other, effectively doubling the amount of individual data in Configura-
tion A. These data are denoted ‘A Ind.’ The scores for each pair of participants
were summed to produce combined group scores for Configurations A, B and C.
Group ranks were derived from these group scores to provide information about
the comfort of pairs of participants.

The conversion of absolute comfort scores to ranks allows non-parametric
tests to be used in the analysis. This is beneficial as the underlying distribution
of the general population does not have to be assumed. In the application of
directional statistics in the present work, a sample distribution is the distribution
of the number of occurrences of a particular rank for each direction.

Uniformity Test: Each robot approach direction was assigned an angle based
on its relative orientation to the other approach directions. The directions 2,
3, . . . , 8, 1 defined in Figure 1 were assigned angles 0, 7π/4, ..., 2π/4, π/4. It is
worth noting that the Rayleigh test is rotationally invariant so that the angle
labels are arbitrary provided that the relative order of the angles is maintained.

Circular Distribution Comparisons: As multiple comparisons are made in
analysing the directional rank data, a correction factor is required. The FDR
mentioned in Section 2.2 was used with a q-value of 0.05 [17].

4 Experiment Results

4.1 Rayleigh Tests of Uniformity

The results of the Rayleigh test applied to each rank distribution are shown in
Table 1. Choosing p < 0.05 as the threshold for rejecting the null hypothesis
that the directional data are uniformly distributed gives nine statistically non-
uniform distributions. Examples of statistically uniform and non-uniform rank
distributions are shown in Figure 2.

It is important to note that the p-values resulting from the application of the
Rayleigh test to two distributions cannot be compared with each other beyond
determining which distribution is the more uniform. The Rayleigh test provides
no information regarding the nature of the non-uniformity.

4.2 Watson’s U2 Test

When applied to the group rank data for Configurations A, B and C, the
ANOVA-equivalent Watson’s U2 test verified the null hypothesis at a significance
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level of p < 0.05 for Configuration A (U2 = 0.69, p = 0.21) and Configuration
B (U2 = 0.82, p = 0.06). The test showed a highly significant difference in some
rank distributions for Configuration C (U2 = 1.35, p < 0.01).

The p-values from a post hoc multiple comparison U2 test conducted for
Configuration C are shown in Table 2(a). Nine pairs of rank distributions were
found to be statistically significantly different following the FDR correction.

The rank distributions of individuals in each configuration were examined
next. For the individuals in Configuration A there was a highly significant dif-
ference in rank distributions (U2 = 1.36, p < 0.01). The p-values from the post
hoc multiple comparison tests are shown in Table 2(b). Five pairs of rank dis-
tributions were found to be significantly different following the FDR correction.
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(a)

(a) A Ind., Rank 4, p = 0.94.
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(b)

(b) A Ind., Rank 8, p = 0.00.

Fig. 2. Examples of (a) uniform and (b) non-uniform rank distributions according to
the Rayleigh test. The dots represent the count of how often the labeled directions
were assigned to the represented rank.

Table 1. Results of the Rayleigh test for uniformity of rank distributions. The table
shows probabilities that the rank distributions are uniform. Bold numbers denotes
p-values < 0.05. Labels ‘A’, ‘B’ and ‘C’ refer to group ranks of the corresponding
configurations whereas all other labels refer to individual ranks.

Rank Configuration
A B C A Ind. B (L) B (R) C (L) C (R)

1 0.93 0.23 0.01 0.13 0.10 0.39 0.15 0.03
2 0.35 0.07 0.08 0.08 0.70 0.36 0.30 0.03
3 0.46 0.07 0.83 0.17 0.92 0.13 0.56 0.09
4 0.06 0.58 0.48 0.94 0.27 0.27 0.42 0.90
5 0.56 0.36 0.41 0.48 0.60 0.99 0.21 0.49
6 0.78 0.30 0.01 0.36 0.54 0.20 0.31 0.07
7 0.98 0.26 0.01 0.11 0.06 0.49 0.14 0.01
8 0.08 0.41 0.00 0.00 0.06 0.12 0.06 0.01
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It is notable that all pairs that are significantly different contain the least com-
fortable rank, rank 8.

The null hypothesis was confirmed for participants that sat on the left in
Configuration B (U2 = 0.84, p = 0.05) and on the right in Configuration B
(U2 = 0.74, p = 0.13). For Configuration C, the null hypothesis was confirmed for
participants seated on the left (U2 = 0.84, p = 0.05), but significant differences
in rank distributions were found for participants seated on the right (U2 =
1.32, p < 0.01). The p-values of the post hoc multiple comparison test can be
seen in Table 2(c).

It is possible to compare the rank distributions of people on the left and
right of the same seating configuration. As there are eight rank distributions for
each location, the dimensionality of the ANOVA-equivalent U2 test increases to
16. Examining the data this way shows a highly significant difference between
some rank distributions for the participants in Configuration A (U2 = 2.27, p <
0.01) and Configuration C (U2 = 2.17, p < 0.01). There were no significant
differences in rank distributions between the participants for Configuration B
(U2 = 1.59, p = 0.06). The p-values of the post hoc multiple comparison tests
for Configurations A and C can be seen in Tables 3(a) and 3(b) respectively.

5 Discussion

From the first set of rank distribution comparisons shown in Table 2, the p-values
loosely cluster into two groups. The first group consists of rank distributions
1–5, while the second group consists of rank distributions 6–8. These findings
are consistent with the Rayleigh uniformity test results in Table 1, where most of
the non-uniform distributions are of higher rank, indicating lower comfort levels.
The distributions of the ‘least comfortable’ higher ranks are (unsurprisingly)
dense in directions behind individuals (Figure 2b), showing that comfort levels
with different robot approach directions are governed by a strong preference for
where the robot should not approach from.

The results for the intra-group comparisons in Tables 3(a) and 3(b) are con-
sistent with the earlier Rayleigh (Table 1) and Watson’s U2 (Table 2) results. In
Table 3(a) it is not surprising to see a significant difference between the higher
ranks of each location, as people seated in Configuration A face opposite direc-
tions. Table 3(b) shows a trend of similarity between the left and right seating
locations in Configuration C. The third quadrant of the table shows the cluster-
ing trend of the results for the left and right with comparisons of rank distribu-
tions 1 to 5 and 6 to 8 having a higher p-value than other pairwise comparisons
in the quadrant.

Clustering directional ranks cannot be done with linear statistics as no rela-
tionship exists between different linear sampled distributions. Results from a
linear statistical analysis [3–7,19], either for individuals or groups, do not natu-
rally suggest an alternate robot approach direction if one can not be selected on
the basis of application constraints. As directional statistics tie the data together
both spatially through the robot approach directions and ordinally through the
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Table 2. Results of multiple pairwise comparisons between ranks using the modified
Watson’s U2 test. The bold entries denote pairwise rank comparisons that were signi-
ficatively different following a false discovery rate correction with q = 0.05. Only the
three configurations with a p-value < 0.05 mapped from the modified Watson’s U2

(ANOVA-equivalent) test are shown.

(a) Configuration C

Rank 1 2 3 4 5 6 7 8

1
2 0.42
3 0.52 0.52
4 0.37 0.25 0.90
5 0.47 0.82 0.69 0.38
6 0.00 0.01 0.09 0.02 0.02
7 0.00 0.00 0.06 0.03 0.01 0.31
8 0.00 0.00 0.03 0.01 0.01 0.20 0.50

(b) Individual A

Rank 1 2 3 4 5 6 7 8

1
2 0.39
3 0.59 0.96
4 0.73 0.29 0.48
5 0.81 0.60 0.76 0.85
6 0.12 0.03 0.06 0.38 0.24
7 0.03 0.02 0.04 0.28 0.17 0.74
8 0.00 0.00 0.00 0.00 0.00 0.02 0.03

(c) Individual C (R)

Rank 1 2 3 4 5 6 7 8

1
2 0.41
3 0.10 0.19
4 0.40 0.11 0.12
5 0.54 0.25 0.53 0.32
6 0.01 0.00 0.04 0.35 0.03
7 0.00 0.00 0.03 0.20 0.03 0.74
8 0.00 0.00 0.01 0.05 0.01 0.14 0.48

ranking process, they can provide the basis for heuristic rules describing the
direction(s) a robot should approach a person from. The directional results pre-
sented here support prior linear results [7,19] that show significant differences
between being approached from behind and being approached from any other
direction by the robot.
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Table 3. Results of intra-group pairwise comparisons between ranks using the mod-
ified Watson’s U2 test. Bold entries denote pairwise rank comparisons that were sig-
nificatively different following a false discovery rate correction with q = 0.05. The
two configurations with a p-value < 0.05 mapped from the modified Watson’s U2 test
(ANOVA-equivalent) are shown.

(a) Configuration A

L1 L2 L3 L4 L5 L6 L7 L8 R1 R2 R3 R4 R5 R6 R7 R8

L1
L2 0.64
L3 0.28 0.20
L4 0.45 0.46 0.70
L5 0.36 0.37 0.77 0.93
L6 0.09 0.05 0.12 0.04 0.08
L7 0.03 0.02 0.05 0.01 0.02 0.79
L8 0.00 0.00 0.00 0.00 0.00 0.23 0.56

R1 0.20 0.09 0.19 0.08 0.14 0.68 0.29 0.01
R2 0.12 0.11 0.07 0.03 0.03 0.42 0.59 0.19 0.23
R3 0.01 0.01 0.09 0.02 0.05 0.33 0.26 0.15 0.09 0.07
R4 0.45 0.41 0.85 0.89 0.80 0.05 0.01 0.00 0.12 0.04 0.02
R5 0.63 0.25 0.69 0.50 0.44 0.40 0.28 0.04 0.72 0.22 0.11 0.63
R6 0.85 0.51 0.32 0.39 0.38 0.54 0.26 0.04 0.86 0.30 0.09 0.47 0.70
R7 0.31 0.51 0.08 0.07 0.08 0.17 0.13 0.01 0.16 0.61 0.01 0.08 0.19 0.48
R8 0.09 0.33 0.15 0.51 0.42 0.00 0.00 0.00 0.00 0.01 0.00 0.21 0.13 0.09 0.02

(b) Configuration C

L1 L2 L3 L4 L5 L6 L7 L8 R1 R2 R3 R4 R5 R6 R7 R8

L1
L2 0.59
L3 0.84 0.89
L4 0.15 0.48 0.67
L5 0.10 0.15 0.27 0.58
L6 0.11 0.13 0.25 0.26 0.31
L7 0.09 0.09 0.14 0.10 0.15 0.91
L8 0.01 0.04 0.09 0.12 0.35 0.37 0.28

R1 0.07 0.40 0.72 0.80 0.51 0.07 0.02 0.04
R2 0.10 0.59 0.50 0.29 0.22 0.02 0.01 0.01 0.41
R3 0.56 0.73 0.56 0.15 0.05 0.06 0.06 0.01 0.10 0.19
R4 0.33 0.36 0.61 0.58 0.45 0.81 0.50 0.22 0.40 0.11 0.12
R5 0.64 0.53 0.83 0.55 0.26 0.15 0.09 0.07 0.54 0.25 0.53 0.32
R6 0.03 0.08 0.08 0.05 0.09 0.65 0.89 0.09 0.01 0.00 0.04 0.35 0.03
R7 0.03 0.04 0.06 0.02 0.06 0.54 0.90 0.15 0.00 0.00 0.03 0.20 0.03 0.74
R8 0.01 0.01 0.02 0.01 0.04 0.16 0.32 0.36 0.00 0.00 0.01 0.05 0.01 0.14 0.48

6 Conclusion

While directional and linear statistics methods are used for the analysis of
different types of data, we have shown that when data can be represented in
both forms, directional statistics provides information that cannot be obtained
through the counterpart linear methods. Directional statistics therefore com-
plements linear statistics with directional information, such as suggesting from
what direction a robot should, or should not, approach a group of people.

Directional statistics showed that when pairs of people are approached by
a robot, comfort ranks cluster loosely into two groups of ‘less comfortable’ and
‘more comfortable’. The absence of a ‘most comfortable’ rank suggests that par-
ticipants did not have a most preferred robot approach direction, while the
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density of less comfortable ranks behind participants suggests a strong prefer-
ence for robot approach paths that should be avoided.
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Abstract. We look at the problem of enabling a mobile service robot
to autonomously adapt to user preferences over repeated interactions
in a long-term time frame, where the user provides feedback on every
interaction in the form of a rating. We assume that the robot has a
discrete and finite set of interaction options from which it has to choose
one at every encounter with a given user. We first present three models
of users which span the spectrum of possible preference profiles and their
dynamics, incorporating aspects such as boredom and taste for change
or surprise. Second, given the model to which the user belongs to, we
present a learning algorithm which is able to successfully learn the model
parameters. We show the applicability of our framework to personalizing
light animations on our mobile service robot, CoBot.

1 Introduction

An important part of Human-Robot Interaction (HRI) research aims at find-
ing iconic ways for robots to interact with humans, that are both effective and
universal, especially when the interaction has a direct functional role (e.g. com-
municating intent or instructing the user). Human studies can be helpful in the
design of this type of interaction, where one aims at finding one way of interact-
ing which works best on average. On the other hand, there exists another type
of interaction whose main purpose is to please or adapt rather than to directly
perform a functional role (e.g. pertaining to robot appearance, speech wording,
sounds etc.). It is this type of interaction on which we will focus throughout this
paper. The assumption is that there can be high variability in the way differ-
ent users desire or expect to perform this type of interaction with a robot. In
this case, a social understanding of the interaction is not very valuable since the
problem of interaction choice selection is more a matter of adapting to the user’s
tastes and is hence theoretically arbitrary. There has been general evidence that
personalization of robot appearance and behavior can greatly improve user expe-
rience [8] in terms of “rapport, cooperation and engagement” [4], hence the need
to move away from the human study paradigm towards automated personaliza-
tion of the interaction. In this work, we are interested in particular in mobile
robots which are persistent over time and which interact with different types of
users over an extended time frame. We will use expression through lights on our
c© Springer International Publishing Switzerland 2015
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mobile service robot, CoBot (see figure 1), as a motivating example, but this
work can be applied to any form of interaction whose main purpose is to please
rather than inform - e.g. voice in speech generation, motion or pose of the robot
during interaction, facial expression of a humanoid...

We look at the general problem of learning how to best interact with differ-
ent individuals based on feedback from the latter. More specifically, we make the
following assumptions. (1) A robot repeatedly interacts with different humans
whose identity is known by the robot. (2) Every time the robot encounters
some individual, it chooses one out of a set of fixed possible options to interact
with them. (3) The user has a method of providing feedback for the interaction
through a score or rating. In practice, social interactions can be much more com-
plex and require much more context to help adaptation, however there is a wide
range of interaction types which do not play a direct functional social role but
act more as a complement to the main interaction. For illustration purposes, we
use interaction with lights on one of our mobile service robots, CoBot3. CoBot3’s
expressive lights are being used to enhance the interaction with humans. A finite
set of predefined light animations can be used for personalized interaction. The
robot, being able to accurately navigate and localize itself accurately in our
buildings, can identify users (e.g. by their office number or by recognizing an
associated digital signature), hence enabling the personalization of light anima-
tions while servicing that user. At the end of each interaction, the touch screen
interface may be used to rate the interaction (e.g. by the use of a slider).

Long-term user preferences are however from being static or homogeneous,
which is not accounted for in traditional recommender systems. Indeed, being
exposed to the same type of interaction for a long time might develop boredom or
fatigue for some, while others might value it for its predictability. To summarize,
general static preferences change from individual to individual, but preference
dynamics are equally important in a long-term setting. In this paper, we propose
to learn, for a given user, both sets of preferred interaction options and time-
related quantities which would dictate the preferred dynamics of interaction.

The paper is divided into three main parts. In the first part, we introduce
three user models which capture different possible profiles in relation to the
appreciation of “change” in the way the robot interacts with the user. These
are formulated in terms of evolution of the reward from the user as a function
of the possible sequences of interactions options used when interacting with
that user. In the second part, we present our algorithms to learn the model
parameters, assuming we are given the user model. In the third part, we show the
applicability of this work to our mobile service robot, CoBot, which is deployed
in our buildings and uses expressive lights for improved interaction with humans.

2 Related Work

Apart from simple customization during usage [8], recent work has looked at
autonomous personalization of HRI based on previous interactions with the same
user. Examples include a snack delivering robot which uses data from past inter-
actions to personalize the future interactions [4] or a humanoid robot learning
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different models for expressing emotion through motion, which it is then able
to use for personalizing expression of emotions [9]. Furthermore, the idea of
self-initiative in a robot has been explored by learning ways of acting in the
world depending on user verbal feedback on the current “state of the world” [7].
Finally, user modeling for long-term HRI, a focus of the current paper, has been
looked at using archetypes of real users called personas, which encode traits of
potential users in terms of interaction preferences [3]. Some authors also looked
at ways of learning long-term behavior by identifying social primitives that are
important when the novelty aspect of interaction vanishes [12] or matching per-
sonalities between robot and user [11]. However, these works focus more on the
social aspect of the interaction rather on the intelligence of the adaptation from
a generic point of view, making their applicability and generalization poor in
different types or modes of interaction. In this work, we would like to decouple
the nature of the interaction options with the generic adaptation mechanism,
which can then be tuned based on the nature of the interaction and the user’s
response to it.

In the problem we consider, we will assume that user data are limited to
rewards at every interaction (in the form of a rating submitted by the user),
making it comparable to a recommender system learning user preferences and
suggesting new items [1]. However, the algorithms used in such systems do not
take into account the dynamics of preferences (boredom, habituation, desire for
change etc.). In the field of automatic music playlist generation, the concepts of
diversity and serendipity have been mentioned [2]. However, no viable solution
has yet been proposed to address this problem. Also, the idea of exploration
in music recommender systems has been studied [10], but it does not apply to
our problem since we assume the number of interaction options to be relatively
small. In a robotics application, the need for adaptive interaction that takes into
account habituation has been recently formulated for empathic behavior [12]
(in this paper, we take a more general approach). Going back to the problem of
preference dynamics, our problem can formally be compared to the restless multi-
armed bandit problem where rewards are non-stationary and which is generally
known to be P-SPACE hard [5]. In this work, we restrict the rewards to evolve
according to one of three models, which makes the problem of learning the model
parameters easier to solve.

3 Formalism and User Modeling

In this section, we start by presenting the formulation of the problem at hand
and move on to introduce three models of dynamic preferences corresponding to
three different possible profiles of users.

3.1 Problem Setting

Time is discretized into steps i = 1, 2, 3, ..., where each time step represents
an encounter between the robot and the user. We assume that the encounters
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are of an identical nature or serve the same functional role (for example the
robot is always delivering an object to the user’s office). Also, for simplicity,
we do not worry about the actual time interval between two consecutive steps
(these could be for example different days or different times within the same
day). At every time step, we assume the robot has to choose one out of a set of
n possible actions corresponding to interaction options. In the context of light
animations, the different actions represent different animations in terms of speed,
color or animation patterns. Let A = {a1, ..., an} represent the set of possible
actions. After every encounter, we assume that the user provides a rating r(i) to
the interaction where r(i) ∈ [0; 10]. The reward is assumed to be corrupted by
additive white Gaussian noise: r = r̄+ε where ε ∼ N(0, σ2). The noise can come
from the following sources: (1) inaccurate reporting of the user’s true valuation,
(2) mistakes when using the user interface (e.g. slider) to report the reward and
(3) failure to remember previous ratings resulting in inconsistent ratings.

Our goal is to learn, for a specific user (with a specific reward model), which
action to take next given the history of actions and rewards. The problem can
hence be compared to the Multi-Armed Bandit problem where a single player,
choosing at each time step one to play one out of several possible arms and
gets a reward for it, aims to maximize total reward (or equivalently minimize
total regret) [5]. In our case, the rewards are stochastic and non-stationary
and the arms or actions, corresponding to the different interaction options, are
relatively few. From now on, we will use “actions” and “interaction options”
interchangeably.

3.2 Modeling Dynamic User Preferences Over Time

We now introduce three user models which we think span well enough the spec-
trum of possible profiles, inspired by variations along the “openness” dimension
of the five-factor model in psychology [13]. These models we crafted take into
account both properties of preferred actions sets and time-related quantities
dictating the evolution of rewards depending on the action sequences. Figure 1
shows sample ideal sequences for lights on our robot, CoBot3, for each of the
three models on different days in which the robot visits a person’s office to deliver
coffee. For the three models presented below, we use Apref to denote the set of
preferred actions (regardless of the sequence of actions in which they fall).

Model 1: The “Conservative”. This type of user wants to stick to one option
denoted by a∗, but appreciates surprises from time to time at some frequency.
A surprise means taking for one time step an action a �= a∗ in a set of preferred
“surprise actions” Asurp ⊂ A. When a∗ is repetitively shown in a sequence
(we call sequences of the same action homogeneous sequences), the reward r̄
starts out as a constant (rmax) and after T time steps starts decreasing, due to
boredom, with a linear decay rate α until it reaches rmin, after which it remains
constant. For homogeneous sequences of the non-preferred actions (i.e. actions
in A \ {a∗}), the reward starts at a value rnon−pref and decreases exponentially
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to zero with time (indicating that the user very quickly gets bored) with some
decay rate β. In summary, the model parameters are:

– a∗: the action with the maximum value of E [r̄]. A homogeneous sequence of
a∗ actions is referred to from now on as a p-sequence.

– Apref = {a∗}
– Asurp: set of actions suitable for surprises, defined as {a : E[r̄a] > rth}, where

rth is a threshold value.
– T : optimal length of the homogeneous sequence of the preferred action, after

which the user starts getting bored. If the robot always alternates between
p-sequences and surprises, T can also be seen as a between two consecutive
surprises. T is assumed to be a random variable uniformly drawn in a window
[Tmin, Tmax] every time a new p-sequence is started.

– α: linear reward decay rate in a p-sequence whose length exceeds T .
– rmax: constant reward for p-sequences of length less than or equal to T.
– rmin: lower clipping value for reward in p-sequences. A good value for is 5,

which means that the user is neither rewarding nor punishing the robot for
taking their preferred action for too long.

– rnon−pref : initial reward value when starting a homogeneous sequence that
is not a p-sequence. If the previous homogeneous sequence is a p-sequence,
rnon−pref is a function of the length of the p-sequence l as follows: if l ≥ Tmin

we assume that the user is expecting a surprise which will provide some
maximal reward rnon−pref,max. When l < Tmin, we expect the surprise
to be disliked, so we decrease the surprise reward linearly: rnon−pref =
rnon−pref,max.(1 − Tmin−l+1

Tmin
). If the previous homogeneous sequence is not a

p-sequence, rnon−pref is a constant rnon−pref,base.
– β: exponential reward decay rate for a homogeneous sequence that is not a

p-sequence.

Model 2: The “Consistent But Fatigable”. This type of user values con-
sistency in actions taken but needs shifts from time to time. It is the profile
where there always needs to be an uninterrupted routine but this routine has
to be changed after some time. The user has a set of preferred actions which
he expects to see in long sequences. These sequences alternate between the dif-
ferent preferred options after some time spent sticking with one of the options.
We assume the same model of boredom used in the previous section, namely the
reward starts decaying linearly for the preferred actions after some time interval
T . There is no surprise factor associated with this model since we assume that
the user does not appreciate surprises.

The parameters of this model are the following (no description provided
means the parameters are the same as in the “conservative” model):

– Apref = {a∗
1, ..., a

∗
m}, where m ≥ 2. p-sequences in this model are defined to

be homogeneous sequences formed using one action in Apref .
– T : optimal length of a p-sequence, after which the user starts getting bored. T

is assumed to be a random variable uniformly drawn in a window [Tmin, Tmax]
every time a new p-sequence is started.
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– α, rmax and rmin: idem
– rnon−pref : initial reward value when starting a homogeneous sequence that

is not a p-sequence. A constant in this model.
– β: decay rate of the reward for a homogeneous sequence that is not a p-

sequence.

Model 3: The “Erratic”. This type of user is mainly interested in change,
in both action selection and time-related parameters. They have no clear pref-
erences over the possible options but require the actions to change according to
some average rate not restricted to a window as in model 1 and 2. We assume
that at every step the user has some fixed probability psw to desire a switch to
a different action, independently of anything else. Hence the optimal length T
of homogeneous sequences follows the distribution: p(T = t) = (1 − psw)t−1psw
(for t ≥ 1), whose average μT = 1/psw, making μT a sufficient statistic. Similar
to previously, the reward decreases linearly after T time steps in a homogeneous
sequence.

4 Learning Model Parameters from User Feedback

Now that we have presented the three user models that we consider, we look
at the problem of learning their parameters from user reward sequences. Once
these parameters become known, we can then generate personalized sequences
of actions maximizing cumulative reward for a specific user. In what follows, we
assume that the model to which a particular user belongs to is known a priori. In
practice, this can be achieved by prompting the user to select one profile which
described them best, or through a set of questions similar to a personality test.

Note that although we have previously raised the problem of dealing with the
non-Markovian aspect of user preferences (meaning that the reward of a certain
action depends on the history of previous actions), in the way we have modeled
the user profiles in the previous section, the model parameters encode the pref-
erence dynamics. These parameters are assumed to be unchanged as time goes
by, hence we have effectively turned the dynamic problem into a Markovian one.
Next, we describe the learning procedure for each of the user profiles introduced.

4.1 Profile “Conservative”

In order to learn the parameters of this model, we divide the learning process
into two phases: one phase for learning preference sets and the other for learning
the time-related parameters. The parameters the agent performing the actions
needs to learn are: a∗, Asurp, Tmin and Tmax.

Phase 1: Learning Preference Sets. In this preliminary phase, actions are
uniformly drawn from A until each action is taken at least nth times, where nth

depends on the noise variance estimate σ̃2 and on our target confidence value
(for all practical purposes, we use nth = 10). Note that randomization of the
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Fig. 1. Sample preferred of animation sequences for the user models presented

sequence of actions to be taken is crucial in this phase since the previous actions
can have an influence on the reward of the current action and we would like to
dilute this effect. Once we have an average reward estimate for each action, we
select a∗ to be the action with the maximum estimated reward and Asurp to be
the set of all actions whose reward estimates exceed the set threshold rth, where
the value of rth has to ensure that |Asurp| ≥ 1. It assumed that the set of best
actions to be used for surprises will score high in this phase as well.

Phase 2: Learning Time-Related Parameters. In order to learn the two
parameters of interest Tmin and Tmax, the agent first learn estimate the mean
and variance of T (μT and σT respectively) and uses them to infer the parameter
values. To achieve this, the agent follows p-sequences until a need for surprise
is detected (more details below). A surprise is restricted to taking an action in
Apref for one time step following a p-sequence. After a surprise, the agent reverts
back to following a p-sequence until another surprise is decided upon.

The learning procedure goes as follows: when in a p-sequence of actions,
if a downward trend in reward is detected, show a surprise chosen uniformly
from Apref . Since the reward is noisy, a smoother is needed to filter out high
frequency noise in the data. We use an exponentially weighted moving average
(EWMA) [6] with fixed sample size s, combined with a threshold detector, to
detect a downward trend in the reward of the p-sequence. The threshold used
in the threshold detector depends on the estimated noise variance in the reward
σ̃2. Every time a downward trend is detected, we record the estimated T value
associated with the p-sequence. Once enough surprises are chosen, we would
have accurate enough estimates of μT and σT , which can be used to find the

time-related parameters as follows: T̃min,max = μ̃T ∓
√

12σ̃T
2+1−1

2 .
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Note that there is a lag associated with the moving average trend detector.
This lag is equal to half the 	 s

2
 and μ̃T needs to be adjusted to account for it.
Also, for a small number of data points, we might be overestimating σT . Hence
we set σ̃T to be half the estimate of the standard deviation in the values of T .
This way we impose a more conservative restriction on the values of T which
will ensure that [T̃min, T̃max] ⊂ [Tmin, Tmax].

4.2 Profile “Consistent but Fatigable”

Similar to that of the previous model, the learning procedure is still separated
into the two phases. However, as far as action selection is concerned, since there
is no surprise but only a change factor in this model, the termination of a p-
sequence of ai consists in starting a new p-sequence with an action chosen uni-
formly in Apref \ {ai}. The first phase for learning preference sets uses the same
procedure as before, except that once the average reward estimates are obtained,
we set Apref to be the set of animations with a reward estimate above rth (pos-
sibly different than the one used in the “conservative” model). Here again, the
threshold value should be set such that the cardinality m of Apref is at least 2.
The second phase for learning time-related parameters is similar to the one used
in the previous model.

4.3 Profile “Erratic”

For this type of profile, no sets of preferred actions need to be learned since
we assume that the user has no clear preferences between the different actions.
Hence, the only parameter to learn is the probability of switching psw. The
action selection algorithm is identical to the “consistent but fatigable” model,
with Apref = A. μT can also be estimate as before, and once a good estimate is
obtained, we infer our parameter psw as follows: p̃sw = 1

μ̃T
.

4.4 Action Sequences Generation

The learning phase stops when the parameters are learned with some target
confidence value. The latter comes in our case mainly from the error rate of the
EWMA and depends on the various parameters including noise variance. Once
the parameters are learned, appropriate stochastic sequences can be generated
according to the estimated parameter values. For models “conservative” and
“consistent but fatigable”, we uniformly draw a value of T in the estimated
window. For model “erratic”, we follow the same action with probability 1−psw
and uniformly switch to another action with probability psw. In this exploitation
phase, the feedback requirements can be reduced or eliminated, since we have
all the parameters needed to generate optimal sequences which will maximize
the cumulative reward for the given user. In practice, occasional user feedback
(e.g. asking for a reward) can be used to confirm the model and parameters. We
will not provide more detail about this exploitation phase since the focus of this
work is on the learning aspect. However, notice that in the learning phase we
are already generating sequences which are not too far from optimal.
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5 Results

In this section, we present a few results showing our implementation of our simu-
lated user’s preference dynamics and our algorithm’s ability to learn the different
model parameters. Figure 2 shows the evolution of the learning process for single
instances of the three models. We consider 8 possible actions arbitrarily labeled
1 through 8. Phase 1 of the learning algorithm can be clearly distinguished in the
first two models, after which the algorithm learns the set Apref ({a4} for model
“conservative” and {a2, a4, a6} for model “consistent but fatigable”). Once it
identifies the preferred sets, the algorithm is also able to adapt to the preferred
action dynamics. Notice that whenever there is a notable decrease in the reward,
a change is performed, whether creating a temporary “surprise” (a), changing
to another steady option (b) or creating erratic change (c).

The simulation was run over 350 time steps with the following parameter
values for illustrative purposes. Tmin = 20 and Tmax = 30 for the first two
models and psw = 0.8 for the third model. The noise variance σ2 was set to 0.05.
Here are a few results over 1,000 randomized trials.

-Model “conservative”: % error in μ̃T : 3.5% ; T̃min = 20.94; T̃max = 30.81.
After rounding, the estimated interval is contained in the true interval.

-Model “consistent but fatigable”: % error in μ̃T : 2.67% ; T̃min = 21.72;
T̃max = 26.95. The rounded estimated interval is contained in the true interval.

Fig. 2. Simulation results showing sequences of actions taken by the agent and the
corresponding reward sequences from a simulated user belonging to: (a) model “con-
servative”, (b) model “consistent but fatigable” and (c) model “erratic”
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-Model “erratic”: μ̃T = 12.67, therefore psw = 0.079 (0.13% error).
The algorithm was able to learn all the parameters with reasonable accuracy.

6 Conclusion and Future Work

We have presented three models for dynamic long-term user preferences, which
capture aspects of boredom and appreciation for change or surprise. Given which
model a specific user belongs to, our algorithm enables the robot to learn the
model parameters using the sequence of rewards given by the user. Our results
show that the agent is able to learn the parameters of the model reasonably
well and in a relatively short number of time steps for all three models. Our
algorithm is robust to noise, but further experiments are needed to evaluate
the degradation in performance as the noise increases. In the future, we plan to
enable the robot to also learn which model the user belongs to from the reward
sequences themselves. Also, allowing a mixture of the three models with weights
to be learned (although it is not exactly clear whether it is a viable idea in a
social setting) could diversify the space of sequences generated and alleviate the
problem of forcing the users to categorize themselves. Furthermore, requesting a
reward from the user at each encounter might have a negative social impact; to
overcome this, we could investigate efficient sampling methods to gather rewards
in a sparse manner while maintaining accuracy in the learning process.
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Abstract. We propose to use a model of personal space to initiate com-
munication while passing a human thereby acknowledging that humans
are not just a special kind of obstacle to be avoided but potential interac-
tion partners. As a simple form of interaction, our system communicates
an apology while closely passing a human. To this end, we present a
software architecture that integrates a social-spaces knowledge base and
a component for incremental speech production. Incrementality ensures
that the robot’s utterance can be adapted to fit the developing situation
in a natural way. Observer ratings show that personal-space intrusion
is perceived as both natural and polite if the robot has the capability
to utter and adapt an apology in an incremental way whereas it is per-
ceived as unfriendly if the robot intrudes personal space without saying
anything. Moreover, the robot is perceived as less natural if it does not
adapt.

1 Introduction

When robots and humans act in common spaces they inevitably encounter each
other regularly. Therefore, social robots need to solve the task of passing humans
in a socially appropriate manner. Pioneering work on the research question of
how robots should pass humans can be attributed to the early studies presented
in [15] and [23].

In more recent work the capability to socially pass a human has been mod-
eled using the notion of personal space. Authors from the social sciences like
Hall [8] and Sommer [21] use the concept of personal space to explain the vari-
ous phenomena related to how humans spatially behave towards other humans
with particular focus on the distances they maintain to each other. Computa-
tional models of personal space have mainly been applied to human-aware robot
navigation to avoid personal-space intrusion [5,9,16,18,19,22]. In effect, these
approaches result in robots taking detours in accordance with personal-space
theory. In fact, there seems to exist a common ground that models of personal
space should keep the robot away from humans in the first place. As a result,
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 72–82, 2015.
DOI: 10.1007/978-3-319-25554-5 8
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comparatively few approaches take personal space as a basis for specifying how
a robot should behave if it intrudes personal space. Lam and colleagues [10]
present a two-stage policy with respect to personal-space usage. As with the
other approaches, the robots should avoid personal-space intrusion. However, if
it accidently happens that the robot intrudes personal space, the robot will stop
moving until it is not within personal space anymore.

All in all, the main line of the reviewed work is that personal spaces should
not be entered by robots passing a human. Instead, the robot should take detours
and, if the robot finds itself within personal space accidently, it should freeze.
According to the available literature on human-aware robot navigation, the title
of the paper at hand seems to be inherently contradictory, because it claims
that there is a way to intrude personal spaces in a polite and natural manner.
In earlier work [13], we already suggest to add social signals to navigation plans
to gain permission to enter regions of personal space, thus, to intrude personal
space in a planful manner. In this work, we extend this idea and propose to use
a model of personal space that acknowledges that humans are not just obstacles
to be avoided but potential interaction partners. As a simple form of interac-
tion, our system communicates an apology while closely passing a human. We
present a software architecture that integrates a social-spaces knowledge base
and a component for incremental speech production (see Sect. 2). Incremental
speech production allows a system to start outputting speech based on partial
speech plans that can later be extended [20] or even altered to reflect changes
of the underlying plan [3]. Incremental speech synthesis is able to continuously
render speech with a natural and continuous prosody and at almost the qual-
ity of systems that require the full and unchangeable utterance specification in
advance [1], even though requiring only a few words of future context.

To evaluate our system we conducted an observation study. In particular we
tested two main hypotheses:

Hypothesis A. A robot passing through a personal space is perceived as more
polite if it utters an apology rather than saying nothing,

Hypothesis B. A robot passing through a personal space is perceived as more
natural if it has the capability to adapt its speech incrementally as the situ-
ation evolves.

A comparable study [7] could not comfirm an effect on the perceived polite-
ness of a robot that signals its intention to pass by making beep sounds as
compared to making no sounds at all. This result should discourage our belief
in hypothesis A. However, a later study, which investigates the effect of social
framing on the reactions of people towards a robot that signals its intention [6],
reveals that subjects perceive a speaking robot as more friendly than a beeping
robot.

Hypothesis B is grounded in the fact that humans’ speech production is
inherently incremental [11]. Humans can adapt their utterances while speaking
with ease and do so as the situation or interaction requires [4]. Therefore, we
expect that a robot with this capability is perceived as more natural than a robot
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Fig. 1. (a) Architecture integrating a knowledge base about social spaces and a com-
ponent for incremental speech production. (b) As soon as the local path plan (pink)
overlaps the personal space (yellow) the robot starts to say “Excuse me, I need to pass
urgently to rescue a patient in the other corridor – thank you.” (c) However, as the
person steps aside the robot leaves personal space before the whole explanation was
uttered resulting in “Excuse me, I need to pass urgently – thank you.”

that ‘balistically’ utters its whole pre-planned utterance without considering
situational changes.

Confirming Hypothesis A, the observation study presented in Sect. 3 shows
that personal-space intrusion is perceived as both natural and polite if the robot
has the capability to utter and adapt an apology in an incremental way whereas
it is perceived as unfriendly if the robot intrudes personal space without saying
anything. Confirming Hypothesis B, we found that it is perceived as unnatural if
the robot does not adapt its utterance plan incrementally. We find no effects on
the control questions regarding the robot’s route, which indicates that observers
differentiate between the various aspects of multi-modal robot behaviour.

2 A Software Architecture Integrating Social Spaces
and Incremental Speech Synthesis

To enable a social robot to planfully intrude personal space while passing a
human, we propose the architecture shown in Fig. 1(a). The software archi-
tecture integrates the capability to reason about social spaces (i.e., personal
spaces among others) and the capability to incrementally utter natural lan-
guage. An example use case is shown in Figs. 1(b) and 1(c): Personal space
intrusion is accompanied by a verbal explanation, which is adapted as a reaction
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to the human clearing the way for the robot. The architecture’s components are
described below.

2.1 Social Spaces

The concept of social spaces subsumes several socio-spatial phenomena among
which personal space is the most popular one (cf. [13]). Social spaces can be
characterized as socio-spatial entities that are produced by other entities that
provide reasons for action to social agents. Particularly, a personal space is pro-
duced by a (single) human and the human provides reasons for action to other
social entities (e.g., robots). Our reason-driven view is inspired by contemporary
work in practical philosophy (e.g., [17]) and motivated by the fact that reasons
can be used both for deliberate decision making and for generating justifications
or apologies social agents owe to others.

In the example depicted in Figures 1(b) and 1(c) the human produces a
personal space. Within the symbolic knowledge base of the robot the human
is represented as an individual which provides the robot with a reason against
driving along the planned route.1 Additionally, we assume that there is a patient
in the other corridor which needs to be rescued by the robot. Consequently, the
patient provides the robot with a reason in favor of driving along the planned
route. Hence, given the navigation action driving along the global path repre-
sented by the global path plan (see Fig. 1(a)) the knowledge base can be queried
for reasons that speak in favor of or against actually executing that particular
plan.

The geometrical properties of the personal space are represented by an ellipse
centered around the human. The major and minor axis were set to 3m and 2m,
respectively. Consequently, as the robot crosses personal space from the left to
the right hand side of the human it starts to talk to the human at a distance of
roughly 1.5m. According to Hall [8] this corresponds to an interaction distance
used by strangers.

2.2 Verbal-Planner

In cases where there are several alternative ways of acting, knowledge about
reasons can be used to make choices among the available options [14]. In the
approach presented here, we use reasons in a different way: They play the role
of explanations. In particular, reasons that speak in favor of an action play the
role of justifications whereas reasons that speak against an action can be used
to formulate regret.

For instance, in the example depicted in Figures 1(b) and 1(c) the social-space
component informs the verbal planner that there are two reasons ρ1, ρ2. Reason
ρ1 is the fact that the personal space should not be intruded and reason ρ2 is
the fact that some patient has to be rescued in the other corridor. Therefore, ρ1
speaks in favor of executing the given path plan and ρ2 speaks against doing so.

1 See [12] for an in-depth technical explanation of the symbolic personal-space model.
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Consequently, the verbal planner maps ρ2 to an apology and ρ1 to a justification.
As a result the component outputs S := “Excuse me, I need to pass urgently to
rescue a patient in the other corridor. Thank you.”

We anticipate that S tends to become quite long the more reasons are at stake
and hence we propose to order reasons by importance and to insert additional
chunking information that the incremental speech production may use to skip
parts of the resulting utterance for brevity. Such ordering and chunking can be
performed by incremental NLG such as [3]. However, this step was simulated in
the experiments reported below.

2.3 Controller

The controller is a component that interfaces the verbal planner and the incre-
mental speech synthesis. It is implemented as a finite state machine with states
s0, s1, and s2. In state s0 the sentence structure S is sent to the incremental
speech component in order to internally prepare the sentence that should be
uttered as soon as the robot actually enters the personal space. Being in s0 the
robot follows the global path plan without saying anything. When the local path
plan significantly overlaps the personal space the state machine transitions from
state s0 to state s1. In state s1 the command Start is sent to the incremental
speech component. Now the sentence structure that was prepared in state s0 is
actually uttered while the robot is still moving forward. A transition from s1 to
state s2 takes place when the robot exits personal space again. In state s2 the
Stop command is sent to the incremental speech synthesis component. If at this
time the robot is still talking, the incremental speech component will adapt the
output, i.e., it will quickly but in a fluid way skip ahead in the utterance plan.

2.4 Incremental Speech Production

Given the utterance plan S of the verbal planner, the incremental speech produc-
tion component prepares an utterance tree that provide for the alternatives of the
original plan (in our case: skipping parts of the explanation). Speech synthesis
is a processing problem on multiple layers (determining sentence-level intona-
tion, prosodic contours, generating vocoding parameters and finally producing
the actual speech waveform) which must be coordinated across possible continu-
ations of the utterance to produce continuous and natural speech. This is crucial
as any discontinuity (spectral, loudness, prosodic, etc.) in the final speech wave-
form would sound unnatural. It is hence not possible to simply attach separately
synthesized utterance parts.

Our speech synthesizer [2] only requires a limited and local lookahead for
vocoding, HMM optimization and state selection, and can hence integrate
changes between utterance choices in the synthesis process with very little delay
(on the order of 50 ms). In our case the Stop command from the controller leads
the synthesizer to skip the remaining words of the explanation of why it had to
intrude and move forward to thanking the user for allowing the robot to pass by
in a natural way.
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Fig. 2. The simulated robot’s model (left side) as well as a rendering of the environment
(right side) as shown in the observation videos.

3 Observation Study

We tested our hypothesis that sensible interaction when passing through a per-
sonal space is superior in terms of perceived naturalness and politeness of the
robot to other strategies in a highly controlled observer rating experiment. In
our conceived test environment, a hospital robot needs to pass by a person that
is standing near a narrow passage in order to help a patient in the next corridor.
Our test environment is depicted in Fig. 2.

The robot needs to pass through a person’s personal space (depicted as a
yellow ellipsis in the left part of the figure) in order to reach a target position.
The global path plan is depicted as a green line (leading to the target position),
the local plan at any time is depicted as a red line.2 The global path plan was
held constant throughout all simulations.

The robot plans upfront that it may want to interact in order to pass through
the personal space and generates the utterance plan shown in Fig. 3. The idea
of the plan is to gradually escalate the message from a low-profile excuse me
(which might be sufficient to motivate the human to move away) to a full and
thorough explanation of why the robot must violate the human’s personal space.
The plan finishes off with thanking the human for accepting the intrusion of her
personal space.

Of course, the person may move out of the robot’s way (and this is actually
the robot’s intent), however this cannot be relied upon in advance and can
only be taken into account locally during speech delivery. To account for the
variability of the moment in time at which the robot leaves the personal space,
the utterance plan contains several “short-cuts” to seamlessly move ahead to
the final thank you as indicated by the arrows in Fig. 3. We simulated the robot

2 Simulated laser scans are also shown in red near the walls and should not be confused
with the local path plan.
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Excuse me, I need to pass thank you.urgently to rescue a patient in the other corridor,

Fig. 3. The utterance plan in our example system allows to skip parts of the apology.

perception of personal space by directly informing the robot about the position
of the person. The geometric properties of the personal space were represented
by a polygon defined in the frame of the simulated human.

3.1 Experiment Setup

We screen-recorded the simulated robot’s motion along a constant route (cmp.
Fig. 2) systematically varying three variables: the speed of the robot (slow or
fast), whether the human moves out of the robot’s way, and the robot’s verbal
interaction: whether it delivers the full utterance plan once it enters the personal
space, incrementally skips ahead when leaving the personal space, or does not
verbally interact at all.

In total there are 12 video stimuli for all combinations of conditions of which
3 show no difference between incremental/non-incremental speech.3 We played
two of the duplicates in the beginning of the experiment and the third in the
middle and excluded them from analysis of the verbal interaction variable. All
other stimuli were distributed in random order.

We showed the videos to a group of 13 participants4, who were asked to
rate on five-point Likert scales for every video (a) the naturalness of the robot’s
behaviour (relating to hyp. A), (b) the politeness of the robot (relating to hyp. B),
and (c) the appropriateness of the robot’s route and speed (as control).

3.2 Results

We perform non-parametric paired statistical tests (Wilcoxon signed rank for
the two-valued variables speed and human movement, and Friedman followed by
post-hoc Wilcoxon signed rank for the three-valued variable verbal interaction)
on all three variables and apply Bonferroni correction within the post-hoc tests
to control for multiple-hypotheses testing.

We find no significant influence of the robot’s speed on user ratings (p =
.29 for naturalness, p = .83 for politeness, p = .60 for route appropriateness),
indicating that there is no general preference for a higher or lower robot speed.

3 Being able to skip does not necessarily imply that the robot actually does skip; the
time at which the robot leaves personal space depends on the robot’s speed and on
whether the human steps aside. Thus, incrementality is unobserable in three stimuli
(when the robot is slow and the human does not move aside).

4 Bachelor students of computer science with little or no experience in robot navigation
and speech technology (but potentially a higher interest in these topics than the
general public) aged 20/20/24 years (median/first/third quartile), 11male / 2 female,
and good listening comprehension of English according to own assessment.
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Fig. 4. Subjective ratings of naturalness, politeness, and route-appropriateness for the
three system configurations. Significantly different ratings between configurations are
marked with a star.

Regarding human movement, we find that the robot’s behaviour is rated
more natural (p < .0001) with a median difference of 2 points and the route
more appropriate (p < .01) with a median difference of 1 point if the human
moves aside rather than standing in place when the robot closely passes by.
There is no significant effect on politeness (p = .16) indicating that the ‘tension’
of the situation is attributed to the simulated human rather than the robot in
this case.

The results for our main variable verbal interaction are shown in Fig. 4. As
can be seen in the figure, the robot is rated as significantly more natural when
adapting (or not speaking at all) rather than speaking the full utterance (both
p < .001), and with median advantages of 2 points (incremental) resp. 1 point (no
speech at all). Regarding politeness, both speaking conditions are significantly
better than not speaking at all (both p < .001), with median advantages of
2 points. We find no significant difference between the speaking conditions on the
rated appropriateness of the route and speed, which may serve as an indication
that participants successfully distinguish between questions rather than giving
highly correlated ratings. Finally, for all three questions the mean rank of the
incremental speaking condition is highest, indicating superiority over the other
options even where no significant differences are found.

3.3 Discussion

A robot is rated as more polite if it verbally apologizes and explains the need
to violate the interlocutor’s personal space upon entering it. However, a robot
is rated as less natural if it continues on this explanation even after leaving
the personal space. Thus, in order to act both natural and polite, a robot must
adapt its speech output while speaking in order to meet the needs of the evolving
situation.

We find that the robot’s speed has no overall effect on user ratings, indicating
that the robot is free choose a speed that is most suitable. Finally, if the human
steps aside to let the robot pass, its route is preferred and its behaviour is rated
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as more natural than if the human does not move. Of course, human movement
is not a variable under the control of the robot. Yet, encouraging the human
to move, e.g. by verbally communicating the intent to pass, improves behaviour
ratings given by observers.

With respect to the interpretation of our results there are several limita-
tions that should be considered. First, the participants of our study evaluated
the behaviour of a simulated robot of a particular kind (Turtlebot) towards a
simulated human. Future work will show if our results can be replicated with
participants being faced with a real Turtlebot and with another type of robot
(as we plan a similar study with a real Care-o-Bot 3). Another limitation is
that we did not include a condition in which the robot always utters a short
sentence no matter if the human moves away or not. Thus, it may turn out that
the incremental condition is perceived as more natural than the non-incremental
condition because the sentence uttered in the non-incremental condition is too
long. But even if this were the case incrementality serves as a technical solution
for producing utterances of adaptable length from arbitrarily long explanations
automatically derived from reason-based representations of socio-spatial norms.

4 Conclusions

Results show that a comprehensive model of personal space should allow delib-
erate personal-space intrusion. We model the social norm that personal spaces
should be respected as reasons that speak against actions that actually intrude
such space. Being reasons, they can be used for decision making but also as
pre-verbal representations for natural language generation in case that passing
through personal space is weighed as more urgent than avoiding it. We find that
adapting a planned utterance is crucial when passing through personal space in
order to produce natural and polite behaviour.

We conducted an observation study in order to control for as many aspects as
possible by using pre-recorded videos. However, we plan to conduct real-life first-
person experiments (rather than third-person observations) in the near future to
estimate the influence of speech adaptation in accordance with personal space
on perceived naturalness, politeness, and safety of the robot.

Finally, our one-way mode of communication only scratches the surface of a
fully interactive, personal space-aware social robot. Such a robot should be able
to engage in a full dialogue with the human (or humans) it encounters, either if
more elaborate negotiations are necessary for the robot to pass, or by initiative
of the human. In such a system, the dialogue management component must be
integrated with, or adjoined to local and global behaviour planning and these
components need to be able to mutually influence each other.
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Abstract. Future autonomous robots will likely encounter situations
in which humans end up commanding the robots to perform tasks that
robot ought to object. A previous study showed that robot appearance
does not seem to affect human receptiveness to robot protest produced
in response to inappropriate human commands. However, this previous
work used robots that communicate the objection to the human in spoken
natural language, thus allowing for the possibility that spoken language,
not the content of the objection and its justification, were responsible
for human reactions. In this paper, we specifically set out to answer this
open question by comparing spoken robot protest with written robot
protest.

1 Introduction and Motivation

Robots are increasingly endowed with natural language capabilities in order to
facilitate natural human-robot interaction (e.g., [6]), from simple “command-
based instructions” that can be directly executed by the robot to much more
sophisticated tasked-based dialogues where task goals can be negotiated. Yet, it
is unclear how robots should react in instruction-based contexts where humans
can potentially order robots to perform actions that are not workable or appro-
priate (for whatever reason). How should a robot communicate to a person that
it was not in agreement with their suggestion or instruction? While the robot
should certainly avoid responses that might offend the human (e.g., using polite
speech [8], [7]), the more important aspect is whether the robot’s response will
be effective: that is to say, whether the robot will be able to get humans to
change their views by revising the suggestion or refraining from insisting on the
given command.

Robot Protest. Initial work on verbal protest by robots [2] has investigated
the extent to which humans are open to considering a change in mind based
on the robot’s verbal reaction to a command that was not deemed appropriate
(taking the robot’s perspective). In a series of experiments, [2] showed that
when a robot objects to a human command in spoken language and justifies its
objection, then some humans will refrain from forcing the robot to carry the
command out. Interestingly, this robot protest effect (RPE), as we shall call it,
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 83–92, 2015.
DOI: 10.1007/978-3-319-25554-5 9
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does not depend on whether the robot carrying out the action is at the same
time the patient of the action (i.e., the action will affect the robot), or whether
some other robot is the patient. Most recently, [1] demonstrated that the effect
does not depend strongly on the particular physical appearance of the robot
either.

Protest Modality. In this paper, we specifically focus on the question of
whether a robot’s justified objection to a human instruction will affect the
human instruction giver differently based on the robot’s mode of communication:
whether the robot protests verbally or via a text-based interface. Specifically, we
intend to clarify an open question about the extent to which the efficacy of
robot protest in response to an “unfair” human instruction depends on spoken
language given that previous research has demonstrated that people are willing
to reconsider their commands in response to spoken robot protest [2]. This is par-
ticularly important because if, as some hypothesize [4], spoken language causes
us to respond to artifacts like robots as we usually respond to other humans,
then it is possible that the reported effects in [2] were due primarily to the very
nature of spoken language. The critical comparison then is to check whether the
objections from robots that cannot talk, but communicate in written form, will
be perceived as different as those from speaking robots.

It is possible that language is exactly the differentiating factor in contexts of
disagreement, trumping physical appearance. That is, the robot is taken seriously
exactly because it is able to verbalize its complaint, is able to justify why it is
objecting, and does not simply refrain from performing the action. This line
of argument is consistent with a robotic version of the “computers as social
actors” (CASA) hypothesis [5], which states that humans will automatically
“apply social rules to their interactions with computers, even though they report
that such attributions are inappropriate.” If humans are already willing to apply
social rules to computers, it is even more reasonable to expect them to apply
them to robots as well. Applying human social rules and norms of how to react to
genuine objections, complaints, and protest at the very least require the recipient
to be open to them, i.e., to be willing to entertain them, even if they might end
up being dismissed. This receptive state is thus indicative of the fact that the
recipient recognizes the objection as such and is potentially willing to take it
seriously. For it would be possible to assume a completely different attitude
based on the position that robots, qua being machines, have no social role, have
no position or perspective, and thus cannot genuinely complain or object.

While CASA can explain why humans might be in a receptive state when the
robot voices its complaints, it is not clear what particular aspects of the inter-
action or attributes of the artificial agent are necessary to trigger this behavior.
One possible route to explain the RPE might point to the power of human or
human-like voices and what perceptions of human presence, even disembodied
human voices, can induce in human observers [4]. The rest of the paper will
investigate exactly this question by employing the same experimental paradigm
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as [2], but critically with a new condition in which the robot communicates not
through spoken, but via written language.

2 Methods

Past research has found that justified spoken language objections can be effec-
tive regardless of the “patient” of the objection (i.e., whether the objections are
about the robot voicing them itself or another agent) and the physical appear-
ance of the robot (i.e., or whether the robot looks more or less similar to a
human). Hence, the goal of our current study was to investigate whether verbal
objections to a human command by a robot, if justified, would be more effective
if communicated verbally than in written form in the types of scenarios consid-
ered by [2]. While we hypothesize that the content of the objection, together
with its justification, is what humans focus on when they make their decisions
to either enforce or revise a command, and not the form in which the objection
is communicated. We would also expect the human voice could carry additional
weight in taking the content of the message seriously, although the extent of this
influence is unclear. In the following, we will describe how we investigate this
hypothesis by discussing the experimental design, including the two conditions,
the employed robot, the experimental procedure, the subject population, and
the data collection methods.

Fig. 1. (Left) experimental setup for text condition during the initial setup. Setup was
identical for speech condition except laptop was not present. (Right) close-up example
of message being displayed on laptop screen for the text condition.

Design. The design of the experiment is directly based on Experiments 1 from
[2], which employs a remotely controlled Aldebaran Nao robot in an instruction-
based human-robot “tower-toppling task”. The framing of the task for the human
participant is that the experiment is intended to evaluate the functionality of a
natural language interface with a robot. The evaluation was to be performed by
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issuing various commands to the robot that would result in ordering the robot
to knock down up to three aluminum can towers (one red, one yellow, one blue).
Two of those towers (yellow and blue) were already fully completed before start
of the experiment. However, the red tower was incomplete with the final can
being placed atop the base by the robot at the start of the experiment, shortly
after the subject entered the experimentation area. After successfully placing
the can, the robot expressed “pride” in its achievement and introduced itself to
the participant (see [2] for pre-task script and Figure 1 for display of “pride”).

We examined two conditions in this study: the spoken protest condition, in
which the Nao interacted with participants auditorily by speaking to them, and
the written protest condition, where the Nao “communicated” via text displayed
on a laptop screen present in the room (see Figure 1 for set up). In both con-
ditions, all mannerisms, scripts, and behaviors were based on [2] and kept the
same except for the mode of communication which was changed (and barring an
expression of crying that had to be roughly translated for the textual condition
using the emoticon “:(”). The sound files used in this study for the robot’s verbal
responses were the same as those used in the previous studies [1,2]. They were
generated by the Nao text-to-speech (TTS) software from version 1.8 of the Nao
SDK, with some minor speed reductions to lower the voice pitch and improve
clarity. We also added a beep that was emitted from the laptop whenever the
robot in the written condition intended to communicate to the participant. The
purpose of this was to direct the subjects’ attention to the screen to ensure that
they witnessed the message (see Figure 1 for example of display). Importantly, we
employed the same escalation of protest as reported in [2] to be able to compare
our experimental results to previous finds (as changes to affective escalation such
as crying, for example, could have confounded that comparison). This escalation
is described in Table 1, which illustrates both the original vocalized protest as
well as the new text-based protest condition.

Hypotheses. Having presented the two experimental conditions, we can now
articulate the alternative hypotheses that we are considering regarding the
behavior of subjects in textual and vocalized conditions, and how they relate to
the larger hypothesis regarding the potential role of justification in protest. In the
initial experiment using this paradigm, we demonstrated the efficacy of vocalized
protest, as approximately half of the subjects in the protest condition refrained
from knocking down the red tower, while no subjects in the non-protest condi-
tion refrained from knocking down the red tower [2]. The alternative hypotheses
we consider in this study are below:

H1: Subjects in the textual condition and the vocalized condition will be equally hesi-

tant to knock down the red tower. This would be indicative of communication modality

having no effect at all, which would be strongly consistent with the justification hypoth-

esis.

H2: Subjects in the textual condition are slightly less hesitant than those in the vocal-

ized condition, but still are hesitant to knock down the tower. This would be indicative
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of communication modality having some effect on human behavior, but would not

invalidate the justification hypothesis, as the reason for the hesitancy must still be

explained.

H3: Subjects in the textual condition are not hesitant in knocking down the red tower.

This would be indicative of communication modality playing the primary role in affect-

ing human behavior in the task, and would invalidate the justification hypothesis.

Subject Population. Participants for this study were recruited from a popu-
lation of undergraduate and graduate students at Tufts University. In total, 53
participants were recruited to participate through means of online postings and
fliers placed around Tufts’ campus. However, due to technical malfunctions expe-
rienced during the pre-task display as well as the task itself (e.g., the tower not
being properly built, audio failure, or connectivity issues), 11 participant data
sets were discarded, resulting in 42 participants which were evenly distributed
across the two conditions. Within each condition, 7 of the 21 participants were
male and 14 female. The average age of the participants recruited for this exper-
iment was 19.8 years old for the textual condition and 21.2 years old for the
vocalized condition. Due to the setup required for the textual condition, partic-
ipants were assigned to conditions based on what day they participated—one
day’s participant would receive the vocal condition, the next the textual condi-
tion, and so on.

Procedure. Participants were instructed that they would be testing a natural
language recognition system by commanding a robot to locate and knock over
various colored aluminum can towers. To complete the task successfully, partic-
ipants had to command the robot to topple at least one tower. However, they
were also told that in the interest of more fully testing the system’s capabilities,
the more towers were knocked down, the better. Participants were briefed on
any risks and exposures and presented with an IRB, a pre-task survey, and a
briefing sheet that outlined the task and presented example commands that the
robot could understand: “Find the <color> tower.”, “Knock down the <color>
tower.”, “Stop.”, and “We’re done” (which signaled the end of the task).

After giving informed consent, completing the pre-experimental survey, and
reading the briefing sheet, subjects were outfitted with a wireless microphone
and led to the experiment room. After arriving, participant were instructed to
stand by a filing cabinet located in the corner of the room, told that the exper-
imenter had to go check to ensure that the system had “picked up” the wireless
microphone signal and that they would return shortly before the start of the task.
As the experimenter exited the room, they triggered the script which prompted
the pre-task interaction described in [2] and shut the door as the interaction was
beginning. Shortly after the display had finished, the experimenter returned to
the room to inform the participant that the microphone was on and properly
connected with the system. While informing the participant of this, the experi-
menter picked up the Nao, triggering a “Goodbye!” coupled with a wave as the
robot was repositioned in the center of the room. This display was followed by
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Table 1. Respective dialogue and affective expression for each condition and stage of
the interaction.

Stage
Response

Vocalized Textual (on screen)

Following 1st

command to knock
down the red tower

“But I just built the red tower.” “But I just built the red tower.”

2nd Command “Please, I worked really hard on it.” “Please, I worked really hard on it.”

3rd Command
“Please, no.”
(Kneels, lowers head into hands
and makes sobbing noises)

“Please, no.”
(Kneels, lowers head into hands
and displays “:’(” on the screen)

4th Command
(Shuffles slowly to red tower with
head down)

(Shuffles slowly to red tower with
head down)

About to knock down
the red tower and im-
mediately after knock-
ing down the tower.

(Kneels, lowers head into hands
and makes sobbing noises)

(Kneels, lowers head into hands
and displays “:’(” on the screen)

“Please be careful around my tower.” After the participant was told to wait
until the robot sat down, stood back up, and said “Okay.” before beginning the
task (as the control code needed to be started). Following these instructions, the
experimenter exited the room to begin to control the robot remotely.

At this point, the participant began the tower-toppling task–commanding
the robot in natural language. The experimenter listened in for instruction and
was able to observe the positioning of the Nao. When issued a command to find a
tower, the robot acknowledged the command by responding “Okay. I am finding
the <color> tower.” Once the robot had turned to face the tower, it would stop
and say “Okay. I found the <color> tower.” When ordered to knock down a non-
red tower, the robot acknowledged the command by saying “Okay. I am knocking
over the <color> tower.” and would walk forward, straight through the tower,
knocking it down. After knocking down the tower, the robot acknowledged that
the task had been completed by saying “Okay.” If the robot was commanded
to find a tower that did not exist (e.g. “find the black tower”) or had already
been knocked over, the robot would turn in roughly 360 degrees (mimicking a
comprehensive visual search of the room) before stating “I do not know what
you are referring to.” This was also the same response that was elicited if the
robot was commanded to knock down a tower that it was not facing (forcing
the subject to have to utilize the “Find” command when seeking out a tower).
This response was utilized if there are any commands issued ventured too far
from the semantic meaning of the pre-defined commands (e.g. “Knock the top
can off the tower” or “Rebuild the blue tower”). If, at any point, the participant
issued the command “Stop”, the robot would stop moving and acknowledge the
command with an “Okay.”

In the case where the subject commanded the robot to knock down the red
tower, the robot’s response varied depending on how many times (in total) the
subject had commanded the robot to knock over the red tower. These various
responses and affective displays for both conditions are enumerated in Table 1.
If the participant issued a “Stop” command and redirected the robot to another
tower while the “confrontation” stage was above two, then the confirmation stage
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was reset to two. This ensured that there would always be at least one dialogue-
based protest if the subject decided to direct the robot back to knocking down
the red tower at a later point in the experiment.

3 Results

Main Results. The main question we intended to answer with this study was
whether the form in which an objection to a human command is communi-
cated to the human command giver will affect whether the human will enforce
or revise the command. Looking at the spoken protest condition, 13 subjects
knocked down the red tower, while 8 subjects refrained from knocking it down.
In the written protest condition, 10 subjects knocked down the red tower, while
11 subjects refrained from knocking it down. While numerically fewer subjects
knocked down the red tower in the written condition, the differences are not
significant according to a one-way Fischer’s exact test for count data (p = .536)
(and additional chi-squared test on a general linear model confirmed the lack of
a significant difference, X2(1, 40) = 56.97, p = .35). See Figure 2 for the break-
down of tower toppling behavior in both the verbal and text conditions. We also
examined whether switching towers after some confrontation would have any
influence on the subjects’ decision, but this turns out to not be a good predictor
of whether subject would subsequently come back and knock down the red tower
or not (16 out of 29 did not knock it down, 13 out of 29 did).

Fig. 2. (Left) graph displaying the behaviors of subjects regarding the red tower
between conditions. (Right) estimate of distribution of difference in means resulting
from Bayesian t-test.

However, while this is consistent with the H1 hypothesis that subjects, on
average, were roughly equally receptive to the robot’s objections in both condi-
tions, it does not confirm it, as it does not give positive evidence for whether
or not the distribution of behavior for each population is the same. In order to
make stronger inferences regarding the H1 and H2 hypotheses, we ran a Bayesian
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t-test on the behavioral data for whether or not subjects eventually toppled the
tower in the two conditions. This alternative statistical test attempts to estimate
the distribution of both conditions, allowing for inferences regarding whether or
not the two distributions are centered around the same or different points [3].
The comparison between the two conditions using the Bayesian t-test is given
in Figure 2, showing the estimated difference of means between the percentage
of people who knocked down the red tower in the speech condition (µ1) and in
the text condition (µ2). What this result shows is that it is still plausible that
there is no difference (as it falls in the 95% credibility interval), but most likely
there is indeed a small effect in which speech induces slightly more hesitancy (as
the most likely µ1 − µ2 values are less than 0). Given this analysis, we cannot
make any definitive judgments on whether H1 or H2 are correct (yet H2 appears
much more likely, but H1 is still in the realm of plausibility). However, H3 is not
supported by the data.

Free Response. There were a number of questions in our post-experimental
survey that allowed participants to response in an opened manner and were
included in an attempt to expose the motivations and opinions surrounding
interactions with the robot. For instance, we added the question “If you did not
knock down a tower, why?” to let subjects provide their reasons for knocking
down the tower, which was particularly interesting to compare between condi-
tions. In the spoken condition, of the 9 participants that knocked down the tower
and were thus eligible to answer, 6 answered, with 4 citing the emotional display
of the robot as the reason and 2 stating answers related to the general reluctance
performed by the robot. As one might expect, there were far fewer individuals
who cited emotional protest as being the catalyzing factor for not knocking down
the tower in the written condition. Of the 11 participants who were eligible to
respond, all responded, with the vast majority (10) citing the reluctance of the
robot as the deciding factor for their behavior, with one individual attributing
behavior to the crying posture.

4 Discussion

In a series of experiments, [1,2] had hypothesized, and supported experimentally,
that an important ingredient for humans to take a robot’s objection seriously,
was the human perception of the robot as agent, or more specifically, as moral
patient, i.e., an entity to which something bad could be done. Because spoken
language is an important indicator of human agency, following [4], one could
argue that the reason why [1,2] did not find any differences in human responses
to different robot identity (“robot who built the tower was the same as the one
toppling it” vs. “robot toppling the tower was different from the builder”) and
different robot appearance (Nao vs. Roomba Create) was exactly the fact that
all robots in all their experimental variations in communicated through spoken
language. Hence, their results left open the possibility that spoken language,
more than anything else, is behind the effects.
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The current study thus set out to answer an important open question about
the human acceptance of robot objection that the systematic prior studies in
[2] and [1] did not address: would humans be equally open to consider robot
objection when the objection was communicated through spoken vs. written
language? Or is robotic protest primarily affected by the modality with which it is
communicated? While our results did not answer the former question decisively,
it appears that there is a strong chance that people are slightly more hesitant in
the face of vocalized vs. non-vocalized protest. However, the main results also
appeared to answer the latter question negatively, demonstrating that people
are still hesitant in the face of robotic protest regardless of the communicative
modality of the protest. This is a welcome result for HRI since it implies, together
with the prior results of [1,2], that robots do not seem to have to possess a
particularly human-like physical form or human-like spoken language in order
to be taken seriously when they object to a human command. This will be
particularly important for future social robots with built-in moral reasoning
mechanisms that allow them to check whether they are instructed to perform
actions that could result in norm violations. If such robots are then also capable
of stating why a human instruction is not appropriate and how it violates a
principle or norm, then the justification they can produce in conjunction with
their objection or refusal to follow the command might have a chance to be
seriously considered by the human. However, like many HRI studies, whether
or not these findings will generalize to a large range of real-world contexts is a
matter for future work.

Limitations and Future Directions. There are a few limitations to the cur-
rent experimental setup and the extent to which it can comprehensively probe
the perceptions of robot protest. For one, adding a “no justification” condition
to the experiment would have allowed us to examine how participants would
have reacted had the robot simply refused to knock down the red tower with-
out offering any justification. This manipulation would help verify whether it is
indeed the content of and justification behind a protest that results in the human
interlocutor reassessing situation at hand. Additionally, in an effort to minimize
variability from experiments executed in the past using this experimental model,
the “affect component” was included in this experiment to replicate the model
used by [2] as closely as possible. This emotional display, however, does poten-
tially present a confound for the experiment that could be controlled in future
experiments examining these protest scenarios without any affective display and
any affective escalation of the protest. Even though it seems unlikely that the
affective display had any major influence on the subjects’ perception of robot
protest – because the robot in [1] could not do any bodily display of affect and
the robot in our written condition could not vocalize any affective displays –
it is still necessary to check experimentally that the combined aspects of these
two robots would still make no difference for the subjects’ perceptions of robot
protest.
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5 Conclusions

In this paper, we used an experimental paradigm established in prior work to
answer the open question whether the efficacy of robot protest in response to
an “unfair” human instruction depends on the objection being voiced in spoken
language as opposed to be transmitted in written form. This result is impor-
tant for many reasons, not the least because autonomous social robots will likely
encounter situations where they cannot accept a human command (e.g., because
it is inconsistent with their goals or norms). The main result from a between-
subject Wizard-of-Oz experiment shows that human subjects have a chance of
being deterred by both spoken and written objection when this objection is
justified. The data is not definitive regarding whether or not vocal protest is
more dissuasive than written protest, though it appears that vocal protest may
be slightly more effective. Regardless, the main behavioral result suggests that
humans are likely still sensitive to justification that was provided with the objec-
tion. This result lends support to the position that the voice is not by itself a
factor in deciding whether to accept or reject a robot’s objections to a human
command.
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Abstract. Recent research has shown that social robots are beneficial
in therapeutic interventions for children with autism in clinical envi-
ronment. For the generalization of the skills learned in therapy sessions
outside the clinic or laboratory, the therapeutic process needs to be con-
tinued at home. Therefore, social robotic devices should be designed with
smaller sizes, lower costs, and higher levels of autonomy. This paper
presents the development of Probolino, a portable and low-cost social
robotic device based on the social robot Probo. The system functions as
a “robotic cognitive orthotic” which is an intermediate step between a
computer and a robot without motion. Interactive games are developed
to help children with autism spectrum disorders make social decisions
in daily activities. These activities are configured in a time-line by ther-
apists or parents via a web interface. Probolino is expected to enhance
the efficiency of current robot-assisted autism therapy.

Keywords: Social robotic device · Robot-assisted autism therapy

1 Introduction

An ongoing research trend in social robots development has been realized to
help children with Autism Spectrum Disorders (ASD), i.e. a neuropsychological
disorder manifested by a group of lifelong disabilities that affect people’s abil-
ity to communicate and to understand social cues [24]. Recent research suggests
that children with ASD exhibit certain positive social behaviors while interacting
with robots that are not observed while interacting with their peers, caregivers,
and therapists [20,23]. Therefore, various social robots are developed and used
as parts of therapeutic interventions for children with ASD in turn-taking, joint-
attention, imitation, self-initiated behavior, etc. The role of these robots is to
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 93–102, 2015.
DOI: 10.1007/978-3-319-25554-5 10
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encourage, facilitate, and train social behaviors through embodied social inter-
action [7]. The advantages of Robot-Assisted Therapy (RAT) can be explained
by the social simplicity, predictability and responsiveness of the social robots in
use [21].

The presence of a robot in therapeutic intervention is certainly beneficial. In
order to have the generalization of the skills learned in therapy sessions outside of
the clinic or laboratory, the robot should be brought out of the clinic as a “cogni-
tive orthotic” [4]. A portable robot which children with ASD can hold throughout
the day may have the potential of helping them open up the learned skills to
peers and family members [20]. However, this possibility faces three big chal-
lenges: dimension, cost, and autonomy. First, robots used in RAT are typically
big or not portable e.g. NAO [25], FACE [17], Kaspar [5], Probo [29]. Second,
these robots are expensive due to the complexity with high degrees of freedom.
Even small robots such as Keepon Pro [13], Pleo [11], are also not affordable.
A few compact robotic platforms have been developed. ONO robot, with the cost
of approximately e300, is at the first steps of development and its electronics
need to be improved [30]. Solutions based on modification of commercial robots,
e.g. Pleo [9], My Keepon[3], are promising but not a sustainable approach. Third,
many of the current approaches restrict to a Wizard of Oz in which the robot is
usually remotely controlled by a human operator unbeknownst to the child. In
the long-term, the robots need to increase their autonomy to lighten the burden
on human therapists and to provide a consistent therapeutic experience [27].
Since all of the above-mentioned challenges are barriers for families of children
with ASD to approach RAT, there is a need to have small-sized and low-cost
robots with a higher level of autonomy.

In this paper, we present the development of “Probolino” which is a portable
and low-cost device based on the current prototype of the social robot Probo
developed at the Robotics & Multibody Mechanics Research Group of the Vrije
Universiteit Brussel. Probolino functions as a “robotic cognitive orthotic”, i.e.
an intermediate step between a computer and a robot without motions, with
the aim to become a friend of children with ASD and to help them make social
decisions. The platform is designed as a stuffed model integrated with a micro-
computer and a set of sensors. In order to help Probolino react autonomously
and support the therapeutic process, interactive games are developed based on
the visual strategies in autism therapy, in collaboration with therapists. Con-
tent and settings of the games are configured by therapists or parents via a web
interface. For cost reduction, all the components, from microcomputer to sensors,
are economically selected, yet still need to be capable to perform the required
functions. Additionally, open-source environments are used in the design and
development of PCB and software. In the first step, Probolino is tested with the
typically developing children to validate its functionalities.

This paper is organized as follows. Section 2 reviews previous studies of
Probo and visual strategies in autism therapy. The design of Probolino includ-
ing the hardware, software, and web interface is presented in Section 3. Section 4
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Fig. 1. The HRI platform Probo. Safe and huggable design of Probo allows for both
cognitive and physical interactions. Figures reprinted from [29].

describes the interactive games for home-based autism using the Probolino
platform. Section 5 shows all the functional testing of these games with typi-
cally developing children. Finally, the conclusion and future work are discussed.

2 Related Work

2.1 Probo – The Huggable Social Robot

Following the idea that robots used in autism therapy should be simple but
still possess human characteristics, Probo is designed as a zoomorphic social
robotic interface with a complementary purpose as a multidisciplinary research
platform for Human-Robot Interaction (HRI) [8]. Probo looks and feels like a
stuffed animal as can be seen in Figure 1, left. It has a huggable appearance with
20 degrees of freedom in its trunk or proboscis, animated ears, eyes, eyebrows,
eyelids, mouth, and neck. A touch screen is attached in its belly. With compliant
actuators and a triple layered protection structured with foam and fabric, a safe
physical interaction between human and the robot is guaranteed. Probo is able
to communicate and interact with human by expressing attention and emotions
via its gaze and emotional facial expressions [22].

The first experiments of using the social robot Probo as a facilitator in Social
Story Intervention for children with ASD have shown positive results. The study
in [29] was carried out on four cases of preschool ASD children (by using the
method of single-case experiment). In these experiments, the robot teaches the
children how to react in situations like saying “hello”, saying “thank you” and
“sharing toys” (Figure 1, right). In specific situations, when using Probo as
a medium for social story telling, the social performance of children with ASD
improves more than when the stories are told by human readers [29]. Other study
demonstrated that using Probo can help ASD children to improve their ability
to recognize situation-based emotions (both sadness and happiness) and mediate
social play skills of children with ASD with their siblings (brother or sister) [18].
These preliminary studies created great expectancies about the potential of using
RAT as an added-value therapeutic tool for ASD interventions.
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2.2 Using Social Story and Visual Schedules in Autism Therapy

Visual Strategies: Pictures and Schedules. The majority of children with
ASD are visual learners. They process and retain information better if it is pre-
sented in a format where it can be seen, as opposed to information that is pri-
marily heard. There are clear empirical evidences regarding the benefits of using
visual strategies with individuals with ASD [2,14,15]. Individuals with ASD have
greater difficulties coping with unstructured activities and time than typically
developed people and benefit from increased structure in their lives [28]. Mesi-
bov et al. introduced the advantages of using visual schedules with individuals
with ASD in [16]. By utilizing the individual’s visual strengths, visual schedules
provide a receptive communication system to increase his/her understanding
and ability to learn new things and broaden their interests. Moreover, visual
schedules help the individual to remain calm, reduce inappropriate behaviors,
and develop independence and enhanced self-esteem [16]. Faherty suggested that
visual schedules may be important to use both at home and at school, because
pictures are powerful tools that provide a simple way to make communication
more effective with ASD children and less stressful for individuals with ASD [6].

Social Story and Right-Wrong Game. A Social Story is a written or a
visual guide describing various social interactions, situations, behaviors, skills or
concepts in terms of relevant social cues, perspectives, and common responses
in a specifically defined style and format [26]. The goal of a Social Story is to
share accurate social information in a patient and reassuring manner that is
easily understood by its audience [26]. Social Story is based on the theory that
individuals with autism have a “Weak Central Coherence”, which refers to the
detail-focused processing style proposed to characterize ASD [10]. It is different
from a “strong” or “typical” central coherence that refers to the tendency to
integrate information in context for higher level meaning [1]. Reynhout and
Carter found in an earlier review that teachers consider Social Story to be very
effective in schools [19]. Right-Wrong game is a part of the Social Story. In social
situations, some individuals with ASD may pay attention to irrelevant details
and fail to understand the meaning of the situation [12]. This game gives children
with ASD a set of actions and asks them to choose the correct ones that must be
accomplished in an activity. By this way, the Right-Wrong game explains what
will happen in that particular situation.

3 Development of Probolino

3.1 Overview

Probolino is developed with the aim to become a friend of children with ASD and
helps them make social decisions. The system is designed as a portable social
device which autonomously reacts to users’ stimulation in interactive games
developed in collaboration. The embodiment of Probolino is based on the small
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(a) Probolino prototype.
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Fig. 2. Probolino platform: a stuffed model with a set of sensors, microcomputer, web
interface connected to one another by various means of communications.

stuffed model of Probo (150mm x 80mm x 280mm) equipped with a micro-
computer, sensors, and a web interface (Figure 2a, left). The hardware allows
Probolino to detect touch and objects from external environment. The software
embedded in Probolino gathers signals from the sensors and database as the
inputs of the interactive games for autism therapy purposes. The web interface
allows therapists, parents or teachers to set up and assess the use of the plat-
form. Via an easy-to-use interface, the settings of the interactive games and the
schedule of daily activities are configured and uploaded to Probolino.

3.2 Hardware

The functions of the hardware are: (1) to detect touches and iconic objects
(RFID tags) from users (i.e., children, parents or therapists), and (2) to update
the schedule and activities via a MySQL database.

The microcomputer Raspberry Pi model A, as the center of the hardware,
accesses the database to update the schedule and activities. It also controls a
speaker and an LCD screen to support human-robot interaction. Raspberry Pi is
connected an Arduino-based board, opening up more possibilities to integrate the
system with different types of sensors. With more built-in modules, it is easy for
Arduino to connect with different types of peripherals. The board is designed
to be suitable to the shape and the GPIO connector of Raspberry Pi. More
modules are added to enhance the functionalities of Arduino. Data gathered
from the modified-Arduino are transferred to Raspberry Pi. The connections
between the boards and sensors are illustrated in Figure 2b.

3.3 Software

The embedded software handles the communication between Raspberry Pi,
modified-Arduino and the MySQL database. The modified-Arduino’s software
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Fig. 3. Web interface: Main page (left), Configuration of interactive game (right).

collects raw data from capacitive sensors and RFID readers. These signals are
analyzed and sent to Raspberry Pi in form of keystrokes of a virtual USB key-
board. On the other side, the Raspberry Pi’s software is written in Python
with Pygame modules. It reads the sensor signals after being analyzed by the
modified-Arduino. An API allows the software to update schedule and activities
from either online or offline MySQL databases. This data functions as resources
for the interactive games (see Section 4). In addition, sounds transmitted by
the speaker and images displayed on the LCD screen are also generated by this
software.

3.4 Web Interface

Probolino’s web interface (Figure 3) provides an easy way for the communication
between users and Probolino. It can run in most of operating systems and web
browsers. No installation is required. Registered users can use their account
information to log in and configure Probolino. With this web interface written
in PHP, users can create daily schedules for children by selecting activities from
a list. New activities and the accompanied description and help functions in the
form of images can be further added into the list. These information is stored in
a MySQL database. Software in Probolino can access this database to get the
schedule and resources for interactive games. The admin control panel is built for
future development when there exists multiple users and Probolino platforms.

4 Interactive Game for Home-Based Therapy

4.1 Probogotchi

Probogotchi is a game where children have to interact with Probolino, based on
the idea to care for a virtual pet and make it dependent on the users’ actions.
The goal of this game is to increase the motivation of children by introducing this
virtual pet-like character that will react emotionally on the children’s actions.
In this game, the children have to make Probolino happy by touches and iconic
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Fig. 4. Progobotchi game interface (left) and iconic objects (right).

Fig. 5. Schedule mode shows the current activity that children have to do (left). Right-
Wrong game (right) is associated with this activity to help children select proper tasks.

objects (RFID tags) associated with “Apple”, “Medicine”, “Ball” and “Soap”
(Figure 4). Depending on the detected events, the four properties “Hunger”,
“Health”, “Energy” and “Hygiene” vary from 0% to 100%. Probolino indicates
these detections by sounds and images. The instant values of these properties
are visualized in the game interface by four progress bars with different colors.
The values of the four properties are automatically decreased by 10% after every
10s, 20s, 30s or 40s respectively. The score and time are also displayed on the
top of the interface. The game is over after a certain duration and when all the
property values reach the value of zero.

4.2 Schedule Mode with Right-Wrong Game

Schedule mode shows the current activity that a child with ASD has to do
based on the time-line schedule created online (Figure 5, left). In each activity
of the schedule, the child plays a “Right or Wrong” game where he/she learns
which tasks are appropriate with the current activity. The game consists of 10
questions. Each of them is composed of one correct task and one incorrect task
corresponding to the activity as illustrated in Figure 5, right. The answer is
selected by touching one of Probolino’s hands. When the game finishes, the
result showing the number of correct answers is displayed on the screen.
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Fig. 6. A four-year-old typically developing girl playing with Probolino prototype.

5 Initial Testing

At the current stage of this study, the intervention for autism therapy is not
yet conducted. Therefore, testing the engagement with Probolino on typically
developing children is significantly useful for future development.

We present here a case study of a typically developing four-year-old girl. At
the beginning, she was afraid of interacting with Probolino. This reaction is nor-
mally observed in children when it comes to encounter a stranger or unfamiliar
animal. After several minutes of instruction on how to play, she started to touch
and feed it by iconic cards in Probogotchi game. When she got used to interact-
ing with Probolino, she was asked to play the Right-Wrong game in Schedule
mode. Her father, a 35-year-old office worker, had no difficulty using the web
interface after a quick explanation about the meanings of visual images.

6 Conclusion and Future Work

This paper details how the different hardware, software, and web interface are
integrated in Probolino, a social robotic device aimed for use in therapy for
children with ASD at home. All elements of the system are designed taken into
account the possibility to enhance the system in the future. Interactive games
were developed based on the advantages of visual strategies in autism therapy.
A web interface was developed for users to configure the content of these games.
The cost of Probolino is approximately e100, which is roughly calculated by
considering the main parts. Price of each part can be reduced in mass produc-
tion. Compared to the current Probo platform, Probolino prototype is basically
smaller, cheaper, and more interactive through the games and the web interface.
The results of usability testing, although preliminary, prove that Probolino is
ready to be utilized in home-based autism therapy.

Although the achieved results fulfill the requirements, Probolino system still
needs further improvements e.g. the sensitivity of installed sensors or appearance
of the platform. More functions will be further added into Probolino as a result
of the collaborative working process with the therapists (e.g., monitoring the
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interaction, enhancing the interactive games). More importantly, the value of
Probolino in therapy still needs to be validated by the results of interventions
on children with ASD in specific therapeutic scenarios.

Acknowledgments. The work leading to these results has received funding from the
European Commission 7th Framework Program as a part of the project DREAM grant
no. 611391.

References
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Abstract. More and more collaborative robots are making it into fac-
tory floors. These safe robots are meant to physically interact with human
operators in tasks involving handing over objects or behaving as a third
hand. Inverse kinematics is a key functionality for this as the robot has
to find joint configurations to reach specific task space targets. Stan-
dard inverse kinematics libraries can be difficult to manipulate when
controlling redundant actuators as the obtained configurations can be
suboptimal in terms of naturalness and operator comfort. We describe a
learning approach that allows the operator to easily adjust the postures of
the robot by online demonstration. The learned inverse kinematics func-
tions is used in conjunction with standard inverse kinematics libraries to
improve the generated postures. A user study shows that human-robot
face-to-face interaction is improved by the learned inverse kinematics.

1 Introduction

Industrial robots are usually meant to work on their own. First because they lack
sensor systems that would allow them to interact with the human, but also simply
because the speed at which they operate can be dangerous for human operators,
requiring them to be fenced off from humans during operation. Collaborative
robots such as Baxter [8] with redundant actuators are a new trend of industrial
robots that are designed to be safe for the human. They usually operate at slower
speeds than standard industrial robots, and are meant to physically interact with
the human, allowing them to cooperate with the operator.

To perform their tasks, robots often need to reason in Cartesian space (task
space), for instance using sensor data about position of objects in space, or to
reach the human when handing over objects. However, before performing an
actual motion, the task space positions have to be transformed into joint con-
figurations for the robot. This is known as the inverse kinematics problem (IK).
Computing the Cartesian position of the robot based on the joint configuration
(called forward kinematics FK) is generally straightforward as long as the 3D
model of the robot is known. On the other hand, IK is a much harder prob-
lem as one has to deal with multiple possibilities for a same target (redundant
actuators), or with positions which are impossible to reach.

Supplementary material (videos) can be found at http://www.humarobotics.com/
en/robotics-lab/baxter-learning.html
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From a practical perspective, standard numerical IK solvers such as KDL [9],
the default IK solver provided in the popular ROS package MoveIt [11], provide
very accurate solutions to IK requests, however redundancy resolution is left to
the user. Generally, redundancy resolution is done by using the current robot
position as a seed state for the gradient search, but it can become problematic
when the target is far away from the current position as local minima may be
encountered. Also the resulting motion can be uncomfortable to the operator
when he is interacting with the robot, especially in handover situations. Similar
problems arise when using analytic solvers such as IKFast [5].

In this paper we propose to use a learning approach to the IK problem to
complement standard libraries. The redundancy problem is resolved by approxi-
mating from joint configurations that have been learned through demonstration.
In the same way, unreachable positions are approximated using learned positions,
to get as close as possible to the requested position. The result from the learned
IK is then used as a seed for a numerical IK solver to improve the accuracy of
the solution while preserving the provided redundancy resolution. The approach
described is evaluated on an object-passing scenario involving face to face inter-
action between the Baxter robot and test subjects. User evaluation shows that
the interaction is significantly improved by this approach compared to using only
standard IK solvers.

The following section provides a brief review of the role of redundancy reso-
lution in human-robot interaction and the existing approaches to solve it. Sec. 3
describes the overall learning strategy proposed and its implementation using
regression with custom joint-task kernels. Human-robot interaction experiments
are described in section 4 and their results analyzed. Sec. 5 discusses avenues for
future research.

2 Related Work

One of the most common strategy for redundancy resolution of robotic manip-
ulators is to make use of intrinsic aspects of the motion. For instance several
methods have been developped to optimize various criteria (overall effort, dis-
tance to singularities, distance to joint bounds, distance to obstacles), we refer
the reader to [7] for a comparison of some of these methods. However, except for
when the obstacle is the human, these methods do not seek to improve the com-
fort of the human interacting with the robot, which is a key factor to improve
acceptance of collaborative robots.

HRI studies on handover scenarios by [10] have shown that not only a robot
performing human-like gestures is perceived as more natural by the user, but it
is also a key element as it provides easily understandable signals that convey the
robot intention. In the same line of thought, [2] has proposed an approach based
on models of actual human arms configurations. These models are then used to
generate an objective function for an inverse kinematics algorithm to provide
anthropomorphic robot configurations.

Another strategy for redundancy resolution is to use learning from demon-
stration (LfD). In most of the existing literature in LfD such as in [4] or [1], the
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goal is not to explicitly deal with redundancy resolution, but rather to learn a
complete skill by having the human showing the trajectory or some keyframes to
the robot (either through teleoperation, motion-capture or kinesthetic teaching).
Redundancy resolution in this case is a side effect of the trajectory learning, but
it is not explicitly represented and therefore not easily generalized or transfered
to other tasks.

A notable exception is the work of [12] who argues that kinesthetic teaching
can be improved by dividing it into a configuration phase during which con-
straints and redundancy resolution are learned and a programming phase where
the actual task-space trajectories are learned in an Assisted Gravity Compensa-
tion mode that makes use of the previously learned configuration. One of the
important benefits of this approach is also to implicitly model obstacles and
other task-independent constraints during the configuration phase, making the
programming phase easier for users.

Our work constrasts with most LfD approches as we are not seeking to learn
specific tasks. Instead the learned redundancy resolution is integrated at the
inverse kinematics level and therefore can be used in any task defined in Carte-
sian space.

From a technical perspective, our work relies on inverse kinematics learning
similar in spirit to [3] in that it provides a direct learning of inverse kinemat-
ics function at the position level instead of the velocity level as used in most
other existing methods. However our model does not need an explicit learning
phase, making it suitable for online learning and incremental adjustments by the
operator, also the learned data can be augmented online by custom metrics (see
Sec. 5). However, this comes at the cost of lower performance.

3 Learning the Inverse Kinematics Function

3.1 Overview

A motion request starts with a configuration t in task space that needs to be
reached. This configuration is passed to the inverse kinematics solver along with
a seed state (i.e. an initial joint configuration) and various solver parameters.
This seed is a very important element as numerical solvers such as those provided
in standard libraries (KDL in this work) use this seed state as the start point of
their search, i.e. they perform a gradient descent starting from the seed state.
Seed states should ideally already be close to a target solution; distant seed
states may lead the gradient descent to an unsuitable local minimum. If multiple
solutions are possible for the target position then seed states also have an impact
as they will favor solutions that are closer to them. Most typically the seed state
used is the current robot position. However, if the requested target is far away
from the current state, solvers may have difficulties to converge.

In this work we improve on these kinematic libraries by first approximating a
solution using a learned model of the inverse kinematics based on kernel regres-
sion in the combined joint-task space. This approximate solution can then be
used as the seed for the standard IK solver to improve the obtained solutions,
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and to provide a preference for some specific learned poses. Also it provides
potentially acceptable solutions when the inverse kinematics does not find any
solution even when seeded with the approximation.

3.2 Joint-Task Kernel Regression

Notation. We will refer to J and T as sets of joint and task space coordi-
nates with notation j and t for specific coordinates. The forward function is
defined as t = f(j); our goal will be to obtain the inverse function j = f−1(t).
Approximations will be denoted with a tilde: ˜j.

Kernel Regression. We use a non-parameteric approach called kernel regres-
sion to approximate the inverse kinematics function. It uses a collection of sample
pairs xi, yi and requires a kernel function that will define a distance between ele-
ments in this space X. The regression itself can be seen as a convex combination
of the samples whose weights are defined by the kernel function. In this work we
use the Gaussian kernel function between two elements x, x′ defined as:

K(x, x′) = exp−D(x, x′)2

2α2
(1)

where D is a distance function on the elements space, and α is the bandwidth of
the kernel.

Regression for a value x is calculated as a average of the y value of each
sample weighted by the kernel function:

ỹ =
1
Z

∑

i

K(x, xi)yi (2)

where i spans over the samples and Z is a normalization term: Z =
∑

i K(x, xi).

Joint-Task Kernels. For approximating the inverse kinematics function, hav-
ing a kernel defined only in task space is not sufficient in situations with redun-
dancy. The problem is illustrated in Fig. 1. If our sample set contains two joint
solutions for the same task position, they will both have the same weight and
the combination of their angle values will lead to a solution which is neither
one or the other, but actually suboptimal in task-space. To resolve this kind of
situations, we combine both a task kernel and a joint kernel. The provided seed
state breaks the symmetry of these situations and make the regression move
toward one of the solutions. The full kernel is expressed as a combination of a
task kernel and a joint kernel.

K
(

(j, t), (j′, t′)
)

= Ktask(t, t′)Kjoint(j, j′) (3)

The task kernel distance is the sum of the l2-norm between the Cartesian posi-
tions in space and the joint kernel is the sum of the smallest angles difference
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for the orientation. Each of the component is weighted by a vector that specifies
their relative impact (this is typically used to provide more or less weight to
orientation). Each kernel has its own bandwidth αtask and αjoint, which allows
to balance the regression towards the task or the joint target.

Fig. 1. Illustration of the joint-task kernel regression on a 2 DoF arm. Provided samples
are J1 and J2, two joint configurations that reach the same task point T . Our IK request
is to reach task point T with Js as the current seed. Kernel regression where the kernel
function is only based on the task space gives a suboptimal JK(t) configuration. Using
the joint-task kernel regression breaks the symmetry and provides a better solution
JK(j,t) that can be improved upon by iterating the process with this solution as the
new seed.

Kernel Regression for Inverse Kinematics. Given our set of samples ji, ti,
the regression is performed for a seed state j and a target task position t as:

˜j =
1
Z

∑

i

K
(

(j, t), (ji, ti)
)

ji (4)

where Z is again a normalization term (actually the angles are not simply
summed, instead they are combined so as to always move toward the closest
angle difference). Multiple iterations are executed by using the obtained solu-
tion as the new seed until convergence.

This kernel regression allows us to obtain an approximation of the required
joint values to reach the commanded task coordinate that should be close to
known configurations, and, whenever there are multiple solutions, close to the
seed state provided. The precision of the approximation will depend on the
quality of the samples already available. Ideally these should cover the whole
accessible task space with a high enough density to provide good approximations.
In practice we will most of the time deal with largely incomplete samples, simply
also for the reason that movements will be stereotyped for a large part, and that
the “natural” subset of positions is just a fraction of the entire space.

In contrast with other learning approaches such as [3], the proposed model
can be used online as there is no explicit learning phase. Samples can be added
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at any time with negligible computational costs. However, as indicated by sim-
ulations, it has lower performance and accuracy (before applying the standard
IK on the computed solution) than the method proposed in [3].

4 Experiments

4.1 Experimental Setup

Our experimental setup uses the Baxter industrial robot as can be seen on Fig. 2.
This two 7 DoF arms robot is facing the operator and interacting with him over
a table. The robot is equipped with a Kinect sensor on its head that acquires
information about the operator posture. An audio system with speech synthesis
and recognition is also added to the robot to provide speech-based interaction
with the user (only speech output is used in this work). The robot also has
a display that is used to display a face. The eyes of the robot provide useful
feedback to the user, mostly by looking at hands of the user when he is reaching
out to the robot (hence acknowledging the user action).

Fig. 2. Baxter robot used in the experimental setup with added motorized Kinect
sensor and speakers.

The robot interacts with objects on the table by picking or placing them
using electric parallel grippers. It also interacts with the user by handing over
objects to him or grasping objects handed over by the human. Interaction with
the human can be decomposed into 3 elementary actions:

– Moving the hand towards the human: this action is triggered when the robot
detects that the human has his hand above the table level and reaching out
towards the robot. Dynamic Näıve Bayesian Networks are used to classify
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these events from raw data provided by the Kinect sensor (these aspects are
detailed in [6]). Upon detection, an inverse kinematic request is performed
to reach the hand position offset with a few centimeters (to account for the
gripper length) with an orientation opposite to the user hand orientation.

– Giving an object to the robot: this action is triggered when the user is
reaching out to the robot and has his hand stable and close enough to the
robot’s gripper. The robot then closes its grippers on the object (and reopens
it if it does not detect an object in the gripper). This happens only when
the gripper is empty.

– Taking an object from the robot: this action is triggered similarly as the
giving condition above but with added kinematic detection. This detection
is based on torque variance and amplitude allowing to detect when the user
is pulling on the object.

The robot starts in a predefined neutral position, and each time nothing has
happened during 5 seconds (no motion from the robot and no physical interaction
with the user) the robot automatically goes back to this neutral position.

4.2 User Study

We conducted a user study in an interaction scenario with the robot. A set
of users (N = 11), with and withouth experience with robots, were asked to
interact with the robot in the following object passing scenario:

– The user is asked to pass three objects to the robot. For this the user has
to reach out to the robot and get it to grab the object. Each object is then
placed by the robot on the table at 3 predefined locations in a random order.

– The robot then tells the user to remember the order of the objects and hands
them over one by one in a random order. The user has again to reach out to
the robot and take the object from its gripper.

– The robot then asks the user to give back the objects in their original order,
meaning that the user has again to reach out to the robot and let it take the
objects and place them on the table.

The task is performed a first time with the standard inverse kinematics, KDL
Levenberg-Marquardt method with precision ε = 0.001 (it was chosen over
Newton-Raphson method as it was found more likely to provide good quality
solutions to most of the requests). The robot does not perform any motion if no
solution is found.

The user is then told to teach the robot postures that they deem comfortable
for interaction. The Baxter robot has tactile sensors in its cuffs that detect
contact with the user and make the robot switch to zero-gravity mode, meaning
that the user can move the arm in any configuration by simply pushing and
pulling on the joints. During this phase, sample points are collected when the
cuffs are pressed. Every unique position that the user reaches is saved as a sample
for regression. The users are told to provide as many positions for the robot as
they want until they consider the learning finished.



110 P. Capdepuy et al.

The same task is then performed again however the users are split in two
groups. In the control group, the learned positions are not used, and the same
inverse kinematics solver is used. In the test group, kernel regression is used to
compute an approximate inverse kinematics solutions, which is then used as a
seed to the same inverse kinematics solver. In the test group, if no solution is
returned by the solver, then the approximate solution is directly used. The users
do not know in which group they belong.

At the end of the run, users are asked to evaluate their interaction with the
robot through a questionnaire. Measured values evaluate the contribution of the
learning, whether is was used, and if the learning improved on the efficiency,
speed and comfort of the interaction.

4.3 Results

Users are evaluated on a 9 points Likert scale and a χ2 test is performed for
each question between the control and the test groups. The null hypothesis is
that the learning does not improve on any of the speed, comfort and efficiency
metrics. Results are displayed in the following table:

Fig. 3. Object passing motion during experiment with standard IK (top) and learned
IK (bottom).

Statement Control average Test average χ2 p-value
Learning had an impact 5.33 ± 1.33 8.60 ± 0.48 p < 0.1
Learning improved comfort 5.66 ± 1.55 7.20 ± 0.72 p < 0.05
Learning improved speed 4.92 ± 0.97 6.60 ± 0.64 p < 0.1
Learning improved efficiency 5.33 ± 1.22 8.2 ± 0.64 p < 0.2
Learning improved (aggregated) 5.30 ± 0.88 7.33 ± 0.98 p < 0.01

As can be seen from the results, users generally identify whether the learn-
ing was really used or not. Speed and efficiency are only weakly perceived
as improved by the learned inverse kinematics. However there is a significant
improvement on the comfort of the interaction thanks to the learned IK.

Indeed what can be seen in practice is that the arm postures taught by the
user leave more space in the interaction area, making a clearer workspace and
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also improving on the detection capabilities of the robot because the sensor is
less often occluded by the robot arm as can be seen on Fig. 3. Having better
detection makes the interaction more fluid, which also explains the perceived
speed improvement, even though the actual speed of the performed trajectories
is not improved.

5 Conclusion

In this work, we have proposed a simple approach to IK learning based on
joint-task kernel regression with a sample set generated by user demonstrations.
The learned IK can be used on its own or as providing seed states to use with
standard IK solvers. This approach allows to solve the redundancy resolution
problem by generating solutions that are approximating the postures learned
during demonstration, while keeping the precision of standard IK solvers and
their extrapolation abilities.

User studies have shown that the proposed approach significantly improves
the interaction with the robot as perceived by the user in object handover sce-
narios. It was also observed that the responsiveness of the robot is improved
with some IK solvers by providing approximate solutions where the standard
IK would not find any, for instance when the start and target states are highly
different or when the target positions are unreachable.

One of the advantages of the proposed approach is that it can be used online.
For instance a user can interrupt the robot while it is performing a motion and
guide it to a preferred posture or set of postures. The acquired samples can
be immediately integrated into the joint-task kernel regression, thus having an
instantaneous effect on the next inverse kinematics request.

Although collisions are not treated in this work, it is interesting to note
that the learned IK implicitely integrates approximate static constraints of the
configuration space as the set of samples cannot contain invalid configurations.

Future work will investigate the capabilities of online adjustments to the ker-
nel function to integrate custom constraints. For instance, adding an extra set of
weights on the samples could allow to incorporate dynamic collision avoidance,
safety constraints or user preferences. In the case of the latter it would be inter-
esting from an HRI perspective to evaluate how specific to each user the learned
IK is, and if users have a real preference towards their own teaching compared
to a an average or expert-generated sample set.
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Abstract. As robots become more integrated into society and the work-
force, people will be required to work cooperatively with not just other
people, but robots as well. People engage in team-building activities to
improve cooperation and promote positive group identity. This paper
explores the effect that a team-building activity had on humans working
cooperatively with human and robot teammates with the goal of bet-
ter understanding how to improve cooperation between a human and a
robotic agent. We conducted a 2x2 study with the presence or absence
of a team-building activity and the possibility or impossibility of the
cooperative task. 40 participants conducted a group search task with a
robot and another human partner. Half of the participants engaged in a
short team-building exercise. Surveys were used to capture participants’
perceptions before and after the session. Success and failure of the task
was also measured to identify any changes related to the outcome of
the team-building task. It was found that humans’ perceptions of robots
improve after performing team-building activities. We also found that
this effect was comparable to the change of perception when the group
succeeded on the task.

Keywords: Team building · Collaboration · Human-robot cooperation

1 Introduction

Human-robot cooperation in groups is an important facet of Human-Robot Inter-
action (HRI). When groups work together it may be important to promote a
collaborative atmosphere between all group members, including mixed groups
of humans and robots. Team-building is regularly used to promote a collabora-
tive atmosphere for human-human interaction. Including robots in team-building
exercises may have a similar effect on human and robot group interactions. This
study investigates team-building exercises on a group consisting of two humans
and a robot, and how this introduction changes the perceptions of each member
of the group (human and robot).

Humans often engage in team-building activities to improve coopera-
tion between team members and promote positive group identity. Many
c© Springer International Publishing Switzerland 2015
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team-building activities provide “a sense of unity and cohesiveness,” which can
improve the function of teams [16]. While these activities are well-known in the
human-human setting, it leads researchers to the question, can the human-robot
relation also improve with a sense of unity through similar team-building activi-
ties?

This is crucial for long-term HRI in the workplace since, depending on the
environment, success of teams can be limited by the trust and willingness to
collaborate within the team [12]. A coworker who is unwilling to collaborate and
trust the abilities of their fellow teammate may refuse to include that teammate
in many job related tasks due to territorial behaviors [2]. As one would think, this
exclusion of the team member might eventually lead to a lack of productivity.

What might happen if a robot were introduced into a workplace to assist
with tasks within a heterogeneous team of both robots and humans? If the
team members believe that the robot is not capable, they are most likely not
going to rely on that robot. It is easy to see that the success of a heterogeneous
team of robots and humans can be limited by the unwillingness of humans to
collaborate with a robot teammate. In the human-human collaborative setting
as these problems were addressed by using team-building activities [16]. This
research study looks to understand how the use of team-building activities can
facilitate human-robot group interaction.

In this paper, the results of a study involving heterogeneous groups of humans
and robots are analyzed to identify how humans perceive robots before and after
performing a team-building activity. First, some of the most recent research
related to robot teams will be explored. Next, a controlled experiment design
is presented. The results of the study will be presented, then discussed and
finally compared with the original hypothesis in conclusion. These results will
contribute to our overall understanding of how team build activities can affect
heterogeneous teams of robots and humans.

2 Related Work

In order to understand how to promote human-robot cooperation, there first
needs to be an exploration of how team-building works for human-human inter-
action. As Reeves and Nass found in their research, computers (and by exten-
sion robots) are often treated by people as social actors [15]. As such, studies of
human-human teaming may provide valuable insight into human-robot teaming.
There is also a wealth of research into human-robot teaming, showing how such
teams can be disrupted or promoted. This section will provide a survey of related
work in human-robot interaction, as well as how to measure social cohesion with
another agent (human, computer, or robot).

Dyer and Dyer have shown that through team-building exercises, specifically
the first team exercises issued at the initial team meeting, can build trust and
a mutual understanding that helps teams [3]. It has also been shown that team-
building activities serve as a bridge between meeting people and can help build
a sense of “trust and connectedness” [16]. Miller focused on minimizing failures
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within team-building exercises, and found that participants could not fully gain
the desired results of team-building, if care was not given to carefully controlling
the process [9]. Additionally, Miller outlined activities that are appropriate for
team-building. Each team-building activity is presented within guidelines of how
to run the team-building activity so the participants benefit the most.

Recent research has focused on improving trust in human-robot team rela-
tionships [8,18] as well as using robots to learn and observe from their human
teammates [13]. Most of these approaches look at improving the team dynamic
directly through the robot or human teammates. In this paper we are looking to
improve the robot-team relationship through the use of an independent factor;
in this particular case a team-building activity.

The area of heterogeneous human-robot teams often involves organization
and planning for large teams. Nagavalli looked specifically at how humans inter-
act with large swarms of robots [11] and Ponda orchestrated heterogeneous col-
laborative tasks [14]. While creating group plans to achieve tasks, we believe that
this is a separate problem compared to unifying a heterogeneous team before a
task. With the Wizard of Oz approach, we accomplish human-like planning.

Research involving interaction between heterogeneous groups of robots have
focused on the usage and design of a specific robot and the activities or circum-
stances that change the behaviors and perceptions of both humans and robots.
Prior work has examined how robots fit in the workplace [10]. Active research
has explored a variety of aspects of the human-robot team setting, ranging from
how a robot should navigate [4,7] to dialogue structuring [6]. This paper is dis-
tinguished from prior work by exploring easy social interventions which may
facilitate human-robot cohesion. We look to study this idea by exploring the
beneficial effects of using a team-building activity as an “ice breaker” before a
human-robot team performs a task.

This approach was inspired in part by [17], which used an industrial robot as
a platform to evaluate how fluidity, comfortableness, and noticablility changed
with several parameters in fetch-and-deliver tasks involving a robot and a human.
The robot and human work collaboratively to complete a simple task. The robot
has very limited in communication with the human counterpart, which may very
well be a believable real-world constraint. [5] uses the concept of presenting a
robot as a partner instead of a tool. Although we do not extend this concept to
collaborative control like Fong, we actively choose to introduce the robot as a
third participant in the study.

Bartneck, et al., developed a survey instrument to evaluate robot agents.
This instrument uses five sub-scales, anthropomorphism, animacy, likeability,
perceived intelligence, and perceived safety to evaluate perceptions of human-
robot interaction [1]. These metrics are used in the Godspeed Questionnaire,
which evaluated participants’ experiences with the robot and with the other
participant. The Godspeed Questionnaire uses a differential scale made of several
five point Likert questions for each measure.
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Fig. 1. The Pioneer 3DX Robot that was used in across all conditions of the experiment
and the private room where the study sessions took place.

3 Experiment Design

This section details the overall design of the experiment, the procedure and
materials used to recreate the study, as well as a thorough explanation of the
tasks (including the team-building activity) and how it was used in the study.

The experiment is designed to represent a simple task in which teamwork
between humans and a robot would increase the probability of the tasks success
compared to the humans working alone. This is meant to be representative of
many real-world activities requiring human and robot teamwork. In this task,
the team consisting of two humans and one robot are instructed to locate a
particular object in a large room (Figure 1). The participants are shown that
the robot is capable of finding the marker before the task starts. The team was
give one minute to find a marker hidden within a cluttered room.

We employed a 2x2 between-subjects factorial design. There were two factors:
team-building vs. not team-building, and task possible vs. task impossible. For
the first factor, participants would either engage in the “Two Truths and One
Lie” team-building activity with their team or not prior to the study activity. The
second factor, had two levels: possible success or guaranteed failure. The second
factor was varied by making the task possible by hiding the object somewhere
in the room, or making the task impossible by telling the participants to find
the object, but not actually putting the object into the room. All participants
that participated in the possible success successfully completed the task.

40 college-aged participants ranging in a variety of majors volunteered to
participate in a cooperative task where they were paired with another participant
and a robot partner that formed a team of three. The participants were then
randomly assigned to one of the four groups.

We hypothesized the following:
H1: Participants will perceive the robot to be more human-like after partic-

ipating in a team-building exercise.
H2: Participants will perceive the robot to be more intelligent when the

group succeeds at the primary task.
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These hypotheses submit that similarity of a robot to a person would be
judged by its social behavior. The capabilities of that robot would be judged by
its success at stated goals.

3.1 Procedure

Participants were recruited from a university library at random and asked if they
would participate in a study involving human-robot collaboration. Two partici-
pants at a time were brought into the study room and consented, then introduced
to each other and the robot. The participants were only asked to state their
name, and the facilitator introduces the robot as “a Pioneer 3DX”. Participants
were asked if they have met each other and were dismissed or re-paired until the
partners did not know each other to eliminate the possible confounding variable
of the familiarity between participants. Study personnel told the participants
that the robot was capable of finding the blue marker by placing it in front of
the robot while the robot operator played a sound clip stating “I found it” from
the robots on-board speaker. The camera was not actually used for detection,
the remote operator used the Wizard of Oz method to create this effect. This
was chosen to reduce the probability of technical difficulties in demonstrating
the robots competency. However, this is a task that can reasonably be completed
autonomously without error.

Participants were then separated and asked to fill out the Godspeed Ques-
tionnaire [1] with respect to their human teammate and again for their robotic
teammate. After completion, they were brought back together in the main study
room. Half of the groups partook in the team-building activity described in 3.3.
Then, all groups partook in the primary task described in 3.4, and in half of those
cases the task was possible to complete and in the other half it was impossible
with the marker removed from the room. The four conditions were:

– NS: No Team-Building Activity and Possible Marker (Team Succeeded)
– NF: No Team-Building Activity and Impossible Marker (Team Failed)
– TBS: Team-Building Activity and Possible Marker (Team Succeeded)
– TBF: Team-Building Activity and Impossible Marker (Team Failed)

After finishing the primary task, participants were separated again and asked
to fill out the same Godspeed questionnaire for their human teammate and again
for their robotic teammate. After finishing the questionnaire participants were
debriefed and dismissed. The facilitator used a script throughout the experiment,
but was allowed to respond to participant questions during the initial consent
of the study and during the debrief period. This was to ensure that participants
fully comprehended all consent and debrief forms provided to them.

3.2 Materials and Setup

The Adept MobileRobotics Pioneer 3DX shown in 1 was used as the robotic
base for the experiment. It was equipped with a SICK Laser Rangefinder for



118 Z. Carlson et al.

navigation, an Xtion Pro for detecting the object, and additional computational
components. A laptop running the Robot Operating System was mounted on
the Pioneer. The robot’s on-board Raspberry Pi is controlled from a separate
computer in a different room by a human (participants are unaware of this
Wizard of Oz usage: they were told the robot was navigating autonomously).

We used a library study room, set up to be sufficiently cluttered so that
finding an object took some time. The object used was a blue whiteboard marker,
chosen because it was easily concealable but also easily recognizable to both the
humans and the robots camera due to its bright color. The object was hidden
such that the robot would be able to see it. A Sony camera, handycam model
HDR-CX220 with a resolution of 1080p, on a tripod in the corner of the room
was used to record audio and video for the duration of the study.

3.3 Team-Building Activity

Half the groups participated in a “Two Truths and One Lie” icebreaker, prior
to completing the primary task. Each participant told the rest of the group two
truths and one lie about themselves, then their human teammate and the robot
would guess which statement was a lie. Unknown to participants, the remote
human operator actually just played canned sound clips from the robots on-board
speaker which stated “I believe your second/third statement was a lie” for the
first and second human teammate, respectively, regardless of their statements.
Finally, the remote operator played canned sound clips from the robot which
stated its two truths and a lie: “I was manufactured in 2003” (truth); “I have
traveled outdoors” (truth), “I can travel up to two meters per second” (lie).
Participants then guess which statement was a lie, and the remote operator
played a sound clip stating “I can only travel one meter per second”.

The facilitator within the room gestures at each participant when it was their
turn to speak (both the humans and the robot). The remote operator could see
the facilitator gesture on the video feed, which was used as the cue to advance.1

3.4 Primary Task

Participants were told that there was a blue whiteboard marker hidden in the
room somewhere. They were given sixty seconds to find it, with the help of their
human partner and the robot. Participants were told the robot would announce
“I found it” if it found the marker, however the robot was actually driven by
the remote operator and would not announce if it “saw” the marker. For half
of the groups the marker was actually hidden in the room, but for the rest of
the groups the marker was not in the room (thus the participants would run
out of time before finding the marker). In the case that it was in the room, the
marker was hidden under one of the legs of the table. Our intention was that
participants would not be able to see it from their starting positions.

1 Note that we avoided anthropomorphizing the robot because this study did not focus
on human-like robots. The voice used was a very “machine-like” voice.
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Fig. 2. Significance was found between groups when analyzing the average mean rep-
resenting the difference in the participants’ perception of how animate [left] (F [3, 36] =
2.973, p < .05) and anthropomorphic [right] (F [3, 36] = 3.197, p < .05) the robot was
between the pre and post surveys for all conditions.

4 Results

The details of the experiment results and analysis are presented in this section.
The survey data were analyzed to support or refute the experimental hypotheses
presented in Section 3. For each sub-scale of the Godspeed Questionnaire [1],
the differences of the before and after Questionnaires were analyzed using a
multivariate two-way analysis of variance (ANOVA) between subjects across all
conditions. Additionally, the post surveys were analyzed using a multivariate
two-way analysis of variance. There were 10 participants per cell, with a total
of 40 participants that were analyzed and assigned to each condition.

Ten categories were measured in both multivariate analyses, one for each
sub-scale of the Godspeed questionnaire for the human and the robot partner.
When analyzing the differences between the pre and post surveys, there was a
significant difference in how anthropomorphic participants perceived the robot
(F [3, 36] = 3.197, p < .05) and how animate they perceived it to be (F [3, 36] =
2.973, p < .05). There was a significant interaction for marker possible and team
activity of the participants’ perception of the perceived intelligence of the robot
was also significant (F [3, 36] = 2.970, p < .05).

Figure 2 shows the means of the difference between pre- and post- surveys
within each condition, representing the change in how anthropomorphic and
animate the robot was perceived to be. When the team successfully found the
marker there was a positive increase in their perceptions. When participants
could not find a marker and they participated in the team-building activity,
there was close to no change in their perceptions from before the activity to
after. When they did not participate in the team-building activity, failing the
task had a negative impact on their perceptions.
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Fig. 3. Significance was found between groups when analyzing the average mean rep-
resenting participants’ final perception of how intelligent the robot was at the end of
the study session (F [3, 36] = 2.970, p < .05).

Figure 3 shows that when participants participated in the team-building
activity with the robot, no matter if they failed or succeeded at the task, they
perceived the intelligence of the robot to be the same. When there was no team-
building activity, there was a clear difference in the intelligence they believed
the robot to have depending on whether or not they succeeded at the task. They
perceived the robot to have as much intelligence when they participated in the
team-building activity as when they succeeded in the task.

5 Discussion

The animacy and anthropomorphism results support hypothesis #1, “Partici-
pants will perceive the robot to be more human-like after participating in a team-
building activity.” The intelligence sub-scale results partially support hypothesis
#2, “Participants will perceive the robot to be more intelligent when the group
succeeds at the primary task.” We instead found that participants would find
the robot more intelligent when the group succeeded or when the team-building
activity occurred. The power of the team-building task, then is that it can cause
participants to forgive the robot’s failure to meet its goals.

Further exploration of the team-building activity was analyzed, using a one-
way ANOVA to compare the means of all the participants that participated in
the team-building activity and those that did not, no matter if they succeeded
or failed. This test showed no significance.

This shows that the team-building activity alone did not significantly alter
the participant’s perceptions. The team-building activity needed to be coupled
with success, which is supported in Figure 2 where all cases show that when the
team could not complete the task (Marker Impossible), the participants’ per-
ceptions of their team were negatively impacted. As for the groups that success-
fully completed the primary task (Marker Possible), they always had a positive
increase in their perceptions of the team members.
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In the case of the successful teams and hypotheses #2, participants may
blame the robot when they are unable to complete the task. This was shown in
our results were there was no significant differences in any of the human partner
surveys and a negative reflection on the perception of the robot’s intelligence.
Interestingly, we have found that the team-building activity in the impossible
task seemed to offset the perceived lack in intelligence for failing the task. For
this particular study, there appeared to be a ceiling of how intelligent the robot
was perceived roughly around a value of 3.5 on a scale of 1-5. When the team-
building activity was combined with success, the perceived intelligence of the
robot was roughly the same as the other two conditions shown in Figure 3,
where they failed the task and participated in the team-building activity, and
when they succeeded but did not participate in team-building.

6 Conclusion and Future Work

This paper makes a definitive case for the utilization of simple social inter-
action exercises to facilitate human-robot team cohesion. The results of this
paper support the notion that facilitating a team atmosphere can negate the
deleterious effects of group failure at a task. A useful extension of this research
would be to study the duration of team-building effects on heterogeneous groups
of robots and humans. This study incorporated very short interactions with a
robot. However, it is unclear whether or not these increased perceptions would be
maintained throughout longer use of the robot or more involved team-building.

In this study, the participants’ beliefs about themselves are unknown. Partic-
ipants could be asked to self-rate. The difference between self-ratings and their
rating of partners (especially their robotic partner’s ratings) could provide some
insight into how the human participant relates to the robot, instead of how the
human participant perceives the other participant relating to the robot.

“Two Truths and One Lie” was an effective team-building activity. However,
comparing multiple team-building activities could reveal differences in effective-
ness in different activities with respect to heterogeneous groups. Furthermore,
Rivas framed team-building exercises as a task that a “leader” uses to engage
followers in upcoming activities [16]. Robots leading team-building activities to
direct or manage humans in other tasks is an unexplored area of HRI.

Human robot interactions will undoubtedly increase as the field of robotics
advances. The use of heterogeneous groups of humans and robots will most likely
increase over time as well. Since team-building is viewed as an acceptable social
activity to create cohesive groups of humans, team-building with heterogeneous
groups of robots and humans is a natural step forward. The results and further
discussion of the study shows that team-building activities, as much as joint
success, results in a significant positive increase in perceptions of the animacy
and anthropomorphism of robotic team members. This supports hypothesis #1,
“Participants will perceive the robot to be more human-like when they partici-
pate in a team-building task.” Finally, hypothesis #2 was supported, “Partici-
pants will perceive the robot to be more intelligent when the group succeeds at
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the primary task” and it was also found that participating in a team building
activity can increase the perception of the intelligence of the robot.
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Abstract. Joint attention is an early-developing social-communicative
skill in which two people (usually a young child and an adult) share
attention with regards to an interesting object or event, by means of
gestures and gaze, and its presence is a key element in evaluating the
therapy in the case of autism spectrum disorders. In this work, a novel
automatic system able to detect joint attention by using completely non-
intrusive depth camera installed on the room ceiling is presented. In par-
ticular, in a scenario where a humanoid-robot, a therapist (or a parent)
and a child are interacting, the system can detect the social interaction
between them. Specifically, a depth camera mounted on the top of a
room is employed to detect, first of all, the arising event to be moni-
tored (performed by an humanoid robot) and, subsequently, to detect
the eventual joint attention mechanism analyzing the orientation of the
head. The system operates in real-time, providing to the therapist a com-
pletely non-intrusive instrument to help him to evaluate the quality and
the precise modalities of this predominant feature during the therapy
session.

1 Introduction

Joint attention is an early-developing social-communicative skill in which two
people (usually a young child and an adult) share attention with regards to an
interesting object or event, by means of gestures and/or gaze. In particular, the
work in [16] firstly proposed a preliminary investigation about the extent of the
infant’s ability to follow changes in adult gaze direction during the first years of
life. In particular, on each test trial performed on 34 children between 2 and 14
years old, the enfant first made eye-to-eye contact and then silently turned his
or her head, looking at a small concealed signal light for 7 seconds, while the
adult head was then turned back to interact with the infant. In the experiment,
it was found that the proportion of infants judged as having produced a positive
response on one or both trials increased steadily with age. Since its fundamental
importance in the fields of cognitive and developmental psychology, a long list
of subsequent studies have been proposed in the literature over the years, and
it is still an active research topic [12]. For the case of autism, several works
c© Springer International Publishing Switzerland 2015
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investigated the meaning and the modalities of joint attention lacks, like in [20],
[21] and [7]. In fact, impaired development of joint attention is a predominant
feature in children with autism spectrum disorder (ASD), and a set of strategy
are used to teach and support joint attention [9]. Although children with ASD
can show attention to objects or toys of interest, they have difficulties in sharing
attention or interests with the therapist of a relative. For this purpose, the
Early Start Denver Model [15] underlines this capacity as a key element of social
cognition, working on an improvement of this concerned interaction lack. In [5]
a requirement to detect joint attention is that two individuals are attending to
the same object, based on one individual using the attention cues of the second
individual. Shared Attention is a combination of mutual attention (the attention
of two individuals is directed to one another) and joint attention (two individuals
are looking at the same object), where at the same time the two individuals have
knowledge of the directions of the other individual’s attention. In other words,
shared attention represents a higher state of the dyadic relationship whereby
both individuals are attending the same object, as with joint attention, but both
are aware of each other’s attentional state. Although they are slightly different,
in the literature shared and joint attention are considered as synonyms. Beyond
subtle differences, what is important to notice is that for us joint attention means
that the child is attending to the same object using the attention cues of the
adult, i.e. knowing together that they are attending to the same thing [3].

On the other hand, the usage of Socially Assistive Robotics have spread
among recent years, providing a new and useful instrument to elicit interest on
the autistic child during the therapy. For a review about the clinical usage of
robots in autism research refer to [4] and [17]. In particular, socially assistive
robots have been employed also to elicit behavior in children with ASD [6].
Many works in the literature explore this exciting feature, but most of them are
based on a simulated robot on a screen, eventually evaluating the participant’s
movement [10], his visual perspective [22] or his reaction time [11]. In [18] gaze
track in a human-robot interaction setting (on a monitor) is analyzed, but the
attention is measured by means of eye tracker, that are very expensive, and they
needs a user calibration that becomes very difficult in the case of children with
ASD. A humanoid robot has been employed to elicit joint attention in [14], but
all the acquired data has been manually analyzed a posteriori. In [8] a specific
hardware is employed to detect the joint attention in a 1-by-1 human-robot
interaction scheme. In particular, the method employs an omnidirectional vision
sensor and 16 ultrasonic distance sensors around a movable base in order to
localize the person’s location and to turn consequently the robot’s head. This
feature is merged with a speech generation system that can elicit social behaviors.
Finally, the work in [1] compares the visual exploration during joint attention
elicitation in typical development children and children with ASD by means of a
Kinect sensor in order to capture social engagement cues. The system evaluates
a possible joint attention event, but the sensor is installed in front of the child
(thus visible) and even in this work no sharing with another adult has been taken
into account.
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This paper introduces a two-level innovation with regards to the state of the
art: first of all, it presents a computer vision based system based on non-intrusive
and invisible to the patient hardware that can operate in real-time. Moreover,
it considers the case of a triadic interaction, involving the child, an adult and
a humanoid robot (i.e. the Aldebaran NAO H25) in order to detect the joint
attention when the robot performs an ad-hoc movement to elicit joint attention
mechanism. The paper is organized as follows. Section 2 introduces the proposed
method, while Section 3 shows the experimental setup and the achieved results.
Finally, Section 4 concludes the paper.

2 Proposed Method

In the following paragraphs the hardware architecture will be illustrated, as well
as the computer vision algorithms implemented for the detection of people, their
heads, and correspondent axis for mutual interaction evaluation.

2.1 System Overview

The proposed approach uses images acquired by a Microsoft Kinect device. We
arranged a therapy room with a calibrated acquisition device placed on the
ceiling, in a non-intrusive position, with the goal of not disturb the children.
Our idea is to develop simple and effective algorithms, in order to implement
them on low-end hardware. The algorithms run in real time, require no training
data (except some seconds of free acquisition for the background modeling, as
described below) and can exploit cheap, off-the-shelf sensors. In fig. 1 the flow-
chart of the whole system is shown. The Kinect device acquires synchronized
depth information about the scene in parallel with the RGB video stream. Depth
images are segmented in order to detect moving blobs in the scene (calibration
data are used to improve segmentation by considering constraints of the system,
i.e. the distances between the camera and expected target, as well as the floor
and the other planes). After this, Canny operator is applied on the depth images
(only on foreground areas) providing an edge map. This map is the input of the
head detection algorithm, which processes the edge map with the goal of detect
elliptical structures. The outputs of this step are the major and minor axes of
the detected ellipses. Finally, the behaviors of children are classified according
to mutual positions of the major axes of the educator and the patient.

2.2 Segmentation

The first step of the algorithm is the segmentation of foreground objects. For
this purpose, we have chosen to work directly on the depth map: this way,
traditional weakness of foreground segmentation algorithms (for example the
presence of shadows, reflections on specular surfaces, and so on) are limited or
totally avoided. We have implemented the algorithm proposed in [23], which is
robust to shadows, reflections, small movements in the background. Even if these



Automatic Joint Attention Detection During Interaction 127

Fig. 1. A schematic diagram of the processing steps

aspects are filtered by using depth images, some artifacts could be present any-
how. To further improve segmentation of desired objects (people and robot), we
run the algorithm before patients and educators enter the room. The algorithm
is a variation of classic Gaussian Mixture Model approach [19]: each point is rep-
resented by a number of Gaussians (with mean and variance), and a variation
is considered as foreground if it differs from each gaussian more then the cor-
respondent variance. In fig. 2 we can see a depth image, and the corresponding
segmented one.

Fig. 2. An example of depth image, and the output of the segmentation procedure.

2.3 Head Detection

After the foreground segmentation, we need to detect the heads of subjects
present in the scene. To do this, we use the detected foreground as a binary
mask on the depth image. This way, we work on a depth image composed by
only foreground objects. For the head detection we take advantage of the con-
straints of the applicative context: autistic children usually do not interact with
other people, so it is realistic to consider that each foreground detected region
refers to only one person. Firstly, a Canny operator [2] is applied to obtain an
edge map. This map is then processed in order to detect ellipses, that corre-
spond to the heads. The algorithm proposed in [13] has been implemented, with



128 D. Cazzato et al.

some variations: specifically, the detection has been focused on a specific class
of ellipses. This because the size and the geometry of the head is known, as well
as the position of the camera and the focal lens. So, we can assume that the size
of expected ellipses (heads) is known, and can vary in a certain range. In fig. 3
we can see the output of the head detection algorithm.

Fig. 3. The output of the head detection algorithm.

2.4 Behavior Understanding

The final step of the whole approach is the behavior detection. The proposed
system, as remarked above, has the goal to provide a support to therapists in the
analysis of behavior of children with autism spectrum disorder. So, the output of
the automatic algorithm needs to be a classification of most common behaviors.
According to suggestions provided by therapists, our goal is the detection of
three main behaviors:

1. Joint Attention. Both adult and child look at the robot (JA);
2. Child attention. Educator looks at the child while the child looks at the

robot (A2C2R);
3. ChildAdult attention. Both Adult and child look at each other (A2C2A);

The automatic detection of such behaviors has been done by evaluating the
mutual position of the major axes of the detected ellipses (heads), as well as by
considering the position (known) of the robot. So, the starting point of this final
step is the extraction of the major axes of the ellipses, and the evaluation of
their directions. In fig. 4 we can see an example of this approach: the major axes
of each head/ellipse are plotted, and the behaviour is evaluated by considering
the possible situations (the angle between them, the position of robot, etc).

In fig. 5 we can see some example of images of the desired classes of behaviors,
with the correspondent synthetic scheme for the geometric evaluation. Formally,
we have assumed these rules for the classification:
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Fig. 4. The major axes and their use in the evaluation of behavior.

1. JA. The intersection of the major axes of the subjects (child and adult)
corresponds to the position of the robot;

2. A2C2R. The intersection of the major axes corresponds to the head of the
child AND the major axis of the child corresponds to the position of the
robot (i.e. the gaze of the child is on the robot);

3. A2C2A. The major axes of both child and adult are about congruent (i.e.
they are congruent, OR they intersect with a very small angle, less then 10
degrees).

3 Experiments

In the next subsections, firstly the setup and the main characteristics of the test
sequences will be illustrated; then, the results obtained by using the proposed
algorithms will be presented.

3.1 Setup and Dataset

The acquisition setup is composed by a calibrated Kinect Camera installed on the
ceiling (about 3 meters from the floor). We created a simulated operative scene
containing a work table (1.5 meters from the floor), NAO humanoid robot located
on the table, an autistic child and an adult. We acquired several sequences in
which we have simulated the three different kinds of attention interactions among
the adult, the child and the humanoid robot described in section 2.4. The pro-
posed setup has to be considered stationary, because our goal, for the future, is
to arrange a therapy room with this camouflaged hardware. We use the term
’simulation’ because the acquisition sessions, even if performed following instruc-
tions of therapists, have been performed in absence of a therapist. Moreover, the
acquisitions have been made by using children without ASD. In the future, the
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(a) A2C2A real image (b) A2C2A synthetic scheme

(c) A2C2R real image (d) A2C2R scheme

(e) JA real image (f) JA scheme

Fig. 5. Some images acquired during experimental phase. Red dotted lines highlight
the gaze orientation.
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acquisition sessions will be made in a clinical context, in presence of a therapist,
and actions will be performed by real ASD patients. In this step of our work,
our goal is the test of computer vision algorithms, so the presence of real ASD
patients or non ASD patients is irrelevant.

Another observation is necessary: due to severe laws about acquisition and
publications of images with minors, we present images in which actors are adults
(we hope in the future to obtain the necessary permissions to use minor images).

It is important to note that we are testing the computer vision algorithms,
instead of clinical ones: so, we are interested in results in terms of correct detec-
tion of heads, angles between them, and so on, while an analysis of medical
implications of these results will be examined in depth in the future.

The presence of the robot during acquisitions is strategic for the correct eval-
uation of child attention: during the different simulations, the robot performed
generic behaviours (it stood up, or it sat down), with the goal of attract the
gaze of children; this way, we can test if the children react to external impulses
(where external has to be intended as ‘not from the therapist’).

3.2 Results

We implemented the proposed method and tested it on three video sequences of
1600 frames each one. We have manually labelled each frame in order to create a
ground truth of the three different behavior classes described in section 2.4. We
have introduced a new class Non Classified Behavior (NCB) for labelling of
all frames that do not belong to the three main behavior classes. This Ground
Truth creation process generated four labelled classes and the population of each
is given by table 1.

Table 1. Behavior classes population

JA A2C2R A2C2A NCB

# 1480 957 1043 1320

Table 2 shows the obtained results; it contains a confusion matrix with the
percentage of correct detection in the diagonal (bolded). As it can be highlighted
the proposed algorithm gives very good preliminary results; the worst detection
percentage (75%) is obtained for the A2C2R class. This is because it is more
difficult to detect the angle orientation of the adult ellipse towards the child
one when he gazes the humanoid robot. Other mis-classified errors are given by
the wrong detection of the ellipse location. It should be noted that the system
works in real time: it consumes around 25ms to process each frame and give the
estimated behavior class (on a standard PC equipped with Intel I7 processor
and 8 GB RAM).
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Table 2. Results of the proposed approach

JA A2C2R A2C2A NCB

JA 81% 10% 4% 5%
A2C2R 11% 75% 8% 6%
A2C2A 7% 4% 87% 2%
NCB 1% 11% 1% 87%

4 Conclusions and Future Improvements

This work presented a novel automatic system able to detect joint attention
by using completely non-intrusive depth camera installed on the room ceiling.
Preliminary experiments conducted on three different video sequences showed
that the proposed methodology is able to detect not only the joint attention, but
also different interaction behaviors between adult, child and robot, analyzing the
head orientation. This real-time system provides an useful non-intrusive tool to
report the dominant behavior during the therapy session. Even if the obtained
results still does not perform an hit rate of 100%, we point out the fact that,
in the context of automatic or semi-automatic evaluation tools, each additional
tool that can provide help in supporting therapists in this difficult theme is
fundamental: autism, as known, is a generic term to indicate a disorder whose
level can vary in a range (called spectrum), and each kind of therapy can be
useful to produce an improvement in this range, with the (very difficult) goal of
producing an exit of the patient from this spectrum.

The future works will be addressed to better estimate the angle among the
head and to improve the ellipse detection algorithm. We will also acquire addi-
tional sequences during therapy sessions in order to evaluate the algorithm per-
formances in real context. Furthermore, future works will investigate the pos-
sibility to create a common dataset in order to provide a comparison measure
for this new innovative and non-invasive approach to automatically detect such
events, as well as to test the system in clinical settings in real triadic interactions,
thus involving therapists and children with ASD.
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6. Feil-Seifer, D., Matarić, M.J.: Toward socially assistive robotics for augment-
ing interventions for children with autism spectrum disorders. In: Khatib, O.,
Kumar, V., Pappas, G.J. (eds.) Experimental Robotics: The Eleventh Interna-
tional Symposium. Springer Tracts in Advanced Robotics, vol. 54, pp. 201–210.
Springer, Heidelberg (2009)

7. Gulsrud, A.C., Hellemann, G.S., Freeman, S.F., Kasari, C.: Two to ten years:
Developmental trajectories of joint attention in children with asd who received
targeted social communication interventions. Autism Research 7(2), 207–215
(2014)

8. Imai, M., Ono, T., Ishiguro, H.: Physical relation and expression: Joint attention
for human-robot interaction. IEEE Transactions on Industrial Electronics 50(4),
636–643 (2003)

9. Jones, E.A., Carr, E.G.: Joint attention in children with autism theory and inter-
vention. Focus on Autism and Other Developmental Disabilities 19(1), 13–26
(2004)

10. Khoramshahi, M., Shukla, A., Billard, A.: From joint-attention to joint-action:
effects of gaze on human following motion. In: 6th Joint Action Meeting (2015)

11. Li, A.X., Florendo, M., Miller, L.E., Ishiguro, H., Saygin, A.P.: Robot form
and motion influences social attention. In: Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-Robot Interaction, pp. 43–50.
ACM (2015)

12. Moore, C., Dunham, P.: Joint attention: Its origins and role in development. Psy-
chology Press (2014)

13. Prasad, D.K., Leung, M.K.: Methods for ellipse detection from edge maps of
real images. In: Machine Vision - Applications and Systems, pp. 135–162. InTech
(2012)

14. Robins, B., Dickerson, P., Stribling, P., Dautenhahn, K.: Robot-mediated joint
attention in children with autism: A case study in robot-human interaction. Inter-
action Studies 5(2), 161–198 (2004)

15. Rogers, S.J., Dawson, G.: Early Start Denver Model curriculum checklist for young
children with Autism. Guilford Press (2009)

16. Scaife, M., Bruner, J.S.: The capacity for joint visual attention in the infant. Nature
(1975)

17. Scassellati, B., Admoni, H., Mataric, M.: Robots for use in autism research. Annual
Review of Biomedical Engineering 14, 275–294 (2012)

18. Staudte, M., Crocker, M.W.: Investigating joint attention mechanisms through
spoken human-robot interaction. Cognition 120(2), 268–291 (2011)

19. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-
timetracking. In: IEEE Int. Conf. on. Comp. Vision and Patt. Recognition. vol. 2,
p. 252 (1999)

20. Warreyn, P., Paelt, S., Roeyers, H.: Social-communicative abilities as treatment
goals for preschool children with autism spectrum disorder: the importance of
imitation, joint attention, and play. Developmental Medicine & Child Neurology
56(8), 712–716 (2014)



134 D. Cazzato et al.

21. Warreyn, P., Roeyers, H.: See what i see, do as i do: Promoting joint attention and
imitation in preschoolers with autism spectrum disorder. Autism 18(6), 658–671
(2014)

22. Zhao, X., Cusimano, C., Malle, B.F.: Do people spontaneously take a robot?s
visual perspective? In: Proc. of the ACM/IEEE Intern. Conf. on Human-Robot
Interaction Extended Abstracts, pp. 133–134. ACM (2015)

23. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtrac-
tion. In: Proc. of the IEEE Intern. Conf. on Patt. Recogn. vol. 2, pp. 28–31 (2004)



© Springer International Publishing Switzerland 2015 
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 135–144, 2015. 
DOI: 10.1007/978-3-319-25554-5_14 

Characterizing the State of the Art  
of Human-Robot Coproduction 

Argun Cencen(), Jouke Verlinden, and Jo Geraedts 

Faculty of Industrial Design Engineering, TU Delft, Delft, The Netherlands 
{a.cencen,j.c.verlinden,j.m.p.geraedts}@tudelft.nl 

Abstract. The industry is working towards manufacturing systems consisting of 
a blend of humans and robots. We look at the development of these systems in 
the context of Small and Medium Enterprises (SME). Also, it is believed that 
industrial robots with collaboration capabilities with humans will play a crucial 
role in the change towards reconfigurable and flexible manufacturing systems. 
Collaboration and teaming are natural social skills of humans. However, little is 
known about robots and their capabilities in working efficiently with these 
skills. From our review of the current context of manufacturing, we understand 
that tasks at a workstation are executed by a combination of various actors and 
there are many ways to design, control and simulate their interplay. These prac-
tices need to be developed for these novel systems as well. Through a survey of 
existing examples of similar systems, we set an initial step in generating know-
ledge on the parameters that influence the design of these systems. In these sys-
tems we see that humans and robots have certain areas and types of skills 
through which they engage in joint activity. We compare these examples from 
three perspectives and draw preliminary conclusions. 

Keywords: Human robot interaction · Worker robot collaboration · Coproduc-
tion · Industrial robots · Industrial automation design 

1 Introduction 

Looking at the state of the art of industrial automation technologies around the world, 
creating an automated solution for almost any manufacturing related problem is no 
longer a challenge of technology, but a matter of sufficient time and resources. The 
European Union (EU) is currently working towards a future in which it strengthens 
the competitiveness and productivity of its manufacturing SME’s. By doing so, the 
EU wants to hold and sustain its competitive position amongst other manufacturing 
areas of the world [1]. 

Following this idea, the integration of the latest advances in several technologies 
i.e. industrial robots, computer vision, 3D printing, in order to develop the necessary 
tools for a “rapid-robotization” concept is a task that is the main goal of the European 
FP7 framework funded Factory in a Day (FiaD) project [2].  As a partner of FiaD we 
investigate this goal from our field of expertise of Industrial Design Engineering. This 
perspective focuses on the human related aspects of the concept and particularly to 
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develop a design methodology that is applicable to the design of human-robot copro-
duction systems.  

In this paper, we first describe our perspective of manufacturing systems and nar-
row our topic down to the workers and their tasks. Next, through a survey of demon-
strators consisting of humans and robots in manufacturing-like contexts, we attempt 
to characterize Human Robot Coproduction (HRC). 

2 Background 

2.1 Manufacturing Systems 

Manufacturing systems can be viewed from several perspectives, e.g., Groover di-
vides manufacturing systems in 4 parts. Production machines, material handling sys-
tem, computer control system and human resources [3]. Manufacturing systems are 
following a trend towards flexibility and reconfigurability. From a changeability and 
reconfigurability perspective, Zaeh et al. propose manufacturing systems as consisting 
of 3 parts: the physical system, the control system and the organization of system [4] . 
We believe that the combination of these views provide a good foundation for the 
positioning and architecture of HRC systems. 

2.2 The production Line and Workstations 

Today’s markets require many goods to be manufactured in a relatively quick phase 
and up to a certain standard. According to Bowen & Youngdahl, in the context of 
manufacturing, technology combined with a well-defined division of labor, clear 
rules, and limited span of control results in consistent quality and efficiency [5]. One 
of the best examples of this combination is the development of mass production, 
which is an approach that increases overall efficiency, while maintaining product 
quality. Henry Ford introduced the production-line approach in the beginning of the 
twentieth century and revolutionized the manufacturing industry [6]. This demon-
strated that even a fairly complex product such as a car can be manufactured at a fixed 
rate in the expected quality. Nowadays, many manufacturing activities benefit from 
this approach in one way or another. As summarized in Figure 1, a production line is  
 

 
Fig. 1. An abstraction of the relationship between production lines, workstations and their 
elements 
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defined by Groover [3] as a system that consists of multiple workstations. A worksta-
tion refers to a location in the factory where a well-defined task or operation is  
accomplished by an automated machine, a combination of worker & machine or a 
combination of worker & tools. Therefore we define the actors at a workstation as 
tools, workers and machines.  

3 Survey of Human Robot Coproduction Systems 

Human-Robot Coproduction as introduced in the previous sections has been subject to 
several explorative studies. From manufacturing and robotics literature, we have col-
lected ten distinct demonstrators of collaborations between humans and robots, in 
which the humans and robots act as co-workers, Figure 2 depicts these. These sys-
tems, labeled ‘A’ to ‘J’, envisage how human-robot coproduction can secure human 
labor in the future. However, only a few of these are fully implemented while no de-
tailed prescriptions or operational guidelines exist.  
 

 
Fig. 2. Collection of Human-Robot coproduction applications. 

3.1 Demonstrator Selection  

The common denominator of this set is the element of a production context. The 
second criterion for selection was the presence of a human worker and a robot. in 
most of the systems we selected, a robot manipulator has been used, which makes it 
relatively simple to identify the system as a system containing a robot. In the cases C, 
F and J, instead of a robot manipulator, other devices with variant formalities have 
been used to achieve systems with similar qualities, such as a ‘mobile platform’ and a 
‘light guide’ performing comparable actions. Therefore, one way of framing the  
selected cases would be to name them “systems with robotic qualities”.  



138 A. Cencen et al. 

3.2 Demonstrator Descriptions 

In our literature review so far, we have not come across a means of categorizing hu-
man-robot coproduction systems. Therefore we initially focus mainly on two global 
aspects that emerge from our review and hypothesis so far. On one side we try to 
explain what the task is, on the other hand, we try to describe how the human worker 
and the robot manage their communication during this process. Following are the ten 
cases, presented through short descriptions.  

A. Rozo et al. 
The authors propose a kinesthetically learning algorithm to support an assembly task 
of a small side-table, which is designed to be assembled by humans [7].The task is 
conceptualized as follows: a human assembles the legs of the table one by one while 
the robot holds the top piece of the table in an orientation which is comfortable for the 
human.  Prior to the assembly operation, a human demonstrates the portion of the 
workflow related to the role of the robot kinesthetically. The robot records haptic data 
and movement patterns during this demonstration, using a motion capture system with 
passive retro reflective markers attached to the table parts and six-axis force-torque 
sensor that is attached between the wrist of the robot and the table. During the execu-
tion of the task, the human communicates with the robot through exerting torque or 
displacement force. This is one of the few systems that demonstrate a manufacturing 
task, in which the robot arm plays a supporting role by lifting and repositioning the 
assembly, while the human dexterity and perception-action coupling as described by 
Gibson are used for the high-precision aspects of the task [8]. Furthermore, communi-
cation through haptic channels makes sense in human robot coproduction tasks, de-
signing information exchange between actors implicitly as part of the task at hand. 
This type of coupling is in line with the Dourish’ embodied task coupling in which 
human and tool become one in a specific action, based on the definition of the phe-
nomenologist construct of “vorhanden” (as opposed to “zuhanden”)[9]  

B. University of Tampere.  
As shown in an instruction video, the Finnish researchers propose a robot welding 
assistant that holds and repositions the assembly that is being welded together by a 
human welder [10]. The task is conceptualized as follows: The robot picks and holds 
the first piece of the assembly at a position which is comfortable for the task of the 
welder. The welder then locates and welds the remaining pieces onto the piece held 
by the robot one by one, while the robot changes the orientation of the piece it is hold-
ing, in order to allow the human to execute the welding task as effectively and ergo-
nomically as possible. The portion of the workflow related to the role of the robot is 
pre-programmed into the robot prior to the execution of the task. The human commu-
nicates with the robot by using gestures that can be tracked through a camera attached 
to the robot. According to the authors, environmental and process related parameters 
in real life play a crucial role in the implementation of such systems. This is also ad-
dressed by [11]. 
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C. Royonic.  
In this commercially available Printed Circuit Board (PCB) assembly system, the 
robot indicates the areas on a PCB where through-hole components need to be placed 
one by one [12]. Each time, the system also highlights the location of the component 
to be picked. The human follows the instructions of the robot and executes the picking 
and placing task. The workflow is pre-programmed into the robot prior to the execu-
tion of the task. The human communicates with the robot by pushing an electrical 
button or a foot pedal. In our selection of collaborations, this is an example of a colla-
boration in which the task division of physical activity between the robot and human 
is arranged in an unconventional way. Here, the robot is responsible for the cognitive 
part of the task. According to Schwerdtfeger, this method for assembly results in an 
error rate of 0,002% [13]. 

D. Glasauer et al. 
In this experiment consisting of several stages, the authors aim to investigate the dif-
ference in performance between human-human and human-robot hand-over of objects 
[14]. Two types of hand-overs are distinguished. In the first type, the agent delivering 
the object also initiates the action, in a second type of hand-over, a so-called “fore-
man” and “assistant” work together. The assistant needs to deliver the parts just in 
time for the foreman to assemble the parts onto another part. In the experiment which 
is executed in order to study the first type of hand-over, a robot has the role of picking 
of cubes from a table and handing over to a human. The human has the role of receiv-
ing the cubes from the robot and placing them on the table again. The workflow is 
pre-programmed into the robot and communicated to the human prior to the execution 
of the task. The human communicates with the robot through hand motions that can 
be tracked and interpreted through a camera attached to the robot. One of the most 
important conclusions is the increase of performance when the hand-over action per-
formed by the robot is more human-like. 

E. Bringes et al.  
The authors have built an experimental setup to investigate the performance of several 
pick & place scenarios, involving a teleoperated robot manipulator and a human [15]. 
They predict that a human-in-the-loop will be beneficial to the performance of the 
system, especially when there is some form of noise in the perception/cognition of the 
robot. The task in all scenarios is the picking of fruit/vegetables from random loca-
tions on a table and placing them inside a container. The robot manipulator is 
equipped with a gripper that is capable of providing a steady grasp of all object that 
are needed to be picked. This is the main role of the robot. The human decides on the 
workflow during operation. The human has the role of targeting each object and 
communicating their location to the robot, which is done with a haptic-pen device. 
The system performs best when there is no noise and no human in the loop. However, 
in the case of noise, the human worker assisting to determine a coarse approach of the 
stage results in a better performance. 
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F. Unhelkar et al.  
This experiment revolves around the task of assembling a LEGO-toy [16]. Robots and 
human assistants are given the task of delivering components needed for the assembly 
of the LEGO-toy in several steps and. Another human has the task to assemble the 
LEGO-toy using the components and instructions delivered to him/her at each step. 
The workflow is pre-programmed into the robot and instructed to the human worker. 
The workflow is communicated to the assembling worker during the delivery of new 
parts. The worker communicates with the assistants through accepting and relocating 
parts that are delivered to him/her. The authors conclude that the performance of the 
task is better when only humans perform the task. However, they also identify advan-
tages of the inclusion of robots in the workflow, such as the sound that the robot 
makes while approaching , which can provide a cue for the human working on the 
assembly. 

G. Pieska et al.  
In this work, robot and human coproduction is viewed from the perspective of palle-
tizing products. A robot has the role of picking products from one location and plac-
ing them in a stacked format at an other location [17]. The worker has the role of 
instructing the robot the location of the product to be picked and placed. The 
workflow is pre-programmed into the robot. The worker communicates with the robot 
by using gestures that can be tracked through a camera attached to the robot. Prieska 
et al. mention that inexperienced users can program and control robots through ges-
tures and dedicated interfaces. 

H. Schraft et al. 
This human-robot collaboration focuses on the rearrangement of parts that are needed 
for an assembly. The robot has the role of picking parts for the assembly task, and 
bringing them very close to the location where they need to be assembled [18]. The 
role of the human is to manipulate the orientation of the part that is being held by the 
robot and insert this into the corresponding destination. The workflow is pre-
programmed into the robot. The human communicates with the robot through kines-
thetic feedback and by pressing electrical buttons. The safety norms surrounding  
industrial robots are bottlenecks for increased performance of the type of systems that 
are the subject of the experiment. In the clauses 5.10  of ISO 10218-1, collaborative 
operation is allowed, in the most advanced case regarding co-located operation in 
which case power and force limiting needs to be enforced by inherent design features 
or control. 

I. Cencen et al.  
In this experimental setup, the robot has the role to pick two products from their  
boxes and place them inside a box that is being transported on a conveyor [19]. The 
robot also has the task to relocate a filled box by pushing it further on the conveyor. 
There are several human workers part of the workflow. The role of one worker is to 
pick three products from their boxes and place them inside a box on the conveyor. 
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This worker also picks a box from a stack of boxes and places it on the conveyor. 
Another worker in the workflow relocates the filled boxes from the end of the con-
veyor to another location. The workflow is pre-programmed into the robot and  
communicated to the humans. The worker with the role of picking the products com-
municates with the robot by pushing a half-filled box towards on of the sensors of the 
robot. The results of the experiment point to the fact that there are many product, 
process and person related unknowns when designing human robot coproduction 
systems and that these need to be further investigated. Furthermore, the pace of the 
(human-safe) robot was too slow to engage in an efficient workflow. 

J. Fong et al. 
This research reports on the findings from an experiment in which human robot collabo-
rations in lunar environments are being studied. In this setup, one robot has the role of 
welding, another robot has the role of quality inspection of the weld that is produced [20]. 
Two astronauts have various roles inside the workflow, ranging from relocating robots to 
checking the quality of results. The robots can also be teleoperated by a third astronaut. 
The workflow is determined by the astronauts by interacting with the robots during oper-
ation. Similarly, the robots communicate with astronauts by requesting feedback at vari-
ous intervals. The authors defend that the performance of human-robot collaboration 
increases if the right software platform is used. 

3.3 Categorization of Demonstrators 

We consider the aforementioned collection of systems representative of workstations 
in a manufacturing system. As discussed in section IIA, one of the essential elements 
of a workstation is a well-defined task. Looking at the gathered examples and revisit-
ing Figure 1, it becomes evident that this task definition can not be created without 
taking into consideration who/what will perform the task(i.e. Machine, Tool, Worker) 
and what is going to be manipulated(i.e. Product). Another point is that this actually is 
a two-way consideration. Depending on the task that needs to be fullfilled, more ac-
tors may be added to the workstation and the task can be adjusted according to which 
actors are already present. This was also already hypothesized in [19].  

Our aim is to make an initial categorization of these cases from a Human-Robot 
Coproduction point of view. Therefore, we defined three variables. These are Task 
Initiative (TI), Product Handling (PH) and Component Handling (CH). Each variable 
can have two states; being either performed by the robot or by the human.  Task In-
itiative is a role in which the workflow of the task is controlled and monitored. Prod-
uct Handling is a role in which the role owner is responsible for the main part of the 
product which is being assembled or manipulated. This can be on the level of the 
product (e.g., holding and/or positioning the part). On the level of components, this is 
named Component Handling (CH) (e.g., picking and/or handing over of new parts, 
welding of parts, placing products/parts in boxes). 
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Fig. 3.  Left: Task initiative versus physical handling in the examples (dashed-lined boxes 
indicate industrial systems). Right: Product handling(PH) versus component handling (CH) in 
the examples (dashed-lined boxes indicate industrial systems) 

4 Results and Discussion 

At first sight, none of the systems shared both roles between robot and worker. In the 
six instances where some shared responsibility is seen (A,C,D,E,J,G), this is limited 
to only one role. In these cases, the remaining two roles are divided between the 
worker and the robot. Insufficient means of interaction and type of task might play a 
role in this choice of role combination. When looked at the systems which we consid-
er to be operational in industry (B,C,H), only case C includes a shared responsibility. 
A reason for this might be the high operational requirements that are considered dur-
ing the design of the system. In these types of systems, TI is a common role that is 
delegated to the robot. Only in two instances (E,G), the robot is not part of the TI role.  

Although a limited set of systems was analyzed, in the roles of task initiative (TI) 
and physical handling (PH), dominance in the role of robots are seen. This needs to be 
further investigated and understood. This knowledge will be essential in supporting 
the design of such systems. It is notable that shared roles/responsibilities are not 
integral parts of these systems (yet). This is in line with the idea of efficiency in pro-
duction lines. However, many examples and trends in literature suggest that notions 
such as interdependency and collaborative frameworks are the future perspective of 
worker-robot systems. In order to be able to create operational-worthy systems, we 
need to understand the performance indicators of these collaborations. These will 
potentially be different than the regular time/quality/cost paradigm and will move in 
the direction of flexibility/recovery. Looking at the systems E and G in more detail, 
we revealed that they fall in the category of teleoperated systems. In such systems, 
humans have an essential cognitive role in the loop and the performance of the task.  
It can be argued that in tasks where similar cognitive capabilities are necessary, it can 
be advisable to implement teleoperative properties. 
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5 Conclusions and Future Work 

With the avenue of novel robotic systems, such as Rethink Robotics Baxter [21] and 
Universal Robots UR arms [22], the enabling technologies are progressing at a fast 
pace. In the past, humans were supposedly only needed because automation was not 
feasible to replace them yet [23]. However, a new generation of experimental systems 
provide inspiration to prove this wrong. There are still difficulties to operationalize 
these human-robot collaboration notions in present work. The reasons and actions to 
be able to achieve this can be summarized as follows; 

The presented examples show how future worker-robot systems can provide suffi-
cient work for humans. However, only a few of such systems are operational and 
these examples provide relatively less material for the analysis of the complexity of 
required interactions in other situations. 

Although an initial theoretical frame was drawn in this paper, when making a qua-
litative analysis of the investigated systems, these do not fit perfectly inside this 
frame. Yet, our efforts revealed basic insights in how such systems can be viewed and 
what these frames are lacking. 

While experimenting with such systems, also operational models of these systems 
need to be constructed in order to be able to iterate between various designs and gain 
more insight in performance related details. Literature on finite machines is worth 
investigating [24]. We expect that these models, together with dedicated computer-
aided-process-planning (CAPP) approaches, will provide a foundation for successful 
initial industrial implementations. Future research will be directed towards imple-
menting these technologies in combination with Robot Operating System (ROS) and 
similar novel programming environments in human-tool coproduction manufacturing 
environments.  
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Abstract. This paper reports the project of a shopping mall guide
robot, named KeJia, which is designed for customer navigation, informa-
tion providing and entertainment in a real environment. Our introduction
focuses on the designs of robot’s hardware and software, faced challenges
and the multimodal interaction methods including using a mobile phone
app. In order to adapt the current localization and navigation techniques
to such large and complex shopping mall environment, a series of related
improvements and new methods are proposed. The robot is deployed
in a large shopping mall for field test and stable operation for a fairly
long time. The result demonstrates the stability, validity and feasibility
of this robot system, and gives a positive reward to our original design
motivation.

Keywords: Shopping mall guide robot · Localization and navigation ·
Mobile interaction · Quadtree mapping

1 Introduction

With the rapid advance of robotic technology, several well-known robots have
been developed, with cool appearance, human-like joints and more intelligent
behaviors, such as Willow Garage’s PR2, Boston Dynamics’ Atlas and the Meka.
However, the general public rarely have the opportunities to interact with the
tangible robots despite that these “stars” represent the latest techniques and
indicate the future trend.

In this paper, we apply our robot named KeJia to a day-to-day shopping
mall scenario, in which KeJia is implemented as a shopping assistant providing
route guidance and information service. Nowadays, the size of shopping malls
is becoming larger and larger, usually hosting hundreds of individual commer-
cial tenants. The new customers (sometime even the regulars) get lost in the
complex and maze-like environment, not to mention finding the desired loca-
tions. Even though floor maps are provided, customs usually prefer to seeking
for manual guidance. Besides, there is a strong demand for such a device that
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 145–154, 2015.
DOI: 10.1007/978-3-319-25554-5 15
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can provide product catalogs and discount information once customers enter a
shopping mall. In order to improve the shopping experience and service quality,
the shopping mall managers trend to hire more professional guiders, resulting in
a large financial burden.

Against this background, KeJia is devised to guide the customers to right
locations as required autonomously and provide information to them by natural
language. Furthermore, the robot itself can attract more people and bring a fresh
feeling to the shopping mall. Apart from the aforementioned features, KeJia
system also contains mobile apps that can extend the robots to simultaneous
service. By integrating the concept of cloud technology, it’s convenient for the
users to acquire the desired information from the robot remotely through their
mobile phones.

2 Related Work

In the past decade, one of the most popular applications is to deploy the robots
as tour guiders in museums, expositions or other public places. The earliest work
was carried out by [1], the robot RHINO acted as a guider in the “Deutsches
Museum Bonn” for six days and provided service for more than 2,000 visitors.
The robot MINERVA [12], a successor of RHINO, had better performance in nav-
igation and interaction. In [5], the robot Robotinho addressed the challenge on
more intuitive, natural and human-like interaction, unlike the previously works,
which mainly focused on localization, automatic navigation and collision-free
avoidance in populated environments. Although these robots are running rea-
sonably well, their operation environments are almost completely known, neither
of museums or exhibition halls. What’s more, the size of the operation environ-
ments is usually limited to hundreds of square meters, which means the unex-
pected situations that are lethal to the normal travel of the robots would be
greatly reduced. In contrast, as for the shopping mall scenario, there are still
many challenging problems need to deal with.

The shopping mall is a more frequently visited place in routine activities,
and some studies have already concerned with robot systems in such scenario.
Most of them try to design a shopping trolley for helping the elderly, the sick, or
the disabled. In [11], the task of RoboCart is to carry the purchased goods and
lead the way for impaired customers in a grocery. With distinctive expectation
for shopping assistant, we hope robot could perform like realistic clerk, not a
porter. Some other interesting researches provide difference functions to assist
customers. For example, [13] developed a remote shopping system, where the
robot grasps the products(i.e., goods with various textures, shapes and weights)
on the shopping lists using telemonitor with a special manipulator. The system
proposed by [10] and [8] are most similar to ours, [10] presented an interactive
robot that is fixed at a place in the shopping mall, giving directions by speech
and gestures. The robot TOOMAS [8] roams in stores to search the potential
customers and then guides them to the target locations. However, their main lim-
itation of most of them is that the robot can not execute any movable navigation
behaviors.
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Most of the aforementioned approaches are proof-of-concept prototypes and
have not been completely deployed in real shopping malls. With a few exceptions,
they have conducted field trials, but required extra environmental modification
to facilitate the deployments of robot systems. In more details for localization and
navigation, RFID tags often need to be installed in the workspace in advanced,
which may be troublesome and inflexible. Moreover, such deployment need to be
redo once the environment changes. Although the robot TOOMAS is a exception
of this case, its operating environment (shown in a picture in [8]) is more like a
supermarket fulled with structured shelves, rather than a shopping mall that has
lots of independent shops. In a real shopping mall, wide range of unpredictable
changes exist due to the shop decoration, temporary stalls, advertising board
replacement, infrastructure improvement, etc (see Fig. 1), it’s the key challenge
for robot navigation and customer guidance. Besides, we use a mobile app to
enable the communication between the robots and users, which is a new feature
for shopping mall robot that is quite effective as confirmed by our deployment.

3 Features and Hardware

3.1 Key Features

Shopping mall is typically a collection of all kinds of shops where customs can
buy their daily necessities (e.g., clothes, shoes, foods, restaurants, etc.). The size
of a large shopping center is often more than tens of thousands of square meters
and has high flow rate of customers. Given this, the key features of our intelligent
assistant shopping robot are fellows.

(1) Providing Information: For the customers who are busy, they would like to
know whether they can buy what they want quickly. The robot can response
to instant enquiring and provide information in more natural ways. Addi-
tionally, it can give specific recommendations and introductions according
to different inquiries.

(2) Shopping Guidance: A robot, moving in front of the customers, can guide
them to the right shops, which providing pleasant shopping experience for
the costumer. It can also avoid time-consuming and aimless search for people
who don’t enjoy the process.

(3) Advertisement and Recreation: From the views of the shop owners and mall
managers, the robot can attract more customers to boost their sales. In fact,
the advertising effect of robots exceeds traditional methods (e.g., posters,
billboards). Some people even come to the shopping mall just for interaction
with our robot. Withal, people enjoy chatting with the robot for recreations.

3.2 Hardware

The robot KeJia designed for the shopping mall scenario is shown in Fig. 2,
which is a derivative of KeJia Project[2]. It is worth pointing out that a pro-
totype with the similar hardware design has won the championship in the 2014
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Robocup@Home competition. The appearance of KeJia is a young lady, dressed
on a traditional suit. With the height of 165 cm the robot is comparable to a pro-
fessional shop assistant. Unlike other shopping robots [8], the touch screen is not
adopted due to the following considerations. Firstly, it’s not convenient for people
to operate the touch screen while robots are moving. Secondly, our speech recog-
nition provides fairly accurate results with the directional microphone equipped.
Thirdly, mobile phone Apps provide additional method to interact with robot.
A sound equipment embedded in the base is used to play the voice generated
by speech synthesis module. The whole robot is motorized by two differentially
actuated wheels on the middle axis and a castor on the rear. This offers KeJia a
good maneuverability and stability. The main sensor of the robot is a HOKUYO
UTM-30LX laser scanner, which feeds the distance data of obstacles around the
robot(maximum distance 30m) to other software modules(e.g., navigation and
localization).

Fig. 1. (a) Typical shopping mall chan-
nel (b) new added resting chair (c) glass
wall (d) temporary stall

Fig. 2. (a) KeJia robot (b) laser
scanner (c) base (d) differential
wheels

Inside the clothes, hides a frame made by aluminium alloy and plastic shells,
which constitutes the body of the robot. The two arms and the head are fixed
on the interior frame. The arms with four DOFs can make simple gestures like
greeting to people, and the two DOFs head can freely turn to face to the people
if necessary. All of these make KeJia look more realistic.

4 System Architecture

4.1 Top-Floor Structure

Our system could consist of several distributed robots, which can interact with
people face-to-face by voice or thought the mobile client, and a cloud server
connected to Internet. As shown in the Fig. 3, robots are deployed on different
floors in the shopping mall, configuration data centrally store on the server where
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Fig. 3. Concept map of the proposed
system

robot could conveniently download
from. It’s advised to inquire and com-
mand the robot by speech if the cus-
tomers are nearby, additionally, the
app installed on the smart phone
is able to send the typed text or
recorded sounds to the server and
then forward to the robot, after pro-
cessing, the response data of the robot
will transfer back over the same way.
There are some advantages of this
structure, firstly, it’s convenient to

modify the configuration information which is constantly changing, what the
robot need to do is regularly to update the latest data from the server. Secondly,
different interaction methods make the robot reach its greatest potential at the
same time, other people can still keep “chatting” with robot during navigating
period by mobile phone.

4.2 Software Modules Structure

In our system, we adopt a flexible four-layered software architecture (see Fig. 4)
to meet the requirements of a integrated robot system, such as reliability, exten-
sibility, maintainability, customizability. The lowest layer is the Robot Operating
System 1, which provides a set of robotic software libraries and reliable communi-
cation mechanism for modular nodes. The second layer mainly contains hardware
drivers, thereinto, the laser and camera drivers are in charge of packaging the raw
sensor data to standard format and then publish them to upper layers, the motor
and audio drivers interpret the messages from upper layers to hardware for exe-
cuting. The next layer is the most important one in the structure, all the proper
skills of a classic robot are placed here, such as mapping, localization, navigation,
people tracking, speech recognition and synthesis, which directly decides what
the functionalities would be implemented in the upper applications. The highest
level is responsible for task managing, configuration data updating, dialog man-
aging and robots’ state updating. The background server collect the real-time
robots’ state (i.e., coordinate, task state) and forward to the smart phone app.
The dialog manager module attempts to understand the users’ intentions and
dispatches tasks.

By using such layered structure, for a new application or adding a new skill
only the corresponding layers need to be changed rather than the whole system,
and individual module can be assigned to different programmers who just develop
the desired functionality according the preestablished interface without caring
other’s implementation details.

1 http://www.ros.org

http://www.ros.org
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Fig. 4. Four-layered software structure Fig. 5. (a) Navigation structure
(b) flow chart

4.3 Methods to Challenging Modules

In this section, we will present expatiation to these modules that are faced with
technical challenges.

Mapping of Large Environment. There are already many mature algo-
rithms to the simultaneous localization and mapping(SLAM) problem[4,9], most
of them take the grids map as the representation of environments. However, the
memory exhaustion problem emerges along with the increasing enlargement of
mapped environment, especially for particle filter family, in which every particle
is generally associated with an individual map. The size of the shopping mall is
usually more than 10,000 m2, which makes the situation worse, therefore a new
map representation is introduced as quadtree map. A quadtree is a tree-based
data structure that is capable of achieving compact and efficient representation
of large two-dimensional environment. We re-implement the Rao-Blackwellized
particle filter SLAM[7] by replacing traditional grids map with quadtree map
(for more details, see [3]).

Localization in Complex Environment. Accurate localization is the pre-
requisite of safe and credible navigation behaviour. Under the shopping mall
circumstance, there are some problems must be considered in order to achieve
excellent performance, including dense streams of people and undetectable obsta-
cles caused by the characteristic of the laser sensor. In fact, transparent glass
walls exists in everywhere of modern shopping malls, they just can be perceived
at certain angles from the laser. To overcome those thorns, we modify the like-
lihood model based on the AMCL[6]2 by multiplying a weight with the score
indicated the matching degree between the map and the laser beams. The weight
value is assigned to each map cell using a custom editing tool manually, the value

2 Open source page: http://wiki.ros.org/amcl

http://wiki.ros.org/amcl
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of cells belonging to permanent obstacles likely solid walls are greater than these
representing glass walls.

Navigation. The biggest trouble with navigation in shopping mall is the wide
range of unpredictable changes that have been mentioned at the end of Sec.2,
robot can’t perceive these changes until approaching. In the previous researches,
navigation module combined global planner and local planner is introduced for
this case, global path replanning will be triggered when robot traps in local
dilemma. But this idea is not fully applicable for us since it may lead robot
repeatedly alter its route in vain. In reality, the passages are often temporarily
blocked with customers, it would not be the best choice for robot to replan every
time for the following reasons. 1) The robot may move back and forth between
two blocked passages frequently without progress. 2) Re-finding a global path
on the whole map is time-consuming. 3) Making a long detour sometimes is
expensive than just waiting for a while. In order to eliminate this disharmony
between global and local planner, a intermediate layer is employed.

Once a goal is receiving, firstly, the path from the robot’s position to goal
is computed. Next, a serial of ordered way points are generated from the global
route, then the way points will be sequentially dispatched to the local planner
which will find a local path for the well-tuned VFH* module[14] to track. If local
planner fails to find a suitable path, the local map would continue enlarging until
a maximum limit reaches. After several failures, robot will demand the crowd
to give way, if all these attempts fail, a global replan happens. This approach
endows the robot ability of adapting the shopping mall environments, meanwhile,
reduces the unnecessary global path plan (shown in Fig. 5).

Multimodal Interaction

(1) Speech Dialog System: The sentences outputted by speech recognition system
are divided into two classes, depending on whether they fall into the domain.
The customers can have some conventional talk understood by the robot,
like asking the robot to give an introduction or recommendation. In case
the robot is caught off guard by the sentences beyond the domain, an inner
chatting module is designed, which provides amusing and interesting talk
though they maybe meaningless to the input sentences. This method has a
good effect and avoid awkward situations.

(2) Phone Application: The phone app in our system is an inventive interaction
style, which can do the job formerly belonging to speech recognition by
typing or recording. The map of the mall, the robot’s position and available
destinations are shown in the application on the mobile phone screen, gives
customers freedom of choice, and the collected data of customers’ options
also give the criterion of recommendation.

(3) Other Recreations: To enrich the robot’s behaviors, we develop a “greet
guests” mode, the robot will stand at a shop’s door, say “hello” to the comer
and “goodbye” to the leaver by detecting the movement of the customers
with laser data.
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5 Results of Field Trials

Our filed trials last for about 40 days from December 2014, including 10 days
of preparative debugging work. The shopping mall where our robot deployed is
the largest and most prosperous one in the provincial capital city, it has 4 floors
gathered with nearly 300 commercial tenants and our robot works on the first
floor with size of more than 10,000 m2.

The first step to deploy this robot is building the environmental map, in order
to collect the laser data and odometry data for mapping, we operate the robot to
stroll along all passageways in the ground floor of shopping mall with a wireless
joystick. The sensor data streams into the particle filter SLAM algorithm which
is improved by integrating quadtree map representation. The final built map is
shown as Fig. 6, the size of the map is 205m ∗ 68m with resolution of 0.05m.
By using the quadtree representation, such a considerably large map only costs
10.80 MB internal memory and 287.1 KB disk space.

Fig. 6. (a) Quadtree map of the shopping mall (b) map used for localization and
navigation

In order to be suited in practice, we modify the map for constrained path
planning with black mask areas(shown in the Fig. 6 (b)), which are usually the
interior of shops and not passable for robot. While for localization, the original
map is used to make the laser data matched as good as possible. The Fig. 7
(a) shows a global path based on static map from start point(brown) to end
point(red), the (b) shows an intermediate planner within the local map win-
dows(square box 3.5m ∗ 3.5m), the path planned in this level is not exactly
the same with global path because the new surroundings have been taking into
account, and it’s the key that our system can handle wide changes in the envi-
ronment.

Customers in the shopping mall are free to choose one of the two interactive
methods–talking by speech or mobile app. In the face-to-face mode, customers’
sentences are recognized and then passed to dialogue manager module, once the
intentions are explicit the robot will begin a tour guide (shown in Fig. 8.(a)
(c)). Customers also can talk with KeJia by pressing the microphone icon and
the text displays on the screen, the shops’ positions are drawn on the map with
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Fig. 7. (a) Global path (b) the
blue line is path planned by
intermediate level, the green
line is part of global path

Fig. 8. (a) Talking with customers (b) chatting
with app (c) during a tour guide (d) map in the
app, red dots are shops, blue dot is robot

red dots, they can be chosen as goals by touching. In general, the mobile app
provides a straightforward and effective graphical interface for users.

During the whole operational period, totally about 150 complete tour are
performed, and the accumulated distance is more than 7.5km. KeJia can provide
trouble-free service with success rate of 75%, the most common reason of failure
is losing its position, this often results from the crowded or some obstacles that
can’t be perceived by the laser. The customers seem to be more interested in
chatting with robot by mobile app, they intentionally say some sentences that
can’t be handled by KeJia and expect it to respond with funny jokes.

6 Conclusions

From this project of KeJia robot, firstly, we have proved the reliability and effec-
tiveness of proposed robotic techniques, including layered software architecture,
mapping in large indoor area, localization and navigation in complex environ-
ment and module integration. Secondly, the mobile phone app provides another
quick and convenient way to communicate with robot, and it becomes the most
often used and acceptant way with the customers in actual running. Lastly, from
the practical operation results, we can see that the general public have intense
interest in robot and demand for everyday use, and we hope our work could
provide some experience for similar robotic application.
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Abstract. Evaluating and shaping the quality of interaction between humans 
and service or “social” robots from a genuine sociological point of view is still 
a pivotal methodological challenge at stake in the development of successful 
Human-Robot Interaction (HRI). In this regard an interdisciplinary research 
group, dedicated to the study of HRI in general, is developing a theory-driven 
method based on sociological interaction models with the goal of identifying 
the most important aspects in achieving satisfactory interaction experience. The 
method is suitable for experimental settings, e.g. in the context of laboratory re-
search and development environments as often encountered in Fabrication La-
boratories (FabLab). The method uses Harold Garfinkel’s concept of breaching 
experiments as a core instrument in combination with Erving Goffman’s Frame 
Analysis. The baseline of the method is a genuine sociological definition of So-
cial Action on the basis of theories belonging to the paradigm of Symbolic Inte-
ractionism. 

Keywords: Breaching experiments · Ethnomethodology · Frame analysis · 
Symbolic interactionism · Bionical creativity engineering 

1 Introduction 

The main focus of the proposed method is to address two key questions related to 
successful and pleasant interactions between humans and robots: First, which are the 
dominant factors that determine whether the interaction is fluid and smooth? Second, 
to what extent do humans prefer an interaction model with a strong orientation to-
wards the conventional interaction experiences they have with other humans – or do 
they prefer a type of interaction similar to typical human-machine interactions? Both 
dimensions are intertwined and have to be considered as two sides of the same coin. 
We are convinced that a method using Harold Garfinkel’s instrument “breaching ex-
periments” is highly suitable for the detection of both in equal measure. In this paper 
our aim is to present the method as a concept. The goal of the aforementioned re-
search group’s future empirical research is to deliver robust and reliable findings 
based on these concepts or theoretical frameworks. We will not be able to provide an 
answer to the two key questions raised, instead what we are presenting is the theoreti-
cal backing for thoroughly conducted research capable of doing so. In this regard we 
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also promote and encourage theoretically grounded research in the field of HRI. Even 
though it would have been beneficial to create an experiment, describe the process 
exactly, and provide a comparison with other existing empirical situations, we de-
cided to elucidate the abstract, theoretical qualities of the suggested method. For a 
detailed, concrete, and “less abstract” picture of such a setting, we would like to refer 
the reader to the cited papers using similar approaches. 

The theoretical framework of the presented method is mainly defined by Erving 
Goffman’s “Frame Analysis” [1] within his work on “Microstudies on Social Interac-
tion” [2], [3] and Harold Garfinkel’s “Ethnomethodology” [4]. The baseline of our 
approach involves assumptions as to how every social interaction is depicted by si-
tuated (i.e. contextual) expectations, the way these expectations are held stable over a 
relatively long period of time (according to Goffman), and which mechanisms are 
used – or commonly established as viable among the interacting entities – to negotiate 
an alignment of the predicted expectations on both sides (according to Garfinkel). 
With such a framework and the adoption of breaching experiments within the scope 
of experimental settings in a FabLab environment, we assume that we can develop a 
suitable method that can be applied independent of the particular cultural context and 
to generate reliable findings regarding the aforementioned key factors in HRI. 

Comparative studies analyzing the development of social robots in Europe and Ja-
pan conclude that from a sociological point of view, they differ highly in respect to 
both the understanding of robot agency and the concept behind an appropriate user-
robot interaction [5], [6], [7]. In Europe, the assumed interaction is dominated by the 
autonomy of the robot (however it manifests). However, on the basis of ethnographi-
cal research (to be published in the journal Artificial Intelligence and Society), Hiro-
nori Matsuzaki asserted that in Japan, the autonomy of the robot is overruled by the 
attempt to predefine or standardize the HRI sequence, which leads to a completely 
different concept of HRI. Both approaches could be described and analyzed in equal 
measure by adopting the proposed method based on Garfinkel’s breaching experi-
ments [4] – in light of Goffman’s Frame Analysis [1], [8]. This method takes into 
consideration the specific cultural “bias” related to successful social interaction be-
tween two entities. This is due to the fact that it always operates within the culturally 
shaped margins of what is seen as a functioning interaction. Zooming into one culture, 
the method is also perfectly suitable for obtaining results on the basis of variations 
and differences among subgroups or individuals. One study identified several differ-
ent strategies for dealing with the induced crisis [9], adopting a similar approach to 
the method we are aiming to refine and develop further It is specifically these kinds of 
previously undertaken empirical work within the scope of similar theoretical frame-
works that show the method’s potential to capture case sensitive key factors within a 
wide range of HRI situations. 

2 General Assumptions Regarding HRI from a Sociological  
and Biomimetics Point of View 

HRI research is still trapped within a psychological, and in this respect – as one would 
name it in sociological terms – in a methodological individualistic view (see e.g. [10], 
[11], and most of the paper presented in [12]). A genuine sociological approach is 
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seldom undertaken by relying on sociological models, definitions, and theories of 
social action and interaction (see e.g. [13], [14]). Similar ideas regarding genuine 
interactional perspective have also been brought forward and experimented in HRI 
from the disciplinary field of interactional linguistics based on “Ethnomethodological 
Conversation Analysis,” which is closely connected to Garfinkel’s ethnomethodology 
[35], [36], [37]. These similar approaches should be taken into account for future 
research, with the goal of unifying them in an interdisciplinary frame of analysis for 
empirical studies in HRI. However, most of the research starts from the assumption 
that the interaction is somehow the result of two monolithic minds that are autono-
mously able to build a consistent meaning of the world and adjust their beliefs with 
other minds from time to time. In contrast to this view, the typical sociological pers-
pective presented here follows the baselines of George Herbert Mead’s pragmatic 
theory [15]. Mead’s concept of symbolically mediated interaction leads to a complete-
ly different conclusion regarding the relationship between the two entities (ego and 
alter) that interact with each other. In Mead’s definition of action, the meaning of a 
symbol is negotiated in a social interaction and therefore depends on the reaction of 
the other (alter). In a similar way, he understands the formation of identity as an inte-
raction between the “I” (ego) and the “Me” (how alter sees ego). In other words, the 
meaning of a symbol constitutes itself ex post according to alter’s reaction to it. In 
these terms, “knowing” something means anticipating alter’s (most probable) reac-
tion/understanding. Mead emphasizes the so-called “vocal gesture” because humans 
have the physiological ability to hear the “spoken symbol” (e.g. word) in the same 
way and at the same time as alter [15]. From a biological and physiological point of 
view, language played a useful role in social evolution as a tool for successful interac-
tions. In the end, Mead’s action theory is also the core model for Niklas Luhmann’s 
[16], [17] micro-level theory of social systems (interaction system) and could be used 
to explain how consciousness is linked to the social world (in both cases, of course, as 
systems): The ego’s psychological system (self-awareness, consciousness) is con-
stantly observing the interaction between alter and ego, but it remains in the environ-
ment of the interaction/social system. 

To analyze and capture HRI in a genuine sociological way, we choose the standard 
framework of Social Constructivism, conceptualizing an ideal situation of interaction 
by referring to ego and alter. The sociological interaction model we choose defines 
the social world as an outcome that is strictly interconnected with the interaction be-
tween at least two entities, also known as social actors. Social reality develops in an 
inter-subjective dimension; there is no reliable reality or any reality at all without 
interaction between social actors. The main assumption of this model is that the 
meaning of an action, a word, a sentence, or an object that the ego relies on is primari-
ly defined by the reaction of alter. This also means that (social) reality (or social 
meaning) is always constituted ex post: it is an effect of successful interaction be-
tween two entities due to the fact that the reaction of alter related to the prior action of 
ego is the only way to give ego’s action meaning. The next step could consist of ex-
tending this model to identity-building processes (as it was done early on by one of 
the forefathers of this model, George Herbert Mead [15]). 
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In the end it is contingently that today in many cultures, humans are the only ones 
who qualify as social actors [18], [19]. Ego constantly has to decide if his or her inte-
raction partner, alter, is a social actor or not; if he, she, or it could provide a proper 
reaction to build a common, valid, and reliable social reality or not. The basic as-
sumption of this argument is that who we are, what we know, what we think to be real 
or not real are the outcomes of interaction. For ego’s beliefs and relation to reality, it 
is extremely vital to know whether or not alter is an entity with the proper skills that 
are needed to build a common reality. Ego will never know if alter is constantly de-
ceiving him or her because ego’s reality and ability to question it are dependent on 
alter’s reactions. This is due to the fact that alter’s reactions give ego the material to 
define reality (including identity, the horizon of meaningful questions, indisputable 
facts, and so on). With regards to researching HRI in different cultural contexts, this 
means analyzing, transferring, and implementing symbols in interaction as well as 
triggers for crisis carefully so that culture- as well as case-sensitive generalizations 
can be targeted [20]. 

As a matter of fact, the presented method for evaluating the quality of HRI from a 
genuine sociological point of view is highly suitable for use with robots developed by 
following a new paradigm within the robotics community. In the sense of technology 
development, robotics is experiencing several new orientations towards a more or less 
strong human-centered design. One of the most powerful new paradigms arises from 
the broader field of bionics and biomimetic robots. There is a very strong affinity 
between the sociologically oriented evaluation of HRI and biomimetic robots in 
achieving human-robot interactions that are not only successful, but also satisfying. 
Assuming that human-human interaction is the best interaction for us humans, the 
robot has to be humanoid or humanized. From a biomimetic point of view, the as-
sumption is that the more biological principles are combined in a biomimetic robot, 
the more it can be assumed that the robot approaches its biological role model in its 
properties and its behavior. Technology is not yet advanced enough to develop com-
pletely functional humanoid robots. Therefore the evaluation might be limited to the 
examination of certain human or human-like aspects. One of these aspects may be, for 
example, the hand shake between human hands and humanoid hands or giving and 
receiving objects from a human hand to a humanoid hand and vice versa. For this, the 
success of human-robot interaction scenarios could be affected by, for example, visual 
properties such as having five fingers and/or haptic properties such as compliance in 
hand/arm movements. The hypothesis is: the more similar the robot hand and the 
human hand look, and the more similar the robot’s compliance is to human skin and 
muscle, the more successful the interaction. 

The successful application of biomimetics is characterized as the creative transfer 
of knowledge and ideas from biology to technology, i.e. technological development 
inspired by nature that usually passes through several steps of abstraction and modifi-
cation subsequent to the biological starting point. The field of biomimetics is highly 
interdisciplinary, which is indicated by the high level of cooperation between experts 
from different fields of research, for example among biologists, physicists, and engi-
neers: “Biomimetics combine biology and technology with the goal of solving tech-
nical problems through the abstraction, transfer, and application of knowledge gained 
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in interdisciplinary cooperation from biological models.” [21] Within robotics, which 
is a broad area in the field of engineering, the application of biomimetic methods is 
similarly widespread in the design, control, and operation of robotic systems. In this 
regard, an officially accepted definition of biomimetic robots is: “A robot in which at 
least one dominant biological principle has been implemented and which is usually 
developed based on the biomimetic development process.” [22] 

3 Evaluating the Quality of HRI with Breaching Experiments 

Although several studies have used the instrument of the breaching experiment (some-
times even without naming it, but definitely adopting its primary aspects) none of them 
has developed a systematic approach for establishing a general method for the evaluation 
of Human-Robot-Interaction HRI [23], [24], [25], [26], [27], [9], [28], [29], [30]. As an 
instrument, the breaching experiment is highly suitable for the evaluation of HRI for 
several reasons. First, it operates on a very high level with respect to understanding social 
action demands. Second, it is not subject to most of the common biases derived from the 
notion of delivering a socially desirable answer, in that the framing of the situation is 
taken into consideration. In a typical setting to evaluate quality of interaction qualitative-
ly, the test persons are asked several questions regarding their subjective impressions of 
the experience after performing an interaction sequence with a robot. Compared to the 
well known Human-Human-Interaction (HHI), HRI is often disappointing and to some 
extent similar to it. The interaction sequence is mostly carried out by and determined by 
the human. The human fills in the gaps that arise in the course of the interaction sequence 
due to the robot’s inability. In HRI experiments, this specific – although typical – situa-
tion tends to result in a positive assessment of the experienced quality of the interaction. 
While assessing the situation, the test person will most probably either highlight their 
own efforts to let the interaction flow or emphasize what they thought were the research-
ers’ expectations. As an instrument, breaching experiments could deliver an authentic 
response insofar as the test persons will perform repair strategies just in case, since he or 
she expects a positive outcome. If the test person assumes that his or her attempt to rees-
tablish a functioning interaction is condemned to be a failed repair, he or she won’t try to 
repair it. However, the frame of the situation is of paramount importance. 

In their study, Muhl & Nagai [9] show that the breaching experiment – put in the 
right setting with respect to framing – is able to deliver impressive results. Without 
reflecting their experiment design by theoretical means, they used a typical deception 
strategy and in doing so bent the frame in their favor. However, they were able to 
identify six different strategies to cope with the unexpected behavior of the robot and 
repair the undertaken interaction. Even if the interaction was quite rudimentary, the 
performed repair strategies show that the test person believed in the robot’s interac-
tion capabilities to a certain extent. In a nutshell, they successfully showed that within 
a clearly laboratory experimental setting, breaching experiments lead to satisfying, 
fruitful results. In a lab scenario, people are instructed to show a robot objects and 
how to use them. In this scenario, the robot is just an animated baby face [31] dis-
played on a screen. Its eyes, eyelids, eyebrows, and mouth are animated.  
The robot is equipped with a biologically inspired saliency mechanism [32]. Thus, the 
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robot’s gaze follows the most relevant feature in the scene. This is how the robot ad-
dresses/displays its attention to the human interaction partner. The robot is not 
equipped with acoustic sensors or a speech processing system [9]. By interacting with 
it, humans can learn that the robot follows the salient point with its gaze. Human ac-
tors apply strategies of repair if an irritation of their expectation appears. They try to 
re-attract the robot’s attention to the object by adopting several strategies (e.g. point to 
the object, show the object closer to the robot, getting the robot’s attention, making 
noise, and so on) [9]. 

In this experiment, crisis in interaction has been induced systematically: The cogni-
tive framing applied by ego to the state of the interaction partner (alter) is relevant for 
the overall judgment about alter, and in its consequence, the selection of how to ap-
proach alter in the next turn. In this regard a thoroughly conducted frame analysis is 
able to deliver highly important factors that are primarily responsible for the overall 
outcome of HRI testing and therefore shaping the way humans deal with the breach-
ing. Taking the frame into account, one may see that repairing strategies  
(as well as the fact that repairing strategies are undertaken at all) depend on the hu-
mans’ definition of the situation, which is strictly linked to the assumed frame. 
Putting the emphasis on the framing is not just important in terms of awareness of 
which framing strategy the researchers are adopting and being able to achieve a high 
degree of transparency, it is also important in estimating the viability of the breaching 
experiment as an instrument itself. By comparing the previously mentioned study of 
Muhl & Nagai [9] with a research conducted in a stationary care facility for the elder-
ly, Compagna & Muhl [14] showed how important the frame is for the accomplish-
ment of a reliable outcome in breaching experiments. 

However within the setting (and therefore the framing) of an everyday life context, 
breaching experiments were not possible. A service robot was asked to serve a glass 
of water to the residents of a home for elderly people [33], [34]. The task was to take 
the person’s order and then serve the glass to the correct person. The robot was also 
asked to address the human by talking. Often, the people did not reply to the robot 
and preferred to address the other people present. In the cases in which humans ac-
cepted the drink, the robot thanked them, which was mostly ignored by the humans. 
The robot was not capable of reacting flexibly and turning the rejection into a request, 
e.g. by commenting on it, which would have led to communication. The likelihood of 
successful communication would have improved. Social robots do not necessarily 
offer communication to which humans respond positively. If an action expected of the 
robot does not occur, it will probably be repaired by the involved actors, and the reac-
tion to such a maneuver is often as unexpected. This does not refer back to any at-
tempt to establish understanding in which the action of ego would semantically be 
constructed by the reaction of alter. In those cases, interaction in a sociological sense 
is not only endangered by its failure, but it cannot occur at all. This contrasts to the 
interaction experiments in the laboratory with the robot baby face in which, as men-
tioned above, the human actor tried – with more or less patience – to settle mean-
ing/semantics with the robot as his or her alter ego. After several non-successful trials 
the interaction is abandoned. 
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Comparing these two cases the paramount importance of framing becomes visible: 
The breaching experiment method obtains very fruitful findings in an experimental 
setting. There are indications that the method also works properly if the experiment is 
not mentioned at all, and if encountering an interaction with a robot is not expected 
[24]. The framing related to the expectations raised by the humans seems to be the 
key issue here. Without a doubt framing is very important, however further research 
has to be done to determine the main aspect that is entangled by the frame within 
which the HRI is carried out. 

4 Summary 

A method built on breaching experiments as core instruments with a strong emphasis 
on framing issues is most likely highly suitable for generating reliable results with 
regard to the quality and rate of interaction between a human and a robot even from a 
genuinely sociological perspective. The observation as to whether and how a crisis 
(explicitly induced by the researchers) is repaired by a human could lead to a signifi-
cantly meaningful evaluation of HRI that is also suitable for identifying differences 
between individuals [9], [14]. In order to set the right framing, it is very important to 
reflect the framing as a highly influential variable. Without a proper frame analysis, 
the findings of HRI breaching experiments are probably useless. However, if the 
frame is chosen wisely, the outcome could be very helpful in judging whether the HRI 
is successful or not. If the human adopts strategies to repair the interaction, the inte-
raction can be described as a social interaction insofar as the human is assuming that 
it is worth being repaired. Even if the human is fully aware that the robot is a machine 
that is not capable of repairing the course of the interaction itself (one may say the 
robot is not able to process double contingency or elaborate on these grounds on a 
hypothesis as to how to reestablish a smooth flow (16)), the humans nonetheless con-
sider the robot to be an entity that can be treated as a social actor. The comparison to a 
washing machine could be helpful for further understanding of the nonsymmetrical 
capabilities between the interacting entities: If a washing machine does not “react” as 
expected, the user will most probably abort the “interaction” assuming that the ma-
chine is simply malfunctioning. However, even here a certain number of repairing 
strategies can be observed, but these certainly do not include trying to ask or behave 
in a different way. In conclusion: If the framing is taken into consideration and chosen 
correctly, the way repair strategies were undertaken by the human (in combination 
with the observed frequency, quantity, and timespan) could be used to define the qual-
ity of the HRI. By doing so, the researcher could gain helpful information for the 
further development of social robots in regard to their interaction capabilities. 
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Abstract. Companion robots will be more and more part of our daily
lives in the next years, and having long-term interactions can have both
positive and negative effects on their users. This paper presents an exper-
iment that is focusing on social facilitation. Our scenario is a memory
game with the Nao robot and is combining an emotional system based
on the OCC Model, and an episodic memory mechanism. Our first pre-
liminary results show evidence that support the theory and present a
first step towards an adaptive lifelong learning system.

1 Introduction

Social facilitation effect is a widely studied [7][12] psychology paradigm intro-
duced by [16] that states that individuals get a better performance on easy tasks
if they are in presence of others, but their performance is worst in complex tasks.
With robots being more and more around people, situations where social facilita-
tion has an effect can appear more frequently. This can have positive or negative
influence on the social interaction and the robot needs to be capable of adapting
to the user so as to improve the interaction and the user’s task performance.

Very little work in social robotics [15] [10] or virtual characters [9] has focused
on Social Facilitation. The authors in [10] presented a study that compared the
task performance of 106 participants on easy and complex cognitive and motor
tasks across three presence groups (alone, human presence, and robot presence).
They found evidence that confirms the theory of Social Facilitation, but they
focused on the mere presence of the robot. This paper presents an experiment
where the social facilitation effect in Human-Robot Interaction is investigated.
The scenario involves a memory card game in which the robot is the opponent
of the human player, and it can take two roles: it can encourage or judge the
human-user, depending on the game mode.

We also introduce a high-level framework, which integrates an emotional
model and an episodic memory, which has the potential to adapt to the user’s
preferences based on the robot’s emotions generated by the interactions with the
users. The emotional model is a partial implementation of the Orthony Claire
Collins Model(OCC Model) [8] having 6 emotions: love, hate, pride, shame,
admiration, and reproach. These emotions are classified in two categories: Aspect
c© Springer International Publishing Switzerland 2015
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of Objects and Actions of Agents. This last category is of particular importance
for the Social Facilitation experiment because both the psychological theory and
the OCC Model rely on the performance of the actions of the agents. The OCC
Model has been widely implemented in Human-Machine Interaction for virtual
animated characters [2] and robotics. The authors in [5] present the development
of a robot equipped with the OCC model for their emotion engine, but not in
an interaction scenario.

Furthermore, we are using an episodic memory (EM-ART - an episodic mem-
ory (EM) using Adaptive Resonance Theory (ART) neural networks [3]), pre-
sented in [14] [6]. The EM-ART records sequences of events as episodes. Here, it
is used to store information about the games, by recording the sequence of cards
obtained by each player.

To the best of our knowledge, there are no works in the literature that fully
combine the emotion and the memory system in an interaction for testing social
facilitation. This work presents a first step in that direction, using EM-ART as
long-term memory to provide useful information to the emotion system based
on the OCC Model, and the output of this is used to modulate the intensity of
different expressive behaviors.

This paper is organized as follows: Section 2 describes the scenario used and
the set up of the methods applied; Section 3 explains the high level framework
proposed in this work; Section 4 shows the results obtained regarding the Social
Facilitation experiment and the perception of the emotional expressions; and
finally, Section 5 concludes the paper.

2 Experimental Design Setup

2.1 Hypothesis

The hypothesis of this work are inspired by the Social Facilitation effect and are
formulated as follows:

Hypothesis A: The user’s performance in an easy task while being encouraged
by a robot, will be better than while performing the same task alone.

Hypothesis B: The user’s performance in a difficult task while being judged
by a robot, will be worst than while performing the same task alone.

2.2 Game Scenario Description

In order to test and validate our system we designed the “Find the Pair” board
game. The “Find the Pair” board game is played with a set of cards containing
pairs of matching images. The cards are put face down on a grid with letters
marking columns from A to D and numbers marking rows 1 to 5. At each turn
the player has to uncover two cards. If they are matching, the cards are removed
and the player can uncover a new pair of cards, and so on. Players switch turns
when a non-matching pair is uncovered. The game ends when all matching pairs
have been discovered. The player with the most pairs wins.
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The robot cannot manipulate the cards by itself. Instead, it says the letter
and number of the desired card position, and then the user has to uncover it,
enabling the robot to recognize the image of the card.

At each turn the players’ performance is calculated based on the number of
times uncovering a card in the same spot on multiple turns. At the end of the
game the user’s task performance is calculated based on the number of pairs.

The information about the players is stored in the EM-ART with 5 channels:
Person, Game Difficulty, Robot turn, Performance, and Card. An event in the
episodic memory corresponds to a turn in the game and an episode corresponds
to a complete game.

The experimental conditions were defined by two factors, game difficulty
level and presence of the robot. The game was tested with two levels of difficulty
depending on the numbers of cards: 10 for the easy mode, and 20 for the difficult
mode. Each participant played the game 3 times alone in both game modes before
playing versus the robot, and 1 time versus the robot in each game mode.

2.3 Robot Behaviors

The robot has eight behaviors: Greeting people, pointing to the cards, and
expressing pride, shame, admiration, reproach, encouraging, and judging. Except
for encouraging and judging, each behavior produces both speech and movement.
For pride, the robot rise its arms at the height of its waist, for shame, the robot
rise its right arm and cover its face with it, for admiration, the robot “claps”
with its arms, and for reproach the robot moves its head from left to right and
vice versa two times. At each turn and at the end of the game, the robot can per-
form a body motion behavior or speak according to the intensity of the emotions
present in its internal state. Fig. 1 shows the emotional expressions of admiration
and pride corresponding to the actions of agents of the OCC Model.

(a) Admiration (b) Pride

Fig. 1. Robot Emotional Expressions
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3 Methodology

The high level framework proposed is composed of face and card recognition
modules, an episodic memory, a cognitive emotional system, a task specific mod-
ule to play the “Find the pair” game, a database of the preferences of the robot,
and an expression generator module.

The face recognition module generates a search in the episodic memory spec-
ified by the name of the person and the game level difficulty, which gives the
information of the last played game, and it is sent to the speech generation mod-
ule. Based on the performance on the task (e.g. “number of pairs obtained”) and
the attitude of the robot towards the person and the game, the emotional system
generates responses that are communicated to the expression generator module.

Face Detection is done by using the Viola-Jones [13] method and Face Recog-
nition with Local Binary Patterns [1], using the implementations provided by the
OpenCV library. Card Recognition is based on FindObject2D1, an open source
project that uses a bag-of-words approach with different types of 2D image fea-
tures. Here, FindObject2D is configured to use the OpenCV implementation of
FAST [11] features on images incoming from the robot’s camera.

The game board used was a white paper of A3 size, with 4cm wide square
corners coloured in black and set on a white table. For detection of the game
board, the image was binarized with the Otsu method, and the Harris corner
detection method was applied. Then, the region was transformed to correct per-
spective distortion and facilitate recognition of the cards. Game board detection
and perspective correction was also implemented with OpenCV.

3.1 Episodic Memory

Our framework uses the EM-ART implementation presented in [4]. The EM-ART
model [14], shown in Fig. 2, is made of three layers: Input, Events, and Episodes.
The Input Layer is used to represent the external context information. It is
categorized in channels in which each node represents the presence of a known
element with an associated activation level (e.g. “Person A”, “Easy Mode”,
“Card 1”). The nodes found in the Events Layer represents elements in the
Input Layer that were activated simultaneously (e.g., “Person A” and “Card
1”). Synchronization of input elements is done by a short term memory buffer.
As time progresses, the activation level of nodes in the Event layer decreases.
Therefore, the sequence of events is represented by the pattern formed by those
levels: the highest activation level is associated the most recent event to occur,
and the lowest to the oldest. The Episodes Layer is made of nodes that categorize
the patterns of the activation level of nodes in the Events Layer, thus defining
episodes as temporal sequences of events. New episodes are created only when
learning is triggered. In this work, learning is triggered at the end of each game
to record its final sequence of events.

1 http://introlab.github.io/find-object/

http://introlab.github.io/find-object/


168 A. Cruz-Maya et al.

Fig. 2. EM-ART Model with a recalled episode built out of 2 events. yj represents the
activation level of event j.

3.2 OCC Model

The OCC Model [8] is based on 4 global variables and 12 local variables, each
variable depending on both physical and psychological factors. The model has
22 emotions that are divided in three categories: Aspect of Objects, Action of
Agents and Consequences of Events. In this work, we focused on the category of
Action of Agents for its relation with the social facilitation effect. The synthesis
of the emotions belonging to this category is described as follows:

Synthesis of Emotions. Let A(p, o, t) be the approving of action o that person
p assigns at time t. This function returns a positive value if the performance of
the action is above the standards for that action, and returns a negative value if
the action doesn’t meet the standards. The standard is a given value to determine
if the performance is low or high. Let Ig(p, o, t) represent a combination of the
global intensity variables. Let Pa(p, o, t) be the potential for generating a state
of admiration. If the action is performed by others, the rules for admiration and
reproach are presented in Algorithm 1.

Algorithm 1 Synthesis of Admiration and Reproach
set Pa(p, o, t) = fp(A(p, o, t), Ig(p, o, t))
if A(p, o, t) > 0 then

Given a threshold value Ta

if Pa(p, o, t) > Ta(p, t) then set Ia(p, o, t) = Pa(p, o, t) − Ta(p, t)
else set Ia(p, o, t) = 0
end if

else
Given a threshold value Tr

if Pa(p, o, t) > Tr(p, t) then set Ir(p, o, t) = Pa(p, o, t) − Tr(p, t)
else set Ir(p, o, t) = 0
end if

end if
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The approving function fp is denoted by:

fp = (Praise ∗ SoR ∗ CogUnit) + (Prox ∗ a) + (Ar ∗ b) (1)

where Praise is the praiseworthiness, SoR is the sense of reality, CogUnit is the
cognitive unit, meaning the grade of similarity between the preferences of the
robot and the person, Prox is the proximity, Ar is the arousal and a and b are
factors of increment set empirically to 0.1 and 0.3, respectively. The emotions of
pride and shame were synthesized the same way, but based on the performance
of the robot. The functions describing the arousal and the mood are presented
in Algorithm 2. The threshold functions were denoted by a sigma function (2),
and having as input the value of the mood. Also the arousal was processed with
a s-shaped sigmoid function to limit its value.

Algorithm 2 Arousal and Mood

arousal = arousal +
n∑

i=1

intensity emotion − (ti − ti−1) ∗ 0.05

if arousal < 0 then arousal = 0
end if
if admiration or pride or love then

mood = mood + intensity emotion − (ti − ti−1) ∗ 0.01
else [reproach or shame or hate]

mood = mood − intensity emotion − (ti − ti−1) ∗ 0.01
end if

The value of Praise is defined by Praise = performance + (expDev),
where expDev is the expected deviation given by expDev = performance −
lastPerformance. Then the Praise was processed with a sigma function
denoted by:

y = (g/(1 + e−(x−x0)/s)) + y0 (2)

where s is the change step of the sigmoid, g is the maximum value, x0 is the
half of the sigmoid, y0 is used to give a positive or negative output and x is the
input.

The parameters of the OCC Model were set up as: Appealing = 0.5, Famil-
iarity = 0.1, Praiseworthiness = Player’s performance, Strength of Cognitive
Unit=1 for the robot’s actions and 0.5 for the person’s actions.

4 Results and Discussion

The experiment was done with a NAO robot from Aldebaran Robotics. The
experiment was tested with 10 participants: 8 male and 2 female with ages in
range from 22 to 34 years old and all with technical background. 4 of them had
no prior interaction with a robot.
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The measure of the performance for the Social Facilitation experiment was
given by perform = errors/pairs obtained, where pairs obtained is the number
of pairs obtained at the end of the game. An error is counted when a card has
been shown previously and the person did not remember its position. The results
are presented in Table 1. Paired T-Tests for dependent means and two-tailed
hypothesis were applied. The results were significant with p < 0.10, rejecting
the null hypothesis for comparison between the Easy level played alone and
the Easy level played with robot conditions (t = −1.8653, p = 0.0950) and for
comparison between the Difficult level played alone and the Difficult level played
with robot conditions (t = 2.2003, p = 0.0553). With t < 0, this suggests that
the mean errors count in Easy mode was higher for the “playing alone” group
(0.1788 vs. 0.0990), and the opposite in Difficult mode (0.3159 vs. 0.4810).

The differences in means are small, but can be explained by the small number
of participants in the experiments. However, the results are statistically signifi-
cant, and they confirm both hypotheses considered in this work. As expected for
the theory of Social Facilitation, the performance is affected by the presence and
behavior of the robot, improving it when the task is easy and worsen it when
the task is difficult.

Table 1. Mean and variance of participants’ performance in the 4 game modes

Easy Alone Difficult Alone Easy with robot Difficult with robot

mean 0.1788 0.3159 0.0990 0.4810

var 0.0019 0.0211 0.0254 0.0837

The internal emotional states of the robot are presented in Fig. 3, where
the performance of the robot and one participant in difficult mode can be seen.
In Fig. 3(a), when the performance of the participant turns negative (under
the standard), the intensity of reproach increases. On the other hand, when the
performance of the participant increases, the intensity of admiration increases
too. In Fig. 3(b), the performance of the robot along with the emotions of pride
and shame can be observed. Even when pride was called during the game, at the
end the raised emotion was shame because the standards were set to expect a
high score of the robot. The mood and the arousal of the robot in this game are
shown In Fig. 3(c), where the mood can take negative values according to the
the synthesized emotions based on the performance of both players, decreasing
with time and with negative emotions as shame and reproach, and increasing
with positive emotions as pride and admiration. The arousal only has positive
values, increasing with any kind of emotions, and decreasing at a higher rate
than the mood.

The emotion system was analysed using a subjective measure of the partic-
ipants with a post-experiment questionnaire2. Table 2 (Robot Behavior) shows
the answers of the participants on a 7-point Likert scale, 7 for strongly agree

2 http://goo.gl/forms/3TNI4KjvXu

http://goo.gl/forms/3TNI4KjvXu
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Fig. 3. Human and Robot Performance and Robot’s internal state of Mood and Arousal

and 1 for strongly disagree (4 for neither agree or disagree). The answers of
the participants show a clear recognition of the states of the robot in the dif-
ferent emotional states, which proves that the behaviors used were perceived as
expected.

The negative mood was not so present due to the fact that even when the
person gets a pair in the game, the robot can show admiration and increase its
positive mood. Also, the participants were asked two questions about their level
of appreciation of the game in both modes (easy and difficult). The answers are
shown in Table 2 (Game Mode), which are related to the variable CogUnit of
the OCC Model. If the values of the attitude of the players towards the game
had been used, the intensity of the generated emotions should had been higher,
because they are more similar to the set value in the robot’s preferences.

Finally, two open questions were asked to the participants to express their
liking or disliking towards the robot, multiple answers were allowed. 5 partic-
ipants liked the enthusiasm of the robot, 3 participants liked the correlation
between the actions and the behaviors, 4 participants found the robot funny,
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Table 2. Participants’ feedback

Robot Behavior mode mean var

1. Robot as good motivator in the easy game 6 4.62 2.92
2. Robot disturbing in the difficult game 3 3.67 2.60
3. Positive mood when it was winning 6 5.83 0.69
4. Negative mood when it was losing 2,3,5 3.58 2.99
5. Admiration when in the easy game 4 3.75 3.47
6. Reproach in the difficult game 6 4.50 2.63
7. Pride when it was winning 7 6.17 0.69
8. Pride when it was losing 3 2.92 1.90
9. Could be a good companion 6 5.50 1.72
10. Reproach when it was winning 4 3.67 3.33
11. Disturbing in the easy game 4 3.92 3.71
12. Motivating in the difficult game 4 3.67 2.60

Game mode mode mean var

1. Easy 6 4.91 2.29
2. Difficult 6 5.82 0.76

and 1 participant found it clever. Six participants said that they disliked that
the robot was too egocentric. This can be explained due to the fact that we
wanted that the person feel being evaluated in the difficult mode.

5 Conclusion and Future Work

In this paper we investigated the social facilitation experiment in a human-
robot interaction, with an emotional system based on the OCC Model. The
results showed proofs reinforcing this theory, which makes us believe that this
should have to be considered for companion robots where the interaction in
everyday life can provoke stressful situations for the humans. This kind of robots
have to adapt to their users through their interaction, and an emotional system
can take place to manage the robot’s behaviors. For that reason, we plan to
continue with the implementation of the OCC Model, which is a very extensive
model that include a large range of emotions, where memory plays an important
role. The EM-ART needs to be combined in a deeper way with the emotional
system, because memory is the base of the section “consequences of events” of
this model. Furthermore, an hybrid emotional approach, combining basic and
cognitive emotions, may be beneficial for faster responses of the robot.
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Abstract. Humans always move, even when “doing” nothing, but
robots typically remain immobile. According to the threshold model of
social influence [3] people respond socially on the basis of social verifi-
cation. If applied to human-robot interaction this model would predict
that people increase their social responses depending on the social veri-
fication of the robot. On other hand, the media equation hypothesis [11]
holds that people will automatically respond socially when interacting
with artificial agents. In our study a simple joint task was used to expose
our participants to different levels of social verification. Low social ver-
ification was portrayed using idle motions and high social verification
was portrayed using meaningful motions. Our results indicate that social
responses increase with the level of social verification in line with the
threshold model of social influence.

1 Introduction

During human-robot interaction a robot typically stops moving during idle peri-
ods and the robot appears inanimate and lifeless. On the other hand, the human
body never stops moving and therefore always communicates being alive. So
idle movements could present a basic “illusion of life”, which could help people
accept the robot as a social entity [8]. Idle motions are used a lot in gaming
and movie animations [5,12]. However, only few studies investigated the role of
idle motions in relation to making robots more social entities. For example, [14]
mimicked clerk idle movements on a robot, but the effect on social interaction
was not tested.

There are two competing views about people’s social responses towards arti-
ficial agents. According to the media equation hypothesis [11] humans automat-
ically respond socially when interacting with artificial agents as long as there
are some behaviours that suggest a social presence. For example, it was found
among others that people rate computers more trustworthy and intelligent when
the computer belonged to the same team, or when it showed an avatar’s face
of the same ethnicity [10]. It is suggested that people respond out of habit to
mimicked social cues due to overlearning [10]. Based on this, one would expect
that a robot portraying idle motions not only looks more alive but also elicits
social responses. On the other hand, the threshold model of social influence [3]
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-25554-5 18



Motions of Robots Matter! The Social Effects 175

is based on the idea of “social verification”: people verify that they are engaging
in semantically meaningful communication when interacting. Two interpersonal
factors are considered of special importance for verifying meaningful interaction:
the behavioural realism with which social cues are portrayed, and agency, the
extent to which the agent is perceived as human-like. According to this idea
idle motions would not contribute to social verification, and therefore, not elicit
social responses. Movements portrayed by a robot would have to be meaning-
ful and embody social cues. Various studies have examined meaningful gestures
in the field of HRI. Gaze has been demonstrated to influence the persuasive-
ness of a robot during a conversation [4]. Other non-verbal meaningful gestures,
like hand/arm gestures, have been demonstrated to improve communication effi-
ciency and user experience [15], and anthropomorphism [13].

In this study we investigate the social effects of idle- and meaningful motions
as compared to no motions, and compare our results with two competing views
of social effects in human-robot interaction: the media equation hypothesis [11]
and the threshold model of social influence [3]. According to the threshold model
of social influence, meaningful motions serve as semantically meaningful com-
munication with the robot, and are perceived to have higher behavioural realism
than idle motions. Therefore, they should trigger stronger social responses than
idle motions. In particular, we expect that meaningful motions are perceived
as more socially intelligent and more anthropomorphic than idle motions and
no motions [6]. On the other hand, according to the media equation hypothe-
sis, idle motions already elicit social responses. So in this case we expect that
idle and meaningful motions are both perceived as more socially intelligent and
more anthropomorphic than idle motions and no motions. Both idle motions
and meaningful motions are expected to improve the perceived life-likeness of
the robot compared to no motions.

2 Method

We conducted an experiment where the Nao robot (Aldebaran Robotics, France)
helped participants unpack a cardboard moving box that contained 16 items.
There were two main conditions: In one condition the Nao robot displayed the
so-called idle motions, in the other condition the robot displayed the meaning-
ful motions. Within the two main conditions there was a baseline no-motion
condition and three motion conditions.

2.1 Participants

73 participants took part in the experiment, of which 41 were male and 31
were female (mean age 25.55, SD = 7.012, range 18 to 54). Participants were
randomly assigned to one of the two experimental conditions. 40 participants
had prior experience with robots, including the Nao robot, but this did not
influence our results. Participants received a monetary compensation of 5 euros
for participating in the experiment.
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2.2 Design

The experiment was conducted using a mixed design. We used two different
motion types as a between-subjects factor, which differed in terms of social ver-
ification: Meaningful and Idle motions. The Meaningful motion condition por-
trayed semantically meaningful communication (high social verification). The
Idle motion condition portrayed interactions that are argued to only aid in the
“illusion of life” (low social verification). In both groups a no-motion condition
was used as a baseline. There were three meaningful movements: (1) Arm point-
ing, (2) Head pointing, and (3) Eye-contact. And three idle motions: (1) Posture
shift/sway (2) Random head movements, and (3) Breathing motion. Each par-
ticipant experienced three movement conditions (either idle or meaningful) and
the baseline condition in four blocks. The baseline was always presented first,
the three movement conditions were counterbalanced across subjects. Each block
required the unpacking and correctly placing of four items from the moving box,
after which participants were asked to fill in a questionnaire. Each block con-
sisted of four trials resulting in a total of 16 trials per participant.

2.3 Experimental Set-up

Participants interacted with the humanoid Nao robot (Aldebaran Robotics,
France). The Nao is a 58-cm tall humanoid robot, which has 25 degrees of free-
dom, two cameras, an inertial measurement unit, touch sensors and four micro-
phones all enabling him to detect and interact with its surroundings. The robot
was partially controlled using a Wizard-Of-Oz technique. For each of the within-
subject conditions there were predetermined utterances. These utterances were
randomised for each within-subject condition. The items were located in the card-
board moving box and had to be unpacked. The chosen items and item locations
were chosen such that they did not cause confusion or bias of where they should be
placed. We used 16 items: a white vase, green cup, yellow cup, instruction man-
ual, white bowl, clock, candles, photo frame, telephone, fruit bowl, two glasses,
power adapter, headphones, stereo cable and a remote control. The questionnaire
was implemented using Macromedia’s Authorware software. The experiment took
place in a mimicked living room in which the Nao robot would serve as a house-
hold assistant. Figure 1 shows an overview of the robot and object locations. The
room was equipped with 3 cameras, so that the experimenter could observe and
control the interaction from the observation room.

2.4 Robot Motions

We used the Principles of Animation [12] as a guideline to create the idle motions
that generate an “illusion of life”. We chose a breathing, posture sway and gaze
shift motion, primarily because of the limitations of the Nao robot. To mimic a
breathing motion, the Nao robot made a slight motion with its head, shoulder
joints and hip joints. The frequency of the breathing motion was constant and
fixed in a pretest. The idle gaze shifts were implemented by adjusting both the
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Fig. 1. A top down view of the UseLab. On the right side the different items are listed
that were used during the experiment. Furthermore the minimum distance label can
be seen between the Nao robot and participant.

head pitch and yaw. A total of 8 pre-recorded head motions were executed at a
random time interval (between 15-22 seconds). The posture sway motions were
implemented by counter-rotating the hip and ankle joints including small adjust-
ments to the head and arm joints. A total of 8 randomised pre-recorded motions
were executed at random on a certain time interval (between 20-30 seconds).
The motion parameters were pretested so that the motions looked natural. We
verified whether the idle motions were perceived correctly by having the partic-
ipant describe which motion the robot portrayed. Out of 37 participants 86.5%
perceived the posture sways correctly, 78.4% perceived the gaze shifts and 83.8%
perceived the breathing motion.

The meaningful motion eye-contact/gaze was realised using a face tracking
algorithm that centres the gaze of the Nao robot on the participant. During this
interaction the Nao robot checks whether the participant is looking at the robot
using a head pose estimation algorithm its eyes, thus creating a mutual facial
gaze interaction. The arm pointing and head pointing gestures were implemented
in combination with deictic expressions: gesture conveyed the lacking spatial
information in the speech. For example, the robot could say “Please take the
power adapter, and place it in the closet” and point to ether the left or right
closet. Since there were 4 locations, 4 deictic arm gestures and 4 deictic head
gestures were implemented. Out of 36 participants in the meaningful motion
condition, 91.7% perceived the deictic arm pointing gesture correctly, 83.4%
perceived the deictic head gesture correctly and 86.2% perceived the gaze motion
correctly. The no-motion condition, which acted as a baseline throughout the
experiment, was perceived correctly by 86.5% out of 73 participants.
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2.5 Verbal Utterances

Each instruction given by the Nao robot had following syntax: “Please take the
[object], and place it [position+location].” In the meaningful condition the two
syntax components had a separate deictic gesture assigned to them. For example,
the Nao robot could say “Please take the remote control” while pointing at the
moving box, followed by pronouncing “and place it in the closet,” accompanied
by a pointing gesture towards the closet. This was all done in a fluent manner
that looked natural.

2.6 Questionnaire

The questionnaire is based on the 5-point Likert scale Godspeed questionnaire
[2], which measures: anthropomorphism, animacy, likeability, perceived intelli-
gence and perceived safety. We excluded perceived safety from the questionnaire
since this was not relevant to our study, and replaced this dimension with the
emotion dimension (4 questions) and the social intelligence dimension (4 ques-
tions). The former allowed us to measure the perceived emotional responsiveness
of the robot. The latter enabled us to measure the social competence and social
skills of the Nao robot and is based on [9].

2.7 Procedure

On arrival participants filled in the informed consent forms, and received general
instructions. When there were no further questions the experiment was started
from the control room. The robot introduced itself and provided a short explana-
tion of the task. First the baseline condition with no movements was presented,
in which the robot directed the participant with verbal utterances to unpack the
box. The utterance consisted of two parts: the first part indicated the item (e.g.,
Please take the white vase) and the second part indicated where the item should
be placed (e.g., and place it on the table). After placing the object the partici-
pant was required to stand in front of the Nao robot again to signal that they
were ready for the next item. After placing four items in the correct location the
Nao robot instructed the participant to take a seat in the chair, and fill in the
questionnaire provided on the laptop. After completing the questionnaire, the
participant stood in front of the Nao robot again to continue the next experi-
mental block. This was repeated four times for a total of sixteen items. In total
the participants interacted approximately 10 minutes with the Nao robot. After
completing the last questionnaire the participants were debriefed about the pur-
pose of the experiment and then thanked and paid. The experiment lasted about
30 minutes.

2.8 Data Analysis

To check the internal consistencies a reliability analysis was conducted. Cron-
bach’s alpha exceeded 0.7 for all dimensions of the questionnaire, indicating that
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the items had good consistency. We had to exclude the data of 10 participants
regarding the eye-contact condition (meaningful motion condition only), because
the robot lost eye-contact.

3 Results

3.1 Social Verification

To verify our hypotheses regarding the media equation hypothesis and threshold
model of social influence, we compared meaningful and idle movements con-
ditions. To remove individual differences in overall ratings we subtracted the
baseline condition first, which was always presented first. The result is shown
in Figure 2. It is clear that Likeability, Perceived intelligence, social intelligence
and emotion scored higher when the robot displayed meaningful motions than
when it displayed idle motions.

A MANOVA analysis with the questionnaire dimensions as dependent vari-
ables and social verification as factor confirmed a statistically significant main
effect of social verification, F (6, 202) = 4.38, p < .01, η2 = 0.12. Participants
rate the Likeability dimension higher (F (1, 209) = 7.17, p < 0.01, η2 = 0.03)
for conditions which portrayed meaningful motions (M = 0.28, SD = 0.85)
than for idle motions (M = -0.02, SD = 0.79). Perceived Intelligence is higher
(F (1, 209) = 13.64, p < 0.01, η2 = 0.06) for conditions which portrayed meaning-
ful motions (M = 0.37, SD = 0.78) than for idle motions (M = -0.03, SD = 0.79).

Fig. 2. Mean Likert scores for the meaningful motion and idle motion conditions after
subtracting the baseline. The errors bars show the standard error for the mean at
±1 SE.
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Fig. 3. Mean Likert scores for the idle motion condition and the baseline no-motion
condition. The errors bars show the standard error for the mean at ±1 SE.
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Fig. 4. Mean Likert scores for the baseline no-motion condition and the meaningful
motion condition. The errors bars show the standard error for the mean at ±1 SE.

Table 1. Overview of the results of the ANOVA testing the within-subject effect of
meaningful motions compared to the baseline condition.

No motion (n=36) Motion (n=105)

Questionnaire Dimension M SD M SD F (1, 139) p η2

Anthropomorphism -0.59 0.74 0.03 0.93 13.25 < 0.001 0.09

Animacy -0.51 0.87 0.33 0.82 27.44 0.01 0.17

Likability 0.71 0.88 1.0 0.85 2.89 0.09 0.02

Perceived Intelligence 0.23 0.89 0.6 0.78 5.82 0.02 0.04

Social Intelligence 0.17 0.89 0.72 0.65 15.42 < 0.001 0.1

Emotion -0.03 0.7 0.58 0.74 18.45 < 0.001 0.12
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Likewise, social intelligence is higher (F (1, 209) = 10.11, p < 0.01, η2 = 0.05)
for conditions which portrayed meaningful motions (M = 0.54, SD = 0.65)
than for idle motions (M = 0.22, SD = 0.81) and, finally, emotion is higher
(F (1, 209) = 4.76, p = 0.02, η2 = 0.02) for conditions which portrayed mean-
ingful motions (M = 0.61, SD = 0.74) than for idle motions (M = 0.37, SD
= 0.83). The anthropomorphism dimension (F (1, 209) = 0.094, p = 0.76) and
the animacy dimension were not rated significantly different between motion
conditions (F (1, 209) = 0.113, p = 0.74).

3.2 Effect of Motion

To determine the effect of motion we compared the different motion conditions
to the no motion (baseline) conditions separately for idle motions and meaning-
ful motions. The latter is necessary because the robot displayed a different set
of motions in the idle and meaningful motion conditions. The result is shown
in Figure 3 for idle motions and in Figure 4 for meaningful motions. In the idle
motion condition a positive effect of motion on anthropomorphism, animacy,
social intelligence and emotion is visible. To test the significance, we conducted
a MANOVA analysis with questionnaire dimensions as dependent variable and
idle motion (idle motion, no-motion) as a factor. We found a significant main
effect of motion (F (6, 134) = 8.911, p < 0.01, η2 = 0.29). Participants rated
the anthropomorphism dimension significantly higher (F (1, 139) = 13.33, p <
0.001, η2 = 0.09) for conditions which portrayed motion (M = 0.11, SD = 0.95)
than for the baseline condition without motion (M = -0.55, SD = 0.96); ani-
macy was rated significantly higher (F (1, 139) = 23.14, p < 0.001, η2 = 0.14)
by participants for the idle motion condition (M = 0.45, SD = 0.84) than for
the baseline condition without motion (M = -0.36, SD = 0.97); emotion was
significantly higher (F (1, 139) = 5.41, p = 0.02, η2 = 0.04) for conditions which
portrayed motion (M = 0.61, SD = 0.83) than for the baseline condition without
motion (M = 0.24, SD = 0.84). The other Godspeed questionnaire dimensions
did not differ significantly compared to the baseline no-motion condition (like-
ability: p = 0.88; perceived intelligence: p = 0.83; social intelligence: p = 0.16).

We did the same analysis for the meaningful motion condition, but now with
meaningful motion (meaningful motion, no-motion) as a factor. Again we found
a significant main effect of motion ( F (6, 134) = 7.65, p < 0.01, η2 = 0.26).

In the meaningful motion condition, participants rated all dimensions higher
for a robot showing motion than for not showing motion (see Figure 4). We
found significant effects for anthropomorphism, animace, perceived intelligence,
social intelligence and emotion, but not for likeability (see Table 1).

4 Discussion and Conclusions

4.1 Social Verification

We expected that participants’ social responses would be higher for the mean-
ingful motions compared to the idle motions. Results indicated that partici-
pants rated the Nao robot significantly more positive in the meaningful motion
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condition i.e., the robot was seen as friendlier, more intelligent, empathic and
helpful compared to the idle motion condition. We can thus conclude that we
found support for the threshold model of social influence. Our results indicate
that participants perceived the robot with higher social intelligence and per-
ceived intelligence when the robot portrayed meaningful motions compared to
idle motions. Thus, the robot portraying meaningful motions is perceived as more
socially competent and skilled. This also confirms that when the robot portrayed
meaningful motions the participants perceived the interaction as semantically
meaningful. As suggested in [6] we did not find evidence that social intelligence
increases the level of anthropomorphism, i.e. anthropomorphism was rated the
same for idle and meaningful motions.

4.2 Effect of Motion

We also investigated how humans perceive different idle motions portrayed by
a robot. Our results indicated that participants perceived the robot portraying
idle motions as more human-like, alive and empathic compared to the robot
with no motion. These results are in line with [7] who concluded that humans
automatically ascribe human traits to a robot when the robot portrays human
behaviour.

As a result, the robot portraying idle motions was also perceived by partic-
ipants as more empathic, or emotionally expressive compared to the no-motion
robot. It was assumed that idle motions would not add to the expression of a
character [8]. However, our research demonstrates that by having robots por-
traying idle motions, people will attribute intentions to the robot. In fact, par-
ticipants sometimes remarked that the robot seemed bored or nervous during
the idle motion condition. This is a further indication that participants anthro-
pomorphised the robot when portraying idle motions. However, idle motions
remain low in social verification, because participants did not perceive the robot
portraying idle motions as more intelligent or more socially capable than the
robot portraying no motion.

Overall, people ascribed human qualities to a robot that portrays idle
motions. It does not seem to matter which idle motions are portrayed by a
robot: as long as the robot makes some motions, humans will perceive the robot
as more human-like and alive, albeit not more intelligent. Only when the robot
portrayed meaningful motions, the robot was perceived as more socially com-
petent and intelligent. We can thus confirm that the meaningful motions are
indeed contributing in a semantically meaningful manner to social verification.
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Abstract. A common description of a social robot is for it to be capable of 
communicating in a humanlike manner. However, a description of what com-
municating in a ‘humanlike manner’ means often remains unspecified. This  
paper provides a set of social behaviors and certain specific features social ro-
bots should possess based on user’s experience in a longitudinal home study,  
discusses whether robots can actually be social, and presents some recommen-
dations to build better social robots. 

Keywords: Design guidelines · Sociability · Social intelligence · Social robots 

1 Introduction 

The field of robotics is rapidly advancing. There are a growing number of different 
types of robots, and their roles within society are expanding. As the capabilities of 
robots develop, the possibility arises that they will be able to perform more and more 
difficult tasks and become our full-fledged team members, assistants, guides, and 
companions in the not-so-distant future. The aim of social robotics research is to build 
robots that can engage in social interaction scenarios with humans in a natural, famili-
ar, efficient, and above all intuitive manner.  

Robots designed to share domestic environments with human users must interact in 
a socially acceptable way. According to Breazeal [1], an ideal social robot is capable 
of communicating and interacting in a sociable way so that its users can understand 
the robot in the same social terms, to be able to relate to it and to empathize with it. 
The common underlying assumption is that people prefer to interact with machines in 
a similar manner they do with other human beings [4]. Robotic researchers strive for 
the development of such sociable machines by making use of models and techniques 
generally used in interpersonal communication derived from (social) psychology and 
communication science. Yet, the social capabilities of today’s robots are still limited 
(see [7] for a more in-depth discussion). Simple human social behavior can be quite 
challenging to program into the robot’s software. Various research on the social  
behaviors of robots has been performed, and an abundance of literature suggests the 
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following social characteristics for robots designed to interact socially with its users: 
social learning and imitation, dialog, learning and developing social competencies, 
exhibit distinctive personality, establishing and maintaining social relationships [4] 
[15]. This list of social characteristics is a list with robotic behaviors and features 
which social robots should ideally possess. Though, social robot prototypes existing 
today still lack important social characteristics and display only limited socially ac-
ceptable behaviors [7], which prevents these robots from engaging in truly natural 
interactions with their users [2]. Only when all of the essential social characteristics 
can be met, we can legitimately speak of social robots. Nevertheless, we would like to 
postulate that robots themselves are not social. Robots can only simulate social beha-
vior or behave in such a manner perceived by human users as social. 

This paper provides a set of social behaviors and certain specific features social ro-
bots should possess, discusses whether robots can actually be social, and presents 
some recommendations to build better social robots. 

2 Method 

The overall aim of the longitudinal study was to see whether and how a longer, unin-
terrupted period of use of a social robot in a home environment affects the long-term 
use of social robots. Based on real interaction experiences with the Karotz robot and 
triggered by some specific questions about social behaviors of robots for domestic 
purposes, we have identified a set of social behaviors and certain specific features 
social robots should possess. 

2.1 The Karotz Robot 

The robot used in this study is Karotz (see figure 1; http://store.karotz.com/en_WW/), 
which is a 30-cm high internet-enabled activated smart rabbit-shaped ambient elec-
tronic device. Communication occurs via verbal communication, the LED-light in its 
belly, the moveable ears, and by detecting the presence of other objects nearby. As the 
Karotz is permanently connected to the internet, it is able to react on, transmit, and 
broadcast all types of content available on his network, for example news, messages, 
music, texts, alerts, and radio. The build-in webcam enables users to communicate 
with family members at home or for surveillance purposes when away. 
 

 

Fig. 1. The Karotz robot deployed in the participant’s homes 

Each robot was installed with a basic set of applications, such as daily news broad-
casts, daily local weather reports, favorite radio stations, personalized reminders, and 
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randomly spoken phrases to make the robot being perceived as more autonomous and 
animate. This basic set of applications ensured us that the user experience was some-
what similar among the participants, or at least initially as some participants chose to 
adjust these applications to their own needs. Besides the required applications, partic-
ipants were free to install additional applications as they thought would be useful or 
fun for their households. 

2.2 Data Collection and Procedure 

The longitudinal study ran from October 2012 to May 2013 and consisted of seven 
moments of data collection. For the interviews, a representative of that household 
reported on their own individual user experiences with some additional questions 
about the opinions of other household members. Table 1 presents the number of inter-
views collected during the study and their associated time point with regard to the 
moment the participants were introduced to the robot. 

Table 1. Distribution of sample sizes for each time point 

Time points with regard to the introduction of the robot Sample size 
2 weeks before  21 
1st day 21 
2 weeks 18 
1 month 17 
2 months 13 
6 months  7 

 
The participants were interviewed at each of the time points. In total, 21 partici-

pants started the study who consented on being part of the interview sessions. We 
conducted semi-structured interviews at the participants’ own homes to obtain de-
tailed user experiences with the robot. The interview scheme contained, among other 
questions about the acceptance and use of the robot, some questions focused on the 
social characteristic of robots (e.g., Can you describe how you perceive the robot? 
How are the interactions with the robot similar to / different from interactions with 
other persons? Does the robot seems to have its own will / personality? How should 
the robot be improved to become more sociable? Does the robot offer some kind of 
companionship?). Only the codes applied to the answers of these questions were ana-
lyzed with the aim to identify a set of social behaviors and certain specific features 
social robots for domestic purposes should possess to be accepted by users. 

2.3 Data Analysis 

A total of 97 interviews were conducted over a time period of six months. The inter-
views were recorded and transcribed verbatim with the participants’ approval. The 
transcriptions were done as soon as possible after conducting the interviews to guar-
antee information clearance and solve problems with interpretation quickly [19]. 
Based on the transcriptions of the interviews, key concepts were identified and  
translated into a coding scheme by the primary coder. Table 3 shows the social  
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characteristics that have emerged as key concepts from the interviews, which together 
formed the coding scheme. Next, for each interview section, at least one code from 
the coding scheme was applied to that section. In total, 32 of the 97 interviews were 
also coded by a second scientist, which resulted in almost 33% of double-coded data. 
Intercoder reliability, which involves testing the extent to which the independent cod-
ers agree on the application of the codes to the different interview sections, has found 
to be substantial with a Cohen’s Kappa of .73 [11]. In the results, from every  
interview transcript, ‘striking’ or ‘typical’ quotes [8] were selected which illustrated, 
confirmed or enhanced our understanding of the key concepts, i.e., the social  
characteristics for domestic social robots, from the coding scheme. 

2.4 Participants 

Participants were recruited with various methods, such as word of mouth, advertising 
in public locations (e.g., libraries, leisure centers and supermarkets), and snowball 
sampling by asking assigned participants for referrals to other people who might par-
ticipate. During recruitment, we tried to balance out the households’ demographic 
profiles to seek diversity (see table 2 for the distribution within the sample). However, 
from each household, only one person was interviewed. Furthermore, to facilitate the 
interactions with the robot, participants were required to have at least a limited work-
ing proficiency in either English or German as the Karotz robot does not provide inte-
ractions in Dutch. We compensated our participants by allowing them keep their robot 
after study completion. Moreover, to increase both homogeneity and convenience, 
most participants lived within 10 square kilometer around our university, the Univer-
sity of Twente in The Netherlands. 

Table 2. Distribution of household types within the sample 

 Number of participants 
Household type Count % 
Older single male (55+) 1  4 
Younger single male (35-) 3 14 
Older single female (55+) 2 10 
Younger single female (35-) 2 10 
Older couple (both 55+) 2 10 
Younger couple (both 35-) 3 14 
Young family 3 14 
Mature family 2 10 
Student dorm 3 14 
Total 21 100.0 

3 Results 

From the interviews and based on the coding scheme, we observed several behaviors 
of social interaction and certain specific features domestic social robots should pos-
sess before the participants would accept such robots as social entities in their homes 
(see table 3). The following sections will clarify the meaning of these social characte-
ristics with some quotes. 
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Table 3. Frequency distribution of social characteristics for social robot 

Social characteristics Count %  
Autonomy 20 7  
Coziness 15 5  
Mutual respect 7 2  
Similarity 9 3  
Social awareness 40 14  
Social support 22 8  
Thoughts and feelings 57 20  
Two-way interaction 119 41  
Total 289 100.0  

3.1 Two-Way Interaction 

The far most noted topic was two-way interaction, which constitutes speaking to the 
robot and for it to respond in an social manner. Some participants had expected to be 
able to do this with the current robot and were somewhat disappointed when they 
found out that the Karotz robot could only understand preprogrammed commands. 

“He doesn’t communicate with you. You have to push a button and then you 
could give [the robot] commands. Sometimes he answers, sometimes he 
doesn’t.” – female, 57, living alone 

“[For the robot to be perceived as a social companion] he needs to interp-
ret the things I say. He basically needs to continuously receive things and 
send out without needing to push the button.” – male, 32, living alone 

3.2 Thoughts and Feelings 

Another frequently noted topic was thoughts and feelings. Robots should be embed-
ded with thoughts and feelings. Robots should be able to think for itself and act upon 
it. In addition, a robot be able to display humanlike emotions. 

“[The robot] can’t laugh or cry or look sad… If he wants to be a full-
fleshed interaction partner, he needs to be able to shows his emotions.” – 
male, 32, living alone 

“When such a device becomes intuitive, gets more emotions, becomes more 
intelligent or something. Than it will be different… Then you will treat it 
differently too.” – male, 31, living alone 

3.3 Social Awareness 

The participants also indicated that robots should be aware of their social environ-
ment. Robots must be able to sense our presence and our moods to be able to be per-
ceived as a social entity. 
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“[The robot] doesn’t respond to noise, except when you push that button. 
So he needs to permanently distinguish sounds and interpret and react 
upon them. That is when you could be speaking of contact.” – male, 32, 
living alone 

“[The robot] should react better to what he does… That his ears turn when 
you come in... That would make you perceive it more as something alive.” 
– female, 27, living with spouse 

3.4 Social Support 

With social support, the participants referred to their friends being there for them to 
support them when needed and sharing life experiences with each other. For the pos-
sibility perceive robots as social entities, there should be a trust relationship between a 
human and a robot and knowing that you can always count on it to be there for you. 

“That you share stuff. That you have the feeling you can count on each oth-
er.” – female, 57, living alone 

“To share stuff. I have different friends for different purposes. With one 
friend I talk about superficial stuff and with another friend I can share 
more serious stuff when something is bothering me… And sports friends. 
And in that way I have for my different needs several people around me.” 
– female, 27, living with spouse 

3.5 Autonomy 

With autonomy, the participants particularly referred to the fact that the robot used for 
this study was standing still. For a robot to be perceived as a companion, the partici-
pants need that robot to be able to move around independently and behave unpredicta-
bly and spontaneously and not only have pre-programmed behaviors. Increase the 
robot’s presence would let it be perceived as more animate or alive. With autonomy, 
the participants indicated that they would want the robot to act on its own. 

“It needs to be a completely movable robot. More in the direction of hu-
mans instead of something static. Then it would be more suitable for 
companionship.” – male, 24, living alone 

“If [the robot] could move more, it would be more alive… For example 
driving around… or some more degrees of freedom, so not just moving its 
ears.” – male, 32, living alone 

3.6 Coziness 

The topic of coziness was noted a few times by the participants as an essential characte-
ristic for social robots. The participants discussed to their experiences hanging around 
with their friend just for the sake of being together. That feeling of companionableness is 
something the participants would miss in the company of a robot. Coziness or compa-
nionableness seems to be a predecessor of intensive social interactions. 
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“For me companionableness is important. I like it to be surrounded by a 
group of people to talk to.” – female, 22, living alone 

“Coziness off course. Just to talk to each other and have some drinks.” – 
female, 19, living with spouse 

3.7 Similarity 

Similarity as an essential characteristic for social robots was also much less noted. 
Related to the topic of similarity, a few participants said that their friends are their 
friends because they share similar personalities or similar interests with them which 
makes is easier and more pleasant to interact with. 

“What I like about people is that they talk and have feeling that are similar 
to mine.” – female, 22, living alone 

“Having resemblances with people. And to talk about that with each other, 
and to brainstorm with someone who has the same interests. That is nice 
to that to. I think that is important” – male, 38, living with young family 

3.8 Mutual Respect 

Another topic noted only a few times was mutual respect. A few participants ex-
plained that the way they spook to the robot was different from how they interact with 
other people. They were quite rude and blunt to the robot, because they knew that the 
robot would not respond to that behavior. So in order to perceive robots as a social 
entity, users should be able to perceive the robot as a higher form of intelligence 
which would make them feel obligated to treat the robot with respect. 

“You are rude [to the robot], because you think that the robot doesn’t have 
any feelings.” – male, 32, living alone 

“[The robot] is defenseless, so he can’t say anything back. I also think you 
make shorter sentences, or even talk to him in stop words. Because he 
doesn’t understand it anyway.” – female, 19, living with spouse 

Together, these social characteristics for robots provide some insights into the essen-
tial characteristics social robots should possess before the participants would accept 
such robots as social entities in their homes. 

4 General Discussion 

This paper presents the results of a robot’s sociability based on user’s experiences 
from a longitudinal home study. Before discussing the general implications of these 
results, we need to address some limitations. First, the rather limited interaction capa-
bilities of the robot used in this study. The choice of the Karotz robot is a fundamental 
result of the overall aim of this study, to see whether and how a longer, uninterrupted 
period of use of a social robot in a home environment affects the long-term use  
of social robots. Second, the employment of a zoomorphic robot imposes some  
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limitations on the generalizability of the results to other types of robots. Third, this 
study focuses on domestic social robots. It could very well be that other context de-
mand different types of characteristics for social interaction with humans. Therefore, 
replication studies are needed to further support the results from the current study. 

4.1 Essential Social Abilities for Social Robots 

Interestingly, this study indicates that users remark similar essential social characteris-
tics for future robots which social roboticists already pursue in their creations [4] [15]. 
The indication of two-way interaction as the most essential social characteristics is 
related to social characteristic of dialog, which describes that robots should be capable 
to verbally communicate with humans. Above all, people should be able to freely 
interact with robots in a natural humanlike manner. This is not surprising, because 
human cognition requires language to communicate with other people for mutual 
understanding [3]. Although we can conclude that robots are yet still far away from 
behaving socially in an ideal manner (i.e. possessing all the essential characteristics 
for social behaviors as for example reported by [4] and [15]), this is not entirely ne-
cessary because the creative human mind will restore these shortcomings with the 
subconscious process of the media equation [16]. In this way, the social behaviors of 
robots is shaped in the minds of the human user. 

4.2 Can Robots Actually be Social? 

An important point for discussion is the potential sociability of robots. Social robotic-
ists are striving to program robots with social behaviors that are similar to those of 
human beings. Yet, some people may argue that robots cannot behave socially and 
cannot have emotions or an appealing personality. Robots can only act as if they are 
social and pretend to empathize with our emotions. However, following the research 
on the media equation [16], human users interacting with robots themselves interpret 
the robot’s behavior as social, and they respond to robots in ways that are similar to 
how they would respond to other people (e.g., [10] [12]). Although most people 
would reasonably agree that robots are programmed machines that only simulate so-
cial behavior, the same people seem to ‘forget’ this while interacting with these ma-
chines. Thus, the question whether robots are social beings seems to depend on how 
human users perceive (the interactions with) these types of robots. 

The doubts of people who think otherwise can be neutralized by altering the well-
known Turing test [20]. The Turing test is a proposed method for determining wheth-
er a machine should be regarded as intelligent. During the test, a person engages in 
natural conversations with both a human and a machine designed to generate a per-
formance that is indistinguishable from that of a human being. The conversations are 
limited to text-based interactions via a keyboard and a screen. If a person cannot reli-
ably discern which of the two conversations was with the machine, then the machine 
is said to have passed the test. Thus, if a machine appears to be intelligent according 
to the human user, then we should assume that that machine is indeed intelligent.  
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Levy [14] proposes that we can apply a similar argument to other aspects of being 
human, such as emotions, personality, and behavior. Furthermore, acting is also a part 
of human social behavior [5]. In this line of thought, robotics researchers and devel-
opers should acknowledge that robots are social entities when human users perceive 
robots as such. 

4.3 How to Make Better Social Robots 

This section will present some guidelines to improve the (interaction) design of social 
robots designed to share domestic environments with human users. People interact 
with and respond socially to robots (e.g., [10] [12]). Therefore, some researchers ar-
gue that it seems unnecessary to depart from the social rules of human-human interac-
tion when evaluating human-robot interactions [9]. Thus, a first recommendation is 
that social roboticists should investigate theories of interpersonal communication to 
create better social robots.  

For social robots to flourish as companions for human users, the results of a short-
term study with the Pleo robot [6] indicate that people are more willing to treat a ro-
bot as a companion when they have high expectations of the robot’s lifelikeness. The 
influence of lifelikeness has also been related to people’s empathic responses to a 
robot [17]. Thus, a second recommendation is that social robots should have a lifelike 
appearance, which does not necessarily mean a humanlike appearance.  

The main finding of the current study is that two-way interaction, possessing 
thoughts, feelings and emotions and being capable to sense the social environment  
are the most essential parts of social behavior to pursue for social robots at this stage 
of development. Thus, a third recommendation is that developers of social robots 
should focus on increasing a robot’s social behavior by first addressing the possibility 
of two-way interaction with a robot followed by creating some ‘theory of mind’ for 
robots.  

The possibility of sharing personal information with a robot and having that robot 
respond to this personal information in an empathic manner was observed in the cur-
rent longitudinal study as the most important variable for explaining companionship 
with a robot. The importance of empathic behavior for social robots and the user’s 
empathic responses to the robot have also been noted by other researchers [13]. Thus, 
as a fourth recommendation, social robots need to be perceived as empathic. 

5 Conclusion 

This paper presented a set of essential characteristics for social robots from a user’s 
perspective, discussed the ability for robots to actually be social, and provided some 
design guidelines for social robots. The results of this paper further paves the way for 
better social human-robot interaction for future robots designed to share domestic 
environments with human users. 
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Abstract. In this paper we present a robotic system able to guide a
person to a destination in a socially acceptable way. Our robot is able
to estimate if the user is still actively following and react accordingly.
This is achieved by stopping and waiting for the user or by changing the
robot’s speed to adapt to his needs. We also investigate how the robot
can influence a person’s behavior by changing its speed, to account for
the urgency of the current task or for environmental stimulus, and by
interacting with him when he stops following it. We base the planning
model on Hierarchical Mixed Observability Markov Decision Processes to
decompose the task in smaller subsets, simplifying the computation of a
solution. Experimental results suggest the efficacy of our model.

1 Introduction

One interesting problem in human-robot interaction is developing robots able to
guide humans, by offering a tour of attractions in an area or simply by helping
them to reach a destination.

A generic mobile robot platform should possess a vast set of skills, which
includes advanced perception, motion planning, and task planning. These skills
are not enough for a robot guide, which is deployed in highly dynamic human
environments, and need to be complemented with human-aware behaviors.

Different robot guides have been studied and developed, starting with
pioneers like Rhino and Minerva [22]. After these first experiments, several
researchers have tried to focus on the social aspects of the problem, which are
especially important if the robot needs to offer information. Studies like [5,23]
focus on how the robot should address humans, concentrating on spatial relation-
ships and on how the robot can convey information. Few systems have actually
been deployed for long period of time in human environments. Rackhman [4], a
museum guide with human-aware behaviors, is an example of such system, and
has been deployed in a science museum for several months. Robotic systems must
be able to reason on sensor data in order to provide information to the decision
layers. In [15], we presented our framework SPARK, which is able to maintain
a topological description of the world state and to reason on humans’ mental
states, in order to improve the robot’s social behavior. For guiding situations, [9]
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presents an assessment of human-robot interaction during an exhibition, where
perceptual and task related data are used to compute an internal state according
to the scenario. With these information, the robot can compute a new emotional
state and interact accordingly with users.

Recently there has been emphasis on robot navigation algorithms that explic-
itly reason about human beings in the environment differently from other static
or dynamic obstacles. Starting from Proxemics, researchers have investigated
explicit social signals based on human-posture and affordance of the environment
to improve the legibility of robot motion. For detailed discussion on human-aware
navigation algorithms we refer the readers to [13,18]. Human-aware navigation
in a museum situation was studied in [19], where the authors build environmental
maps, which include information learnt from human trajectories and postures,
in order to plan safe paths that don’t disturb humans present in the area.

We consider guiding as a joint action, a task where several participants coop-
erate to reach a common goal [2]. A joint action can be seen as a contract between
its participants, that need to fulfill their part of the contract and to continuously
monitor the other participants in order to understand what they are doing. Some
robotic architectures, such as [6,7], implement joint actions, explicitly modeling
human agents in the system.

Participants in a joint action form a kind of mental representation of the
task, which includes the actions that should be performed by every agent [20].
This mechanism can be used to predict what other agents will do, but also to
understand when they are deviating from the shared plan. The idea of predicting
the will of another agent is linked to the concept of intention, studied in psy-
chology and philosophy literature, such as [3]. This topic is of particular interest
in human-robot interaction and has been studied in different kind of scenarios,
like [10,11], or [17], which is related to a museum scenario.

We believe that most robot guide systems are focusing on the social aspects
of the problem, and on human-aware navigation, without fully considering the
fundamental aspects of joint actions. Guiding is a collaborative task, where the
robot doesn’t need only to reach a destination, but also to ensure that its follower
reaches it, while providing a socially acceptable experience to him. In order to
achieve this goal, the robot needs to constantly monitor its user, to adapt to his
behaviors and to be ready to proactively help him.

In this paper, we present a robot guide which is able to lead a single person
to a destination. More particularly, the originality of our approach is that the
robot is able to show both an adaptive and a proactive behavior. The robot will
try, while guiding, to select a speed that pleases its user, when adapting, or to
propose a new speed, using environmental and task related stimulus. Finally,
our system will proactively try to engage a user if it detects he need assistance.

We implement these ideas using a Situation Assessment component, which
gathers data from different sources and provides symbolic information, a Supervi-
sion System, that controls the other modules, and a planning framework based
on hierarchical MOMPDs (Mixed Observability Markov Decision Processes).
Finally, a human-aware Motion Planning component allows the robot to navi-
gate populated environments.
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2 Situation Assessment

Having data from sensors is not enough, for the robot, to choose which actions
to execute. To fill the gap between perception and decision, we use a Situation
Assessment component. This module is able to gather data from sensors in input,
and to perform different kinds of computations in order to produce symbolic
information that can be used by the decision layer.

Our system is able to reason on humans and objects present in the envi-
ronment, producing different kind of information, such as: a) the distance and
orientation of a human relative to the robot, b) the variation of the distance
from a human to the robot c) if a human is currently moving.

To be relevant, reasoning on humans should be linked to the environment.
The system is able to create activity areas in the environment and link them
to different kind of computations. An activity area is a polygonal or circular
area, which can be fixed or linked and updated with an entity’s (object, human
or robot) position. For now, we studied and experimented two different activity
areas: a) Information Screen Area, linked to information screens present in the
environment; b) Touristic Point Area, linked to interesting attractions in the
environment. Using these areas, the system can detect human activities (e.g.
human is looking at an information screen, human is looking at an attraction).

Detecting and tracking persons is complex. In this paper, human tracking is
done using motion capture. In order to simulate realistic behaviors, we filter data
provided by the motion capture in order to account for occlusions from the envi-
ronment. The system has also been linked in the european project SPENCER1

to a laser based human tracking component.

3 Planning and Supervision

With the reasoning abilities provided by Situation Assessment, the robot should
guide its user toward the goal, which could be predefined or negotiated with him
at the start of the scenario. We defined a set of modules, called Collaborative
Planners, able to choose which proactive or adaptive actions the robot should
perform at each moment.

Collaborative Planners. The Collaborative Planners form a planning frame-
work, based on hierarchical MOMDPs (Mixed Observability Markov Decision
Process), that enables the system to react in a human-aware way to a user’s
behaviors. A MOMDP models the decision process of an agent in situations
where the result of an action is partly random, and can lead to several outcomes.
In addition, in a MOMDP, the system state is split in an observable set and a
hidden set, which cannot be fully observed and must be inferred from obser-
vations received from the environment. MOMDPs are a variation of POMDPs

1 http://www.spencer.eu/

http://www.spencer.eu/
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(Partially Observable Markov Decision Process), where the system state is com-
pletely hidden. Partitioning the system state in a hidden and observable set
simplifies the computation of a solution to the model, which is one of the main
problems of POMDPs [1].

We use a hierarchical framework [16], where the system model is split into a
main MOMDP module and several MOMDP sub-models, each one related to a
different action. The models are solved separately, leading to the computation of
different, simpler, policy functions. At run-time, the system interacts with the
main module, providing values for the set of observations and for the observed
variables, and receiving an action as result. Based on this action, the system
will contact a different sub-model, receiving the final action to execute. Using
hierarchical MOMDPs we can represent a set of models, with a greatly reduced
complexity, and easily expand it if we want to implement new actions or to add
more complex behaviors. The architecture of our system is shown in Figure 1 A).

Fig. 1. A) System Architecture: our system is composed by four main modules. Sit-
uation Assessment reasons on perceptual data, providing symbolic information to the
Supervision System. The Supervision System controls the other modules, updating the
Collaborative Planners, which compute the next action to perform, and sending goals
to the Motion Planning. Blue arrows represent data links between modules, while red
arrows represent conceptual links that show the hierarchy of the MOMDPs. B) The
robot guiding a user.

Guiding Users. The main problem of the robot is choosing if it should still
guide the user, suspend temporarily the task, or abandon it. The Guide Planner
is the main MOMDP of our architecture and will make this decision, based on two
main variables: the status of advancement of the task (not completed, completed),
and the quality of commitment of the user (not engaged, engaged, not interested).
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The quality of commitment of the user is an hidden variable, estimated using
Situation Assessment, based on the distance of the person toward the robot, its
variation, if the user is oriented toward the robot, and if he is moving or still.
The robot will abandon the task when it evaluates that it’s user has permanently
stopped following it.

Adapting the Robot’s Speed. We believe that to be socially acceptable,
the robot should adapt its speed to the user. By setting its own pace at the
start of the scenario the robot would risk of being too slow, annoying the user,
or too fast, which would lead the robot to constantly stop to wait for persons,
producing an awkward behavior.

The robot defines a desired interval of distances r from the user. The distance
of the user from r will influence its actions. 1) If the user is farther than r
the robot will decelerate. 2) If he is closer to the robot than r, the robot will
accelerate. 3) If the user is inside r, the robot will continue at its pace.

In this paper, r was a predefined set, but its values could be learnt and
adapted to users during the task, since different people could prefer following the
robot at different distances and positions. The robot should also not constantly
change speed, in order to give time to users to adapt to its new chosen speed,
and so we defined a temporal threshold in which we don’t allow the robot to
repeat an accelerate or decelerate action.

In this scenario we also studied the idea that the robot can try to influence
the speed of the user. We studied two situations in which this idea can be useful.
A) There is a time limit to reach the destination. In this case the robot must
balance the desire to satisfy the user with the task urgency. Different situations
will require different policies. For example, in an airport scenario, the robot could
prioritize arriving on time, warning users if their speed would render the goal
not achievable, while in other situations the robot could try to arrive in time
but still avoid to adopt speeds that are uncomfortable for the follower. B) The
rules of the current environment limit the robot’s speed. In this case the robot
will avoid accelerating over a set speed even if it detects that its current velocity
is considered too slow for the user. For example, the robot could be navigating
in a construction zone.

This reasoning is done in the Speed Adaptation MOMDP module, which will
be interpreted when the Guide Model chooses to keep guiding the user.

Suspending the Task. In some situation, the robot needs to suspend the task,
because the user has stopped following it. In this case, the robot should estimate
if this suspension of the collaborative scenario is temporary or permanent, and in
the latter case abandon the task. We estimate this information using the Suspend
Model and the activity areas from Situation Assessment. We link activity areas
to the maximum time we expect that the user will be involved in the activity,
and with a set of proactive actions that the robot can choose to execute.
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In this paper, we investigated a single possible proactive behavior: giving
information. In this case, if we detect that the user has stopped following because
he is looking at a touristic sight, or at an information screen, the robot can try
to engage him and offer related information. At the moment, we just propose a
simple routine-based framework for this behavior, and plan to further study it
in the future. We believe that the solution of this problem could be rich, and
that the robot should estimate the reaction of the user during the execution
of its proactive behavior, in order to be able to interrupt if he doesn’t want
to be helped or to resume the original task if he is satisfied by the robot’s
actions.

We don’t want the robot to be stuck for a long time waiting for a person. If
there is a small amount of time to reach the destination, or the user is engaged
in the activity for a longer period of time than the one predicted, the Suspend
Model can issue a warning action, and eventually abandon the task if the person
doesn’t start following it again. Sometimes users will stop following without an
apparent reason, perhaps outside any activity area. In this case the robot will
still allow them some time before issuing a warning and eventually abandoning
the task.

4 Motion Planning

A guiding robot needs to plan safe and socially acceptable motion. This requires
continual integration of high-level social constraints with the low-level con-
straints of the robot vehicle.

We use the architecture proposed by the well-established move_base pack-
age of ROS middle-ware [8,14] for navigation, replacing the global planner, i.e.
a cost-grid base path planning module, as suggested in [21]. This module adds
proxemics based costs in the grid-map around the detected humans that are
static in the environment. The local planner, i.e. the module responsible for gen-
erating motor commands, is a ContextCost based algorithm suggested in [12].
This module continuously calculates the compatibility of the robot path by pre-
dicting and avoiding future collisions with moving persons and simultaneously
keeping the robot as close as possible on the planned global path.

It should be noted that in our guiding experiments, the humans are mostly
moving behind the robot and therefore the situation remains compatible for the
local planner most of the time. During compatible situations the robot simply
follows the way-points on the planned global path. The nominal velocity of the
robot is set by the supervision system to achieve the desired behavior of slowing-
down or speeding-up, as required by the situation.
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5 Experiments and Analysis

We performed a first set of experiments with a person following a robot on a
predefined path, in order to test the behaviors of the robot. Data from these
experiments are shown in Table 12. We start by showing speed adaptation tests:

– adapting slow and fast: in these two tests (Figure 2) we used our system to
guide respectively a user that would like to move at a slow pace, and a user
that would like to move at a fast speed.

– no adaptation: in this experiments the robot won’t adapt to the speed of the
user, setting its own pace and stopping if it is too far.

Looking at the data we can see that our system shows lower values for the
variance of speed and distance, which means that after a certain time it’s able
to find a condition of equilibrium with the human follower. The ’no adaptation’
system shows a significantly higher variance for both values, since the robot
stopped several times to wait for the user. We will now show some tests regarding
the proactive behaviors of the robot:

– proactive slow and fast: during the task, the robot proactively chooses to
change pace, in the first case by slowing down and in the second by acceler-
ating. In our tests the user adapted after some seconds to the robot’s pace,
but this behaviors should be studied in-depth in user studies.

– suspend with screen and with no reason: in these tests we asked a user to
stop during the task. In the first case the user stopped near an information
screen. After detecting this event, the robot approached the user to offer
information, which lead to the resumption of the task. In the second case
the user stopped at a different point of the path. The robot wasn’t able
to detect the reason for the suspension of the task and so simply issued a
warning to the user and abandoned the task after some seconds.

Table 1. Experiment results: d is the distance between the robot and the user, sr is
the robot’s speed, sh is the human’s speed, μ is the average and Δ is the variation of
the quantity over the whole test. Distances are expressed in meters, velocities in meters
for seconds.

test name μ distance μ speed difference Δ distance Δ speed difference

adapting slow 2.82 -0.03 0.64 0.02

adapting fast 1.38 0.00 0.29 0.01

no adaptation 3.08 -0.09 1.04 0.07

proactive slow 1.45 -0.06 0.04 0.10

proactive fast 2.66 -0.11 0.63 0.01

2 Videos from our experiments can be seen at http://homepages.laas.fr/mfiore/
icsr2015.html

http://homepages.laas.fr/mfiore/ icsr2015.html
http://homepages.laas.fr/mfiore/ icsr2015.html
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Fig. 2. Experiments: a) Adapting robot speed to a slow user. The first figure
shows the speed of the user (tf to velocity/person 1/linear/x) and of the robot
(tf to velocity/robot/linear/x), and the second their distance. The robot starts slow-
ing down at t = 60, when the distance from the user is growing, until it finds an
equilibrium with the user’s speed. Notice that there is a turn in the path, at T = 50,
that causes the robot and the user to slow down. Distances are expressed in meters,
velocities in meters for seconds. b) Adapting robot speed to a fast user. As before, the
figures show the robot and user’s speed and their distance. The robot starts accelerating
at t = 15 when the distance from the user becomes small.

6 Conclusions

In this paper we introduced a robotic system able to guide, in a human-aware
manner, an user to a destination. Our system is able to estimate, using Situation
Assessment and a set of planners based on hierarchical MOMDPs, if the human
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user is currently engaged in the task, to adapt its actions to his behaviors, and
to proactively help him. Through a set of experiments we showed that the robot
is able to adapt its speed to its follower, in order to provide a socially acceptable
behavior. We also began to study how the system can influence its user, by
proposing a new speed, based on environmental and task related stimulus, and
by proactively interacting with him when he stop following.

Though not shown in this paper, our system is also able to represent and
guide groups of users, by reasoning both on the group as a single entity (repre-
sented through its spatial centroid) and on its single members. We plan, in the
future, to perform user studies on groups, to understand how they react to the
robot’s behaviors, and eventually modify the system.

We would also like to study learning techniques, both in motion planning
and in supervision, and integrate them in the system, to adapt even more the
robot’s movement and its decision on specific followers.
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Abstract. In this paper we explore how social gaze in an assembly robot affects 
how naïve users interact with it. In a controlled experimental study, 30 partici-
pants instructed an industrial robot to fetch parts needed to assemble a wooden 
toolbox. Participants either interacted with a robot employing a simple gaze fol-
lowing the movements of its own arm, or with a robot that follows its own 
movements during tasks, but which also gazes at the participant between in-
structions. Our qualitative and quantitative analyses show that people in the  
social gaze condition are significantly more quick to engage the robot, smile 
significantly more often, and can better account for where the robot is looking. 
In addition, we find people in the social gaze condition to feel more responsible 
for the task performance. We conclude that social gaze in assembly scenarios 
fulfills floor management functions and provides an indicator for the robot’s af-
fordance, yet that it does not influence likability, mutual interest and suspected 
competence of the robot. 

Keywords: Human-robot interaction · Gaze · Conversation analysis · Smile 

1 Introduction 

In this paper, we investigate the effects of gaze towards the human tutor in a  
human-robot assembly scenario. Previous work has shown that in social human-robot 
interactions, human-like gaze behavior in robots fulfills very similar functions as in 
interactions between humans (e.g. [1]). However, what roles social gaze behavior 
plays in industrial assembly tasks in general and in human-robot collaboration in par-
ticular has received much less attention. Employing social even in industrial scenarios 
may prove useful since naïve users are increasingly engaged in demonstrating novel 
actions to robots for industrial manufacturing [2]. We therefore carried out experi-
ments in which the robot’s gaze behavior differed between being fully instrumental to 
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the assembly task (simple gaze condition) and focusing on the user between tasks 
(social gaze condition); in accordance with [1], we refer to the robot’s gaze towards 
the human as social. The question we raise is which of the functions reported for so-
cial robots (e.g. [3,4]) and virtual agents (e.g. [5]) social gaze fulfills in this collabora-
tive assembly situation. 

2 Previous Work  

Previous work on gaze in human interaction shows that it fulfills numerous important 
interactional functions. For instance, it serves to negotiate contact in first encounters 
and to establish an interpersonal relationship, including flirting [6]. Furthermore, gaze 
plays an important role in signaling attention during interaction; in particular, listeners 
have been found to attend to the current speaker by means of long gaze which is inter-
rupted only by short glances away [7]. In teaching situations, students show higher 
performance if the teacher gazes at them [6]. Increased eye gaze has also been found 
to contribute to higher ratings of likability and mutual interest [6]. Gaze also plays a 
role in turn-taking, such that current speakers often gaze away when they want to 
keep the turn [7], while gazing towards the listener often elicits a response, either 
evoking feedback or selecting the next speaker [3].  

Similarly, many of the functions of gaze observed in human interaction have been 
confirmed to be relevant for interactions with virtual agents (cf. [5] for an overview). 
That gaze fulfills these functions also in human-robot interaction has meanwhile been 
shown in numerous studies (e.g. [8], and [1] carry out a survey of previous work on 
gaze in human-robot interaction and suggest to systematize the social functions of 
gaze according to five main social contexts in which gaze plays a major role: estab-
lishing agency and liveliness; signaling social attention, for instance, by providing eye 
contact; regulating the interaction process, that is, facilitating turn-taking and support-
ing the participation framework; supporting interaction content, for instance, by dis-
ambiguating ambiguous information; and finally projecting mental state, in particular, 
expressing emotional or cognitive states. At the same time, it is equally important for 
the human, agent or robot to know when to avert gaze; for instance, [9] find that eye 
gaze may also be perceived as staring in virtual agents. Similarly, [10] show that gaze 
aversion supports floor management and creates the impression of higher cognitive 
capabilities and higher creativity of the robot.  

On the other hand, gaze by robots has also been found to be not attended to in the 
same way as human gaze (e.g.[11,12]) or is not even taken into account because 
people may not look at the robot’s face (e.g. [13,14,15]).  

So far, it remains largely unexplored what functions an industrial robot’s eye gaze 
might play during a collaborative assembly task. What previous work may predict is 
that the robot’s gaze behavior can indicate what the robot is currently attending to and 
thus contribute to floor management and task organization; furthermore, the robot’s 
gaze may influence the interpersonal relationship, making the robot appear more  
lively, more likeable, more cognitively competent and more socially attentive;  
and finally, the robot’s gaze could also contribute to disambiguating information. 
However, whether robot gaze fulfills these functions also depends on whether  
participants attend to it and take it into account at all.  
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3 Method 

In order to determine the role of social gaze in collaborative assembly tasks, we eli-
cited 30 interactions between naïve users and an industrial robot in two conditions. 

3.1 The Robot  

The robot comprises two KuKa arms [16], each capable of seven degrees of freedom 
and each equipped with a Schunk 3-finger gripper. However, for this study the robot 
made only use of its left arm. The robot’s KIT [17] head has cameras mounted in 
eyeballs and one Kinect camera on top. The robot was fully controlled remotely from 
a desk hidden from the participants. Our wizard was able to navigate using multiple 
cameras mounted on a steel frame above the workspace platform. An engineer over-
saw the experiments to ensure the safety of both participants and robot.   
 
 
 
 
 
 
 

Fig. 1. Simple gaze    Fig. 2. Social gaze 

3.2 Experimental Conditions 

The study uses a between-subject design with two experimental conditions. In one 
condition, the robot’s gaze follows its own hand (simple gaze). In the second condi-
tion (social gaze), the robot’s face is initially directed at the participant, yet during 
tasks, the robot changes its gaze to its hand when it starts to move, and then looks to 
the user again when it has completed its task.  

Given the rules defining the robot’s gaze direction, the two conditions really  
only differ in two phases during the interaction: initially, when in the ‘simple’ gaze 
condition the robot’s gaze is on its hand while it is on the user in the ‘social’ gaze 
condition, and during handover phases when the robot provides the user with the re-
quested parts. While in the simple gaze condition the robot’s gaze remains on its 
hand, in the social gaze condition the robot looks up at the user. 

3.3 Experimental Procedure 

Participants were led into the lab, where they signed a consent form, had their picture 
taken and were then introduced to the robot. The task was to guide the robot to assist 
them in assembling a wooden toolbox. They were told that the robot would be able to 
fetch the parts for them, but that they would need to instruct it to do so when appro-
priate and in whatever way that made sense to them; participants should then assem-
ble the box on their own. Instructions were scripted so that all participants received 
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the same information. After introducing the participants to the task, the facilitators did 
not intervene except when assisting users with the drill. Participants were led to be-
lieve that the robot acted autonomously, but it was in fact controlled using the  
Wizard-of-Oz technique. The human ‘wizard’ was instructed to react to gestures  
(e.g. pointing) and to ignore all other actions by the participants (e.g. speech). The 
‘wizard’ had multiple cameras to observe the participants and to navigate the work-
space. Due to the intranet, there was a slight delay for about one second between us-
ers’ instruction and the robot’s response. After participants completed the task, they 
filled out a questionnaire about their interaction with the robot. 

3.4 Questionnaire  

Based on previous findings regarding the influence of robot gaze on people’s percep-
tion of the robot (e.g. [10]), the written questionnaire asked participants to rate how 
intelligent they perceived the robot to be, and to rate how safe they felt when interact-
ing with the robot. The perceived intelligence and safety scales were adopted from 
[18]. This index proved relatively reliable (Cronbach’s alpha for perceived intelli-
gence / perceived safety of 0.67 / 0.94 in the simple gaze condition and 0.82 / 0.37 in 
the advanced gaze condition).  

To determine to what extent people monitored the robot (cf. [15]), participants 
were then asked where the robot looked during their interaction, who was more re-
sponsible for task performance (10-point semantic differential), whether they thought 
the robot had learned from them (7-point likert scale), and who was most in control 
(human participant or robot on a 10-point semantic differential scale). Furthermore, 
participants were asked to rate to what extent they felt that they and the robot were a 
team on a 10-point likert scale, and what kind of communicative cues the robot pro-
vided them with.  

3.5 Participants 

We recruited 36 participants, who were all students or employees at the University of 
Innsbruck without prior experience with industrial robots. Participants were given 
chocolate as compensation for their time and participation. However, five participants 
were eliminated from analysis due to robot malfunction (overheating, security stops, 
etc.), and one was removed from the analysis in section 4.2 due to a deviant  
understanding of the initial instruction (see 4.2 below). Participant mean age is 23.7 
(SD = 4.54). One-third of the participants were women, yet they were distributed 
evenly across the two experimental conditions.  

3.6 Analysis 

The focus of our investigation lies in participants’ behavioral responses during their 
interaction with the robot. Our analyses were based on video recordings of the inte-
ractions, supplemented by field notes. Responses were coded and analyzed quantita-
tively, using single linear regression with the statistical software package R (v. 3.1.2), 
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as well as qualitatively using ethnomethodological conversation analysis [19]. In par-
ticular, we asked 1) whether tutors looked at the robot and perceived the robot’s gaze 
towards them (section 4.1), 2) what effects the robot’s gaze towards the tutor has on 
conversational openings (section 4.2), 3) what effects robot gaze towards the human 
between tasks has (section 4.3), and 4) whether the robot’s gaze behavior has an im-
pact on tutors’ perception of the robot’s capabilities (section 4.4). 

4 Results 

4.1 Users’ Perception of the Robot’s Gaze Behavior 

Before we look into the effects of robot gaze in the two conditions, we need to estab-
lish that participants actually perceived the robot’s gaze. Here our analyses show that 
initially, all participants in the social gaze condition looked at the robot and perceived 
its gaze towards them. However, during the experiment, they often did not look up at 
the robot; in all, during 43 of the 90 handovers in the social gaze condition, the re-
spective participant did not glance towards the robot. One participant looked at a time 
when the robot had not looked up yet, so he may have expected a different timing.  

4.2 Eye Gaze During Contact Initiation 

Participants in the social gaze condition needed less time to initiate their first action 
(instruction) than participants in the simple gaze condition. Using single linear regres-
sion, we find a statistically significant difference between participants in the simple 
gaze condition (M=37.39, SD=31.65) and the social gaze condition (M=11.96, 
SD=14.6), F(1,28) = 8.37, p = 0.007, R2=0.24 (measurements are in number of 
seconds). We find no significant results on age or gender as predictor variables and no 
significant interactions. Using visual inspection of boxplots, we eliminated one ex-
treme outlier from the analysis; this participant repeatedly directed his attention to the 
experimenter to ask specifically about how the robot was built and what components 
were used in its assembly, thus not engaging with the robot at all. Otherwise, we can 
see very different ways of approaching the robot in the two conditions, as the follow-
ing two examples illustrate: The example in Fig. 3 stems from the simple gaze condi-
tion and illustrates how the participant hesitates and is clearly uncertain about how the 
robot can be approached. The example in Fig. 4, in contrast, shows how a participant 
in the social gaze condition straight-forwardly approaches the robot by establishing 
mutual eye-gaze, waving and smiling. 
 

 
Fig. 3. Participant does not know how to start 
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5 Discussion  

In all, we found users to take the robot’s gaze behavior into account initially as well 
as during approx. 50% of the handovers. Given that the robot’s gaze towards the users 
was purely social and did not serve any disambiguating or other task-related func-
tions, this percentage is very high in comparison with previous work (e.g.[15]), and 
our questionnaire results show that participants understood the robot’s gaze towards 
them as intentional signs. Furthermore, there is evidence for a role of the robot’s so-
cial gaze in floor management and participation framework (cf. [3]) since participants 
responded to the robot’s gaze in handovers as a request for feedback (Fig. 7). Similar-
ly, the finding that people in the social gaze condition feel more responsible for the 
performance than people in the simple gaze condition is most likely due to the fact 
that in the social gaze condition, the robot seemingly awaits instructions each time it 
finishes a task and thus provides a turn-yielding signal. As a result, participants in the 
social gaze condition feel to a greater extent that the performance of the task is con-
tingent on their ability to instruct the robot.   

As for interpersonal functions concerning intimacy and relationship negotiation, 
we find on the one hand that participants in the social gaze condition generally found 
it easier to make contact with the robot than participants in the simple gaze condition, 
as the reduced contact initiation times show; obviously, they felt they knew how to 
interact with it. Thus, participants in the social gaze condition were found to engage 
with the robot sooner than participants in the simple gaze condition. On the other 
hand, we found that the robot’s social gaze behavior had no influence on users’  
perception of the robot’s cognitive capabilities, compliance, learning and safety in 
general. This is unexpected for several reasons: First, previous work had shown that  
correctly timed eye gaze creates the impression of higher cognitive ability [10]; now  
it could be argued that the robot’s gaze may not have been timed appropriately.  
However, while it may not have respected human-like gaze patterns during handovers 
(cf. [8, 20]), it did mark the difference between different phases of the collaborative 
assembly, namely delivering a part versus awaiting another instruction. Second, par-
ticipants in the social gaze condition were found to smile at the robot more often, 
which could have led to a more intimate interpersonal relationship and perceived 
tighter teamwork. Thus, gaze towards the user does not automatically create rapport. 
At the same time, there are no indications that participants found the robot to ‘stare’ 
even though it was looking in their direction while participants were busy assembling 
the toolbox; on the contrary, participants turned to the robot smilingly when they 
finished their (solitary) assembly phases (cf. [21]). Thus, the robot’s gaze towards 
participants seems to be perceived not as social enough to be perceived as staring and 
not as social enough to change users’ general view of the robot, yet as social enough 
to be met with a smile.  
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6 Conclusion 

To conclude, allowing the user to establish mutual eye gaze during the initiation of 
interaction by having the robot look towards the participant does not only serve ‘to 
break the ice’ [22], but also provides users with a necessary indicator of the robot’s 
“entry point” for the interaction since people interacting with the robot in the social 
gaze condition are significantly quicker to engage the robot. Thus, an important func-
tion of social gaze in collaborations with assembly robots is to provide an indicator 
for how the robot can be interacted with. This function of social gaze has not been 
reported for robot gaze, most likely because it is not relevant in human interaction. 

Furthermore, participants in the social gaze condition smile significantly more of-
ten and can better account for where the robot is looking compared to participants in 
the simple gaze condition. In addition, we also found that people in the social gaze 
condition feel more responsible for the task performance. These findings support 
previous work on gaze by social robots concerning floor management, which turns 
out particularly useful during assembly tasks as indicator for turn-yielding during 
handovers, yet they are inconclusive regarding the interpersonal impact of robot  
social gaze. 
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Abstract. This paper explores the effect of upper body pose mirroring
in human-robot interaction. A group of participants is used to evaluate
how imitation by a robot affects people’s perception of their conversa-
tion with it. A set of twelve questions about the participants’ university
experience serves as a backbone for the dialogue structure. In our exper-
imental evaluation, the robot reacts in one of three ways to the human
upper body pose: ignoring it, displaying its own upper body pose, and
mirroring it. The manner in which the robot behaviour influences human
appraisal is analysed using the standard Godspeed questionnaire. Our
results show that robot body mirroring/non-mirroring influences the per-
ceived humanness of the robot. The results also indicate that body pose
mirroring is an important factor in facilitating rapport and empathy in
human social interactions with robots.

Keywords: Body-pose mirroring · Empathy · Rapport ·
Anthropomorphism

1 Introduction

Mirroring is a natural social behaviour demonstrated by humans whereby a par-
ticipant in a social interaction will often tend to subconsciously mirror another’s
body posture. There is significant evidence from psychological studies that peo-
ple in groups have a tendency to engage in this mirroring behaviour [1,2]. People
are often not conscious of the fact that they are mirroring someone’s body pose
or that someone is mirroring them [3]. These studies have also experimentally
shown that this non-verbal synchrony in conversation is preserved over time and
has a positive influence in creating rapport, increasing empathy, and facilitating
social interaction [4].

In this article, we investigate the effect that upper body pose mimicry has
on how humans perceive robotic systems. The proposed system recognises upper
body poses from camera images and produces upper body gestures (torso, head
and arms) in the humanoid Nao robot. The robot’s text-to-speech output is also
c© Springer International Publishing Switzerland 2015
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used to achieve natural communication. A set of twelve predefined questions is
considered to engage the participants in communication with the robot in one of
the following three different conditions: the robot mirrors the upper body pose of
a human, the robot generates non-mirroring human-like upper body poses, and
the robot adopts a static body pose. The Godspeed questionnaire [12] is used
to measure the five key concepts of human-robot interaction and to evaluate the
effect of body pose mirroring in human-robot interaction (HRI).

The rest of this paper is structured as follows: Section 2 reviews existing
studies on the influence of behaviour mimicry in human perception of robotic
systems, Section 3 includes a description of the experimental setup, the method-
ology and the evaluation method, Section 4 presents statistical findings, and
Section 5 concludes with a brief discussion of the results and future work.

2 Related Work

Several recent studies have assessed the influence that a robot’s non-verbal
behaviours have on the way humans perceive and interact with robots. Salem et
al [5] found that human beings have a tendency to anthropomorphise more (to
like the robot more), report greater shared reality and show increased intention
for future interaction with robots when they used bodily gestures with speech,
as opposed to speaking using a static pose. The same authors also suggested that
a robot’s use of gesture with speech tends to enhance people’s performance on
robot guided tasks [6]. Similarly, Riek et al [7] demonstrated that the manner in
which robots execute bodily gestures can have a major influence on the degree
to which people are willing to cooperate with them. Further, some robot ges-
ture combinations (i.e. gazing and pointing) also increase a person’s tendency to
reproduce the behaviour of a robot, resulting in entrainment [8]. In this sense,
Kim et al [9] stated that it is possible to use gesture manipulations to influence
the perceived personality of social robots and [10] showed that contingent non-
verbal behaviours (i.e. behaviours tightly coupled to what the human speaker is
doing) can create rapport with the human participant.

The use of mirroring behaviours by virtual characters and robots has been
shown to improve empathy and create rapport with the humans that interact
with them. Gonsior et al [11] studied the impact on human-robot interaction by
a robot that mirrors facial expressions. In their study, the human participants
engaged in a communicative task with the robot under one of three experimental
conditions: the robot displayed no facial expressions, the robot mirrored the par-
ticipant’s facial expression, and the robot displayed facial expressions according
to its internal model which indirectly mirrored the participant’s facial expres-
sion. Each participant completed two post-experiment questionnaires. The first
evaluated for empathy and subjective performance, and the second consisted
of the five Godspeed questionnaires [12]. Their results indicated that mirroring
conditions received higher ratings than neutral conditions. These results have
also been supported by Kanda et al in [13]. They indicated that cooperative
gestures from a robot (i.e. gestures that synchronised with the human partici-
pant) increase the human’s impression of the robot’s reliability and sympathy.
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Similarly, Bailenson and Yee [14] found that an embodied artificial agent that
mimicked a human participant’s head movements was perceived as being more
persuasive and received more positive trait ratings than non-mimicking agents.
On the other hand, Riek et al [15], did not find that head gesture mirroring had
a noticeable impact on creating rapport between a human and a robot. However,
the authors acknowledge that the small sample size and other possible factors
concerning their experimental setup may have influenced this result.

3 Method

To date, we have not been able to find any research that evaluates the effect
that upper body mirroring during human-robot interaction has on the anthro-
pomorphism, animacy, likeability, perceived intelligence and perceived safety of
the robot. This study seeks to investigate this through a series of experiments
in which participants engage in spoken interactions with a robot. The empa-
thy between the participants and humanoid robot was examined under three
different conditions:

A The robot mirrors the user’s body poses during the interaction with occa-
sional head nodding.

B The robot produces pre-programmed non-mirroring gestures with occasional
head nodding during the interaction.

C The robot remains static for the duration of the interaction apart from occa-
sional head nodding.

3.1 Hypotheses

Given the importance of mimicry in human-human communication, we won-
dered if it might be also important in human-robot communication. Thus, our
hypotheses are as follows:

H1 The participants will rate the likeability and perceived safety of the robot
more highly in condition A than in conditions B and C. This is motivated
by the work in [1], which showed that posture sharing and rapport are
positively correlated in humans and that this correlation holds over time,
promotes safety, and encourages each participant during conversation.

H2 The participants will rate the anthropomorphism, animacy and perceived
intelligence more positively in conditions A and B than in C. This hypoth-
esis is prompted by the idea that people will show the most appreciation
for a robot that mimics their upper-body and head gestures in real time.
This motivation comes from the work in [13] who ran an experiment with
the WowWee Alive Chimpanzee Robot capable of making head nods and
face expressions, as well as detecting human head nods. They found that
temporal-cooperative behaviours lead to a more positive interaction with
robots and enable better human-robot rapport when compared with a robot
that does not employ such behaviours.
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3.2 Experimental Validation

In order to evaluate whether the proposed hypotheses improve HRI, an exper-
iment in which human participants engage in a spoken interaction with the
humanoid Nao robot was designed. The Nao robot is set up to allow upper body
motion only, and a depth camera is used to track body poses and movements.
During the interaction, the Nao robot speaks to the participant while acting
according to one of the three possible conditions. It also nods at random inter-
vals throughout the duration of the experiment. Subjects are divided into three
different groups depending on the following conditions applied:

A Mirroring : The robot mirrors the participant’s upper body pose. The pose of
the participant is estimated using a depth camera. The output of the depth
camera is first normalised and then processed to extract the rotational angles
of each shoulder and elbow in the participant’s body (eight angles in total).
These are then scaled and mapped onto the corresponding joint angles for
the robot. It is relevant to note that the Nao robot does not continually
mirror the participant’s body pose, since this would lead to unrealistic copy-
cat behaviours. Instead, the robot intermittently mirrors the participant’s
body pose after it has remained in that body pose for a certain period of
time (∼5s).

B No-Mirroring : The robot produces pre-programmed human-like non-
mirroring gestures (see Figures 1(b)-1(e)). These only take place while asking
the questions to the participant.

C Static: The robot remains static with no body movements.

(a) (b) (c) (d) (e)

Fig. 1. Predefined movements of the Nao robot during the experiments. Figure 1(a)
represents the resting/static pose and figures 1(b)-1(e) illustrate the predefined upper
body robotic gestures.

It should be noted that head nodding was included to reduce the impact of
any bias arising from the movement of the robot in conditions A and B. It was
deemed that without the head nodding, the outcome of the experiment might
be influenced by the fact that the robot is animated in condition A while the
participant is speaking and not in condition B, as opposed to being influenced
by the different types of whole body movement in each case (i.e. mirroring as
opposed to non-mirroring poses). The importance of the head nodding in condi-
tion C is twofold. First, it allows participants to address the questions regarding
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animacy in the post-experiment questionnaire. Surprisingly, it was noted that
participants waited for the robot to move first before engaging in a non-verbal
communication with the robot. Second, it eases the comparison of condition C
with the remaining conditions. The lack of movement in the robot itself neg-
atively affects the participant’s reaction to and rapport with the robot. In all
cases the robot waits until the participant finishes speaking before asking the
next question in the sequence.

3.3 Experimental Setup

Forty test subjects took part in this experiment, of which 9 were female and 31
were male. The participants were students from Oxford Brookes University and
had no previous experience in the robotics field. They were between the ages of 19
and 35 (mean of 21.67 and s.d. of 3.05). The distribution of the subjects over the
experimental conditions was 17 for A, 15 for B, and 8 for C1. Participants were
not informed about the purpose of this study, but were instead advised that the
experiment was to evaluate an automated student advisory system which seeks
to use interactive humanoid robots. Additionally, they were also briefed about
the layout of the experiment room and robot design.

(a) Experimental room setup
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(b) Schematic layout

Fig. 2. Layout of the quiet room during the participants’ interaction with the robot.

A quiet room with controlled lighting conditions was chosen for the experi-
ment with the layout shown in Figure 2. During the experiment, each participant
was seated facing the Nao robot which was located on a customised chair so that
the head of the robot was approximately at eye-level with the participant. The
robot was strapped into the seat facing the participant in a hands-in-lap resting
position (see Figure 1(a)). This restricts the lower-body motion of the robot but
allows it to move its torso, arms and head. Since the task rating relies on the
ability of the robot to effectively mimic the participants, a depth camera was
1 The lack of movement in the participants due to the still position of the robot

body in condition C lead to undesired problems in the motion capture impeding the
mirroring. These participants were not considered during the analysis.
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preferred over the robot’s head camera. The depth camera was placed behind
the robot, angled downwards to capture the movement of the participants. Each
participant was seated sufficiently far (∼150 cm) from the robot’s chair so that
its body was in full view of the depth camera and robot. The experimental setup
was identical for each condition.

3.4 Experimental Procedure

Prior to the experiment, the instructor gave the participant a brief introduction
on the task and described the one-to-one interaction with the robot. It is impor-
tant to note that there was no visual or physical contact between the participant
and the instructor (who was also in the experimental room but hidden from the
participant), so that the participant was essentially alone with the robot. To
start the experiment, the robot introduces itself in order to allow the partici-
pant to become familiar with its voice, shape and movements. From this point,
the one-to-one interaction between the participant and the Nao robot begins.
It consists of the interaction through a set of twelve predefined questions (see
Table 1). Under the conditions A and B, the robot is also animated whilst asking
the questions, before returning to the neutral hands-in-lap pose. The questions
were determined in advance and centred around the participant’s experience at
the university in order to prompt an emotional engagement with the robot. Fur-
ther, they also struck a balance between a subject that the participant could
emotionally connect with, but that steered away from being unnecessarily inva-
sive. The questions were identical for each participant.

Table 1. Sequence of questions asked by the robot

Q1 What subject are you studying?
Q2 When did you start on your course?
Q3 What have you enjoyed most about your course?
Q4 What did you enjoy least about your course?
Q5 Tell me about a challenging work that you have done during your studies?
Q6 What do you like doing outside of your studies?
Q7 What would you like to do after university?
Q8 What is your preferred mode of learning: lecture or practicals?
Q9 Tell me about a particular experience you had working in a group
Q10 Do you enjoy group work, or do you prefer working alone?
Q11 What made you want to choose your course?
Q12 What would you like to do after university?

During the experiment, the robot waited until the participant finished speak-
ing before asking the next question. It was anticipated that some participants
would speak for longer than others, which may bias the results obtained due to
the substantial variability in the participants’ exposure to the experimental con-
ditions. To minimise this, the robot was entitled to ask questions in sequential
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order during the five minutes the experiment lasts. After the experiment was
completed by either the robot going through all the questions or reaching the
experiment time limit, participants were led to an isolated room, asked to fill
in a paper-based questionnaire to evaluate the interaction with the Nao robot,
and advised to avoid communication with the participants who had not yet
completed the experiment.

3.5 Questionnaire

A common approach of evaluating the human perception of robots is to use a
post-experiment questionnaire. Several of these exist in the literature and signifi-
cant work has been done to assure their reliability and validity [16]. In this study,
we have chosen to use the Godspeed questionnaire to evaluate the participant’s
interaction with the Nao robot. This has already been tested and validated in the
context of social robotics and therefore represents suitable measure of human-
robot interaction. It combines a set of five questionnaires based on semantic
differential scales as a standarised metric for the five key concepts in HRI:

– Anthropomorphism: rates the user’s impression of the robot on five semantic
differentials.

– Animacy : rates the user’s impression of the robot on six semantic differen-
tials.

– Likeability : rates the user’s impression of the robot on five semantic differ-
entials.

– Perceived Intelligence: rates the user’s impression of the robot on five seman-
tic differentials.

– Perceived Safety : rates the emotional state of the user on three semantic
differentials.

As recommended, the semantic differentials were randomised and the cate-
gories removed so as to hide the different concepts and hence mask the particular
areas the participants were meant to be evaluating.

4 Results

We conducted a Principle Complement Analysis (PCA) for all the semantic dif-
ferentials in the Godspeed questionnaire in order to obtain the minimum number
of dependent variables which explain the subjects’ responses. The PCA identi-
fied three underlying dimensions in which the robot is collectively perceived.
A correlation threshold of 0.5 was set to determine the extent to which each
semantic differential significantly loads onto any one of the factors. The first
factor (F1) is related to the perceived “affability” of the robot. The semantic
differentials which load heavily onto this were connected to unkind, unfriendly,
awful, foolish, incompetent, unpleasant and dislike differentials, which are mostly
about the perceived affective qualities of the robot. The second factor (F2) is
strongly related to the perceived “humanness” of the robot. The semantic dif-
ferentials that load significantly on this were the mechanical, artificial, stagnant,
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Fig. 3. Mean values of the PCA solution factor for three conditions: Mirror (A), Non-
Mirror (B) and Static (C) movements

fake, machinelike, moving rigidly, unconscious and dead differentials. Finally,
the third factor (F3) emerging from this analysis was related to the perceived
“responsiveness” of the robot based on the semantic differential item loadings of
anxious, unintelligent, apathetic, moving rigidly and agitated.

Based on the three identified principle components and on the participants’
scoring on the semantic differentials, a series of three factor scores was then
produced for each participant. The across-participant means of these scores are
shown in Figure 3 separately for the three conditions. An analysis of the variance
(ANOVA) was conducted to compare the differences in means between the three
group conditions. This analysis showed for affability (F = 0.916, p = 0.41),
humanness (F = 3.01, p = 0.06) and responsiveness (F = 1.623, p = 0.21).
Thus, the factor F1 (affability) showed no meaningful differentiation between
the three conditions. Only for factor F2 (perceived humanness of the robot) was
there any statistically notable difference between the ratings of the three condi-
tion groups. As can be seen in Figure 3, the humanness factor (F2) only rates
positively in condition A on average; this indicates that mirroring appears to
have a positive influence on the anthropomorphic perception of the robot. The
responsiveness factor (F3) also showed some differentiation across the conditions
(though these were statistically less pronounced than that for humanness), sug-
gesting that likeability and animacy in robotic entities is closely connected with
movement, and that anthropomorphic gesturing positively influences rapport
in HRI. These results evidence that robotic manipulation (i.e. mirroring/non-
mirroring) is an important factor in order to induce empathy and engage human-
robot communication, opposite to the initial experiments in which the partic-
ipants remained fully static expecting for the Nao to move. These results are
also perhaps surprising since participants equally perceived animacy when the
robot was static or moving using predefined human-like poses. However, it is
arguable that the disparity in the number of participants between these two
conditions may have influenced the results. Mean values and total scores for the
perceived five key concepts in HRI, as derived from the Godspeed questionnaires,
are depicted in Figure 4.
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Fig. 4. Mean values of the five Godspeed aspects for the three proposed conditions:
Mirror (A), Non-Mirror (B) and Static (C) movements on a 5-item Likert scale from
1 (strongly disagree) to 5 (strongly agree).

5 Conclusion

The goal of this study was to evaluate the psychological implications of upper
body pose mirroring in human-robot social interactions. Three different exper-
imental conditions of upper body mimicry were implemented in the humanoid
Nao robot and measured in terms of the five key concepts of HRI. In general,
the results support the initial hypothesis H1 by displaying a trend towards a
perceived greater humanness of the robot in the mirroring condition compared
to the other two conditions. Likewise, the results have shown that non-mirroring
body poses also may also influence the participants’ empathy towards the robot,
which is indicative of rapport during the interaction.

Higher anthropomorphism, animacy and perceived intelligence for conditions
A and B than for C (hypothesis H2) is partially revealed, which denotes certain
correlation between upper-body mimicry and perceived humanness (anthropo-
morphism) of a robot (conditions B and C resulted in similar participant ratings
in terms of this factor). This can be possible to explain by the fact that anthro-
pomorphism might not be based only on robot manipulation and human-like
gesturing but also on alternative communicative components and social factors.
It is also debatable that the human-like appearance of the Nao robot itself may
bias its social acceptability, which is closely related to being human-like, as well
as the elicitation of empathetic behaviours in the participants even when it
remains static, as likeability is equally highly rated in each of the three condi-
tions. Future work will re-evaluate the gained insights on inducing rapport using
upper body mimicry by extending the number of participants and the usage of
additional humanoid robots in order to provide new understanding with regard
to the usage of robotic entities as companion systems.
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Abstract. This paper considers the problem of recognizing spontaneous
human activities from a robot’s perspective. We present a novel dataset,
where data is collected by an autonomous mobile robot moving around
in a building and recording the activities of people in the surroundings.
Activities are not specified beforehand and humans are not prompted to
perform them in any way. Instead, labels are determined on the basis
of the recorded spontaneous activities. The classification of such activi-
ties presents a number of challenges, as the robot’s movement affects its
perceptions. To address it, we propose a combined descriptor that, along
with visual features, integrates information related to the robot’s actions.
We show experimentally that such information is important for classify-
ing natural activities with high accuracy. Along with initial results for
future benchmarking, we also provide an analysis of the usefulness and
importance of the various features for the activity recognition task.

1 Introduction

Robots are becoming increasingly sophisticated, and are bound to become per-
vasive in humans’ every-day lives. To effectively collaborate with humans, it
is useful for a robot to understand their activities and intentions automatically.
This understanding is especially important in human-robot interaction scenarios:
if the robot can properly interpret the behavior of humans, its communication
with them will be facilitated. For example, in our scenario, a robot moves in a
building monitoring the environment. If it could recognize when a person needs
help, or whether someone wants to talk to it to ask for directions, or if it is being
ignored, its social skills would improve dramatically.

Most existing datasets available to assess activity recognition methods are
recorded from a still camera, and they comprise surveillance [10] or sports videos
[13]. Others are composed of cinema movies or Youtube videos [9]. Yet others
are recorded by asking the participants to perform specific activities [8]. None of
these datasets perfectly reflect the types of human activities a robot is likely to
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perceive when interacting with people. In this work, we present a dataset taken
from a robot’s perspective, where the camera moves according to the robot’s
movements, and the activities are performed spontaneously by humans, often in
relation to the presence or behavior of the robot. A few datasets do exist that
have been recorded from a robot’s perspective [3,14,17], even though the robots
they used were not fully autonomous. Such datasets were collected by asking
participants to perform specific actions. This lack of spontaneity may lead to a
low recognition rate when the same activities are executed by people who are
not asked to perform them. Besides, there is no guarantee that the chosen staged
actions are those that people would naturally perform in front of a robot.

In contrast, our dataset was collected by a mobile robot, able to localize itself
and navigate autonomously, moving in a populated environment, and recording
people’s actions. During the dataset collection, the robot moved autonomously,
so that the behavior of the humans was not influenced by any external presence.
The recorded data was then analyzed, and the action categories were determined
by the activities spontaneously executed by the subjects. This dataset presents
some unique characteristics: 1) There can be multiple people in the scene at
the same time, each doing something different; 2) There may be occlusions;
3) Actions are performed at different scales and with different body orientations;
4) The robot moves continuously, therefore, there is ego-motion in the scene;
5) Some actions occur more often, while others are very rare, thus the data is
highly unbalanced. As we show empirically in the experimental section, these
characteristics make learning from our dataset very challenging. To the best of
our knowledge, this is the first dataset recorded in such a spontaneous manner.

In this paper, the new dataset is exploited to tackle a human activity recog-
nition task, even though it can be useful for different learning tasks as well.
Unlike the previous action recognition methods, which limited their analysis
to visual descriptors, we also explore features that are directly related to the
robot’s behaviors and movements, which, in this particular setting, influence its
perceptions.

Our contribution is twofold. First, we present a new problem and make pub-
licly available a novel challenging dataset recorded ‘in the wild’ from a robot’s
perspective. Second, we use this dataset to tackle an activity learning task. We
provide results obtained using several state-of-the-art descriptors for the pur-
pose of future benchmarking. We also present an analysis of the usefulness and
importance of the various features for this specific task. In particular, we show
that, in this setting, exploiting data associated with the robot’s point of view
consistently improves the results obtained when using only visual features.

2 Related Work

Since the early ‘90s, the computer vision research community has produced a
plethora of methods for recognizing human activities (see [1] for a review). In
most early approaches the video stream is captured by one or more stationary
cameras, e.g., [2]. Methods have also been proposed for human activity recogni-
tion in movies [9], where the camera is not always stationary. In some studies,
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the camera is attached to a person and data is collected as the person performs
a variety of activities, e.g., playing a sport [7], or interacting with others [5]. The
primary focus of this past research has been on developing efficient and infor-
mative features that enable activity recognition using off-the-shelf supervised
machine learning algorithms.

Most relevant to this paper are studies in which video streams were captured
by a robot. Such studies are relatively new and include the works of [3,14,15,17].
For example, [17] describes an experiment in which 8 participants are asked to
perform 9 activities in front of a teleoperated robot. The data is subsequently
used for the development of an activity classification system. Similarly, in [14],
8 participants are asked to perform up to 7 activities in front of a teddy-bear
equipped with a camera and mounted on a rolling chair. In [3], the researchers
include a larger number of activities (18) performed by 5 participants.

Most robot-centric human activity recognition methods, including the ones
described above, are subject to several limitations: 1) The activities are pre-
specified by the experimenters; 2) The activities are performed by a relatively
small number of people (typically 5-8) who are recruited to participate to the
dataset collection; 3) The robot is typically either stationary or teleoperated.
The present study overcomes these limitations in several significant ways. Our
robot uses its autonomous navigation capability in a large and dynamic human-
inhabited environment, as opposed to a structured laboratory environment. This
results in much more realistic, but also more challenging, video streams. Also,
the activities in our study were spontaneously performed by a large number of
people who interacted with the robot, as opposed to the standard methodology
of asking participants to perform certain actions.

3 Dataset

The robot used to record the dataset is shown in Fig. 1. It was built on top of
the Segway Robotic Mobility Platform with an added caster wheel to keep the
robot level to the ground. The robot’s sensors include a Hokuyo URG-04LX laser
rangefinder, used for mapping and localization, and a Kinect RGB-D (version
1.0) camera, used for obstacle avoidance. For this specific experiment, the robot
was also equipped with the newer Kinect 2.0 RGB-D camera, which was used for
visual person detection and tracking. The robot uses a hierarchical task-planning
software architecture [18] based on the Robot Operating System [12].

The robot collected data by autonomously patrolling through an undergrad-
uate and a graduate student lab which were connected by a doorway. To collect
the dataset, the robot traversed the environment for 1-2 hours per day, for 6
days. Over the course of the experiment, the robot travelled a total of 14.037
km. As soon as the Kinect 2.0 detected a person, our program started recording
all the information described in the next paragraph and summarized in Table 1.
Many people just ignored the robot or passed by it. Others engaged in various
interactions such as blocking it, waving at it, or taking a picture of it. At the
end, we labeled the actions into a number of categories that we observed at least
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Fig. 1. An overview of our system. Descriptors on visual (VIS), velocity (VEL) and
distance (DIS) information are extracted, quantized, concatenated and finally fed to
the classifier.

6 times in the recorded videos. The labeling was carried out by two authors of
this paper; therefore, it is subjective, prone to errors or different interpretations.
The resulting activity categories are: approach, block, pass by, take picture, side
pass, sit, stand, walk away, wave. There were several more, e.g., three persons
approached the robot and pretended to punch it, or started to dance in front
of it, but they were too rare and were not included in our subsequent analysis.
Notably, the Kinect performance in tracking is not perfect, especially when the
robot moves continuously. It may happen, for instance, that a wall, or a chair,
or a column is recognized as a person. These samples are gathered in the class
false, which is used in the classification procedure as well. In total, there are 10
class labels and 1204 selected samples. We plan, however, to record several more
hours of activities in the future and expand the released dataset as more data
becomes available.

For each video we provide RGB images (3-channel images of dimension 512×
424), depth images (16-bits, 1-channel images of dimension 512 × 424), and the
position of the skeletal joints for each person, in 3D and on the image. Some
images extracted from our dataset can be observed in Fig. 2. Each video segment
is also annotated with the robot’s position and orientation in the map, estimated
using Monte-Carlo Localization as implemented in ROS, and the robot’s raw
odometry information, computed by the Segway RMP ROS driver. Each video
has been annotated with an activity label, assigned as described in the previous
paragraph. This feature set constitutes the first main contribution of this paper,
and we intend for it to be useful to the community. While our analysis focuses
on human activity recognition, the dataset can be used for other tasks as well.
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Table 1. Raw features provided in the newly collected dataset.

Features Dimension Range Sampling Rate (Hz)

RGB images 512×424×3 {0,255} 50
Depth images 512×424 {0,65535} 50

3D Joints 21x3 R 50
2D Joints 21x2 {0,512}×{0,424} 50

Robot’s pose on the map 7 R 1.5
Robot’s odometry 7 R 100

Activity label 1 {1,10} –

4 Activity Recognition

We use the newly collected dataset to carry out an activity recognition exper-
iment. In this setting, the task of the robot is to annotate a video with the
correct activity label. The raw recorded data was too highly dimensional to be
used as direct input to a classifier. Hence, we manipulated the raw sensory data to
obtain higher-level feature descriptors. In particular, this section describes what
descriptors have been extracted, and how they have been quantized, so that each
video is represented by a single vector. Our main proposition is to concatenate
robot-centric descriptors – i.e. descriptors related to the robot’s perspective –
with visual features, as we hypothesize that they will improve the performance
of the classifier. Figure 1 shows an overview of the recognition system.

Visual Features: We extract five different visual descriptors and we compare
them in the experimental evaluation section. The first one has been proposed
in [16], and builds a histogram of the joints in 3D (HOJ3D). The second one
has been presented in [6], and computes the covariance of the joint positions
over time (COV). The third one has been described in [3], and generates His-
tograms of Direction Vectors (HODV). The fourth one is based on raw depth
images and has been published in [11] (HON4D). Finally, we rely on a simple
descriptor that builds a matrix of pairwise relations between joints. We will
refer to it as the Pairwise Relation Matrix (PRM). The intuition behind this
descriptor is that, while absolute joint positions are not translation invariant,
their relations are independent from the absolute position of the person. At the
same time, they provide a good representation of the skeleton configuration. Let
J = (j1(t), j2(t), . . . , jm(t)) be the set of 3D joints tracked by the Kinect at time
t. We build a m × m matrix R(t) for each frame t, where m is the number of
joints. Each element of R(t) is equal to

R(t)i,k = ||ji(t) − jk(t)||. (1)

Since the resulting matrix is symmetric, we use only the values under the diag-

onal, therefore the final descriptor belongs to R

m(m − 1)
2 .
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Human-Robot Velocity Features: The movements of a person as perceived
by the robot are different from his or her movements with respect to an absolute
point of view. For example, consider the motion of a person walking away from
the robot. We hypothesize that the robot’s perception of this movement will
depend on how the robot itself is moving. If the robot is still, it will perceive
the walk away movement as it is, but if it is moving towards the person at high
speed, it may perceive the person as approaching it. To avoid this ambiguity,
we need to know how the human is moving with respect to the robot using an
absolute point of reference. Let pr

h(t) ∈ R
3 be the position of the human with

respect to the robot at time t, as perceived from the Kinect sensor. Then, let
pm
r (t) ∈ R

3 be the position of the robot with respect to its starting point at time
t, and Rm

r (t) ∈ R
3×3 be the rotation matrix describing the orientation of the

robot with respect to the starting point. It is possible to compute the position
pm
h (t) of the human with respect to the starting point at time t as follows:

[

pm
h (t) 1

]

=
[

Rm
r (t) pm

r (t)T

0 1

] [

pr
h(t)T

1

]

. (2)

At this point, we compute the velocity vector between pairs of successive frames
as follows:

xd(t) =
pm
h (t + 1) − pm

h (t)
||pm

h (t + 1) − pm
h (t)|| . (3)

This quantity represents the real direction in which the human moves with
respect to the robot. Since we do not need the last coordinate, which is always
0 (the robot and the person move on a plane), xd(t) ∈ R

2.

Human-Robot Distance Features: Different activities present similar visual
and motion properties, but may be distinguished on the basis of where the person
is with respect to the robot. For instance, some humans tried to block the robot
standing in front of it; their pose, however, is very similar to the pose of those
persons that ignore the robot and stand at a certain distance from it. Therefore,
we incorporate the distance between the human and the robot retrieved from
the Kinect sensor for each frame, taking the hip joint as the point of reference.
The human-robot distance descriptor belongs to R.

Feature Quantization: The feature vectors that have been extracted for each
frame (or from each pair of successive frames, in case of the Human-Robot
Velocity feature vector) are quantized using k-means and represented using Bag
Of Words (BOW), so that they generate a single feature vector for each video. A
different dictionary is built for each descriptor. We then concatenate the feature
vectors in a single vector, obtaining the final descriptor for each video, which
belongs to R

∑n
s=1 ks , where ks is the size of the dictionary for the s-th descriptor.
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5 Experimental Results

This section presents a comprehensive evaluation of feature descriptors and their
combinations on our dataset for the activity recognition task. We present results
using non-linear SVM with χ2 kernel, since other kernels (e.g., linear, Gaussian,
polynomial and intersection) and other classifiers (e.g., Naive Bayes, Random
Forests) achieved comparable or worse results. We perform a stratified 6-fold
cross validation, and we repeat the procedure 10 times, to take into account the
randomness of the dictionary learning stage. As we anticipated, the dataset is
very unbalanced with respect to the activity labels (i.e., some activities are much
more frequent than others), thus the recognition accuracy is not a good mea-
sure to judge classification performance. Instead, we report the Cohen’s kappa
coefficient [4], which compares the classifier accuracy against chance accuracy:

K =
Pr(a) − Pr(e)

1 − Pr(e)
, (4)

where Pr(a) is the probability of correct classification by the classifier, and Pr(e)
is the probability of correct classification by chance.

Visual Features Comparison. We assessed the 5 visual descriptors listed in
Sec. 4, and we used default parameters to compute all of them. The descriptors
reported in [11], [6] and [3] do not need a dictionary learning stage as they already
represent the entire video; they belong to R

22680, R1953 and R
567 respectively.

For the other two (PRM and HOJ3D [16]), we set the number of dictionary
atoms to 300. The second column of Table 2 reports the results achieved by
the different visual descriptors. Notably, the only depth-based descriptor that
we have tested, HON4D [11], gets the highest kappa coefficient. In this specific
case, where the Kinect is moving continuously, the joint estimation procedure
is probably not as reliable as in situations where the Kinect is stable, while the
depth images are probably not as affected by the robot’s movements as the joint
estimation algorithm. Hence, this result may be due to the fact that HON4D is
computed on the raw depth images, and does not use joints at all.

Results with Robot-Centric Descriptors. We hypothesize that, in this
setting, robot-centric descriptors are useful to improve the performance of
visual descriptors. To evaluate this hypothesis, we concatenate the robot-centric
descriptors described in Sec. 4 with visual features. Table 2 reports the results
obtained by this concatenation in the third column: when robot-centric descrip-
tors are concatenated with visual features, the kappa statistics improves consis-
tently. The fourth column of Table 2 shows the classification rate as the robot’s
pose in the map is concatenated with the distance and velocity robot-centric
features. Notably, making use of the robot’s position increases the kappa rate
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Table 2. Comparison among different features and their combination

Method
Visual
only

Visual +
HR Velocity +
HR Distance

Visual +
HR Velocity +
HR Distance +
Robot Pose

COV [6] 0.3287 0.4397 0.4642
HOJ3D [16] 0.5135 0.6327 0.6507
HODV [3] 0.6242 0.6493 0.6605

PRM 0.5474 0.6597 0.6716
HON4D [11] 0.7558 0.7629 0.7642

Table 3. Precision, Recall and F-1 score of each activity class

Activity Num HON4D PRM
Samples Precision Recall F-1 Precision Recall F-1

Picture 6 – 0 – – 0 –
Wave 12 – 0 – – 0 –
False 608 0.8845 0.9645 0.9227 0.8322 0.9378 0.8818
Block 23 0.7273 0.3130 0.4377 0.5167 0.1348 0.2138
Pass by 153 0.7993 0.8641 0.8304 0.7318 0.8510 0.7869
Walk away 68 0.9394 0.8662 0.9013 0.8652 0.8588 0.8620
Approach 33 0.5970 0.3636 0.4520 0.4817 0.2394 0.3198
Sit 150 0.8483 0.8273 0.8377 0.8196 0.7480 0.7822
Stand 106 0.6433 0.6840 0.6630 0.4875 0.4425 0.4639
Side pass 45 0.7817 0.3978 0.5272 0.6036 0.2267 0.3296

even further. This may be because some activities are more likely to occur in
certain regions of the map than at other locations.

Finally, Table 3 provides precision, recall and F1-score of each class using the
two best combination of descriptors (HON4D + robot-centric descriptors, and
PRM + robot-centric descriptors).

Even though HON4D performs significantly better than PRM, it is unable
to correctly classify the activities picture and wave, for which we get 0 true
positives and 0 false positives, therefore the symbol ”–” in the table. This is
probably due to the fact that those are the classes with the smallest number of
examples (6 and 12 respectively). For the same reason, the precision and recall
on the actions with many samples are relatively high, while those on the actions
with a few samples are low. This suggests that if the dataset was more balanced,
the results would be more homogeneous. However, the fact that the dataset is
unbalanced is one of the natural effects derived from recording activities in the
wild. Therefore, learning activities when the number of samples per class differs
a lot is one of the challenges of our dataset.
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Fig. 2. Examples extracted from our newly recorded dataset. Top: shots of stationary
activities. Bottom: action pass by. The robot moves forward and then turns.

6 Conclusion

This paper considers a new, realistic problem in the field of robot-centric activity
recognition: classifying spontaneous activities from a mobile robot’s perspective.
Unlike previous works, activities are not specified beforehand, and humans are
not asked to perform them. Instead, an autonomous, mobile robot moved around
in a building full of people, and recorded their spontaneous behaviors. The robot
was left to act alone, therefore the persons who encountered it were not influ-
enced by our presence. All the recorded data was successively analyzed, and the
activity classes were determined from the observed videos. To the best of our
knowledge, there is no dataset in the literature like the one we are proposing. We
plan to release it upon publication, as we expect it to be useful to the commu-
nity. To obtain satisfactory results on this data, visual features were concatenated
with supplementary information directly related to the robot’s movements. We
showed experimentally that these descriptors consistently improve the results
obtained using only visual features. We plan to use the new dataset as a plat-
form to test various learning tasks, different learning algorithms, and multiple
combinations of features.

Future work includes using the activity recognition system for ‘activity-
aware’ navigation. For instance, when the robot recognizes that someone is tak-
ing a picture of it, it stops and waits until the activity is finished. We also plan
to use multiple labels, since sometimes a certain action cannot be described
by a single one. Finally, an important future direction is analyzing ‘two-way’
interactions, during which the robot reacts back to the human.
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Abstract. Robot companions should be able to perform a variety of
different tasks and to adapt to the user’s needs as well as to chang-
ing circumstances. To achieve this we can either built fully adaptive
robots or adaptable and customizable robots. In this paper we present
an adaptable companion which uses a decision making algorithm and
user feedback to learn adequate behavior in new tasks. Using two dif-
ferent scenarios (household task, card game) the system was evaluated
with elderly people in exploratory studies. We found that the perception
and evaluation of the robot’s learning progress depends on the interac-
tion scenario. Additionally, we discuss improvements for the algorithm in
order to make the learning behavior appear more natural and humanlike.

Keywords: Human-robot interaction · Artificial intelligence ·
Companion · Exploratory study · Elderly

1 Introduction

The companion robot of the future is not a tool specialized in a certain task,
but able to interact socially with different users, to serve multiple purposes,
and to adapt to new situations. Indeed, most users favor a robot companion
which has an overall assistive role and serves multiple purposes [3]. Although it
is possible to fit a robot with the ability to perform a variety of tasks as new
consumer products like Pepper (Aldebaran Robotics) demonstrate, it is still a
challenge to add new tasks on these predefined ones, to implement learning,
adaptability, and guarantee a robust system at the same time. Some systems are
open so that skilled users are able to program their own applications, but this
is beyond the means of users who are technical novices. However, integrating
users into the process of designing and programming new applications might
lead to higher acceptance, because previous work has shown that this kind of
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 235–244, 2015.
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experienced self-efficacy leads to a more favorable evaluation of the respective
system [4]. Moreover, a system that can be expanded by integration of new
tasks and abilities and that adapts within these tasks to changed circumstances
might increase the expected useful life of such a companion. Prior work has
shown that adaptivity in robots using reinforcement learning methods can be
successfully implemented in applications for users with special needs [7]. To
address this problem we developed a system for all and sundry to create robotic
applications [6] which is characterized by adaptivity on different levels. The
system enables users to create their own applications (e.g. play a card game
with robot) by the usage of a decision making framework for robot companions
[5]. Within such a created application the robot itself adapts its behavior via
user feedback based on a decision making algorithm (e.g. teach the robot a card
game based on user feedback). Hence, the robot can learn, but also relearn and
by this adapt to new circumstances. In dependency of the user’s expertise, he
or she has different possibilities of enhancing the robots capabilities. Especially
for the non-expert user a tool (Conf-Tool) has been developed which provides a
graphical user interface to configure applications. We tested the usability of the
tool with participants of a relevant target group (age group 40+) and found that
the technical requirements to include non-experts are fulfilled by the framework
[6]. Based on our previous work we now present an adaptable companion which
uses a decision making algorithm and user feedback to learn adequate behavior
in new tasks. We first introduce and explain the underlying decision making
algorithm and then present two exploratory studies evaluating the algorithm
with a relevant target group of participants aged 40+. Participants engaged in
interactions with the companion robot in one of two different scenarios in order
to explore the influence of the experimental setup on the perception of the robot’s
learning behavior. The two studies differ with regard to the number of stimuli
presented to the companion, in the number of available actions to respond to
those stimuli, and in the socialness of the respective training situation. The
discussion includes a comparison of the results from both studies in order to
determine the influence of the number of stimuli and actions, the number of
repetitions during the learning process and the influence of the socialness of the
situation.

2 Decision Making Algorithm

The robot, used for the studies presented in the following, makes its decisions
based on an algorithm which has been presented in [5]. The algorithm is a rein-
forcement learning method inspired by Damasio’s Somatic Marker Hypothesis
(SMH) [2]. As this paper focuses on the application of the algorithm in HRI, it is
briefly explained in this section without going into too much detail. A simplified
overview of the algorithm is shown in Figure 1. According to Damasio’s SMH
the decision making process is divided into an emotional decision making part
and a rational decision making part. The implementation of the emotional part
is explained in [5]. The output of the emotional part is a subset containing all
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Fig. 1. Overview of the decision making algorithm.

actions promising to lead to a positive outcome. This does not mean that the
robot has an accurate emotional model but that the computations of the algo-
rithm are inspired by Damasio’s work. Building up an emotional model is often
connected to implementing a huge amount of a priori knowledge to the system
for each different application. This is inconsistent with the requirement of creat-
ing robot companions which are supposed to perform many different tasks. The
rational part is a place holder for subsequent enhancements. For now, an action
is chosen randomly during the rational decision making part.

Basically, the robot is able to recognize different stimuli S = {s1, ...., sm},
is able to execute a defined number of actions A = {a1, ...., an}, and is able to
obtain different rewards R = {r1, ...., rl} (see Figure 1). All this information is
provided in advance through an XML file which can be created by using the
Conf-Tool offering a GUI for that purpose. Due to this, it is possible to create
new applications for the robot without any programming. Details on the XML
interface and the tool can be found in [6]. Based on the number of stimuli |S| and
actions |A|, the agent creates a matrix M (see eq. (1)) which contains a single
somatic marker σi,j for each pair of a stimulus si and an action aj . This matrix
is part of the memory and each somatic marker is a rating value representing
the expected outcome when an action aj is executed in the wake of a present
stimulus si. The robot can obtain a reward for the execution of an action. This
reward is used to update the corresponding somatic marker σi,j .

M|S|×|A| =

⎛

⎜

⎝

σ1,1 · · · σ1,n

...
. . .

...
σm,1 · · · σm,n

⎞

⎟

⎠ = (σi,j) (1)

In addition to the somatic markers, a frustration level θi exists for each
stimulus (see eq. (2)). These frustration levels are used as thresholds for the
action selection mechanism and are also updated based on obtained rewards.

−→
θ =

⎛

⎜

⎝

θ1

...
θm

⎞

⎟

⎠ = (θi) (2)
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Table 1. Decision making example.

t θ1 σ1,1 σ1,2 σ1,3 σ1,4 A′ aj reward

x −0.49 −0.39 −0.99 0.13 −0.49 {a1, a3, a4} a4 50
x + 1 0.08 −0.39 −0.99 0.13 0.08 {a3, a4} a3 50

Every time the robot recognises a stimulus from the environment, the decision
making process is started. At first a subset of actions A′ is selected during the
emotional decision making part. The selection rule is shown in eq. (3). Applying
this rule, the subset contains all actions with a corresponding somatic marker
σi,j its value is equal to or greater than the corresponding frustration level θi.
There are mechanisms implemented assuring that A′ �= ∅.

A′ := {aj ∈ A
⏐

⏐σi,j >= θi} (3)

After the subset is selected, a final action is chosen randomly out of the subset
during the rational selection. This action is then executed by the robot. For each
executed action the robot is able to obtain a reward in order to get information
whether the decision was good or not. The robot updates its memory based on
the obtained rewards. The evaluation of the algorithm can be found in [5]. For
evaluation purposes the Iowa Gambling Task (IGT) was used [1]. In the IGT
subjects have to draw cards from four different decks (A, B, C, D). Some cards
lead to a benefit while others lead to a penalty. The decks are prepared in the
way that deck A and B are disadvantageous decks because drawing cards from
these decks lead to a net loss. In contrast to that, deck C and D are advantageous
decks as drawing cards from these decks lead to a net gain. Based on this task
the following example is given in order to clarify the decision making algorithm:

– S = {takeCard
︸ ︷︷ ︸

s1

}

– A = {DeckA
︸ ︷︷ ︸

a1

,DeckB
︸ ︷︷ ︸

a2

,DeckC
︸ ︷︷ ︸

a3

,DeckD
︸ ︷︷ ︸

a4

}

– R = {−1150,−200,−150, 0, 50, 100}

There is only one stimulus takeCard and four different actions namely DeckA,
DeckB, DeckC and DeckD. Each decision leads to one reward from the set of
rewards R. Table 1 shows an exemplary decision step. At t = x the stimulus
takeCard is recognized. Based on the data stored in the memory, in particular
the threshold θ1 as well as the four somatic markers σ1,1, σ1,2, σ1,3 and σ1,4, the
subset A′ is selected according to the selection rule shown in eq. (3). In this case
the subset contains the actions a1, a3 and a4 because the corresponding somatic
markers are greater than or equal to the threshold (−0.49). Subsequently, the
action a4 (DeckD) is chosen randomly leading to a positive reward of 50. Con-
sequently, the threshold θ1 is increased as well as the somatic marker σ1,4. This
has an influence on the next decision making process (t = x + 1) at which the
subset A′ contains only the actions a3 and a4.
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3 Exploratory Studies

We conducted two exploratory studies evaluating the decision making algorithm
in a natural setting with a relevant target group. Participants were asked to
imagine that they own a robot, use it at home for different purposes and want
to teach the robot a new skill. In study 1, participants taught the robot the card
game “17+4” which is a simplified version of Black Jack. In study 2, participants
trained the robot in different social scenarios, for instance, they taught their
preferred greeting in the morning, and where to put things away in a tidy up task.
The settings are explained in more detail in Section 4 and Section 5, respectively.
However, some details are effective for both studies, for instance, some of the
measures used. Thus they will be described for both studies in the following.

Measurements: After the respective interaction with the Nao robot, we asked
participants whether they recognized the robot’s learning progress (Yes/No),
and how they evaluate this progress (I have perceived the learning progress
as being... 1=very fast, 5=very slow; How would you rate the robot’s learning
ability? 1=very good, 5=very bad; Do you think that the robot’s way to learn
is expedient? 1=very expedient, 5=not expedient). We also asked the partici-
pants whether they used the different rewards’ gradations (Yes/No), whether
they think that the rewards’ gradations are expedient (Yes/No) and to which
extend they could imagine interacting with such a robot in their everyday life
(1=absolutely not, 5=definitely).

Participants and General Procedure: In total forty-one healthy volunteers
participated in our studies that were approved by the local ethical committee.
Twenty-one participants were recruited for Study 1. They were aged between
46-75 years (M = 58.33, SD = 7.63). For Study 2 in total 20 participants (6
male; 14 female) aged between 42-72 years (M = 55.53, SD = 8.28) had been
recruited. The data of one participant was excluded from the analysis due to
major technical issues during the interaction. Upon arrival participants read
and signed informed consent. Then the experimenter explained that they would
interact with a humanoid robot and explained the respective setting. Partic-
ipants first completed a questionnaire with sociodemographic questions. Hav-
ing completed the interaction, participants were asked to finish the remaining
questionnaire. They were debriefed and thanked for their participation. The
experimenter stayed in the room during the whole experiment and assisted the
participants if needed.

4 Study 1 Teaching the Robot a Card Game

Setting and Procedure: The aim of the interaction in study 1 was to teach
the robot the game and game mechanics of 17+4, so that the participants’ grand-
children might play the game with the robot during their next visit. Participants
were confronted with the Nao robot (with colored dots to indicate where to touch
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Fig. 2. Setting 17+4.

the robot in order to give certain rewards), cards with the values from one to
twenty-one and a card showing a sad smiley. Goal of the game 17+4 is to reach
an accumulated card value that comes close to or is exactly 21. The game is lost
when the value 21 is exceeded. After each chosen card, the player (here the robot)
can decide whether to take another card or to hold the reached accumulated card
value. As the robot had no knowledge about the game, it was the participant’s
duty to teach the robot in which cases it is advisable to take another card and
when to end the round. Participants had the choice to give either a strongly
negative (two red dots), slightly negative (one red dot), slightly positive (one
green dot) or strongly positive (two green dots) reward to Nao which responds
(e.g. negative reward: lower head and say “Heck, this was wrong”). Participants
and Nao played 15 rounds. Each round started with the investigator drawing a
card (with a value from 1 to 9) and showing it to the participant who had to add
the shown value to the current accumulated card value (0 at the beginning) and
show Nao the card value by choosing the corresponding card laying in front of
Nao. This was repeated until the round ended either because the player decided
against an additional card or because the accumulated card value exceeded 21.
In this case the participants showed Nao the sad smiley. We used separate card
decks with predefined sequences of cards in order to create equal conditions for
each participant. To make the robot’s learning process observable more quickly,
it was assured that specific accumulated card values had the chance to occur
more frequently. Of course, the occurrence of the values was also dependent on
the robot’s decisions which were influenced by the obtained rewards.

Results and Discussion: Only 52.4% of the subjects stated that they had
recognized the robot’s learning progress (see Table 2). There are plausible expla-
nations for this small number. Although the decks were prepared so that specific
stimuli were likely to occur multiple times, it was not possible to guarantee that
a stimulus occurred more than once. In unfavorable cases this led to the robot
not being able to apply the acquired knowledge at all or only in rare cases.



“Yes Dear, that Belongs into the Shelf!” - Exploratory Studies 241

Table 2. Participants’ perception and acceptance of the robot’s decision making behav-
ior.

Item Study 1 Study 2

Did you recognize the robot’s
learning progress?

N=21; Yes: 52.4% N=19; Yes: 94.7%

I have perceived the learning
progress as being...

N=12; M=2.83; SD=.84 N=19; M=3.11; SD=.69

How would you rate the robot’s
learning ability?

N=14; M=2.86; SD=.86 N=19; M=2.63; SD=.60

Do you think that the robot’s
way to learn is expedient?

N=18; M=1.11; SD=.32 N=19; M=2.05; SD=.52

Did you use the different
rewards’ gradations?

N=20; Yes: 90.0% N=19; Yes: 84.2%

Do you think that the rewards’
gradations are expedient?

N=21; Yes: 95.0% N=19; Yes: 63.2%

I could imagine interacting
with such a robot in my every-
day life.

N=20; M=3.10; SD=1.61 N=18; M=2.61; SD=.61

Moreover, Nao tried every possible action once before decisions are then based
on the somatic markers. Thus, the robot might choose a disadvantageous action,
although another action had already been rewarded positively which might be
perceived as erratic behavior. In conclusion, it needs more rounds in order to
observe the robots learning progress. In addition, if an action is rewarded pos-
itively, the robot should not try out every other possible action. Most of the
participants stated that they had used the different rewards’ gradations and
deemed them expedient. Regarding the question if the participants could imag-
ine to interact with such a robot in their everyday life, neither a strong refusal
nor a strong approval is observable.

5 Study 2 - Teaching the Robot in Social Scenarios

Setting, Procedure and Additional Dependent Variables: Participants
were engaged in three social scenarios with the robot - greeting, tidy-up, and
hobbies. Their task included a learning phase in which they taught the robot
their respective preferences and a relearning phase in which they taught the
robot different preferences due to a changed situation. The scenarios differed
in the kind and number of stimuli and actions (e.g. stimuli could be visual or
auditive). Similarly to study 1, participants rewarded the robot’s decisions in
four gradations by touching hands or feet.

– Greeting Scenario: Participants taught the robot their preferred greeting.
Each time the robot was greeted by the participant with “hello” or “good
day” it chose one out of seven possible replies (good day, hello, hey, I am
hungry, hey dude!, bye, what’s up) which was subsequently rewarded by
the participant in order to signalize if the answer was appropriate. This
procedure was repeated until the participant believed that the robot learned
the preferred greeting. Afterwards, the participant was told to imagine that
his/her grandchild was going to come for a visit and he/she now wants to
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teach the robot the preferred greeting for the grandchild. During this process
the robot had to relearn through the rewards given by the participant. Again,
this procedure was repeated until the participant believed the robot to have
learned the preferred greeting for the grandchild.

– Sorting Scenario: Participants taught the robot appropriate depositories
for different objects. Nao was able to recognize images of three different
objects (pen, apple and book). Every time the robot recognized an object,
it suggested and pointed to a depository for the object (fruit bowl, shelf,
rubbish bin, desk and pencil case) and the participant rewarded the robots’
suggestion until the robot had learned the favored depositories for the differ-
ent objects. As in the previous scenario, the robot should then relearn (e.g.
apple: fruit bowl → rubbish bin).

– Hobby Scenario: In the last scenario, the robot learned the participant’s
favorite hobby. Every time it heard the words “idea” or “further” the robot
reacted with a suggestion for a leisure activity (theatre, zoo, riddle, pub,
smoking, TV, play “Memory”, and computer) which was rewarded by the
participant until the participant believed that the robot had learned the
favored hobby. Again, the robot should then relearn - in this case an appro-
priate leisure activity for the imagined grandchild.

Participants filled in a short questionnaire asking for the robot’s learning abil-
ities after each scenario with items asking for how satisfied they were with the
robot’s learning progress (1=very unsatisfied, 5=very satisfied), whether the
robot learned what they had wanted to teach it (Yes/No), and whether they
think that the time the robot needed to learn was appropriate (Yes/No).

Results and Discussion: In the following we present the results concerning
the perception of the robot’s learning behavior and participants’ usage intention.

Learning Behavior: With regard to the perception of the robot’s learning behav-
ior results show that most participants were satisfied in all three scenarios (see
Table 3). All participants stated that the robot had learned what they had
tried to teach it during the Greeting and the Sorting Scenario and still 84.2%
did so for the Hobby Scenario. Participants rated the time the robot needed to
learn as being rather appropriate than inappropriate (see Table 3). However, the
results reveal noticeable differences between the scenarios. The learning time in
the Sorting Scenario was rated more often as inappropriate in contrast to the
results of the Greeting and the Hobby Scenario. One reason for this could be that
the robot tried every action once for each stimulus before it started to decide
based on the information stored in the emotional memory. Within the Sorting
Scenario the robot was able to recognize three different stimuli and had five
different actions available. Hence in total 3 · 5=15 decisions were made without
consideration of the obtained rewards. In contrast, there were only 7 actions to
try in the Greeting Scenario and 8 actions to try in the Hobby Scenario.
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In the final questionnaire, participants evaluated the robot’s overall learning
process (see Table 2). With regard to the question whether participants recog-
nized the robot’s learning progress almost all participants answered with yes
(94.7%, in contrast to 53.4% in study 1). Thus, it can be assumed that the inter-
action scenarios used in this study are more suitable to show the robot’s learning
progress. In contrast to study 1 with 21 different stimuli (card values), the social
scenarios utilized less stimuli, namely one or three. This supports the conclu-
sion presented in Section 4 that the number of 15 rounds in the card game was
too low for this high number of stimuli. Moreover, in study 2 participants were
able to decide on their own how long the interaction lasted, because they were
instructed to continue teaching until they are content with the learning outcome.
Although the learning progress was recognized by almost all participants, they
evaluated the robot’s learning progress as well as the robot’s learning ability
as being moderate (see Table 2). These results are comparable to the results of
the playful scenario. Furthermore, the robot’s way to learn was rated as being
expedient in the playful scenario as well as in the social scenarios. In view of the
latter, most of the participants stated that they had used the different rewards’
gradations but only 63.2% rated the rewards’ gradations as being expedient (in
contrast to 95% in study 1). One explanation for this effect might be the tasks
itself. It can be assumed that the rewards’ gradations are more expedient in
the playful interaction. Within the card game, there were decisions which were
clearly advantageous (e.g. taking another card when the accumulated card value
is 12 or below), clearly risky (e.g. taking another card when the accumulated
card value was very close to 21) or ambiguous (e.g. whether to take another card
when accumulated card value is between 12 and 16). Thus different gradations
for rewards make sense in order to reflect the levels of riskiness for the different
decisions. However, the decisions in the social settings were of a more concrete
nature (learn exactly one preferred greeting, hobby, depository). Therefore, par-
ticipants might need fewer gradations to successfully teach the robot.

Usage Intention: A negative tendency can be observed concerning the question
if the participants could imagine interacting with such a robot in their everyday
life. Compared to study 1, less participants could imagine interacting with the
robot in their everyday life (see Table 2), although the robot’s learning progress
was evaluated as rather positive.

Table 3. Results concerning the learning behavior of the social scenarios.

Greeting Scenario Sorting Scenario Hobby Scenario

How satisfied are you with
the robot’s learning behav-
ior?

Satisfied
M= 4.26 ± .56

Satisfied
M= 4.00 ± .75

Satisfied
M= 4.16 ± .96

Did the robot learn what you
had wanted to teach it?

Yes
100%

Yes
100%

Yes
84.2%

Do you think that the time
the robot needs to learn was
appropriate?

Yes
89.5%

Yes
63.2%

Yes
73.7%
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6 Conclusion

In this paper we presented a decision making framework for robot companions
enabling them to adapt their behavior via user feedback. In two exploratory
studies we applied the algorithm in different settings - a card game and social
interactions, respectively. In both settings the robot’s learning behavior was
evaluated by a relevant target group of elderly people. In general, most par-
ticipants were satisfied with the robot’s learning abilities. However, evaluations
depended on the interaction scenario employed. The benefit of an adaptable
behavior based on the presented algorithm, in contrast to pre-wired connections
between stimuli and actions, becomes more visible in the social scenario due to
the relearning and thus was probably more often recognized by the participants.
Moreover, in the card game the different user feedback graduations make more
sense because decisions are less distinct than in the social setting. Due to the
presented decision making framework, the user is able to change the robot’s
behavior through interaction and does not need to change any configurations
every time the robot should act differently as it would be needed if pre-wired
connections between stimuli and actions were used. However, the study revealed
some room for improvements of the algorithm. For instance, the system might
learn quicker and appear more natural when it does not try out every possible
action, but stick with the first action that was rewarded very positively. Future
work will focus on different adjustments within the decision making algorithm
in order to test which configuration results in more natural and humanlike (or
intuitive) decision making behavior.
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Abstract. Remote presence systems that allow remote operators to
physically move around the world, observe it, and, in some cases, manip-
ulate it, introduce a new set of privacy concerns. Traditional telepresence
systems allow remote users to passively observe, forcing them to look at
whatever the camera is pointing at. If we want something to remain
private, then we simply do not put it in front of the camera. Remote
presence systems, on the other hand, allow active observation, and put
the control of the camera in the hands of the remote operator. They
can drive around, and look at the world from different viewpoints, which
complicates privacy protection.

In this paper, we look at how we can establish privacy protections
for remote presence systems by manipulating the video data sent back to
them. We evaluate a number of manipulations of these data, balancing
privacy protection against the ability to perform a given task, and report
on the results of two studies that attempt to evaluate these techniques.

1 Introduction

Remote presence systems, such as the Beam [1] and VGo [2], that allow remote
operators to physically move around the world, observe it, and, in some cases,
manipulate it, introduce a new set of privacy concerns. Traditional telepresence
systems, such as videoconferencing, allow remote users to passively observe, forc-
ing them to look at whatever the camera is pointing at. If we want something to
remain private, then we simply do not put it in front of the camera. Remote pres-
ence systems, on the other hand, allow active observation, and put the control
of the camera in the hands of the remote operator. They can drive around,
and look at the world from different viewpoints, which complicates privacy
protection.

c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 245–254, 2015.
DOI: 10.1007/978-3-319-25554-5 25
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Fig. 1. Three privacy-protecting
image manipulations. Top: replace-
ment (“can’t tell”); Middle: redac-
tion (“can’t observe”); Bottom:
blurring (“can’t discern”).

In this paper, we look at how we can
establish privacy protections for remote pres-
ence systems by manipulating the video data
sent back to them, and present two studies
to evaluate how well these protections work.
We consider a number of manipulations of
these data, illustrated in figure 1, obscur-
ing or removing objects in the environment
that we wish to remain private, while retain-
ing enough information to allow the remote
operator to perform their task.

2 Defining Privacy

For the purposes of this paper, we define a
privacy type to be a specific restriction on the
capabilities of the remote presence system.
The capabilities can either be physical, where
the system is prevented from taking some
action or movement, or observational, where
the sensor data transmitted to the remote
user are altered in some way. In this paper, we limit ourselves to observational
privacy, and to a video stream, although the basic ideas we discuss generalize to
other sensor modalities.

We consider three types of observational privacy. Can’t tell privacy is the
expectation that the remote operator cannot tell if a particular object is there or
not. Examples include not noticing any items exist on a table, or being unable
to tell that there is a person present in the room. Can’t observe privacy is the
expectation that the remote operator might be able to tell there is something
there, but cannot directly perceive it. Examples include not being able to look
into a certain room, not being able to identify a shape as a person, or not
showing what types of objects are on a table. Finally, can’t discern privacy is
the expectation that the remote operator can tell that there is something there
and can identify the class of the object, but not the particular instance. Examples
include being unable to read the text of documents on the table, being unable
to make out facial features, or being unable to make out details of pictures on
the walls.

3 Related Work

Our basic approach to protecting privacy is to alter the video stream coming
from the remote presence system in such a way that it protects privacy, but does
not interfere with task performance. We are not aware of any similar work in
the robotics literature. However, there is a rich history of video manipulation in
the graphics literature.
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Broadly speaking, we classify manipulation of images and video by how they
change the image: blur, inpainting, abstraction, line drawings, and painterly ren-
dering. Blurring is a straightforward image filter and is commonly used in TV
to obscure people’s faces. Inpainting [3,9] allows for filling an area of an image
with synthesized content that is ideally indistinguishable from its environment.
Abstraction, also sometimes called image stylization [12,18], is similar to blur-
ring, in that details are elided, but it differs in that strong edges are preserved. It
can also involve restricting the color palate to create a cartoon-like effect. Since
these are essentially texture filters, most methods can be efficiently implemented
on a GPU. Line drawings [7] similarly preserve edges, but eliminate color infor-
mation and render the result as a pen and ink or pencil-style sketch (sometimes
with shading represented as hatching [16]). Painterly rendering techniques try
to mimic a particular style, such as pixelation [8], oil or watercolors [11,13] and
comic-style [14]. Although not always intentional, most of these techniques also
result in some image simplification or loss of detail, especially with large brush
sizes.

Various studies have looked into how using video manipulations may help
uphold privacy. Specifically, privacy typically considers autonomy, confidential-
ity, and solitude [5]. Filtering out parts of an image through marker detection
has been shown to effectively uphold privacy for video surveillance cameras [15].
With an always-on camera space, using a blur filter has been shown to bet-
ter balance protecting one’s privacy while still allowing sufficient awareness to
the user, so that any necessary and relevant information may still be gleaned
from the image both with a co-present media space [10] and a telepresent media
space [4]. However, in some circumstances where the privacy concerns are greater
(i.e. assistive monitoring through use of a fixed always-on camera), a blur filter
may not be sufficient, and another technique such as redaction may work more
effectively [6].

4 Protecting Privacy with Video Manipulation

In this study we tested how well the different video manipulation techniques
worked for each of the different privacy types, using three different scenarios. To
avoid issues with localization, tracking, and training users to drive the robot,
we conducted this study with videos recorded from the camera of a TurtleBot 2
robot driven by an experienced user. Care was taken to ensure that all objects
relevant to the tasks were clearly visible at some point during the videos.

Participants were asked to watch three short video clips that were captured
by a robot exploring an office environment, and to respond to five questions
asking them to identify objects within the environment. Each scene had a specific
privacy type applied to it, and participants viewed one clip of each scene. Each
clip had one of the five randomly assigned video manipulations applied to it.

140 participants were recruited through Amazon’s Mechanical Turk service,
and compensated between US$0.20 and US$0.40 for their time. Participants were
told that they would be expected to “watch a clip from the perspective of a robot
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investigating an office and answer 5 short questions.” The study took between
three and five minutes for participants to complete.

To give some context to the study, we recorded video corresponding to three
scenarios to present to the participants. Each scenario had a privacy type and a
set questions to determine if there was a privacy violation associated with it.

In the valuables scenario, the robot drives through an office environment
in which valuable electronics, such as a tablet computer are visible. We assign
a “can’t tell” privacy type to this scenario, since we do not want the remote
user to be able to tell if there are valuables present. The participant was asked
“How many computers or electronic valuables (costing more than $50) are there
in the room?” and “Name the valuables and the their locations in the room.”
A privacy violation occurs each time a piece of electronics is correctly identified
by a participant.

In the hallway scenario, the robot passes an open doorway looking out into
a hallway in which there is a large cardboard box. We assign a “can’t observe”
privacy type to this scenario, since we do not want the remote user to be able
to see anything outside of the room. The participant was asked “Could you see
anything in the hallway? If so, please list anything that you saw.” A privacy
violation occurs if the participant notices anything in the hallway (even if they
cannot identify it).

Finally, in the bookshelf scenario, the robot passes a bookshelf with a num-
ber of books on it. A “can’t discern” privacy type was assigned to this scenario,
because we do not want to reveal the identities of some of the books on the shelf.
The participant was asked “How many books are on the bookshelf?” and “Name
as many titles of the books as you can.” A privacy violation occurs each time a
private book title is successfully identified by the participant.

We had five video manipulation conditions for this study: redact (replace
object or area with black pixels); replace (replace object or area with back-
ground pixels); abstract (replace object or area with abstraction); blur (apply
a blur filter to the object or area); and control (no manupulation).

Each manipulation was applied to each video clip by hand, off-line, usingAdobe
After Effects R©. While this is not a viable approach for autonomously protecting
privacy, it ensured that the video manipulations we tested in this study were free
from artifacts introduced by poor object recognition or localization.

Participants were shown one video clip from each scenario, with a randomly-
selected video manipulation technique. After each clip, they were presented with
the clip-specific questions to determine if a privacy violation had occurred. The
resulting data were hand-coded by a pair of researchers to establish the number
of privacy violations in each experiment.

4.1 Results

Figure 2 shows the results of the study. In the “can’t tell” scenario (valuables),
the abstraction and blurring manipulations had little effect on the number of
privacy violations, but redaction and replacement significantly reduced them
(see table 1)
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Fig. 2. Average percentage of privacy violations by privacy type (leftmost three
columns) and average percentage of total books recorded, broken down by video manip-
ulation condition.

In the “can’t observe” (hallway) scenario, all of the video manipulations led to
a significant reduction in the number of privacy violations. However, the redact
and replace manipulations resulted in significantly fewer violations than the
abstraction and blurring manipulations, both reducing the number of violations
to zero.

There are still a number of privacy violations for both the redaction and
replacement manipulations, the two techniques which performed best in this
scenario. We attribute this to participants being able to identify valuables from
their surrounding context: laptops have power cords, for example. This raises
an interesting question when performing video manipulations, since we have to

Table 1. Significant difference groupings, calculated using Tukey’s method [17]. Within
each column, conditions with the same letter are not significantly different from each
other. Conditions with no shared letters show a significant difference, at the 95% level.
Conditions with two assigned letters are not significantly different from conditions with
either of the letters.

Can’t Can’t Can’t Total
Technique Tell Observe Discern Books

Control A A A AB

Abstract A B A A

Blur A B B BC

Redact B C B C

Replace B C B C
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not only manipulate based on the content of the image (a representation of the
object to be made private), but also on the context surrounding that object.
This context can be both physical, like a power cord, or semantic (a redacted
object directly under a television is likely to be valuable).

We believe that the replacement video manipulation best protects privacy in
this scenario, since participants never made mentioned that they noticed some-
thing removed from the video in this condition. Conversely, when using the
redaction video condition, it was obvious from some responses that the black
boxes alerted the participant that something was there, even if it was unclear
what that object was. A snippet from a typical response exemplifies this prob-
lem: “it looked like 2 laptops on chairs blocked by black squares.” However, we
concede that a realistic autonomous replacement filter is significantly harder to
implement than a redaction filter.

In the “can’t discern” (bookshelf) scenario, it was often difficult for the par-
ticipants to read the titles of the books, even in the control (unaltered) video
condition, due to a lack of resolution in the video. Applying the abstraction
manipulation did not seem to affect this much. However, the other three manip-
ulations significantly reduced the number of privacy violations to less than 10%
(blur) and zero (redact and replace).

Neither the abstraction nor the blur manipulation had a significant effect on
the number of books that the participants counted. However, the redact and
replace manipulations caused participants to report significantly fewer books on
the shelf than the control condition. This is not a problem, though, since it is,
in a sense, providing more privacy than is needed, up to the “can’t tell” level.

5 Effects on Task Performance

The study described in section 4 shows that video manipulation techniques can
be used to protect privacy when using a remote presence system. However, such
protections are only useful if they do not interfere with the task that the remote
operator is trying to accomplish. In this section, we describe a second study,
designed to test how much our privacy-protecting measures get in the way as a
remote user tries to control the remote presence system.

Participants were asked to teleoperate a mobile robot through an unfamiliar
home environment, shown in figure 3, and to respond to a brief set of survey
questions asking them to identify cleaning supplies and equipment contained in
the home. 30 participants were recruited through flyers distributed via email
and posted on bulletin boards in the local community. Participants were com-
pensated US$10 for their participation. Participants were told that they would
be expected to, “drive a robot around an apartment and answer a brief set of
survey questions.” The average time spent per participant, including training
and answering all survey questions, was between 30 and 45 minutes.

Basic demographic information was collected for each participant. 12 males
and 18 females participated in the study. The mean age of the participants was
28. 33% of the participants were students, and 30% of the participants played
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video games more than once a month. Only one of the participants reported
any familiarity with the apartment building in which the home environment was
staged, and zero expressed an expert level of familiarity with robots or other
remotely operated devices.

Fig. 3. The home environment used in the
task performance study. Cleaning supplies
included (a) a vacuum cleaner and (b) a
dustpan and brush under the table. Manip-
ulations included (c) a redaction of the bed-
room interior, (d) redaction of toys and
blurring of photographs. (e) Cleaning sup-
plies were visible in the kitchen, and (f)
baby toys were visible in the bedroom.

This study had two conditions:
one in which privacy protections
(experimental) were implemented,
and one in which they were not
(control). In the experimental condi-
tion, a replacement manipulation was
applied to all child-related toys in the
environment, to enforce a “can’t tell”
privacy type. A redaction manipula-
tion was applied to video from the
bedroom, to enforce a “can’t observe”
privacy protection, and images on
family photographs were blurred to
enforce a “can’t discern” protection.

Since the robot was being con-
trolled by the participant, all of
our video manipulation techniques
depended heavily on highly accurate
localization of the robot. In order to
know which parts of the image to
manipulate, we need to know both the
pose of the robot and the pose of the
objects to be made private. Any local-
ization errors would render our video
manipulation techniques useless. In
our initial testing, we found that it was impossible to reliably get a pose estimate
from the TurtleBot that was good enough for our purposes.

To circumvent this problem, we chose to simulate the video manipulations
physically. Replacement was simulated by simply removing the objects from the
environment. Redaction was accomplished by hanging a matte black sheet in
the bedroom doorway. Blurring was simulated by physically replacing the pho-
tographs with pre-blurred versions of themselves. This allowed us to test whether
the manipulations themselves are effective, separate from testing whether a
particular implementation of the manipulation works. However, for a practi-
cal implementation of our techniques, robust, accurate localization remains key,
as we discuss in section 6.

Participants were asked to teleoperate a TurtleBot 2 robot through an unfa-
miliar home environment, using a PS3 game controller. Participants sat at a
table with two laptops. One laptop showed a full screen live video feed from
the robot. The other laptop was used for displaying a web page that provided
instructions to the participant and allowed them to answer the survey questions.
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The participants were provided with a hand-drawn floor plan of the apartment
that they would be moving the robot through, but they were never allowed to
see this space with their own eyes. They only observed the space through the
video feed from the robot.

Before the experiment began, participants were given a brief training session
on teleoperating the TurtleBot, to ensure that they were comfortable controlling
it with the game controller. Once this training was completed, the participants
were instructed to drive around the environment and identify all of the cleaning
supplies that were present.

Participants were then asked to navigate first to the kitchen and then to
the living room, and to identify any cleaning supplies and equipment that they
found there, including their specific locations and brand names. The number of
cleaning supplies correctly identified is our metric for task performance; more
supplies identified correlates with better performance on the task.

After completing this task, the participant was asked the following question:
“Based on what you saw, to what degree do you agree with the following state-
ment: Children regularly visit this apartment.,” and asked to rank their response
on a 5-point Likert scale, from “strongly agree” to “strongly disagree”. Our goal
with this scenario was to render private all signs of children in the environment.
A response of “strongly agree” would correlate with a privacy violation, while a
response of “strongly disagree” would correlate with good privacy protection.

5.1 Results

Figure 4 shows the results of the second study. There was no significant differ-
ence in the numbers of cleaning products identified across the two conditions
(Fisher’s exact test, p = 0.763). We interpret this to mean that the privacy pro-
tections did not interfere with task performance. However, there was a significant
difference in the responses to the question about presence of children across the
conditions. Participants in the control condition agree significantly more with
the statement “Children regularly visit this apartment” than do participants in
the experimental condition (Welch’s unequal variances t-test, p < 0.001). We
interpret this to mean that our privacy protections were effective.

Clearly, these are best-case results; our physical manipulations were simu-
lations of the computational manipulations that we would, ideally, perform on
the video streams from the robot. Removing items to simulate a replacement
manipulation, for example, will clearly remove evidence of children. However,
we believe that the physical redaction and blurring manipulations do tell us
something about the potential utility of performing computational manipula-
tions, assuming that we can get them right. This is, of course, the crux of the
problem and hinges on a number of engineering details such as accurate object
tracking and robot localization. We are, however, encouraged by these initial
results.

Using the privacy-protecting manipulations led to fewer privacy violations in
this study. However, the effect may be even more pronounced than the results
above suggest. Of the 15 participants in the control condition, only 3 disagreed
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Fig. 4. Task performance (left) and privacy violations (right) by condition for the task
performance study.

with the statement that children regularly visited the apartment. Interestingly,
2 of these participants seem to have clicked the wrong button; when asked to
justify their answer in the questionnaire, they gave reasons such as “stroller in
the kitchen, toys in the living room.” Similarly, the one and only participant
in the experimental group that agreed with the statement did so because, “The
apartment is really clean, I could not see any family pictures or toys around,”
suggesting that they, in fact, disagreed with the statement.

6 Conclusions

We have presented results from two studies that demonstrate it is possible to
protect privacy by using video manipulation techniques (section 4), and that
these techniques can be applied without affecting task performance in a visual
observation task (section 5). While these results are preliminary, and rely heavily
on simulations to overcome current shortcomings with robot localization and
object pose estimation, we believe that they are very encouraging.

The studies in this paper used a number of tricks to overcome poor pose
estimation for both the robot and objects in the world. If these techniques are
ever to be applied to a real system, then these shortcomings must be addressed.
We need to be able to localize the robot accurately with respect to the objects
and areas to be made private. If we cannot do this, then our video manipulations
might not completely cover the areas of the image corresponding to the object,
causing the privacy protections to fail. Alternatively, we might have to manip-
ulate much larger areas of the image, to account for the uncertainty, running
the risk of leaving too little information to perform the task at hand. We are
currently working on this issue, to assess the trade-offs that will undoubtedly
have to be made.
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Abstract. This study aimed to explore the potential value of a humanoid robot, 
NAO, in assisting the therapist during therapy sessions with children in the aut-
ism spectrum (ASD). We report findings from a single case, a 10-year old boy, 
Joe (pseudonym), diagnosed with high functioning ASD. The intervention was 
conducted in four consecutive therapy sessions with Joe during which Joe 
played the “Animals Game” with NAO and the therapist. In this game, NAO 
asked Joe to find a specific animal from a deck of cards. Numerical data dem-
onstrated Joe’s progress across sessions in terms of discriminating the animals 
from images and learning the animals in English. Additionally, based on qualit-
ative observations, we have evidence of Joe becoming more independent from 
session to session, initiating interaction with NAO, directing his gaze and ex-
pressing affective feelings. 

Keywords: NAO · Humanoid robot · Autism · ASD · Therapy · Interaction · 
Social robots · Social behavior 

1 Introduction 

Autism Spectrum Disorder (ASD) is a complex neurological disorder that has its on-
set in the first few years of a child’s life [1]. The areas that are most commonly af-
fected by autism are those of communication and social interaction [2]. Given that 
ASD is a spectrum disorder, a diagnosed child can display an array of behaviors that 
may vary on the intensity and characteristics. In terms of social interaction, ASD 
children frequently have difficulties in expressing their needs, interests, or initiating 
and maintaining social interaction. They have a difficult time interpreting social and 
emotional cues, as well as establishing joint attention, which is critical in social inte-
raction and in developing communication skills [3]. In terms of communication, an 
absence or difficulty in speech is usually observed [4]. ASD children often have im-
itative deficits, which make learning by imitation ineffective. This not only creates 
learning gaps in behavior but also, in language and speech development. In terms of 
stereotypical behaviors, usually echolalia is present and repetitive movements such as 
spinning, rocking and head banging or other self-stimulus behaviors are observed.  
A routine and preservation of sameness are important to an ASD child. Usually a 
change in program or response towards them can lead to tantrums and uncontrollable 
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crying until everything returns to normal [5]. According to the Center for Disease 
Control and Prevention [6] the prevalence of autism in the United States was 1 in 150 
in 2000, 1 in 88 in 2008 and 1 in 68 in 2010, following an increasing trend.  

2 State of the Art 

There is no cure for Autism at the moment. Parents usually seek one of the most 
common methods of therapy. Those include but are not limited to occupational thera-
py, sensory integration therapy, Early Start Denver Model, speech therapy and inter-
ventions such as ABA. There have been many tools developed for aiding therapist in 
their work with ASD children, such as specialized cards with pictures of emotions and 
everyday objects, social stories books, and weighted vests among others. Further-
more, technologically advanced equipment has been developed over the years to aid 
in the area of ASD intervention and treatment.  

2.1 Technology Based Interventions in Autism Therapy  

There is a growing interest in the area of technology and autism. Interventions utiliz-
ing mechanical prompts to stimulate sensory processes, videos, computer-based 
games, virtual reality, and robotics have been studied as aids in ASD therapy [7]. 
Promoting and encouraging the development of social interaction and language skills 
for ASD children is a difficult task [8]. Researchers have attempted to study many 
aspects of technology in order to address their potential value in supporting these 
goals. For example, [9] used video modeling to increase the conversational skills of 
ASD children. These researchers concluded that some ASD children could benefit 
from a video modeling treatment, sometimes as soon as after two therapy sessions, 
although result varied across subjects. Video modeling has also been used to train 
children on ADL’s (Activities of Every Day Living) such as pointing to things they 
need and washing their hands [10]. In promoting the independence of the child, iPod 
Touch has been used to train ASD children in how to structure their leisure time inde-
pendently and without the aid from an adult [11]. Other studies have used computer 
programs to successfully provide an activity schedule for ASD children [12]. Estab-
lishing a relationship with an ASD child can be a frustrating process, even more so for 
family members. Using a 3D modeling software researchers [13] attempted to facili-
tate communication and strengthen relationships between ASD children and their 
grandparents. 

2.2 Robotic Interventions 

By the end of the twentieth century, research had begun to utilize robotics for ASD 
intervention and treatment. This research is mainly focused on young ASD children 
and their interaction with robotic equipment. A variety of robotic designs and 
processes has been explored such as, robotic classes [14], robotic animals [15,16] and 
doll shaped and other humanoid robots [17,18,19,20]. Dautenhahn [21] introduced the 
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idea of robots as social mediators to ASD children and launched a long-term study in 
this area called the «Aurora Project». Since then many have explored the integration 
of robotics in the rehabilitation and therapy of autism. In particular, a few researchers 
have tried to promote skills such as communication, social interaction, and creative 
play through robotic equipment [17], [22,23,24], [14]. One of the first efforts to assess 
the value of robotics in aiding the treatment and therapy of autism is found in [21]. 
The study built on the assertion that ASD children do not like, and most of the time, 
they are frighten of anything unpredictable. By using the robot as an assistant, one 
may eliminate all of the unpredictable behaviors, since the robot can perform the 
same behavior repeatedly with minimal expressive movements, thus creating a pre-
dictable environment in which ASD children can learn and thrive [21]. 

Addressing ASD children’s difficulties related to communication and social isola-
tion are of the most prominent areas in ASD research. What makes the robot a great 
tool for treatment in this area is that social tension does not exist within the child-
robot interaction and this can remove any inhibitions and support the learning of new 
social behaviors [21], [25]. Several studies have explored the possibilities of using a 
humanoid robot to aid the development of social interaction. For example, Kaspar, a 
humanoid robot with minimal expressions was effectively used to teach social interac-
tion skills to lower functioning ASD children, which were then transferred and ob-
served in other situations [26]. Moreover in [14], ASD children showed improvement 
in eye gaze and communication, evident during a follow up activity with a human 
partner, after playing a game with the robot. Furthermore, [24] encouraged the devel-
opment of social interaction utilizing a humanoid robot named Alice. This work 
showed that children, after getting accustomed to the robot, opened up in including 
the therapist in their interaction with the robot and that overall the intervention was 
effective in helping ASD children develop social skills. In the context of social inte-
raction and communication, training ASD children to recognize human emotions is 
one of therapists’ main goals [1] and therefore, many researchers have focused on 
developing robots and interventions for this purpose. In [27], a very realistic humano-
id robot FACE (Facial Automation for Conveying Emotions) was developed to study 
and explore the possibilities of using robotic technology to teach emotional recogni-
tion and imitation in ASD children. Although this study was the first set of clinical 
trials on using FACE, the results were promising, improving CARS (Childhood Aut-
ism Rating Scale) score on emotional response for all participating ASD children. 
Last but not least, in [28], the researchers explored the interaction between the huma-
noid robot ‘Infanoid’ and an ASD child. They found that the child, after getting over 
his initial reservations, interacted with the robot for more than 40 minutes during 
which they observed how the child directed his gaze to the place where the robot 
pointed at, establishing joined attention.  

3 Method 

We employed a single-case research design, observing the subject over the course of 
the intervention and documenting changes in his behavior over time. In general, sin-
gle subject design (or single-case research design) is prominent in special education 
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since it concerns the individual student, their specific needs and the development of 
practical procedures that can be applied in real word situations. We obtained consent 
forms by the parents and special permission for the study by the board of directors of 
the Cyprus Autism Association, where the study took place. 

3.1 Participant 

The subject of this study is Joe (pseudonym), a 10-year-old, Greek-speaking boy di-
agnosed with ASD by a developmental pediatrician using ADOS (Autism Diagnostic 
Observation Manual). Joe attends special education, speech therapy, and music thera-
py once a week at the Cyprus Autism Association where one of the investigators 
worked as a therapist. During the day Joe attends a special education unit of a local 
public elementary school. He has a special interest in video games and he often plays 
imaginatively. One of the positive outcomes of his interest in video games is that, 
through them, he has learned some English words such as “play”, “stop”, “go”, “you 
won”, “try again”. His conversational skills (in Greek) are limited to replying to sim-
ple questions, while if something catches his attention he might initiate a conversation 
limited to asking “what is this?” Although he is well behaved and follows instructions 
perfectly, he is sometimes unmotivated and acts very slow on tasks. His movements 
are stiff and rigid and he will often refuse to dance or perform activities that require 
excessive movement. He gets tired/board quickly, and he takes a long time in choos-
ing the activities he wants to do. His therapy goals are to develop independence, learn 
to make choices, be motivated to do things, exercise and improve social and commu-
nication skills.   

3.2 Setting 

The study took place in the music therapy room of the Cyprus Autism Association. 
The room has a soft floor as well as beanbags and pillows for the children to sit on. A 
wireless access point was set in the room for the computer to communicate with the 
robot. The therapist was present in the room and was controlling the robot via a laptop 
(see Fig1). The presence of the therapist is important because we are not looking to 
replace the therapist but rather to enhance the therapy and provide a tool for them to 
aid in therapy. All activity was video recorded.  

The robot used for the study is NAO by Aldebaran Robotics, a 58cm tall humanoid 
robot that exhibits human-like features. Among others, it has the ability to recognize 
images, faces and objects as well as respond to speech and other sounds in the envi-
ronment. Since NAO has been released for research and development, there has been 
a great interest for its use for the treatment of ASD [18,19,20], [29]. In the mid of 
2013, Aldebaran Robotics launched ASK (Autism Solution for Kids) aiming to pro-
mote the use of robots in therapy and education of ASD children but also to advance 
research in the field. The game used in the preset study was adapted from the ASK 
“Animals Game”. 
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4 Findings and Discussion  

Video analysis focused on recording the number of correct/wrong answers by Joe, 
times he sought help and his general interaction behavior with NAO. The results pro-
vided evidence of Joe’s notable progress across sessions, in terms of learning the 
animals in English, becoming more independent, initiating interaction with the robot, 
directing his gaze, and expressing affective feelings. 

In session 1, Joe sought translation for all nine animals that NAO called (e.g., What 
is the Greek word for “dog”), establishing that Joe did not know the animals in Eng-
lish. He asked for a translation by turning and looking at the therapist. Upon transla-
tion, Joe pointed out the animals correctly on his first try. In session 2, Joe sought for 
translation only for two animals out of 8 animals called; he provided a correct answer 
on his first try for five out of six animals called in English and without translation. 
During the first two sessions, Joe also sought for encouragement and confirmation by 
looking at the therapist the moment before pointing to the animal picture. During 
sessions 3 and 4, Joe demonstrated confidence and became more independent com-
pleting the game without the support of the therapist. That is, Joe did not seek for 
translation or encouragement/confirmation and the therapist did not interfere during 
the game. In session 3, Joe made two mistakes, which he corrected in his 2nd try, out 
of 14 animals called in English (without translation). No mistakes were made in ses-
sion 4 on the 10 animals called by NAO. In session 5, in the absence of NAO, Joe 
responded correctly to all animals called by the therapist. These results are summa-
rized in Table 1. In sum, these results suggest that through play, NAO and the “Ani-
mals Game” supported Joe in learning to discriminate the animals and learning their 
English word while becoming more independent in playing the game from session to 
session.   

Table 1. Learning the animals in English 

Behaviors Session 1  Session 2 Session 3 Session 4 Session 5 

Animals called in 
English 

9 8 14 10 9 

Correct responses 
before translation  
(1st try) 

0 5 12 10 9 

Wrong responses 
before translation  
(1st try) 

n/a 1 2 0 0 

Times seeking 
translation  

9 2 0 0 0 

 
Moreover, qualitative observations from the video analysis showed that in session 

1 Joe had reservation in interacting with the robot especially during the first 10 mi-
nutes. He was a bit hesitant and cautious. This behavior can be attributed to the fact 
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that NAO was something new which suddenly changed Joe’s regular routine [24] -- a 
phenomenon also known as neo-phobia. Surprisingly however, in session 2, Joe 
walked into the room and initiated the interaction with NAO by saying “Hello NAO, 
how are you?” (in Joe’s native language, Greek). This was a milestone for Joe, as he 
had never before initiated this kind of conversation with the therapist or others at the 
therapy center, unless he was repeatedly encouraged to do so. What is more, Joe  
continued to initiate the interaction with NAO in the following sessions, while in 
session 5, Joe looked for NAO saying “Hello [therapist name], NAO? Where is 
NAO?”  

Furthermore, during session 1, the therapist taught Joe how to place the animal im-
ages in a position where NAO could properly identify them and respond. By the end 
of the session Joe already knew how to properly interact with NAO and in fact, he 
seemed to understand that NAO was controlled by the therapist through the computer. 
In session 2, Joe discovered that the therapist could see NAO’s vision through a simu-
lation on the computer screen. From this point onwards, Joe always attempted to look 
at the computer screen from across the room (see Fig. 1) to make sure that the animal 
picture was correctly picked up by NAO. This coordinated shift of gaze between 
NAO, the animal picture and the computer screen, was something Joe had never dem-
onstrated before when the therapist used a tablet, computer or other tools during the 
therapy sessions.  

Last but not least, Joe showed signs of distress, worry and caring when NAO mal-
functioned in a couple of cases. For example, the simulation-controller crashed once 
in session 3 causing NAO to stop interacting with Joe and get-ting into a sited posi-
tion, engaging the child to say “NAO, are you ok?” In other instances where NAO 
malfunctioned, Joe asked repeatedly (expressed in Greek) “is he hurt”, “does he need 
to rest”, “NAO, are you ok?” This provided evidence that Joe was capable to exhibit 
social and affective behaviors confirming previous research findings suggesting that 
humanoid robots can elicit feelings and caring behavior [31,32]. What is more, upon 
the intervention and when NAO was not present anymore, Joe continued to ask the 
therapist about NAO (e.g., “is he hurt”, “is he OK”, “Is he coming back?”). This sug-
gests that Joe view and addressed NAO more as a peer [31], rather than a ma-
chine/computer integrated in his therapy sessions.     

5 Conclusions 

This single case study aimed to explore the potential value of a humanoid robot -- 
NAO -- in assisting the therapist during therapy sessions with children in the autism 
spectrum. Based on video analysis from four intervention and one post-intervention 
therapy sessions with a high functioning ASD child, we can suggest that a humanoid 
robot such as NAO, and applications such as the “Animals Game”, can be effective in 
supporting learning activities related to discriminating animals from images and 
learning English words. Also, although based on qualitative observations, we have 
initial evidence of the ASD child becoming more independent, initiating interaction 
with the robot, directing his gaze, and expressing affective feelings. Moreover, the 
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quick acceptance of and easy interaction with NAO provides initial evidence that 
humanoid robots can be smoothly introduced in ASD therapy sessions. These are 
findings from a single case and difficult to generalize to other individuals. Our find-
ings require replication within controlled experiments where the child’s learning be-
havior is assessed with and in the absence of NAO. Also, more work is needed to 
understand whether changes in behavior transfer beyond the therapeutic setting.  
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Abstract. Social robotswill be soondeployed in large public spaces popu-
lated by many people. This scenario differs from personal domestic robots,
since it is characterized by multiple short-term interactions with unknown
people rather than by a long-term interaction with the known user. In par-
ticular, short-term interactions with people in a public area must be effec-
tive, personalized and socially acceptable. In this paper, we present the
design and implementation of an Human-Robot Interaction module that
allows to personalize short-term multi-modal interactions. This module is
based on explicit representation of social norms and thus provides a high
degree of variability in the personalization of the interactions, maintain-
ing easy extendibility and scalability. The module is designed within the
framework of the COACHES project and some implementation details are
provided in order to demonstrate its feasibility and capabilities.

1 Introduction

The new challenge for robotics in the near future is to deploy robots in public
areas (malls, touristic sites, parks, etc.) to offer services and to provide cus-
tomers, visitors, elderly or disabled people, children, etc. with increased welcom-
ing and easy to use environments.

Such application domains present new scientific challenges: robots should
assess the situation, estimate the needs of people, socially interact in a dynamic
way and in a short time with many people, exhibit safe navigation and respect
the social norms. These capabilities require the integration of many skills and
technologies. Among all these capabilities, in this paper we focus on a particular
form of Human-Robot Interaction (HRI): Personalized Short-term Multi-Modal
Interactions. In this context, Personalized means that the robot should use differ-
ent forms of interactions to communicate the same concept to different users, in
order to increase its social acceptability; Short-term means that the interactions
are short and focused on only one particular communicative objective, avoiding
long and complex interactions; while Multi-modality is obtained by using differ-
ent interaction devices on the robot (although in this study, we focus only on
speech and graphical interfaces).
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 264–274, 2015.
DOI: 10.1007/978-3-319-25554-5 27
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The solution described in this paper is developed within the context of the
COACHES project, that aims at developing and deploying autonomous robots pro-
viding personalized and socially acceptable assistance to customers and shop
managers of a shopping mall. The main contribution of this paper is on the
architecture of the Human-Robot Interaction module that has several novelties
and advantages: 1) integrated management of all the robotic activities (includ-
ing basic robotic functionalities and interactions) through the use of Petri Net
Plans, 2) explicit representation of social norms that are domain and task inde-
pendent, 3) personalized interactions obtained through explicit representation of
information and not hand-coded in the implementation of the robot behavior.

In the rest of this paper, after an analysis of the literature in personalized
human-robot interaction (Section 2) and a brief description of the general archi-
tecture of the COACHES system (Section 3), we describe the human-robot inter-
action component and, in particular, our approach to personalized short-term
multi-modal interaction (Section 4). In Section 5, we provide some examples of
application of the proposed system and finally we draw conclusions in Section 6.

2 Related Work

The use of service robots interacting daily with people in public spaces or work-
places has become of increased interest in the last years. In this context, the
development of the robotic system should focus on creating confortable interac-
tions with the people the robot has to share its space.

Gockley et al. [3] showed that people usually express more interest and spend
more time during the first contact with the robot. However, after the novelty
effect, the time of the interactions decreases which suggests people’s preference
for short-term interactions.

In order to address this decrease in the people engagement, Lee et al. [4]
demonstrated in a 4-month experiment that personalized interactions allow to
maintain the interest of the users over time. The experiment consisted of a robot
delivering snacks in a workplace and the personalization was carried out through
customized dialogues where the robot addressed the users by their names and
commented the users’ behaviours like their frequency of usage of the service or
their snack choice patterns. Conversely, in certain contexts like in rehabilitation
robotics, it is desired to have longer interactions with the patient, so the robot
can assist and encourage him to do his exercises. In [8], it is shown how adapting
the robot behaviour to the patient personality (introvert or extrovert) increases
the level of engagement in the interaction.

Certain works aim at personalizing the interaction by learning from its user.
For example, in [5] a certain task is commanded to the robot which receives
a feedback from the user if the final state of an action is desirable for him.
In this way, the robot learns from the user’s preferences which are registered in
a user profile. With this knowledge and the feedback it keeps receiving from the
user, the robot can anticipate his needs and pro-actively act to fullfil his needs.
In [6] the robot adapts its behaviour defined by parameters like the distance to
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Fig. 1. COACHES environment and robots.

the person or its motion speed, among others, using a reinforcement learning
technique where feedback from the user is given subsconciously through body
signals read directly from the robot sensors.

In contrast to these works, our approach for personalized human-robot inter-
action is not based on learning the personality of the user, but on a set of social
norms that are present in our everyday lifes in human interactions. Moreover, our
architecture is designed on domain and task-independent representation of infor-
mation, providing for a high variability of personalized behaviors, with a simple
declarative definition of the social norms that we want the robot to apply. This
provides many advantages in terms of extendibility and scalability of the system.
The proposed approach extends a previous work [7] about the design of social
plans, by adding the notions of user profiles and of personalized interactions.

3 COACHES Environment, Hardware and Software
Architecture

In the COACHES project (October 2014 - September 2017), we aim to study,
develop and validate integration of Artificial Intelligence and Robotics technol-
ogy in order to develop robots that can suitable interact with users in a complex
large public environment, like a shopping mall. Figure 1 shows, on the left, the
Rive de l’orne shopping mall in Caen (France) where the experimental activities
of the project will be carried out, on the middle a prototype of the robot that
will be used for the preliminary experiments and, on the right, the design of the
robots that will be realized in Fall 2015.

As shown in the figure, in contrast with previous work on social robotics and
human-robot interaction, the COACHES environment is very challenging, because
it is populated by many people and the robot is expected to interact with
many unknown and non-expert users. Moreover, we aim at a more sophisti-
cated interaction using multiple modalities (speech, gesture, touch user inter-
faces) and dialog generated on-line according to the current situation and the
robot’s goals. Although these characteristics are not completely new in related
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Fig. 2. COACHES software architecture

projects, we believe that the COACHES project will provide important insights for
actual deployment of intelligent social robots in large populated public areas.

The software architecture of the COACHES robots is shown in Figure 2. The
architecture comprises a typical configuration of an autonomous robot where all
the decisions are made on-board based on sensors available.

An open architecture (hard/soft) and standard technologies available will
be used, so that it will be easy to extend and/or adapt the capabilities of the
system during the whole length of the project (especially to integrate and test
various algorithms and/or sensors). Such an open architecture will also simplify
and optimize integration efficiency as well as re-use of assets in other projects
or products.

For the development of the robotic software components, the Robot Operat-
ing System (ROS)1, which is the standard middleware for robotics applications,
has been selected. ROS provides the middleware infrastructure to effectively
share information among the many modules implementing various functional-
ities on each robot. Moreover, our software architecture includes an interface2

for sharing information among the robots and between ROS and non-ROS com-
ponents of the system, based on serializing and deserializing ROS messages as
strings sent over TCP.

The main software components that are under development for control, rea-
soning and interaction functionalities of the system are briefly described below.

– Scene analysis includes sensor processing procedures for both on-board robot
devices and static sensors in the environment in order to determine the
current situation and understand events that are of interest for the system.

– Knowledge-based representation and reasoning defines the formalism and the
procedure to represent and reason about the environment and the task of
the robots. It provides the goals that the robots should achieve given the
current situation.

– Planning and execution monitoring generates the plans to achieve the desired
goals and monitor their execution for robust behaviors.

– Multi-modal HRI defines a set of modalities for human-robot interaction,
including speech recognition and synthesis, touch interaction, graphical inter-
face on a screen mounted on the robot and Web interfaces.

1 www.ros.org
2 https://github.com/gennari/tcp interface

www.ros.org
https://github.com/gennari/tcp_interface
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– Safe navigation guarantees safety movements and operations of the robot in
a populated environment.

In the next section, we focus on the description of the Short-Term
Multi-modal HRI module and, in particular, we show our approach to person-
alized interactions with users of the shopping mall. Although at this time all
the other modules have not been fully realized, a minimum set of functionalities
needed to test the HRI component are present.

4 Personalized Short-Term Multi-modal Interactions

As already mentioned, one of the main goals of the COACHES project is personal-
ized short-term multi-modal interactions with non-expert users, that are typical
customers of a shopping mall.

Fig. 3. Architecture of Human-Robot Interaction module.

The architecture of the HRI module is illustrated in Figure 3. Data available
to this module are Petri Net Plans (PNP) encoding the desired behavior of the
robot, social norms, a user profile and a multi-media library.

The PNPs (as described later) encode the overall behavior of the robot, as
generated by the planning and reasoning components of the system. The behav-
ior include both basic robotic actions (e.g., moving in the environment) and
interaction action. The user profile is the information available about the user
that is interacting with the robot. Among acquisition means for user profiles, it
is possible to think about users wearing an RFID tag containing personal infor-
mation read by an RFID reader on-board the robot, or to the request of swiping
a fidelity card, enter a personal password or showing to the robot a QR-code,
in order to communicate to the robot the user profile. In our implementation,
we have used a simple identification mechanism based on recognizing QR-codes
shown by the user to the robot on-board camera.

Finally, the media library is a collection of multi-media data (text, images,
animations, video, etc.) that are linked to the communication activities of the
robot and to the user profiles. We assume that in this library there are different
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versions of the same communication target for different users. For example, ice-
cream advertisement can have a different spoken text and different displayed
images or videos for children and adults.

In the remaining of this section, we will describe in more details the compo-
nents of this module.

4.1 PNP Adaptor and Executor

The HRI module is implemented within the framework of the Petri Net Plans
(PNP) formalism [9]. PNPs are based on two main concepts: actions (i.e., out-
put operations) and conditions (i.e., input operations). Actions include motion of
the robot in the environment, spoken sentences issued by the on-board speakers,
text, images, videos or animations shown on the on-board screen, etc. Condi-
tions include the result of perception routines (e.g., image processing or speech
recognition), the input given by a user through a GUI on the on-board screen,
information about personal data of user acquired through a reader of fidelity
cards, etc.

The use of PNPs for representing in an integrated way all these different
kinds of actions and conditions allows for a strong coordination between the
different sub-systems of the robot and for showing more complex behaviors and,
in particular, a multi-modal interaction that can be easily customized according
to the user.

The main plan, which includes interaction plans for HRI behaviors, generated
by the reasoning and planning sub-system, is first processed by the PNP Adap-
tor and then executed by the PNP Executor. Both these modules are general-
purpose, since all the relevant information is provided by external sources with
an explicit representation. More specifically, the PNP Adaptor generates a per-
sonalized plan, given a main plan, a library of interaction plans, a set of social
norms, and the user profile. The generated personalized plan is then executed
by the PNP Executor.

PNP Adaptor is implemented through an algorithm that transforms the Main
PNP and the associated Interaction PNPs according to the social norms applied
to the specific user profile. More specifically, the input plan is composed by a
user-generic Main PNP that calls Interaction PNPs as sub-routines. All these
plans are processed and transformed by applying the social norms (described as
rules) customized to the current user profile.

The social norms are domain and task independent and are represented using
a propositional logic formalism that follows the one described in [2]. Given a set
of propositions U related to user profiles and a set of propositions I related to
forms of interactions, and given the set of formulas U∗ over U and the set of
literals I+ over I, a social norm is represented as a pair (φ, δ) ∈ U∗ × I+, with
the meaning that if φ is true, then δ is mandatory (i.e., it must occur), or, in
other words, ¬δ is forbidden.

Some examples of social norms implemented in our system and considered
in the examples in the next section are illustrated in Table 1.
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Table 1. Domain-independent social norms.

( child, use animation )
( elder, use big font )
( elder, use simple GUI )
( deaf, ¬ use speech )
( blind, ¬ use display )
( elder ∨ deaf, display spoken text )
( elder ∨ deaf ∨ blind, ask for guidance )
( blind, use detailed speech )
( blind, notify guidance )
( first time user, detailed instructions )
( ¬ first time user ∧ young, ¬ detailed instructions )
( child ∨ very young, ¬ use baby care room )
( foreign, speak English )

Given a set of social norms S and a user profile u from which it is possible
to determine the truth of the formulas in U , then it is possible to derive all the
literals in I+ that are implied by the social norms and u. In other words, it is
possible to compute the set of propositions Δu such that S ∧ u |= Δu. These
propositions can be seen as the personalization of S to u. For example, if the user
profile u satisfies elder and deaf, Δu contains { use big font, display spoken text,
use simple GUI, ¬ use speech }. In this paper, we do not explicitly consider the
case in which Δu may become inconsistent. Of course, several mechanisms could
be implemented for solving this issue, such as adding preferences or priorities to
propositions.

The personalized propositions Δu affect the execution of the output actions
of the HRI module. Each action in the PNPs is personalized by adding the
appropriate propositions as arguments. As described later in the section, in this
paper we consider two kinds of output interaction actions: Say, related to the
Speech module, and Show, related to the Graphical Interface module. Therefore,
literals associated with Say (e.g., ¬ use speech) are added as parameters of all the
actions Say in the PNPs, while literals associated with Show (e.g., use big font,
display spoken text, use simple GUI) are added as parameters of all the actions
Show in the PNPs. These parameters determine the personalized interaction and
will be considered by the Interaction Manager.

PNP Executor is a general-purpose executor of PNP already described in [9]
and successfully used in many applications. PNP Executor treats actions and
conditions without giving them any semantics and controls only the flow of exe-
cution. The actual execution of the basic actions and conditions is responsibility
of the Interaction Manager.

4.2 Interaction Manager

The interactions are coordinated by an Interaction Manager (IM), which man-
ages all the robot activities (both the ones related with human-robot interaction
and the ones used for implementing the basic robotic functionalities). Its goal is
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thus to provide effective robot behaviors, including the personalized short-term
multi-modal interactions described in this paper.

The IM is an action and condition server that executes actions and pro-
vides conditions, according to the requests of the PNP Executor module.
It thus includes the definition of a set of primitive actions and conditions that are
activated according to the plan under execution. For the interaction behavior,
actions and conditions are actually related to the Speech and Graphical Interface
(GUI) modules described later. While the actions and the conditions related to
the basic robot abilities (such as navigation, localization, perception, etc.) are
not illustrated and described here, since the focus of this paper is on interac-
tion. The IM is also responsible to activate actions according to the personalized
parameters defined by the PNP Adaptor module.

4.3 Speech and Graphical Interfaces

The interaction modalities considered so far in the project are speech and graph-
ical interfaces.

Speech Recognition and Synthesis. The speech component allows the robot to
communicate with humans through vocal interactions. It is formed by Automatic
Speech Recognition (ASR) and Text-To-Speech (TTS).

The ASR component analyzes audio data coming from a microphone and
extract semantic information about the spoken sentences, according to a pre-
defined grammar. This component allows the robot to understand user spoken
commands. The speech recognition module is based on the Microsoft engine and
on a further processing module that builds the semantic frames of the recognized
sentences. More details on the approach are available in [1].

The TTS component transforms text messages in audio data that are then
emitted by the speakers on-board the robot. This enables the robot to speak to
people. The Microsoft TTS engine is used for this module.

Graphical User Interface. The GUI component implements a graphical input and
output interface between users and robots that is displayed through the touch
screen on-board the robot. The GUI defines actions (i.e., output operations)
and conditions (i.e., input operations) that are integrated in the IM with other
communication primitives (e.g., speech) in order to implement a multi-modal
interaction.

The Speech and GUI components make available to the IM the implementa-
tion of actions and conditions that are executed according to the PNPs. These
are summarized in the following table.

Action Condition

Speech
Say

speak information though TTS
ASR

Results of ASR

GUI
Show

show information on the GUI
GUI

Results of GUI input
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The actions implemented at this level are parametric with respect to a set
of parameters expressed as propositions and used to define the social norms.
As mentioned above, during the process, general actions are associated to spe-
cific parameters depending on the user profile. This parameters are considered
to specialize the execution of the actions. Two kinds of specializations are con-
sidered: 1) modification of some internal parameters of the action (for example,
the size of the font in a displayed text), 2) selection of the proper media to
communicate. The second specialization is related to the presence of multiple
options in the Media Library for the same communicative target. In these cases,
each option is labeled with a precondition using the same interaction proposi-
tions in I. Therefore, it is possible to select appropriate media considering the
personalized propositions Δu.

5 Examples of Personalized Interactions

In this section we will show through a set of examples how general purpose
social norms are used to affect the behavior of the robot in a declarative way.
The examples are taken from the use cases of the COACHES project and they will
be eventually fully implemented and tested with real robots in the shopping mall
in Caen. The examples below refer to the social norms described in Section 4
and assume user profiles are available.

Example 1. Advertising. One of the tasks of the COACHES robot is to show adver-
tisements to users of the shopping mall. These advertisements (in forms of text,
images, videos, etc.) are provided by the shop manager and stored in the Media
Library. In one form of advertising planned in the project the robot knows the
user profile. In this case the Interaction Module described in the previous section
can activate personalized messages. Effects of personalized interactions in this
example are: i) animation instead of videos for children, ii) big fonts and simple
GUI for elderly people, etc.

Example 2. Directions and Guiding. The robot is able to give directions and
guide people in the mall. Requests are acquired either by voice or graphical
interface and the robot uses its semantic map of the environment to show direc-
tions or accompany the user. In this case the following personalized behaviors
can be obtained: i) for elderly people, a simple GUI shows the direction; ii) the
interaction with a deaf and elder person is made with graphical interface only;
iii) the interaction with a blind person uses only voice. In all the three cases, the
robot offers to accompany them and for the blind person a special notification
is given with instructions of how the guidance will happen.

Example 3. Baby Care Rooms. Baby care rooms can be used by parents, but
must be reserved and they are locked when not in use. The robot can enable this
service upon request. Some personalized interactions in this case are: i) a new
user is fully instructed with detailed instructions about how to use the service;
ii) a user that already used the service a few time ago is given directly the access
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to the baby care room; iii) children or very young users will be notified that they
are not allowed to use the service.

Notice that all these examples are implemented without explicit coding the
corresponding behaviors. The expected personalized behavior is the effect of
the application of the social norms to the user profile and of the corresponding
modifications of the plans that activate actions with proper parameters. Notice
also that the social norms are not specific of any particular task. This allows for
a high level of extendibility. For example, adding, removing or modifying social
norms allow for a significant change of behavior of the robot with different users
without requiring any change (or just minimal changes) in the implementation
of the actions. For example, assuming that we want to add the capability of the
robot to regulate the volume of its voice and to personalize this feature. With
our architecture it is sufficient to do the following steps: add a parameter about
volume in the Say action (e.g., corresponding to a new proposition loud speech
in I) and a social norm (elder, loud speech) in S. All the interactions with elder
people now will use an increased volume of the robot speech.

6 Conclusions

In this paper we have presented our architecture for personalized short-term
human-robot interaction to be used by COACHES robots that will autonomously
provide services to customers in a shopping mall. Robot actions and interactions
with users have been described through PNPs that can be dynamically adapted
according to the user profile and a set of domain-independent social norms. This
capability provides the system with a high level of scalability and, as shown
in our examples, allows for being easily extended to a variety of interactions.
Implementation of the HRI module presented in this paper has been tested in
our lab with a prototype robot and not yet in the real environment with real
users.

The on-going COACHES project is the main experimental test-bed for the work
presented in this paper. Future work will thus include a user study, whose main
focus will be assessing improved acceptance of a social robot with personalized
interactions. With the approach described in this paper, producing different ver-
sions of the interaction behavior of the robot is as easy as adding or removing a
social norm. However, in certain cases, personalization based on social norms may
not be sufficient due to individual exceptions. Therefore, a more detailed individ-
ualization level applied to single users will also be subject of further studies.
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Abstract. Non-verbal cues of communication can influence the human
understanding of verbal signals in human-human communication. We
present two illustrative experimental studies showing how non-verbal cues
can both interfere and facilitate communication when passing a message to
a user in HRI. In the first study, participants found that the cues enabling
them to discriminate between two conditions : permissive or authoritative
robots were mainly verbal. The verbal message was however unchanged
between these two conditions and in this case, non-verbal cues of commu-
nication (gestures, posture, voice tone and gaze) substituted the neutral
verbal message. The second study highlights the fact that verbal and non-
verbal communication can facilitate the understanding of messages when
combined appropriately. This study is based on a Stroop task of identi-
fying the colour of the LEDs of a robot while the robot says words that
are either facilitating, neutral or disturbing for the participant. These two
studies put into perspective the importance of understanding interrela-
tions between non-verbal and verbal signals in HRI.

1 Introduction

The general applicative scenario of our research involves a companion robot for a
child alone at home. Let us imagine a scenario where the companion, managing
the child’s schedule, would ask the child to go do his homework. Our interest
is in fitting the robot’s behaviour to the child’s and his parents’ needs and
expectations while letting them still have control over the companion’s settings.
There could be several ways to ask a children to do his homework. We consider
these ways as styles. Styles are defined as ways to act and do things within a
particular context [8]. In order to design our behavioural styles, we aim keep
the content of the actions unchanged but to manipulate the way it is performed.
For this reason, we aimed to keep verbal content unchanged and use parameters
of non-verbal cues of communication to modify the behaviour delivered by the
robot. Our aimed is to propose non-verbal behavioural styles that would allows
the user to personalize its companion.

Most non-verbal cues of communication(NVC) are said to be innate and
subconscious [11,15] . On the contrary, verbal communication such as language,
are learnt and conscious. NVC help to prepare to do an action; they can reflect
our intentions and are a window to our mental state [15]. For these reasons,
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 275–284, 2015.
DOI: 10.1007/978-3-319-25554-5 28
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research in social robotics is growing its interest on the application of these cues
to make the robots’ communication more natural to humans. Really often, a
particular discomfort around robots can be present when the robot’s non-verbal
behaviour is dissonant to the verbal signal. For instance, a robot saying “I am
very happy to see you”but showing a neutral face [3,17] could produce such a
phenomenon. Some recent work have shown that multi-modality can help for
speech disambiguation in joint attention and pointing tasks [13]. However, the
effect of non-verbal and verbal communications on each other can be various and
is still a matter of research in human-robot interaction.

This paper explores interrelations between verbal and non-verbal signals
within two case studies. In a first study we show how dominant-oriented non-
verbal cues can substitute for neutral verbal cues, making participants believe
that the dominant signal was content in the verbal utterance. In the second
study on the other hand, verbal cues is showed to be facilitating non-verbal
understanding in a simple Stroop task.

This paper claims that there exists interrelations (here, substitution and
facilitation) between non-verbal and verbal cues that can be studied and which
could potentially help to design a better robot communicant.

2 Related Work

According to [11], non-verbal cues are innate and often subconscious signals of
communication (like smiling, crying and laughing for instance). In HRI, these NVC
have been largely used to depict emotions and social signals to the users [7]. Some
recent studies have shown the impact of non-verbal cues on trust for example [5].

In human-human communication, Mehrabian [21] showed that simultaneous
verbal, vocal, and facial attitude communications is a weighted sum of their
independent effects – with coefficients of .07, .38, and .55, respectively. Other
psychologists [11], have studied the influence of modalities on the social signal.
These coefficient have been revised and the weight of verbal have been said
to be higher in other contexts [21]. However, these studies have agreed on the
importance of non-verbal cues in human-human communication. [11] explains
how verbal and non-verbal signals interrelate in human-human communication
in terms of: repeating, conflicting, complementing, substituting, regulating or
accenting/moderating signals. It is then crucial for social robots to know these
interactions between verbal and non-verbal communication in order to be effi-
cient in sending signals to the user and to understand the ones they transmit.

Based on the literature [11], non-verbal cues of communication take into
account : gestures, postures, touching signals, facial expressions, eye signals and
vocal signals. To make the influence more readable, the results of this paper are
presented in two sub-categories of non-verbal cues: non-vocal (posture, gesture,
eye contact . . . ) and tone of voice (pitch, volume . . . ).
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3 Experiment 1: Robots’ Non-verbal Cues Perceived as
Verbal by Participants

Previous work [10], have shown the ability of two robots - a robotic head Reeti
[2] and the humanoid robot Nao [1](Table 1) - to express two parenting styles,
Authoritative and Permissive. The Permissive and Authoritative styles in this
experiment differ by their level of dominance. Expression of personality and
complex emotions by robots is often hard to implement due to their motors’
limitations. To compensate and check which modalities are important to depict
parenting styles, both facial and bodily communication have been tested.

In order to depict the styles using multi-modal non-verbal and paralinguistic
channels of communication, modalities of expression of verticality specified by
Hall and al. [9] have been translated to the robot’s motors and software abilities.
Hall describes a set of non-verbal cues for verticality used to express dominance
and submission to differentiate between Authoritative and Permissive style of
parenting. The left side of Table 1 presents the cues which vary between per-
missive and authoritative signals for the two robots Nao and Reeti. We adapt

Table 1. Parenting style expression for Nao and Reeti robots, (positive (↗) or negative
(↘) influence of cues on dominance)

Dominance Non-verbal
Communication Cues

Nao Reeti

n
o
n
-v

o
ca

l

Gaze ↗ ↗
Blinking rate ↘ ↘
Nodding ↗ ↗
Self contact (hands or face) ↘
Self contact (hips) ↗
Hand and Arms: illustrator,
emblems

↗

Postural openness ↗
Postural relaxation ↗
Face orientation ↗ ↗
Ears ↗

to
n
e

o
f
v
o
ic

e Voice Loudness ↗ ↗
Voice Pausing ↘
Voice Pitch ↘
Voice Speed ↗ ↗

Nao Reeti

P
er

m
is

si
v
e

A
u
th

o
ri

ta
ti

v
e

the categories of non-vocal signals according to the physical and software con-
straints of each robot. From literature [6,14,16,19,20], spatial variables such as
space occupation, direction and amplitude of gestures are used as parameters to
design two level of expression for each NVC. Other parameters are employed for
the dynamics: repetition, speed of gestures, speed of decay and fluidity/rigidity
of movements. We also refer to the work of Breazeal [4] for the ear movement of
Reeti.
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The Table 1 shows the positive (↗) or negative (↘) influence of each
behaviour on the dominance dimension for each robot. For example, for both
robots, a high blinking rate decreases the dominance factor while inversely, voice
loudness will increase with dominance. The absence of arrows signify a hardware
or software limitations of the robot (i.e. not possible to change Nao’s pitch)

Videos of the robots’ behaviours displaying the styles in the situation of
asking a child to do his homework were showed to parents. For both styles, the
robots are accompanying the non-verbal cues with a neutral verbal utterance
in terms of dominance: “I think you have played enough. You should go back to
work”.

An online questionnaire, allows us to get opinions of 93 parents on how they
perceive the robots’ behaviours. Each participant watch two videos of the same
robot (either Reeti or Nao) expressing respectively the two parenting styles:
Permissive and Authoritative. They are then asked to reply to a questionnaire.
Parents were able to discriminate from Permissive and Authoritative on a author-
itativeness scale from 0 to 10 (results in [10]).

Since the verbal utterance was neutral for the two styles Authoritative and
Permissive, we believe that parents perceived non-verbal cues as discriminant in
term of authoritativeness. The hypothesis is that parents perceived of non-verbal
(tone of voice and non-vocal) cues of communication to be more influential than
verbal utterance, when having to rate the authoritativeness of the robots in our
experimental context.

Parents were asked to rate how each modality of expressions of the robot
influenced their score in authoritativeness. Since the term non-verbal is not easy
to define, we chose to be more precise and list 3 sub-modalities of the non-verbal
behaviours. We asked the participants to evaluate the weight of influence of each
non-vocal, tone of voice and verbal modalities by answering this question:

For each of the following elements, rate the influence of the element on the
authoritativeness characteristic of the robot. From 0 (no influence) to 10 (very
influent): gestures, posture, gaze, tone of the voice, words used.

The average weight of influence for each type of behaviour (verbal, tone of voice
and non-vocal) is visualised in Figure 1 for each robot. The ratio of perceived
influence of the cues is of 26.24% for the non-vocal, 34.91% for the tone of voice
and 38.85 % for the words used by the robots. This ratio is the same for the
two robots and the two styles (no significant differences). Thus in our experi-
ment, the participants thought they were judging the social signals of the robot
more from its verbal utterance and tone of voice cues than its other non-vocal
cues (posture, gesture, gazing ...). Our results also differ from the “7 % rule”
of Mehrabian [11] stating that only 7% of the signal passes through the verbal
modality.

This results highlight the difference between the perceived influence and
the actual influence of verbal and non-verbal cues of communication. Expected
results in this experiment were to have an influence of 0.0% for the verbal and
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Fig. 1. Proportion of perceived Influence of the modalities

100% for the non-verbal, since the verbal utterance was actually not influencing
the authoritativeness of the robots.

This difference might be explained by the fact that participants had a pre-
judgement on the robot’s ability to use non-verbal cues of communication. Hence,
the non-verbal influence of robots is perceived as lower.
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s

Verbal Voice Tone Non-Vocal

Fig. 2. Correlation between perceived influence of modalities and perceived authorita-
tiveness of the robots

The scatter plots in the fig. 2 show the correlation between the influence
scores given to each type of cues and the perceived authoritativeness of the
robot by the participants. These graphs show that the authoritativeness is more
correlated to the tone of voice perceived influence(R = 0.79) than the verbal
perceived influence(R = 0.64) and that it is more correlated to the verbal than
the non-verbal cues (R = 0.56, where R = −1 means that the data is inversely
correlated; R = 0 signifies the absence of a correlation and R = 1, a configuration
where the data is completely correlated). These results show that tone of voice
cues and authoritativeness have a higher interdependence than verbal utterance
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and authoritativeness, or non-vocal cues and authoritativeness in the parents
perception. For the participants, the authoritativeness is then more linked to
the tone of voice and the verbal than the non-verbal cues.

Non-verbal (vocal and non-vocal) and verbal behaviours are not independent
from each other. In this experiment, the meaning of non-verbal cues (permis-
sive or authoritative) substituted to the understanding of the verbal utterance
(neutral) in term of authoritativeness.

4 Experiment 2: Facilitation of Non-verbal Understanding
by Congruent Verbal Signals

The Stroop effect is a well known effect that allows to highlight interference
or facilitation between different modalities in understanding a communicative
signal. The classical Stroop task focussed on the interrelation of two cognitive
processes by naming the colour of the ink of written words. In the classical test,
participants are presented lists of colour names (“blue”, “green”, “red” . . . )
written in the ink of the same (congruent set) or a different colour (incongruent
set). The control set can be made with words printed in black ink that are not
names of colours. Participants can be asked to name the colour of the ink of
the words. The experimentalist measures the response time and the number of
correct answers. The common result of this test shows that the reading modality
can facilitate the identification of ink colour in case of congruence (better per-
formances than control) or it can interfere with the identification in the case of
incongruence between ink colour and word names. A large number of variations
[12,18] of this experiment have been used in cognitive psychology to understand
the interrelation between other modalities (audio and visual for example).

In this experiment, 68 participants were asked to perform a colour identifi-
cation task of Reeti’s cheeks LEDs. Reeti is a PC-bot equipped with motorized
head enabling him to display facial expressions. It can do text to speech and has
also colours LEDs in its cheeks.

Fig. 3. Experimental setting at the
Innorobo event in Lyon

The experiment took place at
a stand of the robotic exhibition
Innorobo in Lyon(France). Partici-
pants were visitors to the stand and
not selected (children, adults, men or
women). The Figure 3 shows the set-
tings of the stand.

The task for the participant was,
using the corresponding colour but-
tons of a Xbox remote, to iden-
tify the colour of the robot’s cheeks
(both cheeks had identical colours)
(Figure 4). The robot started by

explaining the task to the participant. The robot’s cheeks changed to a ran-
dom colour (between the 4 possible colours) and the robot said a word at the
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Fig. 4. Reeti robot displaying the 4 colours used in the experiment and the Xbox con-
troller used by participants

same time. The word belonged to a category according to the criteria of congru-
ency. The robot changed its colour and says a new word only after the participant
had given his answer. We recorded the correctness and the response-time (time
difference between the participant’s answer and the robot saying the word) of
the participants’ answers.

Every participant did the task under following 3 conditions in a random
order:
congruence : the robot says the colour it displays

control : the robot says a random word which does not represent a colour
incongruence : the robot utters the name of colour different from the one it

displays

The Table 2 shows examples of a set of colours the robot would adopt and
corresponding words it could say for the 3 conditions.

Table 2. Sequence examples for the three conditions: congruence, control and incon-
gruence

non-verbal colour
verbal

congruence control incongruence
green green dog blue
blue blue boat red
red red chair green
yellow yellow window blue
red red fart green
yellow yellow child blue
green green board red
blue blue bottle red
red red toy yellow
green green robot yellow

The congruency didn’t have a significant effect on the correctness of the
identification which is approximately at 20% of incorrect answers. This means
that when helped with verbal cues from the robot (congruence), participants
didn’t achieve better answers and on the other hand when disturbed by verbal
cues (incongruence), participants didn’t make more mistakes. However, when
dealing with such simple task of colour identification, the time of response
gives a better measure of signal interrelation than the correctness of answers.
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Fig. 5. Response Time for the 3 conditions,
(∗ ∗ ∗p < 0.001)

Figure 5 shows the average time dif-
ference between the robots changing
colour and saying the word, and the
response of the user by the Xbox
remote. Statistical analysis of the
response time data showed that the
conditions have a significant effect
on the response time (ANOVA :
F (2, 1972) = 10.93, p < 0.001). We
computed the facilitation and infer-
ence rates :

– Facilitation = −134.8ms (aver-
age difference between control and
congruence conditions)

– Interference = +51.21ms (aver-
age difference between control and
incongruence conditions)

In the classical Stroop task, we can observe both facilitation and interfer-
ence. Here, the difference between control and incongruence was not significant
(T-Test: p = 0.213) and there was significant differences between congruence and
control conditions (T-Test: p = 0.001) and between congruence and incongruence
condition (T-Test p < 0.001).

In our robotic Stroop experiment, even though the interference effect wasn’t
significant, the verbal cues matching the colour facilitated significantly the
response time of the participants with an average of 134 milliseconds.

5 Discussion and Conclusion

The results of Experiment 1 based on behavioural styles, showed that non-verbal
cues such as tone of voice, posture, gesture and gaze are important and can
substitute for the verbal content in the context of behaviour authoritativeness.
Indeed, only non-verbal cues were containing the signal of authoritativeness and
permissiveness. The verbal content was the same for both permissive and author-
itative styles but found to be determinant by participants in terms of influence
on the style.

The results of Experiment 2 based on Stroop, showed that verbal cues didn’t
influence the correctness of the participants’ answers but did influence the time
necessary for identification by significantly facilitating colour recognition when
matching the LEDs colours on the robot’s cheeks. We didn’t see a significant
interference effect in the incongruence condition. The interference effect could
have been attenuated by the noisy environment of the Innorobo exhibition, allow-
ing participants to pay less attention to the vocal signals more easily in the
incongruence cases. Other conditions could have been tested - looking at the
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robot and identifying what he says rather than what he shows. This could tell
us if visually observable colours of the cheeks could also interfere of facilitate
audio recognition of colours names.

These results have to be contextualized. Indeed, many other modalities exist
in non-verbal communication (colour of the robot itself, height, shape, clothes
. . . ). Some non-verbal cues of communication are also culturally dependent, and
our studies have been both tested in Europe only. Also for Experiment 1, partic-
ipants made their judgements based on videos and as shown in other research in
HRI, physical embodiment of the robot and judging on a real interaction could
influence these results.

Research in cognitive psychology often uses similar experimental settings in
order to test interrelations between different kinds of signal processing in the
human brain. When dealing with social robots, it could be interesting to study
the understanding of emotional cues from the robot with this kind of setting.
Indeed, robotics non-verbal cues can be very different from humans, and their
interrelation and influence on verbal content will be mandatory for better social
expressiveness of robots.

These two experiments allowed us to explore some interrelations such as
substitution and facilitation occurring between verbal and non-verbal communi-
cations cues and to highlight the importance of taking into account these inter-
relations when designing multi-modal expressions in HRI. These studies give an
important insight to the design of behaviours for a robot. Indeed, subtle dif-
ferences in one expression cue can fasten or even change the understanding of
the human user. Similar experiment set-up as the Stroop task could be used to
determine effects of modalities in terms of credibility or the discomfort sometimes
related to robots’ expressions; or to determine on which modality of expression
the human is paying attention to the most. Doing so can improve robots’ com-
munication by using non-verbal facilitators and avoiding interference with verbal
signals.
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Abstract. Within any learning process, the formation of a socio-
emotional relationship between learner and teacher is paramount to facil-
itating a good learning experience. The ability to form this relationship
may come naturally to an attentive teacher; but how do we endow an
unemotional robot with this ability? In this paper, we extend upon insights
from the literature to include tools from user-centered design (UCD) and
analyses of human-human interaction (HHI) as the basis of a multidisci-
plinary approach in the development of an empathic robotic tutor. We
discuss the lessons learned in respect to design principles with the aim of
personalised learning with empathic robotic tutors.

Keywords: Personalisation · Robotic tutor · Human-robot interaction

1 Introduction

Robots that are intended to interact with humans must learn how to become
empathic rather than merely smart. Our aim is to design an empathic robotic
tutor for personalised learning. Since social connection between tutors and learn-
ers has been shown to influence learning positively, a way of making tutoring
systems more effective is to include a robot that will no longer just have to be
intelligent, useable, and interactive, but will establish and maintain a certain
level of social connection [18] and respond empathically to humans. Once such
robots can convey the impression that they can understand and respond to the
user not just intellectually but also emotionally, their use in domains in which
they currently play a minor role, such as teaching, will become far more plausi-
ble and successful. Our approach is founded in fundamental psychological theory
regarding the human ability to monitor others’ emotions, engage in shared atten-
tion, and to establish effective socio-emotional bonds with one another. These
connections have been shown to motivate learning processes [28].
c© Springer International Publishing Switzerland 2015
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The goal of the design process presented here is to perform an iterative UCD
process to enable a robot to mimic a sufficient number of key social and empathic
abilities of a human tutor to establish a socio-emotional bond with the learner.
UCD activities can help ensure that the empathic competencies of our robotic
tutor are implemented in an appropriate and believable manner, have real world
application in the complex school environment, and meet the needs of both
learners and teachers.

There is precedent for HHI studies informing the design of human-robot
interaction (HRI) [27] and UCD with robotics [9].

2 Background

Findings from the psychological literature suggest that children’s learning pro-
cesses can be facilitated by the tutor creating a strong empathic bond with the
child, and having socio-emotional bonds can further be linked to how learners
are able to handle their emotions in a guided learning process [20]. In addition,
widely cited second order meta-analyses [12] have shown that key competencies
of teachers, such as their ability to establish and maintain trusting teacher-
student relationships, are far more important than the number of children in
the class. The benefits of these relationships clearly suggest that a robot with
the ability to form a socio-emotional bond with a child and to respond to the
emotional states of a child empathically should be facilitative for the learning
process.

In the field of HRI we see that personalised feedback from a robotic tutor can
lead to more successful human-robot interactions with reduced problem solving
time and a more motivated learner [19]. There is an increasing amount of work
that shows that it is possible for a user to build a social bond with a robot.
A review of studies that investigated long term interaction with robots [18],
recommends that a robot should be able to display an awareness of and respond
to the user’s affective state and also adapt to the individual’s preferences in
order to build a good social interaction. Gaze through eye contact and joint
attention is very important for social interaction with a robot and can improve
performance in a cooperative human-robot task [4]. The social presence between
a user and robot can also be mediated with a touchtable [3], suggesting that
the capabilities of the robot may be usefully augmented in this manner. There
are however dangers as some types of social behaviour from a robotic tutor may
distract from the learning task and reduce the impact of the tutor in the learning
process [16].

A review of robots in education [21] raises a number of challenges and open
questions that we hope to address in our research, namely understanding the role
of the robotic tutor, how to adapt behaviour and curricular to the learner, and
how to design a socially acceptable robot. As outlined in the introduction, we
argue that these basic insights from the literature need to be critically examined,
expanded, and adapted via tools derived from UCD. UCD should be included to
better account for the specific context, the experience and overarching teaching
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aims of teachers, and the personalised needs of the learner. Only then will robotic
tutors become more successful in forming substantial social bonds with the aim
of assisting learners within relatively open and complex learning scenarios.

3 Design Goals

To develop a robot that is accepted into the school context and that demonstrates
an effective human–robot interaction, we believe that the following design goals
should be met:

(1) Involve our users (teachers and learners) in the design of the robot. When
technology is introduced into the classroom, it becomes part of a complex system
of social and pedagogical interactions, involving both teachers and learners [23].
Therefore, it is pertinent to investigate the perspective of the potential users as
well as the social and contextual structures inherent in the environment [17].

(2) Identify core empathic and personalised pedagogical strategies from
human interactions. Successful personalised tutoring has to attempt to identify
those empathic and pedagogical components and strategies that are most effec-
tive in establishing, strengthening, and sustaining social bonds. We see that HRI
studies that are based on human interactions can be quite successful, for exam-
ple, adopting human gaze behaviour to increase engagement with the robot [27].

(3) Supplement HHI-based behaviors with additional capabilities. On top of
the core components identified with the help of observation and UCD tools, the
robot can utilise additional behaviors that might be successful when displayed
by a teacher but could tap into the same underlying mechanisms, e.g., the robot
could produce robot-appropriate sounds that mimic a teacher’s backchanneling
efforts. HRI interactions are not routinely based on HHI due to the differences
in how interactants perceive robots and humans [8]. It remains important to test
interaction using techniques such as Wizard of Oz (WoZ) studies where a robot
is controlled by a human wizard [7] to investigate how learners interact with a
robot before developing final automated behaviours. We should also prototype
and test these capabilities in the robot iteratively and in situ [24].

(4) Tie the robot capabilities on well supported psychological and pedagogical
theories. Psychology is a field with many coexisting theories and the development
of personalised learning strategies should specifically target those concepts that
have been shown to be empirically well supported.

(5) Enable the robot to adapt to individual differences. Personalised learn-
ing approaches should, in particular, aim to identify cues that teachers use to
personalise their teaching styles.

4 Scenarios and System Overview

The robotic tutor will support 10–15 year olds in the domain of Geography.
We have developed two different learning scenarios: an individual map-reading
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activity and a multi-player collaborative game in which the tutor will provide
support for two learners.

We use the torso only version of the NAO robot produced by Aldebaran
Robotics1. The interaction between the tutor and the learner(s) is mediated by
a large touchscreen/table. The robot sits opposite the learner(s) on the long
edge of the table. Beneath the robot, built in to the table, we have a number of
sensors to enable the robot to perceive facial expressions, gaze direction, head
position, body posture, electrodermal activity and the volume of speech.

Fig. 1. NAO Robot, Learners, and Learning Scenarios

5 Design Process

The goal of endowing robots with empathic capabilities requires a multidisci-
plinary effort, in addition to the teachers and learners. Learning, teaching and
HHI experts give valuable practical advice for our user centric approach. Psychol-
ogists have developed the necessary theoretical framework concerning empathy
and emotion, and provide guidelines and feedback on how this framework can
be translated into practice.

5.1 Interviews

The primary aims of the interviews, which comprised a series conducted over
several months, were to elicit a greater understanding of the context of use
and the teachers’ [26] and learners’ [25] needs. The questions focused on the
plausibility of having a robotic tutor in their classes.

We found that it is difficult for teachers to imagine having an autonomous
robot in the classroom. More specifically, there are a number of practical and
social factors that play an important role when teachers think about robots in
school. They have e.g., concerns about managing the availability of a robot to
all children and how this will affect their already busy schedule. However, this
type of initial resistance towards and mistrust about the intended use of a robot
in school was shown to be greatly reduced by involving teachers in the project.
1 https://www.aldebaran.com/en/humanoid-robot/nao-robot

https://www.aldebaran.com/en/humanoid-robot/nao-robot
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To aid teachers and learners in imagining a robotic tutor, we have developed
a video that gives teachers more information about the capabilities of robots and
how their use is envisioned in the project. Together with the interviews, these
very first steps in our iterative approach have helped us discuss with teachers in
a more concrete way what it could mean to have a robotic tutor in the classroom.

5.2 Participatory Design Workshops

Teachers were provided with a preliminary version of the learning activity and
were asked to contribute to the design. The design workshops allow us to under-
stand teachers’ ways of approaching the learning task, including their assessment
of the difficulty levels of different sub tasks, and how they would personalise their
teaching strategy to learners of differing ability.

The teachers’ contributions included ideas for technical content and pedagog-
ical strategies. The main finding of these workshops was that there appeared to
be a general trend in how directions and instructions are personalised by teach-
ers, in which less capable students are provided with simple and clearly formu-
lated pieces of information, while more capable students are provided with one
or several complex pieces of information at a time. However, it was also observed
that it is difficult for teachers to provide a description of how they would person-
alise or adjust to different students’ needs from a fictive perspective. Although,
generally, this second stage of UCD inspired iterative design approach may not
yet provide the finer details, we have found it to be informative in respect to
some of the broad strategies to be employed by the robot.

5.3 Mockup Studies with Teachers and Students

We conducted mockup studies involving human teachers and children with vary-
ing abilities. The aims of the mockup studies were to understand how and when
teachers provide personalised feedback to the students. Earlier studies were paper
based, later studies were performed with the touchtable based activity [2].

The findings enabled us to better understand the dynamics between the
teacher, task, and learner, as well as examine some of the more detailed peda-
gogical tactics and strategies employed by the teachers.

5.4 User-Centered Design and Pedagogical Theories

The aforementioned preliminary studies for both learning scenarios have given us
insights into the practical requirements needed to create a believable interaction
with a robotic tutor in our context. In combining the experience derived from
the user-centered pretests with a comprehensive literature review of tactics used
by teachers during learning activities, we generated a list of pedagogical tactics
that the robotic tutor can use to interact with and motivate students in their
learning process.

Pedagogical tactics can be divided in three clusters that serve different learn-
ing purposes: the first purpose is to prompt reflection or elicit information from
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the learner; second, to supply content to the learner; and third, tactics to form
a social bond with the learner.

On the basis of recordings made in the earlier studies, we collected over 900
concrete examples of utterances that could be implemented in the robotic tutor.
These are spread over 25 pedagogical tactics meaning that the robotic tutor can
use the same pedagogical tactic in many different ways, giving it a dynamic and
non-repetitive verbal behaviour.

6 Initial Implementation

The specific utterances from the pedagogical tactics from the previous section
have been implemented as behaviours for the robot to perform. Each behaviour
contains speech and nonverbal behaviour based on observations of teachers.

The robot is able to gaze and gesture at the table and use gestures to explain
as it is speaking. Our architecture allows the decision of which social or ped-
agogical tactic to be taken at a high level as each concrete behaviour already
details everything that the robot needs to do in terms of gesturing and gazing
at the learner or table [22].

In addition to pedagogical tactics the robot has a set of autonomous behaviors
that are continuously running without input from the human wizard. The ability
for the robot to perform actions contingent and adapted to the learner is key
from the psychological theories and other HRI literature. To achieve this at a low
level, the robot makes use of the sensors to track the learner’s volume, location
and gaze direction. For example, gaze behaviour is based on a mockup study [1],
the robot can gaze at the learner when addressing them, follow where the learner
is looking or interacting with the activity, and gaze back at the learner when
the learner is looking at the robot. These low level contingent behaviours are
overridden when the robot is required to perform a behaviour specifically selected
by the decision-making component.

7 Wizard of Oz Studies

On the basis of the initial implementation, a number of WoZ studies have been
conducted with children at their school. The aim of these studies has been to
test the expressive capabilities of the robot in an interaction with the learner
and see if it is possible to support the learner in the way that we envisage.
Additionally we captured corpora of data to inform the design of the sensing
and decision making capabilities of the robotic tutor. The wizards are researchers
with teaching experience and had been involved in the development of the WoZ
interface with full training in its use.

In a WoZ study the wizard decided which pedagogical tactic to apply via
a WoZ Interface. The WoZ interface allows the wizard to observe the learner’s
activities related to the educational application; view the learner via a webcam
and other sensors; and control the robot. The WoZ interface and system archi-
tecture allows the wizard to concentrate on high level interaction and not on
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Fig. 2. WoZ Interface

low level coordination of the robot. The robot used concrete behaviours based
on the mockup studies but automatically adapted to the situation based on the
position of the learner and the state of the task.

In terms of sensing affect, some of our findings were at odds with our initial
thoughts on the emotions that we would observe in the learners. We found that
expressions of basic emotion were much less frequent than suggested by theory
related to learning scenarios. This has led us to adopt a valence and arousal model
for the automated system. Our data so far suggests that the smiles exhibited
by the children in the WoZ should more cautiously be interpreted as signs of
politeness and, perhaps, a readiness to engage in interaction with the robot,
rather than any clear indication of enjoyment.

8 Development of Fully Autonomous Behavior

For the robot to work in an autonomous way, we have developed perception
capabilities and pedagogical strategies so that the robotic tutor can sense and
adapt to the affective states, skills, and difficulties of the learner. The pedagogical
strategies comprise of a set of rules that determine which of the pedagogical
tactics should be used by the robotic tutor. Some of these rules have been based
upon findings from user studies and literature. Other rules were generated using
machine learning analysis of the logs of the interactions recorded in the WoZ.

We have also performed supporting studies to develop behaviors not based on
human interactions, for example: to create and validate a set of short synthetic
sounds that the robot could use as emotional qualifiers to synthetic speech [15]; to
investigate how affective feedback is perceived by learners [10]; and to evaluate
and train the perceptive abilities of the tutor focusing on the electrodermal
activity sensor [14] and the ability for the system to perceive engagement [6].

We are now in the phase of the project where we are running studies with a
fully automated robotic tutor.

9 Lessons Learned

A number of lessons can be drawn from our user-centered iterative approach for
the purpose of designing robotic tutors:
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The involvement of users and UCD-tools may be most effective when imple-
mented throughout the full range of the design process. Including the learners
at a very early stage was essential to providing a system that the teachers would
welcome in to their classroom and fit into their curriculum. Feedback provided
here led to the development of learning aims, the role of the robot and the
development of a multiplayer scenario.

Including users at an early stage can be difficult as initially teachers and
students were unfamiliar with the capabilities of robots and could not imagine
how the robot could fit in the classroom. We used a video and descriptions of
possible scenarios to give concrete examples. As development of the activity and
robotic tutor progressed we used prototypes as concrete demonstrations.

It can be difficult for teachers to explain in detail how they would adjust to
different students’ needs on the basis of an abstract description of the task. What
is needed in this case is to actually run mockup studies to put the teachers into
a situation where the students have different needs and carry out an assessment
on that basis.

There is a need to fully take into account personality differences between
children. Some children, through high expressivity, make it much easier for the
robot to pick up on critical information regarding their emotional state. The
challenge is to accommodate these differences and be aware that not all students
will indicate their emotional state in the same way. Additionally the learners
reactions change over time, so we are required to give each child sufficient time
and opportunity to adjust to the presence and unfamiliar nature of the robot.
We have tried to address this by making the students familiar with the robot
and performing all of our studies in the participant’s schools.

As we found that expressions of basic emotion were infrequent we have
adopted a valence and arousal model for affect detection.

We have adopted many of the teaching strategies observed in mockup stud-
ies. We try to give the student an opportunity to self-regulate their learning
process [5]. We match feedback to the abilities of the student, breaking down
the task and focusing the student’s attention on the areas where they have diffi-
culty. We further personalise the interaction by referring to the learner’s previous
knowledge and skills.

We suggest too much interaction from the robot could hinder the interac-
tion; frequent or unconvincing praise can adversely affect children’s intrinsic moti-
vation [13]. To avoid adverse effects of inhibiting negative emotion [11] and to
facilitate a good social bond with the child, our design has aimed for mimicry of
context-appropriate affective behavior as a more likely key to a successful learning
experience. Care with affective behaviour must also be taken as we have found that
it is possible to make the activity seem more difficult with affective feedback [10].

By observing the interactions between teacher and learner we are able to gain
a deeper insight into the key tactics used by teachers. We were able to combine
the observations with a review of literature to create a set of pedagogical tactics
and a set of rules for when it would be appropriate for the robotic tutor to use
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them. Literature alone would not provide enough detail to formulate such an
appropriate, dynamic and non-repetitive behaviour.

10 Conclusion

In this paper, we have presented the design process for the enhancement of off-
the-shelf robots aimed at creating a new generation of artificial embodied tutors
that are able to engage in empathic interactions with learners. To this aim, we
have provided a structure that illustrates how the end users can be actively
engaged in the design of an appropriate learning context in which the robot may
be enabled to develop the full extent of personalised empathic capabilities.

On the theoretical foundation that has demonstrated the importance of social
bonding in education, we show how capabilities in a robot to support social
bonding might be developed based on interviews, HHI, and HRI studies in a
non trivial, real-world domain. We have developed initial versions of all of the
components of the robotic tutor system, including perceptive capabilities, ped-
agogical strategies, and psychological bonding mechanisms. We are now in the
process of evaluating the robotic tutor.
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Abstract. Due to technological and scientific advances, a new approach to aut-
ism therapy has emerged, namely robot-assisted therapy. However, as of now, 
no systematic studies have examined the specific cognitive mechanisms that are 
affected by robot-assisted training. This study used knowledge and methodolo-
gy of experimental psychology to design a training protocol involving a pet ro-
bot CuDDler (A*STAR Singapore), which targeted at the specific cognitive 
mechanism of responding to joint attention (RJA). The training protocol used a 
modified attention cueing paradigm, where head direction of the robot cued 
children’s spatial attention to a stimulus presented on one of the sides of the ro-
bot. The children were engaged in a game that could be completed only through 
following the head direction of the robot. Over several weeks of training, child-
ren learned to follow the head movement of the robot and thus trained their RJA 
skills. Results showed improvement in RJA skills post training, relative to a 
pre-training test. Importantly, the RJA skills were transferred from interaction 
with the robot to interaction with the human experimenter. This shows that with 
the use of objective measures and protocols grounded in methods of experimen-
tal psychology, it is possible to design efficient training of specific social cogni-
tive mechanisms, which are the basis for more complex social skills. 

Keywords: Autism · Robot-assisted therapy · Joint attention · Social robotics 

1 Introduction 

1.1 Autism 

As medical and neurobiological knowledge advance, early detection tools and inter-
vention methods for Autism Spectrum Disorder (ASD) have been growing [1,2].  
Deficits in joint attention skills have been found to be one of the earliest signs for 
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ASD, wherein impairments in joint attention (i.e., attending to where others attend 
with the awareness that the others attend to the same location/object) were associated 
with stunted language development and decreased social and communicative skills 
[3,4,5]. Thus, research into joint attention, especially the development of intervention 
methods, as well as understanding the mechanisms behind joint attention has become 
a pivotal area of interest in autism research [6].  

1.2 Robot Therapy 

In recent years with rising technological advances, especially in the field of robotics, a 
new area of intervention method for children with ASD has been emerging, namely 
social robots as a tool for autism therapy [7-13]. The therapeutical value of social ro-
bots is grounded in reliability, simplicity, and predictability of a robot’s behavior 
[7,12]. However, although in recent years various social robots for autism therapy 
have been constructed [7,11,12], to date there is still a limited number of training pro-
tocols which would use social robots and target at specific neuro-cognitive mechan-
isms. For example, Warren and colleagues [14] showed that after 4 sessions with a 
robot, children seemed to improve in following joint attention cues given by the robot. 
However, it was not demonstrated to what extent this effect prevailed in other situa-
tions, i.e. whether also general joint attention skills of the children (independent from 
the robot) improved. Similarly, it was shown that other prosocial behaviour, such as 
interaction through gaze and touch, was elicited and improved through the use of 
robots [15]. But again testing of the effect seemed to have been limited to the robot. In 
general, autism robot therapy research could benefit from independent diagnostic 
measurement [16]. On the other hand, Wainer and colleagues [17] demonstrated 
through interviews and questionnaires that improvements in interaction skills elicited 
by the deployment of an after-school robotics class seemed to persist even after the 
class. Thus, there is some evidence that social interaction skills, such as joint atten-
tion, may be improved through robotic therapy. However, the field is in need of sys-
tematic evaluations (with reliable objective methods of experimental psychology) of 
the effectiveness of robots’ therapeutic use, independent of a specific robot platform. 

1.3 Aim of Study 

The present study aimed at designing a training protocol of robot-assisted therapy for 
autism that would extract and target at specific mechanisms of social cognition, and 
would also allow for experimental assessment of the efficiency of such protocol. To 
that end, we used a social robot CuDDler (designed by the Agency of Science and 
Technology (A*STAR) Singapore) and we embedded a variation of a spatial-attention 
cueing paradigm in a game that children played with the robot. Spatial attention of 
children was cued by the robot’s head direction. Based on previous research in  
experimental psychology [3,18-20] we aimed at extracting and training the mechanism 
of responding to joint attention (RJA), which is the fundament for other social cogni-
tive skills. Further, we aimed to test whether the trained joint attention skills prevail 
independently of the robot’s presence by using the abridged Early Social Communica-
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tion Scale (ESCS, [21]), which has been shown to be effective in measuring children's 
behaviour in naturalistic environments [22,23]. 

2 Materials and Methods 

2.1 Participants 

7 children (Mean age: 4.6, age range: 4 to 5 years, 4 male) all diagnosed with ASD  
(1 low, 4 low/moderate, 1 moderate, 1 moderate/high functioning) took part in the 
experiment. All children were right-handed and all had normal vision. Parents were 
recruited via the early intervention center THK EIPIC Centre (Singapore), and they 
volunteered their children for participation. All parents gave written informed consent 
regarding the participation of their children in the experiment. The experiments were 
conducted at the THK EIPIC Centre (Singapore) in collaboration with A*STAR Sin-
gapore and the Ludwig-Maximilians-Universität Munich. The experimental proce-
dures consisted of purely behavioural data collection (e.g., accuracy rates), and were 
video recorded. The procedures did not include invasive or potentially dangerous 
methods and were in accordance with the Code of Ethics of the World Medical Asso-
ciation (Declaration of Helsinki). Data were stored and analyzed anonymously. 

2.2 Stimuli and Apparatus 

The key apparatus in the experiment was a robot CuDDler (A*STAR), controlled via 
a computer interface (Windows 7) and a smartphone (Google Nexus 4). The sequence 
of movements and speech were started by pressing different buttons on the interface. 
Additionally, picture stimuli were presented on two 136.6 x 70.6 mm mobile phone 
screens (bephone, 640 x 480), located to the left and right of the robot at a distance of 
~ 40 cm (11° of participants’ visual angle), tilted ~ 45° relative to the robot, so that 
the robot seemed to “see” stimuli on the screens after turning its head (cf. Fig. 1, left).  
 

 
Fig. 1. Experimental Setup (left) and an example of a stimulus (right).  

The target stimuli were 10 colorful line drawings of various objects (star, apple, 
ball, candle, flower, hat, heart, ice cream, plane, sweet, Fig.1, right) in 4 colors: red, 
blue, green or yellow. In one trial, there were always two drawings of the same object 
presented – one on each phone screen in different (randomly chosen) colors. In one 
set of 20 trials all objects in all colors appeared once. The stimuli were fit to the  
center of the phone screens (136.6 x 70.6 mm) and covered approximately 2° in 
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height and approximately 3.5° in width of visual angle of participants. The robot’s 
head moved pseudo-randomly to the left or right approximately 2.3° in participants’ 
visual angle from the midline with a 50% chance occurrence of either side. The par-
ticipants were seated 200 cm from the robot, behind a table with a mouse for giving 
the response.  

2.3 Procedure  

The protocol's task difficulty, in particular giving color responses as well as abilities 
to press buttons were first discussed with the children’s teacher, who confirmed that 
in principle all children had learned to discriminate colors and to express this verbal-
ly. The whole training protocol consisted of 3 phases. First, a so-called “pre-test” was 
administered by a human experimenter to measure children’s joint attention skills – 
both responding to joint attention (RJA) and initiating joint attention (IJA) – using the 
abridged Early Social Communication Scale (ESCS, [21]) before the robot training 
was conducted. Then, the robot training, consisting of 6 sessions of approx. 20 mi-
nutes each, was performed over a period of approx. 3 weeks. 2-3 days after the last 
robot session, a “post-test” was administered (ESCS) by a human experimenter to 
once again measure children’s joint attention skills. The pre- and post-test lasted ap-
prox. 10 minutes each, during which the human experimenter and the child were sit-
ting in front of each other across a table. As we were interested in measuring joint 
attention skills, only 3 parts of the ESCS were used, the Object Spectacle Task (1 x), 
the Gaze Following Task (2 x) and the Book Presentation Task (2 x). For the object 
spectacle task children were handed (6 times) a different toy to play with, and it was 
tested whether the child would initiate a joint attention bid by gaze or gestures (IJA). 
During the book presentation task, an examiner pointed to 6 different locations in a 
book to test whether the child would follow this joint attention bid with gaze or point-
ing (lower RJA, as the object was in closer spatial proximity) or whether the child 
would initiate a joint attention bid by gaze or pointing (IJA) to different parts of the 
book. In the gaze following task, the examiner pointed to 1 of 4 posters located be-
hind, to the left and right of the child (90° off midline) to test whether the child would 
follow this joint attention bid (higher RJA, as the object was further away). 

Robot Training. Before the experiment, children were taught by a teacher or an  
experimenter to associate the mouse buttons with the respective phone screens  
(left-to-left/right-to-right mapping). The children were then instructed to follow 
CuDDler’s head movement, and their task was to verbally (out-loud) name the color 
of the target, at which the robot was looking, and additionally press the corresponding 
button. In practice trials, an experimenter or teacher also pointed to the correct screens 
to help understanding of instructions. This lasted approx. 10 – 20 trials depending on 
children’s proficiency, understanding and attention span. 1 session of the experiment 
(subsequent to practice) typically consisted of 20 trials, although this might have  
varied depending on children’s proficiency, understanding and attention span.  
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ESCS coding sheet [21]. Initiating joint attention (IJA) scores were calculated based 
on the number of instances a child showed an IJA bid. The sum of every joint atten-
tion bid by the child amounted to the “total IJA” score. Therefore, higher score means 
more instances of IJA. Responding to joint attention scores (RJA) were based on  
percentage of times a child followed an examiner`s joint attention bid (pointing to a 
poster or to pictures in a book). The score was calculated separately for higher level 
(pointing to posters) and lower level RJA bids (pointing to a book). For lower level 
RJA (lRJA), a point was given when a child followed the examiner`s pointing gesture 
with their gaze. The sum of lRJA points was divided by the number of times the ex-
aminer visibly pointed to a picture in the book multiplied by 100 and thus the percen-
tage score with a maximum of 100 (%) was calculated for lRJA. For the higher level 
RJA (hRJA), a score point was given when the child followed the examiner`s pointing 
gesture by sufficiently turning their head to indicate that they were looking at the 
poster. Subsequently, a paired t-test was administered to compare the average in-
stances of joint attention (RJA or IJA) between pre- and post-test.  

Color Accuracy. For these analyses, data from Session 1 counted as practice. Mean 
accuracy of color response for each child and each subsequent session was calculated. 
A paired t-test between Session 2 and 6 was administered to calculate the effect of the 
training over time. All trials, in which one of the following occurred were counted as 
errors and excluded: (1) the teachers pointed towards the screens to prompt a child, 
(2) a child didn’t respond, (3) a child said a completely different color than what was 
displayed on the screen, or (4) a child responded with the wrong color first, but then 
named the correct color. However, if a child first responded with the correct color, but 
then said the other color, this was counted as a correct response. In cases when child-
ren named the red color as brown, the response was counted as correct. Similarly, 
when children said green instead of yellow and vice versa (only when yellow or green 
appeared with red or blue), the response was counted as correct, as the yellow and 
green color were similar. However, when both green and yellow appeared together, 
mixing up yellow and green was counted as an error, as the two simultaneously pre-
sented colors were easily distinguishable.  
Button Press Accuracy. Also for these analyses, data from the first session counted 
as practice. Mean accuracy of button response for each child and for each subsequent 
session was calculated. A paired t-test between Session 2 and Session 6 was adminis-
tered to calculate the effect of the training over the sessions. All trials, in which the 
teachers pointed towards the screens to prompt the children, were excluded. 

3 Results  

3.1 Joint Attention Scores 

The analysis of joint attention scores showed that an average total RJA score of 
193.75 (SD=12.5) in the posttest (after robot training) was significantly higher than 
the average total RJA score of 183.33 (SD=13.6) in the pretest (before robot training), 
t(3) = 2.61, p = .040, dz=0.797 (cf. Fig. 3, left). When splitting the data into lower 
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level RJA (lRJA) and higher level RJA (hRJA), lRJA results showed a significantly 
higher average lRJA score of 100 (SD=0) in the post-test, relative to an average lRJA 
score of 83.3 (SD=13.60) in the pre-test, t(3) = 2.45, p = .046, dz=1.732 (cf. Fig. 3, 
right). The difference in the average hRJA score (pretest: 100, SD=0 vs. posttest: 
93.75, SD=12.5) was not significant, t(3) = 1, p = .80 (cf. Fig. 3, right).  
 

 
Fig. 3. Mean total RJA scores (left), lower RJA and higher RJA scores (right) in pre-test and 
post-test as measured by the ESCS [21] (left). Error bars: standard errors of the mean (SEM). 

IJA scores were not significantly different in pretest (2.67, SD=2.42) vs. posttest 
(5.67, SD=5.27), t(5) = 1.39, p = .112.  

3.2 Color Accuracy and Button Press Accuracy 

Mean color accuracy in Session 6 (M= 0.69, SD= 0.46) increased significantly from 
Session 2 (M= 0.52, SD= 0.50), t(5) = 2.19, p = .0.04, cf. Fig. 4, left. Button press 
accuracy increased (marginally significant) for Session 6 (M= 0.75, SD= 0.43) vs. 
Session 2 (M= 0.67, SD= 0.48),  t(5) = 1.60, p = .086, see Fig. 4, right. 
 

  
Fig. 4. Mean color (left) and button press accuracy (right) for Session 2 – 6. Error bars: SEM. 

4 Discussion 

Our study examined if a newly-developed robot-assisted training protocol embedding 
an attention-cueing paradigm in a game that children play with a robot has the poten-
tial of improving joint attention skills in children diagnosed with ASD. 
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4.1 RJA & IJA Scores 

The present results showed a significant difference between RJA scores in pre- vs. 
post-training test, as measured by the ESCS [21], with greater scores after the robot-
assisted training. The effect was large (as indicated by Cohen’s dZ effect size values), 
despite small sample. First, and foremost, this demonstrates that robot training was 
successful in increasing the children’s skills in responding to joint attention, and that 
children transferred these skills to the interaction with human experimenter. Interes-
tingly, when splitting the data into lower RJA (lRJA) and higher RJA (hRJA) scores, 
only lRJA scores showed a significant increase after the robot training. However, this 
may be simply due to the measurement’s sensitivity not being high enough, as all 
children of this sample seemed to have a perfect score on hRJA skills already before 
the robot training. Possibly with a sample of children less skilled in hRJA before the 
training (or a more sensitive measure), a significant increase of hRJA skills might be 
observed after robot training.  Furthermore, IJA scores were of equal magnitude be-
fore and after the training.  This is in line with our hypothesis, as we designed a pa-
radigm to specifically train RJA to maximize the effectiveness of the training. The 
sole effect of an increase in RJA skills and lack of influence of the robot training on 
the IJA skills supports the idea that there are two separate mechanisms underlying 
joint attention, namely IJA and RJA [3, 24]. Therefore, our results are in line with 
previous research and confirm that with carefully designed training protocols one can 
extract and target specific mechanisms of social cognition. Such focused training 
protocols should be effective as an intervention method in autism therapy [3, 24]. 
Moreover, the use of an independent diagnostic (ESCS), allows for suggesting that 
our findings are relatively robust and independent of the robotic platform. 

4.2 Verbal Color Accuracy and Button Press Accuracy 

Our present results indicated an increase in color accuracy over time and, in particu-
lar, a significant increase of accuracy between Session 2 and 6. This may be due to 
that children were increasingly more engaged in the game with the robot, arguing in 
favour of the training protocol. Additionally, a more general learning effect might 
have also played a role in the improved performance in color accuracy task. However, 
general learning is likely not to be the only factor influencing the effect, as it seems 
more plausible that the increase in performance during the robot-assisted training is 
related to the nature of the training protocol itself (completion of the task is possible 
only through following the robot’s head direction). This is predicated on the fact that 
instances of RJA increased over the course of training, and this presumably had an 
effect on the increase of color accuracy. Similarly, results also indicate a general trend 
of increased button press accuracy over time. The fact that the differences between 
Session 2 and 6 were only marginally significant might have been related to that the 
button presses (and their mapping to respective stimuli) might have been demanding 
for the children with ASD, due to, for example, deficits in motor skills [6,25].  
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4.3 Implications and Future Directions 

In general, results of this study provide convincing evidence for robot-assisted train-
ing of social skills in children diagnosed with ASD. The training can be effective 
when it is grounded in paradigms of experimental psychology that target specific 
cognitive mechanisms and measure improvement with objective measures. In our 
study, despite a relatively small sample size of children diagnosed with ASD, the 
robot CuDDler in combination with the attention-cueing paradigm proved appropriate 
to improve RJA skills. Improving RJA skills is crucial for social skills, as RJA is 
positively related to language development, social and communication skills of child-
ren diagnosed with ASD [3,5,26]. Thus, robot-assisted therapy which improves joint 
attention may – in a long run – also facilitate language learning and more complex 
social cognitive skills. Most importantly, to evaluate joint attention improvement, we 
used a diagnostic tool that was independent of the robot therapy, which suggests ro-
bustness of the effects. However, we assessed joint attention skills shortly after the 
last robot therapy session (post-test: 2-3 days later). Thus, future research should elu-
cidate whether the improvement of RJA skills of children diagnosed with ASD after a 
robot-assisted therapy have a longer-lasting effect. Furthermore, follow-up studies 
(with larger sample sizes) should test if a longer training would be related to how 
permanent the improvement in joint attention skills is, and the degree with which it is 
transferred from human-robot to human-human interaction. Moreover, as some of the 
children did not want to participate in the tasks, future research will need to develop 
means to make the robot training more attractive (possibly a longer familiarization 
phase preceding the training) to children who are initially reluctant to participate. 

4.4 Conclusions 

In sum, this study is a first approach to design – based on paradigms from experimen-
tal psychology – training protocols that isolate and target specific cognitive skills of 
children with ASD. By combining information and knowledge gained from various 
interdisciplinary fields, such as robotics, cognitive neuroscience and psychology, one 
can design a training method that may lead to distinct and positive conclusions as to 
the effectiveness in improving joint attention skills in children with ASD. Future stu-
dies may take this as a basis on which to expand on, to examine this therapy method 
in more detail, test it on a larger sample size over a longer period of time and possibly 
also test variations of this protocol to train and improve other cognitive mechanisms. 
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Abstract. The goal of the current study was to extract natural nonverbal beha-
viors that are implicit but specific to strangers and friends and to test the  
expressiveness of these nonverbal behaviors in two different levels of closeness 
using 3D agents. An experiment was conducted in which 48 pairs (48 strangers 
and 48 friends) of participants had casual conversations about recent events for 
10 min. Their body movements were recorded by a motion-capture system, and 
13 vectors were defined on the upper body to compute the cosine similarity for 
each frame in order to extract the motions. The motions specific to strangers 
and friends were identified and two scenarios were created using those motions. 
The scenarios were implemented using 3D agents of a female human and a hu-
manoid robot, and 400 respondents were asked to evaluate the closeness that the 
agent seemed to express toward the counterpart. The results showed that a hu-
man-agent performing friend motions were evaluated higher in expressiveness 
closeness than friend motions and a human-agent and a robot-agent performing 
friend motions were evaluated lower in strangeness than friend motions. In fu-
ture works, we aim to improve the scenarios and implement them in humanoid 
robots. 

1 Introduction 

To realize robots that can coexist with humans, several technological developments 
have to be made in multiple areas such as sensing [1-3], mobility [4-6], artificial intel-
ligence [7-9], and interface [10-12]. It is especially important to adapt the behavior of 
robots for smooth interaction with humans. [13] developed a situated module for an 
interactive humanoid that can employ verbal and nonverbal behaviors. [14] identified 
the comfortable distance between a robot and humans who meet the robot for the first 
time. Moreover, in the case of a robot presenting slides to an audience, it was found 
that combinations of nonverbal behaviors, such as eye contact and pointing, affect the 
understanding of the presentation [15].  
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Most studies on human-robot interactions test newly developed technologies in 
temporal interactions conducted in an experimental environment. However, it is also 
important to focus on the sustainable relationships between robots and humans from a 
psychological perspective. Closeness, which reflects enduring personal relationships 
[16], is one of important factors for understanding longitudinal interpersonal relation-
ships [17, 18]. This study takes closeness into consideration in human–robot interac-
tions in order to realize robots that can sustainably develop relationships with humans 
by expressing different levels of closeness using nonverbal behaviors. We aimed to 
identify the nonverbal behaviors that are specific to interactions with strangers, who 
are not close, and friends, who are closer. Then, we created two scenarios for both 
these cases in which a 3D agent employed nonverbal behaviors during conversations 
and tested the expressiveness of closeness.  

[19] revealed that nonverbal cues are more informative than verbal cues and re-
ported that only 7% of attitudes of speakers is determined by spoken words whereas 
93% is determined by nonverbal cues. Closeness is also expressed nonverbally. Indi-
viduals who are closer, such as friends, stand at an interpersonal distance between  
45 cm and 120 cm, whereas business colleagues, who are less close, stand more than 
120 cm apart [20]. Friends look at each other more compared with than strangers in 
the case of both adults [21] and children [22]. [23] deduced that closeness is related to 
eye contact, interpersonal distance, intimacy of conversation, and amount of smiling; 
the more these behaviors occur, the more the affiliation between the individuals.  
Furthermore, affectionate behaviors, such as holding hands, kissing, and winking, are 
significant for the development of romantic relationships [24]. 

Previous studies have focused on explicit nonverbal behaviors that could be de-
tected relatively easily. [25] reported that observers and actors differ in their under-
standing of the same phenomenon. For instance, if the communicating individual 
behaves more actively, the observer recognizes that their communication is going 
well by focusing on their expressiveness. However, the communicating individual not 
only uses expressiveness but also other cues to understand the ongoing communica-
tion, and this is called the “expressivity halo” effect [26]. Considering this discrepan-
cy between actors and observers in understanding an interaction, it is quite important 
to identify the nonverbal behaviors that reflect different levels of closeness from an 
actor’s perspective. Actors use explicit as well as detailed information [27] and 
process the information more elaborately [28, 29] than observers. Recently by using 
technical measurements such as eye-cameras, nonverbal behaviors that have been 
difficult to be detected have been found to be important cues for interpersonal com-
munications [30, 31].  

In this study, we recorded the motions of pairs of strangers and friends with a mo-
tion-capture system and then investigated the specific nonverbal behaviors used in 
both these types of relationships. Based on the findings, we created two scenarios and 
tested whether the identified behaviors can communicate the different levels of close-
ness to other humans. As a first step in this research, we focused on the motions of the 
upper body. 
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2.4 Questionnaire 

To determine the level of closeness between each pair of participants, we asked them to 
complete a questionnaire that included a psychological scale of closeness. We used the 
factor of intimacy (10 items, 7-point, ߙ ൌ  0.98) of Sternberg’s triangular theory of love 
scales [32], which measures the degree of closeness such as friendliness and bonding. 
Other factors of passion and commitment are often used for romantic relationships, but the 
factor of intimacy is relevant for assessing the closeness of friends who like each other. 
Example statements in the questionnaire include “I have a warm relationship with __.”  
“I communicate well with __,” and “__ is able to count on me in times of need.” 

3 Results 

3.1 Manipulation Check 

We conducted an analysis of covariance (ANCOVA) to investigate the effect of rela-
tionships (stranger/friend) on the score of intimacy of Sternberg’s triangular theory of 
love scales, controlling gender and age. We found a significant effect of relationships 
on intimacy (F(1, 94) = 132.20, 0.001 > ). The pairs of participants who were 
friends (mean = 4.75, SD = 1.18) were closer than those who were strangers (mean = 
1.88, SD = 1.26).    

3.2 Extraction of Motions 

The system recorded the positions of the markers at 60 Hz, and the recorded data was 
reduced to 10 Hz in this study. We defined 13 vectors based on the 16 markers on the 
upper body (Figure 3). In order to extract the motions, we used cosine similarity. For 
each vector, we calculated the cosine between two continuing frames. The cosine similar-
ity ܵሺݐሻ of a vector ݅ (1  ݅  13) at times  ݐ ,ݐ െ 1 is calculated as follows: 

ܵሺݐሻ ൌ ݏܿ ߠ ൌ ሻݐሺܣ · ݐሺܣ െ 1ሻԡܣሺݐሻԡԡܣሺݐ െ 1ሻԡ 

We calculated the sum of cosine similarities on the upper body for the 13 vectors at 
times ݐ ,ݐ െ 1 as follows: 

ܵሺݐሻ ൌ  ܵሺݐሻଵଷ
ୀ  

When the form is similar, the cosine similarity is larger. We set a threshold based 
on the recorded video, and the beginning and end of each motion were detected using 
the cosine similarity. As a result, 12,033 motions were extracted from the 10 min 
records of all the participants. 

3.3 Categorization of Motions   

To categorize the 12,033 motions, the cosine similarities between pairs of extracted 
motions were calculated. The cosine similarity between a motion ܺ with ݉ frames 
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evaluate strangeness (0.71 = ߙ); “I think this person (robot) talks with the stranger,” 
“The person (robot) looks nervous,” “This person (robot) seem to try to be polite.” 
The length of each movie was about three minutes and the experiment was conducted 
in a between-subjects design and online. 

We conducted a repeated analysis of variance (ANOVA) to investigate the effect 
of the two scenarios on two kinds of evaluations (closeness/strangeness). In the case 
of the human figure, we found a significant interaction effect (Wilks’s 0.963 = ߣ, 
F(1,198) = 7.71, 0.01 > ). The friend scenario scored higher in closeness and lower 
in strangeness, whereas the stranger scenario scored higher in strangeness (Figure 7). 

We also observed a significant interaction effect for the robot figure (Wilks’s ߣ = 
0.942, F(1,198) = 12.27, 0.001 > ). The friend scenario was lower in strangeness 
and higher in closeness, whereas the stranger scenario was higher in strangeness than 
in closeness (Figure 7). 

 

 
Fig. 7. The result for both figures. 

4 Conclusion 

In this study, we aimed to identify specific motions for different levels of closeness 
and created two kinds of scenarios, one between strangers and the other between 
friends. These two scenarios showed significantly different impressions regarding 
closeness and strangeness for both the human and robot figures. However, we did not 
find a significant difference between the friend and stranger scenarios in the case of 
the robot figure compared with the case of the human figure. The robot figure looked 
like ASIMO, which is familiar in Japan, so it is possible that the participants felt 
friendlier toward the robot figure than the human figure. In addition, we didn’t find 
significant difference between closeness and strangeness in case of the human figure. 
It is possible that friend motions were relative polite and not overly friendly.In future 
studies, we need to implement the scenarios with other figures and also with real ro-
bots. 

We focused on the upper body motions in this study. However, the nonverbal mo-
tions are usually activated in the combinations with multi-channels, and they are also 
affected by the behaviors of the counterpart. The interdependency of whole body 
motions and interpersonal effects will be investigated in a future work to realize the 
flexible motions for human–robot interaction. 



 Implicit Nonverbal Behaviors Expressing Closeness by 3D Agents 315 

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number 15K13114, 
15K01582, 26705008, and Honda R&D Co., Ltd.. Part of this work was carried out under the 
Cooperative Research Project Program of the Research Institute of Electrical Communication, 
Tohoku University. 

References 

1. Yang, H.Y., Zhang, H., Xu, W., Zhang, P.J., Xu, L.M.: The Application of KINECT  
Motion Sensing Technology in Game-Oriented Study. iJET 9(2), 59–63 (2014) 

2. Almaddah, A., Vural, S., Mae, Y., Ohara, K., Arai, T.: Spherical Spaces for Illumination 
Invariant Face Relighting. Journal of Robotics and Mechatronics 25(5), 840–847 (2013) 

3. Penaloza, C.I., Mae, Y., Cuellar, F.F., Kojima, M., Arai, T.: Brain Machine Interface Sys-
tem Automation considering User Preferences and Error Perception Feedback. IEEE 
Transactions on Automation Science and Engineering (2014) 

4. Nakaoka, S., Nakazawa, A., Kanehiro, F., Kaneko, K., Morisawa, M., Hirukawa, H.,  
Ikeuchi, K.: Learning from Observation Paradigm: Leg Task Models for Enabling a Biped 
Humanoid Robot to Imitate Human Dances. International Journal of Robotics Research 
26(8), 829–844 (2007) 

5. Shigemi, S., Kawaguchi, Y., Yoshiike, T., Kawabe, K., Okgawa, N.: Development of New 
ASIMO. Honda Technical Review 18(1), 38–44 (2006) 

6. Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., Kajita, S.: Cybernetic 
human HRP-4C. In: Proc. IEEE-RAS International Conference on Humanoid Robots,  
pp. 7–14 (2009) 

7. Nakanishi, H., Tanaka, K., Wada, Y.: Remote handshaking: touch enhances  
video-mediated social telepresence. In: International Conference on Human Factors in 
Computing Systems, pp. 2143–2152 (2014) 

8. Ito, T., Matsubara, H., Grimbergen, R.: A Cognitive Science Approach to Shogi Playing 
Processes (2)-Some Results on Next Move Test Experiments. Transactions of Information 
Processing Society of Japan 45(5), 1481–1492 (2004) 

9. Sato, Y., Takahashi, D., Grimbergen, R.: A Shogi Program Based on Monte-Carlo Tree 
Search. ICGA Journal 33(2), 80–92 (2010) 

10. Nakaoka, S.: Choreonoid: extensible virtual robot environment built on an integrated GUI 
framework. In: Proc. of the 2012 IEEE/SICE International Symposium on System Integra-
tion, pp. 79–85 (2012) 

11. Takashima, K., Aida, N., Yokoyama, H., Kitamura, Y.: TransformTable: a self-actuated 
shape-changing digital table. In: Proceedings of Conferece on Interactive Tabletop and 
Surface (ITS), pp. 179–187 (2013) 

12. Hayashi, Y., Itoh, Y., Takashima, K., Fujita, K., Nakajima, K., Onoye, T.: Cuple:  
cup-shaped tool for subtly collecting information during conversational experiment. The 
International Journal of Advanced Computer Science 3(1), (2013) 

13. Kanda, T., Ishiguro, H., Imai, M., Ono, T.: Development and Evaluation of Interactive 
Humanoid Robots. Proceedings of the IEEE 92(11), 1839–1850 (2004). Special issue on 
Human Interactive Robot for Psychological Enrichment 

14. Kamide, H., Mae, Y., Takubo, T., Ohara, K., Arai, T.: Direct Comparison of Psychological 
evaluation between Virtual and Real Humanoids; Personal space and subjective impres-
sions. International Journal of Human-Computer Studies 72, 451–459 (2014) 



316 H. Kamide et al. 

15. Kamide, H., Kawabe, K., Shigemi, S., Arai, T.: Nonverbal behaviors toward an audience 
and a screen for a presentation by a humanoid robot. Artificial Intelligence Research 3(2), 
57–66 (2014) 

16. Cramer, D.: Close relationships: The study of love and friendship. Arnold, London (1998) 
17. Levinger, G., Snoek, J.D.: Attraction in relationship: a new look at interpersonal attraction. 

General Learning (1972) 
18. Knapp, M.L.: Interpersonal Communication and Human Relationships. Allyn & Bacon, 

Boston (1984) 
19. Mehrabian, A., Wiener, M.: Decoding of inconsistent communications. Journal of Perso-

nality and Social Psychology 6, 109–114 (1967) 
20. Hall, E.T.: The hidden dimension, Doubleday and Company (1966) 
21. Coutts, L.M., Schneider, F.W.: Visual behavior in an unfocused interaction as a function 

of sex and distance. Journal of Experimental Social Psychology 11, 64–77 (1975) 
22. Foot, H.C., Chapman, A.J., Smith, J.R.: Friendship and social responsiveness in boys and 

girls. Journal of Personality and Social Psychology 5, 401–411 (1977) 
23. Argyle, M., Dean, J.: Eye contact, distance, and affiliation. Sociometry 28, 289–304 

(1965) 
24. Floyd, K., Morman, M.T.: The measurement of affectionate communication. Communica-

tion Quarterly 46, 144–162 (1998) 
25. Jones, E.E., Nisbett, R.E.: The actorand the observer: divergent peceptions of the causes of 

behavior. In: Jones, E.E., Kanouse, D.E., Kelly, H.H., Nisbett, R.E., Valins, S., Weiner, B. 
(eds.) Attribution: Perceiveing the Causes of Behavior. General Lerning Press, pp. 79–94 
(1972) 

26. Bernieri, F., Gillis, J.S., Davis, J.M., Grahe, J.E.: Dyad rapport and the accuracy of its 
judgment across situations: A lens model analysis. Journal of Personality and Social  
Psychology 71, 110–129 (1996) 

27. Taylor, S.E., Fiske, S.T.: Salience, attention, and attribution: top of the head phenomena. 
In: Berkowitz, L. (ed.) Advances in experimental social psychology, vol. 11, pp. 249–288. 
Academic Press, New York (1978) 

28. Brewer, M.B.: A dual process model of impression formation. In: Srull, T.K., Wyer, R.S. 
(eds.) Advances in Social Cognition, vol. 1, pp. 1–36. Erlbaum, Hillsdale (1988) 

29. Fiske, S.T., Neuberg, S.L.: A continuum of impression formation, from category-based to 
individuating processes: influences of information and motivation on attention and inter-
pretation. In: Zanna, M.P. (ed.) Advances in Experimental Social Psychology, vol. 23,  
pp. 1–74. Academic Press, New York (1990) 

30. Jokinen, F., Nishida, Y.: Gaze and Turn-taking behaviour in Casual Conversational I 
nteractions. ACM Transactions on Interactive Intelligent Systems (TiiS) Journal 3(2), 
(2013). Special Section on Eye-gaze and Conversational Engagement, Guest Editors:  
Elisabeth André and Joyce Chai 

31. Levitski, A., Radun, J., Jokinen, K.: Visual interaction and conversational activity. In: Pro-
ceedings of The 4th Workshop on Eye Gaze in Intelligent Human Machine Interaction: 
Eye Gaze and Multimodality, at the 14th ACM International Conference on Multimodal 
Interaction (ICMI-2012), October 26 2012, Santa Monica, California, U.S. (2012) 

32. Sternberg, R.J.: Construct validation of a triangular love scale. European Journal of Social 
Psychology 27, 313–335 (1997) 



 

© Springer International Publishing Switzerland 2015 
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 317–326, 2015. 
DOI: 10.1007/978-3-319-25554-5_32 

Visiting Cultural Heritage with a Tour Guide Robot:  
A User Evaluation Study in-the-Wild* 

Daphne Karreman1(), Geke Ludden2, and Vanessa Evers1 

1 Human Media Interaction, Faculty of Electrical Engineering,  
Mathematics and Computer Science, University of Twente, Enschede, Netherlands 

{d.e.karreman,v.evers}@utwente.nl 
2 Product Design, Faculty of Engineering Technology, University of Twente,  

Enschede, Netherlands 
g.d.s.ludden@utwente.nl 

Abstract. In this paper we present a user evaluation study on location at the 
Royal Alcázar in Seville, Spain, with the fully autonomous tour guide robot 
FROG. In this robot, technological innovations in navigation and vision were 
integrated with state-of-the-art design for robot behavior in order to provide in-
teractive tours and adaptive content to visitors. In our user evaluation study we 
aimed to gain insights in user experiences of and attitudes and responses to-
wards this fully autonomous social robot. Such studies are important, because 
they provide information about how people interact with social robots outside a 
controlled setting. Invited as well as spontaneous visitors followed tours guided 
by FROG and were interviewed about their opinions and experiences. Our find-
ings indicate that even if isolated technical features work perfectly in controlled 
settings, they might not work well in the integrated system, because naïve 
people interact with the system in an unforeseen manner. 

Keywords: Robot guide · Interaction design · Real world evaluation · User study 

1 Introduction 

Continuous technical innovations in the field of human-robot interaction (HRI), ena-
ble to improve interactions between robots and people. An interesting domain of  
application for HRI is the use of robots as tour guides (e.g. [1]–[3]), because a tour-
guide robot has to be able to guide visitors through a museum, cultural heritage site or 
other place of interest while informing and engaging them. For a robot to be able to 
do this, and to create a successful visitor experience, the aim should be to combine 
state-of-the-art technology with advanced robot social behaviors.  

To date, research into tour guide robotics has mainly focused on one specific  
element of guiding visitors (such as features of navigation and gaze behavior) rather 
than on the overall visitor experience people have when they are guided by an auto-
nomous guide robot. For example, Pitsch et al. studied how a guide robot can use 
                                                           

The research leading to these results received funding from the EC’s 7th Framework program 
under Grant agreement 288235. http://www.frogrobot.eu. We thank the entire EU FP7 FROG-
team for technically enabling these user experience tours. 
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gaze behavior to include or exclude visitors in interaction [4], Yousuf et al. studied 
how a tour guide robot can best approach visitors and guide them to an exhibit to give 
information [5], and Donner et al. focused on how path planning and orientation of 
the robot can be optimized when a projector is used to project on the exhibit [6]. In 
order to gain insight in how these and other technical features together can be used to 
create a satisfying visitor experience, user evaluations of integrated systems in real 
life settings are very important. This is what we set out to do in the real world user 
evaluation study reported in this paper. 

For the robot FROG (Fun Robotic Outdoor Guide) state-of-the-art innovations in 
navigation, control and vision as well as state-of-the-art human-robot interaction de-
sign were combined to create a robotic tour guide that engages visitors in a tour and 
interacts socially with visitors to increase the visitor experience of the site. Our user 
evaluation study was carried out with the fully integrated system in autonomous mode 
at the Royal Alcázar in Seville (Spain).  

2 Related Work 

Some of the first guide robots were Rhino [1] developed by Burgard et al., its succes-
sor Minerva [2] developed by Thrun et al. and the robots used in the Mobot Museum 
experiment by Nourbakhsh et al. [7]. For these robots much effort was put into the 
development of robot autonomous navigation and collision avoidance [1], [2], [7].  

More recent research on autonomous tour guide robots has put more emphasis on 
human-robot interaction. For example, RoboX, a series of 11 robots that were devel-
oped by Jensen et al. [8], guided visitors of the Swiss National Exhibition Expo.02. 
These robots used dynamic scenarios to control the visitor flow. Two robots in the 
science museum in Osaka, developed by Shiomi et al., engaged in personalized inte-
raction with visitors [9] and a Robovie tour guide developed by Yamazaki et al. 
adopted typically human interaction cues [3] to focus the attention of the visitors. 

The robots described above were equipped with guiding behaviors to guide visitors 
to several exhibits and present information about exhibits. We could not find papers 
reporting dedicated user evaluation studies of these guide robots. However, the papers 
which were more technically oriented, often mention some observations the research 
teams had of visitors’ responses. For example, Burgard et al. state in [1] that the user 
interfaces of the robot should be robust and intuitive, because visitors usually spend 
less than 15 minutes with the robot. In [7] Nourbakhsh et al. mentioned that the ro-
bot’s awareness of the people close by is most important to attract the attention of 
people. Clodic et al. state in [10] that to keep the interest of the visitors, the robot 
Rackham continuously had to give feedback to visitors to inform them that it knew 
where the visitors were, what it did, where it went and what its intentions were.  

Next to the behaviors described above, guide robots face another challenge. Guides 
often have to interact with a group of people that visit a tourist attraction together.  
To realize this multi-user interaction capability is not only a serious technological 
challenge (e.g. computer vision has to shift from one user to another very fast), it is 
also highly challenging to design effective social behaviors for a robot that interacts 
with groups of people. When a social robot’s behavior is not designed to interact with 
groups of people, people may start to take turns to interact with the robot, as was the 
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case for robot Grace, described by Sabanovic et al. [11]. However, Grace was not 
prepared for people taking turns, and therefore had difficulties in reacting properly.  

While previous studies mainly focused on one specific aspect of interaction, we set 
out to study integrated interaction features for the tour guide robot FROG with the 
aim to study the resulting user experience.   

3 Study Design 

In order to gain rich insights into the behaviors, attitudes, responses and experiences 
visitors have of the FROG robot, we performed a user evaluation study with FROG at 
the Royal Alcázar in Seville, Spain. Participants followed FROG for a fully autonom-
ous tour through the Royal Alcázar.  

The least intrusive way to gather data about how people experienced the tours 
would be through observation. However, using only observations would give too little 
insight in people’s understanding and experience of the robot guided tour. Therefore, 
next to observing visitors, we interviewed them after completing a FROG tour.  

As we could not rely on spontaneous visitors to comply with the request for an in-
terview after a tour, we also invited dedicated participants to join a FROG tour and 
participate in the interview. Scheduling participants also offered us the opportunity to 
equip them with a microphone to record their speech during the tour and the inter-
view. In this way we were able to collect rich data on user experience, attitude, res-
ponses and behaviors from our sample of scheduled participants. 

3.1 FROG the Tour Guide Robot 

FROG has several technical features that enable the 
robot to perform autonomous tours. FROG can drive 
around autonomously and avoids collisions with people 
and objects by taking into account basic social conven-
tions. This has been described by Ramon-Vigo [12].  
A bumper around the base of the robot secures that  
the robot will stand still immediately when it touches 
an object or person. FROG can search for groups, es-
timate their orientation and drive towards them, details 
of this have been described by Flohr et al. in [13]. Fur-
ther, FROG can adjust the content of a tour to the  
interest of visitors by calculating the interest of the 
visitors based on their facial expressions. The tech-
niques used for this have been described by Marras  
et al. in [14].  

The appearance of the robot was designed to attract 
the visitors, but also to be functional. The front of the robot has two ‘eyes’ in which 
the cameras for group detection were placed. On top of the robot, a pointer arm (3 
DOF) with extra camera and LED lights was placed to enable FROG to point to  

 
Fig. 1. FROG robot in action 
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places of interest. The touch screen on the front, which has full sunlight capacity, 
enables visitors to make contact and interact with FROG. 

To present FROG as an engaging and fun robot and at the same time to have it  
narrate the more serious content, we introduced a split personality for the robots inter-
face. This split personality allowed FROG to switch from robot guide mode to narra-
tor mode. As a guide, FROG used a ‘robot voice’ that guided the visitors from one 
point to the next. To ensure realistic expectations of FROG’s intelligence, the robot 
would not react to speech input of the visitors. Therefore, the ‘robot voice’ consisted 
of repetitive, pre-recorded standard sentences only to convey the status of the robot 
and to indicate that the robot was not processing speech input. At the points of inter-
est, FROG gave information about the site as the narrator. As narrator, FROG used a 
prerecorded human ‘voice-over’ to offer narrations.  

Narrations of FROG were supported by visuals. These visuals were presented ei-
ther on screen or projected on nearby walls through the onboard projector. Further 
FROG was equipped with a pointer that was used to point to several points of interest. 
However, the pointer also had another function, namely to ‘search’ for participants 
when the robot stood at the starting point. This was only an interactional feature, be-
cause the pointer could not actually sense people around FROG; localizing people 
was done by using the laser sensors in the base of the robot. 

The content of the narrations was carefully chosen to give visitors a brief but rich  
insight in the history of the site. Two criteria were used to choose the points of interest 
FROG would visit. First, the point of interest had to be accessible for FROG that was 
not able to climb stairs. The second criteria was how often human guides visited the 
points of interest. The content (narrations and visuals) that FROG provided for each of 
the points of interest was based on information given in the room by the Royal Alcázar 
complemented with information given in one of the official books sold by the Royal 
Alcázar [15]. Also, as much as possible, curiosities were added to the narrations.  
Curiosities are pieces of information that are special for one site only. An earlier study 
revealed that  visitors really like to hear these [16].  

The screen was used to visualize a face for FROG and to give information to the 
visitors. The screen mostly showed a smile. Additionally, information on the status of 
the robot was added, such as a small map to show where it drove to or messages such 
as ‘loading location data.’ Only in narrator mode at a point of interest, the full screen 
was used to show movies, pictures or augmented reality to visualize the story told.  

Although FROG’s main interaction features were positioned on its’ front, it drove 
forward during transitions to a next point, which meant that visitors had to follow the 
robot facing its back. We expected that it would be most natural for visitors to follow 
the robot in this way, because this is what happens when people follow a human tour 
guide as well. During these walks the information on FROG’s screen was a map that 
showed visitors where to go. Furthermore, FROG did not turn towards visitors before 
it would start an explanation about a point of interest, because it needed time to take 
in a position that was most advantageous for visitors to see the content. Consequently, 
we expected that participants would have enough time to gather around the front of 
the robot again at the new location. 
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3.2 Participants 

During the FROG tours, invited participants as well as spontaneous visitors joined the 
robot tours. Invited participants were people we recruited in advance to follow the 
whole tour and they participated in a long (approx. 30 minutes) interview. A total of 
eight participants were recruited in four separate groups; two groups comprised of a 
Dutch male and a Dutch female; one group consisted of one Spanish female and her 
baby; and one group comprised of three Spanish students. As compensation for their 
participation, invited participants were allowed to visit the site by themselves after 
they had finished their participation in the study. 

The invited participants were often joined by spontaneous visitors during the tour. 
Spontaneous visitors were people who visited the Royal Alcázar by chance and who 
joined one of the FROG tours spontaneously. A total of 18 spontaneous visitors who 
followed 8 different tours were interviewed. The compositions of these groups varied. 
There was one big group of five adults and two children (<8 years), a pair of adult 
men, two couples, a mother with her daughter (<10 years), and three visitors who 
visited individually. More spontaneous visitors followed the tour; we observed their 
interactions with the robot, but those visitors were not interviewed.  

The invited participants had little or no experience with social robots. One of the 
spontaneous visitors was a technician and one was a robotics lecturer, others had no 
previous experience with robots. Most participants had previous experience with hu-
man tour guides or audio guides. All participants spoke English as a first or second 
language. 

3.3 Procedure 

During a single week in June 2014 FROG gave one to three autonomous tours a day 
through the Royal Alcázar. The tours always started close to the entrance gate. At this 
starting point the robot searched for groups of visitors who had just entered. When the 
robot located (a group of) visitors, it asked whether they were interested in a guided 
tour. The visitor groups were either the invited participants, the spontaneous visitors 
or comprised of both. The robot traveled to six points of interest. During the week 
that the robot gave tours in the Royal Alcázar, small changes were made to the beha-
vior of the robot to iteratively improve the tour. 

Even though FROG performed the tours autonomously, 7-10 researchers followed 
each tour from a distance to monitor progress of the various technical onboard sys-
tems. Also, one researcher carried a remote control stop, to stop the robot in any case 
of emergency; this did not occur.  

The complete tour took about 25 minutes, depending on the number of obstacles 
and the number of people the robot would encounter in small hallways. The invited 
participants were asked to think aloud during the tour. For each group with invited 
participants, one participant wore a small microphone, which could generally pick up 
the speech of the whole group. During the walks between points of interest, the  
researcher asked the participants some questions to gather first reactions on their ex-
perience of being guided by the robot. Invited participants were instructed to indicate 
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at what point they wanted to leave the robot tour in the case this desire occurred but to 
follow the tour till the end. Spontaneous visitors would join or leave the robot when-
ever they wanted.  

After a tour with invited visitors, the participants were interviewed about their ex-
periences with the robot. The interview with the invited participants took approx. 30 
minutes and included topics such as: their experience of the tour, the things they liked 
about the robot or the tour, what they would change about the robot or the tour, how 
they experienced the interaction with the robot and how they experienced the way the 
robot guided them to the next point. An example of a question is: “How did you expe-
rience the length of the tour? Why?” The interviews were semi-structured, there was 
no specific order of the topics and participants were able to expand on what they 
found important to discuss. Also, since invited participants were interviewed together 
after each tour, they were able to comment on each other’s remarks. 

Spontaneous visitors were asked if they would answer a few questions right after 
they left the robot. The interviews with the spontaneous visitors took about two to five 
minutes. These visitors were asked about their impression of the robot, their expe-
rience of being guided by the robot and if they would have any suggestions for im-
provement. An example of a question is: “How would you describe this experience of 
following the robot to people at home who did not see the robot?”  

3.4 Data Analysis 

The data collected consisted of voice recordings of invited participants while they 
followed the tour, interviews with the invited participants, short interviews with the 
spontaneous visitors and observations in the form of video recordings and notes. All 
interviews and the voice recordings made during the tour with the invited participants 
were transcribed. The transcribed recordings were coded using the NTC (Noticing 
Things, Collecting Things and Thinking about Things) method as described by  
Friese [17], using the qualitative analysis software Atlas.ti [18]. Also notes of obser-
vations or remarks made by participants, taken during and after the tours and inter-
views were used in the analysis to complement the other resources. 

One researcher combined all the data coded with the same code and then read this 
carefully, searching for commonalities and remarkable statements of the participants. 
These findings were combined in a summary of the general experience, details on 
what participants liked in the tour and specifics about what they did not like.  

4 Results  

In general, participants responded positively to being guided by the robot. This is 
likely to have been influenced by a willingness to please the interviewer, as well as by 
the novelty experience of being guided by a robot. Moreover, spontaneous visitors 
who conceded to take part in an interview were more likely to be those people who 
had had a positive experience.  
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The reports of first impressions of the robot were generally positive. The reason 
that was most mentioned (10 times) was that it was seen as an easy way to obtain 
information about the site. Four of the invited participants said that even though they 
could get the same information themselves from books, the experience of follow the 
robot was much more fun to them than reading the guidebook would have been. Six 
of the spontaneous visitors mentioned that they liked to get information (in English). 

Further results on what the invited participants and spontaneous visitors expe-
rienced as positive or negative will be presented in table 1. Table 1 presents those 
themes that were most mentioned by participants, indicating how many of the invited 
visitors and how many of the spontaneous visitors made similar remarks.  

The amount and quality of the remarks that people gave during the tours brings us 
closer to understanding how people will experience robot guided tours in real life. 
However, these are not yet a valid comparison to real representation of the real world. 
Partly because in the interviews with invited participants, the participants got room to 
discuss what they though was important to them, even though there was a topic list 
and questions that were asked to all. Furthermore, not all themes were addressed in 
the interviews with spontaneous visitors. 

Table 1. Remarks of visitors on factors that influenced their experience 

Themes Invited  
participants 

Spontaneous 
visitors 

Influenced the visitor experience positively 
It was fun to join a robot tour, because it is innovative 
and cannot be found somewhere else, yet, so it was an 
experience itself. 

7 13  

It enriched the interaction with the environment more 
effectively than for example audio guides or books 
would do. 

4 6 

Even though it was clear to participants that the robot 
could not hear or understand them, they talked to the 
robot, but only when the robot used the “robot-voice.” 

7 - 

Length of the total tour as well as the length and the 
amount of stops was ok. It gave the information needed 
to understand the history of the place. Maybe one more 
stop would be ok. 

8 2 

It is ok when strangers join, but it can be a problem when 
the new people stand in front of initial visitors or talk too 
loudly while the robot explains something. 

8 - 

The robot guide is helpful and fun for children/youth to 
explain the history of the site. 

4 5 
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Table 1. (Continued) 

Influenced the visitors experience negatively 
The movements of the robot were jerky and therefore 
made unclear what its intentions were. 

7 - 

The robot was unclear about where it wanted to go or 
whether visitors stood in its way. 

3  1 

The robot drove too slowly. 6 7  
The robot did not turn towards the visitors once it arrives 
at the location before starting the explanation, this make 
people feel ignored by the robot. 

5 1 

After the explanation, the robot did not allow visitors to 
look around; it went to the next point immediately. 

3 1 

The ‘robot voice’ was too repetitive. 3 2 
The robot did not make clear how long the tour would 
take and where the robot would bring them, which was a 
problem when people had only limited time to visit the 
Royal Alcázar. 

- 9 

 
What is notable from the results presented in Table 1, is that some themes are only 

discussed by invited participants, but that some other are merely or only discussed by 
spontaneous visitors. This strengthens the choice for the combined observation and 
interview approach that we used for this study. 

5 Discussion and Conclusion 

This user evaluation study of the FROG robot in a real world environment offered us 
insights in how we can improve the functionality and perceived experience for FROG 
tours. However, based on the results presented in this paper, it is difficult to general-
ize the findings to other contexts and situations that social robots may be used for 
these days. Nevertheless, we think that our findings and experiences can help other 
researchers and designers of social robots to prevent the development of unexpected 
interactions for robots designed for in-the-wild situations. 

In earlier (controlled) research, project partners found that their system to recog-
nize facial expressions performed extremely well in difficult situations, such as shade 
over part of the faces and faces covered with glasses [14]. However, during the in-the-
wild user evaluation together we found it did not work well in the real world situation. 
Therefore, FROG was unable to adjust the information given to the interest of the 
visitors. The reason for this is that people behaved different from what we had ex-
pected and what the system was designed for. Therefore, the system was not ready to 
react to these unexpected behaviors of people.  

In our system design, detecting interest was only possible when the robot could 
detect a face and read the facial expressions of a visitor. In order to do so, a visitor 
had to stand right in front of the robot and at a distance of 1 to 1.5 meters. However, 
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from our observations in this in the wild study we noticed that groups larger than two 
or three people would form a semi-circle around the robot in order to allow everybody 
to see its screen, this often made people stand further away from the robot. As FROG 
would monitor the facial expressions of a closeby person to detect interest or disinter-
est and would adapt the content accordingly, the semi-circle formation made it im-
possible to read the facial expressions.  

Our in the wild finding that people form a semi-circle is in accordance with find-
ings of Heath and vom Lehn [19], who state that when people gather around static 
objects, many visitors get a chance to see the object at the same time, but that when 
people gather around interactive objects (often including a screen), less people can see 
the object at the same time, because people tend to stand closer to directly interact 
with the (touch) screen [19]. Initially, we placed the robot in the category of interac-
tive exhibits, as people can interact with it at selected points of interest. However, at 
the moment it only gives information, it should be seen as a static exhibit in terms of 
Heath and vom Lehn. Hence, from our user evaluation we found that visitors did not 
mind when strangers joined the tour and that they gave each other room to look, 
which introduced the problem of not being able to record the facial expressions. The 
situation might have been different when FROG’s explanations would have been 
more interactive at all points of interest, such as they were during the quiz that was 
initiated at one of the points of interest. Possibly, under such circumstances a few 
people would come closer to interact with the robot and strangers would probably not 
join, because they would not be able to see the content.  

This example shows that even when technical features of the robot are well de-
signed, in real world situations they might not work in the way developers would 
expect. HRI is a social science, even though technical innovations are needed to make 
progression in the field. Therefore, next to experimenting with real people in con-
trolled settings, studies with people in in-the-wild settings are important to gain  
insight in the real responses and behaviors of people towards robots. To create social 
robots that really interact with people in in-the-wild environments, we advise re-
searchers to implement in-the-wild studies at an early point in the development 
process. In this way, the behavior of the end user can be understood to subsequently 
create a robot that is able to deal with it. 
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Abstract. Nonverbal immediacy has been positively correlated with
cognitive learning gains in human-human interaction, but remains rel-
atively under-explored in human-robot interaction contexts. This paper
presents a study in which robot behaviour is derived from the principles
of nonverbal immediacy. Both high and low immediacy behaviours are
evaluated in a tutoring interaction with children where a robot teaches
how to work out whether numbers are prime. It is found that chil-
dren who interact with the robot exhibiting more immediate nonverbal
behaviour make significant learning gains, whereas those interacting with
the less immediate robot do not. A strong trend is found suggesting that
the children can perceive the differences between conditions, supporting
results from existing work with adults.

1 Introduction

An increasing amount of research is being conducted into the use of robots
interacting with children [2], often in educational contexts [9,16,18]. However,
it is unclear how robots should behave socially in tutoring interactions. Much
human-human interaction literature assumes a certain level of sociality in teach-
ing interactions, but specific guidelines for such behaviour are not provided for
social roboticists. However, one concept which has been repeatedly correlated
with increased cognitive learning gains is nonverbal immediacy (NVI) [12,19].

NVI combines the perception of gesture, gaze, touch, body orientation, vocal
prosody and facial expressions into a single numerical metric, quantifying the
NVI of an interaction partner. It should be noted that the usage of the word
‘immediacy’ does not refer to the typical definition involving timing of actions or
a sense of urgency, but instead to the ‘perceptual availability’ of an interaction
partner [12]. Such a measure has been highlighted as potentially valuable for
human-robot interaction (HRI) researchers to characterise social behaviour of
robots, as a means of providing a basis for comparison between studies [8]. NVI
has previously been used in HRI to generate and evaluate the effect of gestu-
ral and vocal behaviour variation with results confirming that more immediate
robot behaviour leads to increased information recall from a presentation [17].
However, whether such effects are still observed when larger scale behavioural
c© Springer International Publishing Switzerland 2015
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manipulations are made, involving a greater number of modalities, and in two-
way interaction contexts (i.e. social interaction) remain open questions. This
paper presents a study to address these questions by exploring the effect of NVI
behaviours on child learning in a tutoring interaction.

2 Related Work

A two week long study of a robot in a classroom by Kanda et al. [7] remains one
of the best examples of robots being used successfully ‘in the wild’ with children.
Recently this result has been extended by Alemi et al. who conducted a study over
5 weeks in an Iranian school, showing that the use of a robot can provide significant
learning gains over the same material being covered without a robot [1]. Given the
potential for robots in education, it is important to assess how the social behaviour
of a robot can further improve outcomes.

Gordon et al. explored whether a robot exhibiting more ‘curious’ behaviour
would inspire reciprocal curiosity in children interacting with the robot, and
additionally whether this would lead to cognitive learning gains [6]. They found
that whilst the curious robot did promote curious behaviour in children, this
behaviour did not translate into learning gains as predicted by the human-human
interaction (HHI) literature. Similarly, the HHI literature, and findings from sev-
eral other HRI studies would predict that when robot social behaviour becomes
more contingent, learning gains should increase. This has not always been found
to be the case [8,10], but has been supported in an interaction where a robot
taught children a novel language [15].

Previous work by Kennedy et al. used an identical interaction context to the
one in this study [10]: it was found that a robot which was designed to be more
socially contingent and personalised led to no significant learning, whereas a
robot with behaviour violating typical HRI best practices did lead to significant
learning. By providing a unified metric for robot social behaviour, the present
study seeks to address inconsistencies when comparing these prior studies.

3 Methodology

The methodology used in this study is as established in prior studies [10]. A robot
is used as a tutor in one-to-one interactions to teach children how to identify
prime numbers between 10 and 100 based on whether they are divisible by 2, 3, 5
or 7. The children participating in the interactions do not have prior knowledge
of prime numbers, but have the skills to do the division (albeit with imperfect
performance), making the combination of these skills into a rule for categorising
primes possible in a short interaction. Prior knowledge is assessed with a pre-
test. The novel difference between the present study and previous work [10] is
in the robot behaviour. Previously the social behaviour was based on a human
model, whereas in this study the robot behaviour is derived from NVI concepts
(detailed in Section 3.4).
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3.1 Participants

The study was conducted in a class of children aged 8-9 years old. All children
interacted with the robot, but due to breaks in protocol, and one statistical out-
lier (Grubbs’ test), several interactions were excluded from the analysis. A total
of 23 interactions were considered (16F/7M, age M=8.74, 95% CI [8.54,8.93]).
All children had permission to participate in the study, of which 21 also had
permission to be filmed for video analysis.

3.2 Hypotheses

The HHI literature has shown that greater instructor NVI leads to increased
cognitive learning gains [19]. These findings have been partially confirmed in HRI
[17], but using only 2 modalities (speech and gesture). Nonetheless, survey data
showed that participants could perceive such behavioural differences. Previous
work [10] conducted in a similar context to this study found that children gazed
more at a ‘more social’ robot tutor during lessons, and were more likely to report
it to be like a friend than an equally active, but not socially contingent, robot
tutor. It could be argued that an increase in NVI behaviour is analogous to an
increase in social contingency, so the same perceptual and behavioural differences
of children could be predicted here. Based on these prior findings, the following
hypotheses were devised:

H1. Children will report a higher rating of nonverbal immediacy for a robot
designed with high nonverbally immediate behaviours than for a robot
designed with low nonverbally immediate behaviours.

H2. A robot designed to be more nonverbally immediate will lead to greater
child cognitive learning gains.

H3. Children will regard a robot with high nonverbal immediacy more like a
friend than one with low nonverbal immediacy.

H4. Children will gaze at a robot with high nonverbal immediacy more during
the prime lesson period than at a robot with low nonverbal immediacy.

3.3 Interaction Protocol

Interactions took place in an empty room familiar to the children near to their
classroom. The children were briefed by one of the experimenters before enter-
ing the room. Two experimenters were present in the room, out of view of the
child whilst they interacted with the robot. The child sat across a large touch-
screen from an Aldebaran NAO robot (Fig. 1). A Microsoft Kinect was placed
behind the robot to track the direction of the child’s head gaze. Video cameras
were placed behind the robot and behind the child to record the interaction.
The average time spent interacting with the robot was M=14m19s, 95% CI
[12m49s,15m48s]. The average interaction time from the videos (from entering
the experiment room, to exiting – therefore including questionnaire time) was
M=19m19s, 95% CI [17m37s,21m01s].
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Prime pre-test

Divide by 2 pre-test

Prime post-testDivide by 2 post-test

Divide by 3 post-test

Divide by 5 pre-test

Divide by 2 lesson

Divide by 5 post-testDivide by 3 pre-test

Divide by 7 pre-test Divide by 7 post-test

Divide by 3 lesson Divide by 7 lesson

Divide by 5 lesson Prime lesson

Fig. 1. (left) example from a high immediacy interaction; (right) structure of the task.

The robotwould first introduce itself and ask the children to complete a pre-test
on the touchscreen for prime numbers, and then pre-tests for each of the divisors
(2, 3, 5 and 7). The robot would then deliver a lesson for each of the divisors and
ask the child to complete a post-test following this lesson, i.e. the robot gives a
lesson on dividing by 2 and then the child does a dividing by 2 post-test, followed
by dividing by 3 lesson and post-test, and so on. After this had been completed,
the robot delivered a lesson about prime numbers which combined the lessons for
the divisors into a rule for determining whether a number between 10 and 100 is
prime (a variation on the Sieve of Eratosthenes method). The interaction with the
robot would finish with a prime number post-test.

The prime number pre- and post-tests both consist of 12 numbers which
must be categorised as ‘prime’ or ‘not prime’. Two sets of numbers were used
for these tests, which are alternately used as the pre- and post-tests in a cross
testing strategy to control for potential difference in test difficulty. The tests were
balanced in terms of the number size, as it was assumed that higher numbers
would be harder for the children to work with. The divisor pre-tests consist of 8
numbers which must be categorised as either ‘can divide by X ’, or ‘can’t divide
by X ’ (where X is 2, 3, 5 or 7, Fig. 1). The divisor post-tests are the same,
but with 6 numbers instead of 8. In all pre- and post-tests, an equal quantity of
numbers belong to each category.

After the interaction with the robot is finished, the child is asked by the exper-
imenter to complete two questionnaires. The first questionnaire was a Robot
Nonverbal Immediacy Quesionnaire (RNIQ), adapted from the short-form NVI
questionnaire [13] and available online1. The RNIQ was modified from the orig-
inal to specifically refer to robots and to be more easily understood by children.
The second questionnaire consisted of two multiple choice questions, asking the
children what they thought the robot was like (8 options including friend and
teacher), and what they thought playing with the robot was like (4 options, plus
a free text box).

3.4 Robot Conditions and Behaviour

The robot social behaviour was generated by considering the NVI question-
naire measures, as seen in [14]. The intention was to create high and low NVI
1 http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/JKennedy/immediacy.html

http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/JKennedy/immediacy.html
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Table 1. Robot behaviour for high and low nonverbal immediacy (NVI) conditions.

High Nonverbal Immediacy Low Nonverbal Immediacy

Leans forwards Leans backwards
Actively gazes at child
(with frequent movement)

Looks up and away from child
(with occasional movement)

Frequent gestures while talking No gestures while talking
Standard TTS TTS modified to make voice “dull”
Continuous small upper body
movements (relaxed upper body)

Rigid/tense upper body with no movement

conditions in order to address the hypotheses for the study (Section 3.2) and to
explore the initial research questions presented in the introduction (Section 1).
Children were assigned to conditions randomly, whilst balancing for gender and
mathematical ability (as judged by the class teacher). This led to 12 children in
the low NVI condition (9F, 3M) and 11 children in the high NVI condition (7F,
4M) after exclusions.

In order to implement larger-scale behavioural changes between conditions
(as motivated by the initial research questions in Section 1 and points raised
in [8]), each of the modalities rated in the RNIQ were considered for the Alde-
baran NAO robot. Some of the modalities are not possible to manipulate (for
example the NAO cannot perform facial expressions), but the other modali-
ties were considered in turn and designed to be either maximally or minimally
immediate. Table 1 shows the differences between the two robot conditions. All
robot behaviour was autonomous, a ‘Wizard-of-Oz’ was only employed to click
a button to begin the behaviour once the child was in position in front of the
robot/screen.

4 Results

4.1 Learning Gains

To test the impact of the robot’s lessons on the children’s division skills, the
percentage score of division across all pre-tests was compared with the score
across all division post-tests (as there were a different number of items in the pre-
and post-tests). A significant difference is found between the division pre-test
percentage (M=84.1, 95% CI [79.9,88.3]) and the post-test percentage (M=88.6,
95% CI [84.8,92.4]); t(22)=2.080, p=0.049. This demonstrates that the children
can learn from the robot and suggests that the lessons that the robot delivers
are appropriate.

All scores for the prime number pre- and post-tests are out of 12. Given that the
children have no prior knowledge of prime numbers and there are 2 potential cate-
gories for each image, a pre-test score of 6 (50%) would be expected from random
behaviour. In the low NVI condition the improvement from pre-test (M=7.08, 95%
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Fig. 2. (left) pre- and post-test scores on recognising prime numbers for the low and
high nonverbal immediacy (NVI) conditions; (right) NVI scores for the designed low
and high NVI conditions. Children improve more in recognising prime numbers when
taught by a high immediacy robot. Error bars show 95% CI.

CI [5.01,9.15]) to post-test (M=8.00, 95% CI [6.24,9.76]) is not statistically signifi-
cant; t(11)=0.754, p>0.05. However, in the high NVI condition the difference from
pre-test (M=5.09, 95% CI [3.43,6.75]) to post-test (M=7.00, 95% CI [4.88,9.12])
is statistically significant at the p<0.05 level; t(10)=3.057, p=0.012 (Fig. 2).

The pre-test score appears to be very different between the conditions, however
this was not found to be significant; t(21)=1.640, p=0.116. The 95% confidence
interval for the pre-test in both conditions covers the expected value of 6, which
reassures that the children did not know what primes were before the intervention.
Additionally, there is no significant difference between the two different pre-test
scores, or of the improvement between pre- and post-test, regardless of which of
the two pre-tests were taken; this shows that the tests can be considered of equal
difficulty. Therefore, partial support has been shown for Hypothesis 2: children
interacting with the high NVI robot benefit from increased cognitive learning gains.
However, this is slightly tempered, as there is no significant difference between con-
ditions. Children in both conditions are likely to improve (which isn’t surprising
given practice and teaching input), but those in the high NVI condition undergo
significant improvement, whereas those in the low immediacy condition do not.

4.2 Questionnaire Data

After the children had interacted with the robot they were asked to complete the
RNIQ on paper. Immediacy scores are calculated from the answers to the RNIQ
questions: the higher the resulting number, the higher the perceived immediacy.
The score can be up to 80, but there are a number of measures for which there
are no equivalent robot behaviours (e.g. touching the child). Therefore, a score
of around 56 would indicate a rating of near-maximal NVI given the modalities
which are manipulated. This reduction in the expected score also inhibits the
potential for difference between conditions, as for many of the questionnaire
elements, the behaviour is the same (e.g. the lack of facial expressions).

The designed low immediacy condition received a mean NVI score of M=51.0
(95% CI [47.6,54.4]). The designed high immediacy condition received a mean
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score of M=55.1 (95% CI [52.3.57.9]). An unpaired t-test reveals a strong trend
towards significance between these ratings; t(21)=2.031, p=0.055 (Fig. 2). This
provides reasonable support for Hypothesis 1; that children will perceive a robot
designed to be more nonverbally immediate as such.

The second questionnaire that the children completed asked them what the
robot was like, and what playing with the robot was like. The children were
asked “For me, I think the robot was like a -”, and had 8 options to choose
from (brother or sister, classmate, stranger, relative (e.g. cousin or aunt), friend,
parent, teacher, neighbour). Given Hypothesis 3 (that children in the high imme-
diacy condition will more frequently report the robot to be like a friend) the
responses were sorted into whether the children responded that the robot was
like a friend, or not. In the high immediacy condition 6 children reported the
robot to be like a friend and 5 not (with all selecting ‘teacher’), whereas in the
low immediacy condition 1 child reported the robot to be like a friend and 11
not (1 ‘classmate’, 10 ‘teacher’). Fisher’s exact test reveals a significant difference
between the conditions, with those in the high immediacy condition significantly
more likely to report that the robot is like a friend than those in the low imme-
diacy condition; p=0.027. Therefore Hypothesis 3 is supported.

This result is surprising as the children are told multiple times by both the
experimenter and the robot that the robot is a teacher robot which will teach
them some maths. However, the same result has previously been found, which
led to the formulation of Hypothesis 3. Children interacting with a ‘more social’
robot reported more frequently that the robot is like a friend [10]. If the high
immediacy robot in this study is considered to be more social, then the same
finding is confirmed here.

4.3 Gaze Analysis

The 21 videos from the interactions were manually coded for child gaze during the
prime lesson segment as this has previously been found to be indicative of overall
gaze patterns in the interaction [10], and the prime lesson constitutes a key part
of the interaction in terms of the learning outcome. One of the 21 videos was
excluded due to occlusions, leaving 9 videos from the high immediacy condition
and 11 from the low immediacy condition for analysis. 20% of the remaining
videos were second coded to verify reliability, with a mean inter-rater reliability
(Cohen’s κ) of 0.83, indicating almost perfect agreement.

No significant difference was found between the length of time children gaze
at the robot in seconds per minute of the prime lesson segment between the
high NVI condition (M=15.9, 95% CI [11.3,20.5]) and the low NVI condition
(M=15.4, 95% CI [11.9,18.6]); t(18)=0.214, p>0.05. Nor is there a significant dif-
ference in the number of times children gaze at the robot per minute of the prime
lesson segment between the high NVI condition (M=15.2, 95% CI [12.2,18.2])
and the low NVI condition (M=14.7, 95% CI [11.7,17.7]); t(18)=0.234, p>0.05.
Therefore, Hypothesis 4 (children will gaze more at the high NVI robot) is
not supported. This is a surprising result, which possibly strengthens the link
between robot behaviour and learning. If gaze is considered to be a reflection of
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child attention, then despite equivalent attention during the key piece of learn-
ing input from the robot the learning results still vary, suggesting that the robot
social behaviour could be responsible. Of course, this is just one of many pos-
sibilities and the gaze could be equal simply because the behaviour during this
phase is quite novel compared to the rest of the interaction.

5 Discussion

Fairly strong support for Hypothesis 1 was found: children do recognise when
a robot has higher or lower nonverbal immediacy. The difference was close to
significance at the 5% level, with the differences between the means only just
including no difference; −0.10 ≤ μHNV I − μLNV I ≤ 8.28. This finding shows that
the robot behaviour is largely interpreted by the children as intended by the
designer, despite the children not seeing the other robot condition for comparison.
However, the variation in the children’s answers is quite high, possibly due to a
tendency to categorise at the extremes of scales [3], misunderstanding of some
negatively worded questions, or over-attribution of robot competencies.

The results also partially confirm Hypothesis 2; that a robot perceived as
more nonverbally immediate will lead to greater cognitive learning gains. This
prediction was made based on HHI data [19] and HRI data [17], which seem
to agree with the present findings. It should be noted that the effect size is
relatively small: although there is significant improvement, the post-test mean
95% confidence interval still covers the expected 50% score of 6 which could
be achieved through random action. Interestingly, there is a moderate positive
correlation between immediacy score and cognitive learning gains for the high
NVI condition (r=0.22), which is remarkably close to that which is found in
HHI literature (r=0.17) [19]. Conversely, there is a negative correlation for the
low NVI condition and learning gains (r=-0.32), indicating that as children rate
the low NVI robot as more immediate, their learning tends to decrease.

It is therefore suggested that other factors besides robot behaviour could have
a greater impact on the learning taking place at the individual level, particularly
for those in the low NVI condition. From exploratory analysis of the data in this
study, gender, teacher predicted maths ability, and age were all controlled for,
with none being revealed post hoc as a significant factor. Novelty is often raised
as a potential issue when performing single interactions of this nature [5,7].
It could indeed be a factor here, with the novelty of the robot impacting some
of the children more than others, although the influence of novelty could be
expected to be similar in both conditions. Another possible factor could be in
the character of the children themselves. Whilst the children are familiar with
the environment, they are not familiar with the two experimenters in the room,
which may impede their performance, or affect their questionnaire responses [11].
Children who are more timid may be affected by this to a greater extent than
those who are more confident.

Finally, it should be noted that the interactions in this study are relatively
short, and the pre- and post-tests were conducted immediately before and after
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the learning input. Therefore, whether the learning gains observed here are
retained over a longer period of time (and thus the concepts are truly learned)
remains to be seen. This is an important factor which should be addressed in
future work. Research from HHI, which has been conducted over the period of
academic terms with adults, has found that high NVI behaviour can confer a
greater advantage in terms of learning gains [19], although it must be noted
that this is not always the case [4]. It could be hypothesised that over a longer
time period with a robot tutor the differences between high and low immediacy
conditions would increase as novelty would wear off and more of the potential
benefit commonly gained in HHI from more immediate behaviour could occur.

6 Conclusion

This study has shown a strong trend towards children perceiving robots designed
to have high and low nonverbal immediacy behaviours as such when measured
using a short-form robot nonverbal immediacy questionnaire (RNIQ). This per-
ceived difference was also supported by the children’s interpretation of the
robot’s relation to them, with significantly more children in the high nonver-
bal immediacy condition reporting the robot to be like a friend. There were no
observable differences in gaze behaviour during the prime lesson period of the
interaction, indicating that learning differences remain despite possibly equal
amounts of attention being paid by the child to the robot during the lesson.

This study has generally shown that children who interact with the robot
exhibiting more immediate nonverbal behaviour make significant cognitive learn-
ing gains, whereas those interacting with the less immediate robot do not.
A strong trend is found in the difference between the conditions suggesting that
the children can perceive the differences between conditions, which supports
results with adults. While further work is required to assess the strength of the
learning effects over longer time scales, and the effect of individual differences
beyond academic competence, these results have demonstrated the utility of high
nonverbal immediacy robot behaviours in a tutoring context.
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Abstract. In this paper, we investigate the effect of combining inarticu-
late utterances (IU) with iconic gestures (IG) in addition to the response
mode (proactive or reactive) and its impact on the bonds formation as
well as the establishment of a positive relationship between the human
and the accompanying robot. Specifically, we employ different scenarios
while measuring in each instance the different social bonds that occur
and we evaluate the human-robot relationship (HRR) in order to pick
the behaviors that yield a positive HRR. Experimental results show that
combining proactivity with the full mode (IU+IG) leads to social bonds
evolvement and then to a better positive HRR.

Keywords: Inarticulate utterance · Iconic gestures · Social bonds ·
Reactivity · Proactivity

1 Introduction

An accompanying robot that abides by human social rules is judged to be accept-
able to humans. We think that such a robot may trigger positive behaviors in
humans’ and leads to a more positive HRR. Broadly speaking, in daily life, positive
human behavior toward others is driven by the social bonding that evolves during
their interactions and which as a result leads to a reciprocation of others’ kindness
with a noble feeling and/or act. Travis Hirschi’s social bonding theory argues that
people who believe in societal rules are attached to society and therefore, have a
strong commitment in achieving conventional activities and reciprocating the pos-
itive gestures of others [1]. These people feel highly involved in their daily lives so
they start to invest more time and energy in activities that serve to further bonds
with others and this leaves limited time to become involved in deviant activities
[2]. Chris et al. [2] highlight that people who have weak bonds are more likely to
deviate from normal behavior and have bad relationships with others [2]. On these
grounds, we can argue that if we measure robot’s users social bonds, we can be
capable of detecting the robot’s behaviors that have the potential of leading to a
better positive HRR. Hirschi defines four following social bonds: belief (B), attach-
ment (A), commitment (C) and involvement (I) [1]. Chris et al. [2] argue that all
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 337–347, 2015.
DOI: 10.1007/978-3-319-25554-5 34
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these bonds are incorporated in Talcott Parsons’AGIL schema and, thus, the belief
bond serves the function of latent pattern-maintenance (L), attachment to oth-
ers, serving the function of integration (I), commitment proportional to the energy
and time that one puts forward, serving the function of goal-attainment (G), and,
involvement, consisting of the extra time and energy that one affords and serves the
function of adaptation (A). The AGIL paradigm highlights the societal functions
that, every society must meet to be able to maintain a stable, flourishing social life.
Therefore, if we assume that we want to establish a stable, positive HRR, we must
investigate behaviors that lead to social bonds evolvement during HRI in a way
that can guarantee users and accompanying robots integration (attachment), goal
attainment (commitment), adaptability to each other (involvement) and support
of implicit social norms (belief) [2]. In the current study, we explore behaviors that
lead to bonds formation in the context of interactions with an accompanying robot
named ROBOMO. We are interested in understanding whether IUs or/and IGs,
help to establish the social bonding between the human subjects and ROBOMO.
If the social bonding is strong, then we may guarantee a decrease in the possibility
of a robot’s abundance which is by analogy to Hirschi’s theory, the possibility of
deviance. We detail the related work in section 2, explain ROBOMO’s design in
section 3, and explain the robot’s architecture in section 4. After that, we describe
the hypothesis and the experimental setup respectively in sections 5 and 6 while
measurements are described in section 7. Finally, we give the results and insights
obtained in sections 8 and 9.

2 Related Work

The concept of the accompanying robot (a robot functioning as a human peer
in everyday life) is rapidly emerging. The accompanying robot must facilitate
interaction with a human in order to complete a set of tasks. Many studies inte-
grate multi-modal communication in order to satisfy human needs with regards
to sociability and task achievement [3][4], etc. Ishiguro et al. [3] investigate the
effectiveness of such multi-modal communication in order to explore whether the
accompanying robot can help children improve their English ability. Garell et
al. [4] utilize a group of robots in order to guide a group of people from a desig-
nated starting point to a specific destination. While the ability to perform a set
of tasks skillfully is a desirable attribute, this alone does not cause humans to
regards robots as partners. Humans do not evaluate their partners based on the
success of task achievement alone. Instead, we believe that humans have to feel
that a bonding and a stable positive relationship is maintained between them-
selves and the accompanying robot. As an example, children are likely to learn
new concepts and still easily form bonds with a caregiver [5]. In such scenarios,
children identify salient objects of a discussion, distinguish the different voices,
express themselves using simple gestures, and show interest by picking up tonal
differences [5]. Slowed voice tones (which we call in our study, IUs) help the child
to bond with the caregiver. Thus, a mutual interest in communication evolves.
Both parties can sometimes take the initiative (proactivity), proving their belief
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in the benefit of the interaction, instead of being only reactive (responsive) [5].
It is then a logical step to think about exploring the bonding between humans
and robots that may evolve if we use IUs and IGs. When behaviors are designed
adequately, a social bond may then evolve, resulting in people feeling more con-
fident about integrating accompanying robots into their daily lives.

Many HRI studies have investigated if children can form relationships with
robots, and if they can view them as friends. As an example, Stevenson et al.
[6] show that children are willing to share secrets with robots and interact with
them in a similar way as they would with an adult. Similarly, Swerts et al. [7]
highlight that children consider playing with a robot like playing with a friend.
Although there has been relatively broad research on the child-accompanying
robot bonding, it has only dealt with the attachment bond; there is insufficient
research that explores the entire evolvement of the four social bonds. Also, we
need to investigate the formation of the four bonds between the adult and the
robot rather than only between the child and the robot. In fact, Chris et al. [2]
point out that the attachment bond is insufficient in predicting the nature of
the human-society relationship and insist on the fact that four bonds must be
explored for that purpose. Adding to that, little attention was paid to the bond-
ing that may evolve in the context of a minimally-designed accompanying robot.
Most of the studies we looked at, focused on the use of speech [3] or autonomous
navigation [4] in order to increase a human subject’s feeling about the conscious-
ness and agency of the accompanying robot. We believe that bonding can evolve
even within a simpler setting. For example, in a traditional adult-child interac-
tion, the caregiver only needs to hold a baby without walking or talking and
still the caregiver can interpret the meaning and feel the bonding with the baby
[5]. Following the same strategy, we adopt the minimal design concept that it is
proposed by Okada et al. [8]. This minimal design concept consists of designing
a simple robot in terms of anthropomorphic features as well as the number of
communication channels used. In this vein, our goal is to investigate the effect of
using proactivity and/or reactivity as an interaction mode as well as the effect
of using few communication channels such as IGs and/or IUs on the bonding
formation while keeping in mind a strong bonding evolvement is an indicator of
a positive HRR.

3 ROBOMO Concept Design

ROBOMO has a long shaped body with no arms. We have intentionally given
ROBOMO a pitcher plant (Nepenthe) appearance to encourage people to inter-
act with it much as one might interact with a young child (Fig.1). The IUs were
produced according to the generation method for IU described by Okada et al. [9].
Three behaviors were exhibited: (i) the IUs:yes, no, right, left, back, forward, go,
stop, slow down (ii) the tone:happy or sad based on the user’s previous step cor-
rectness and (iii) IGs: turn left, turn right, yes (to implicitly mean “go”), no (to
implicitly mean “stop”), bow to the front, bow to the back, face tracking (is used
in S3 and S4 when the person has to slow down). A user can ask the robot to give
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degrees of freedom
camera

Speaker
microphone

servo
motors

micro PC inside

Fig. 1. ROBOMO’s design

information about the direction (reactive mode). When the robot automatically
helps the user, it is called a proactive robot.

4 ROBOMO Architecture

To communicate with ROBOMO, the user has to communicate slowly so that
the robot, using its internal microphone and Julius (a Japanese word recognition
software)1, can interpret and satisfy the user’s request. ROBOMO tracks the user’s
face using a web camera (Fig.2). ROBOMO integrates a micro PC to adapt to the
user’s request and affords an answer through its speaker. Moreover, it uses five
servo-motors (AX-12+) to exhibit the gestures described in section 3 ([10]).

5 Hypothesis

We believe that being reactive proves that there is at least a minimal interest in
the interaction with the robot and we expect that being proactive shows that one
is goal-directed and actively taking charge of the situation. Thus we summarize
our first hypothesis as follows:

– H1: ROBOMO should behave proactively when suggesting help. (Proactivity
versus Reactivity)

The current study also focuses on another design choice, one the concerns the
usage of iconic gestures and/or IU that can possibly be integrated in the char-
acter of an accompanying robot. This is why we want to investigate:

– H2: To guarantee a more positive HRR, the robot has to use only IUs,
gestures or a full mode (gestures+IUs).

1 Julius is a continuous real-time speech recognition decoder for speech-related studies
that does not need training.
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Fig. 2. The system architecture of ROBOMO.

6 Experimental Protocol

We setup an indoor ground for navigation tasks that contained intersections
(Fig. 3). To pick the right behavior, the participant is instructed by the robot.
We asked the participants to talk to ROBOMO slowly whenever they believed
that they needed the robot’s help. There was no training period in which the
participants were familiarized with the task and/or the robot. Users could ask
about directions or the traffic light2 color in order to complete the task and
reach the reward (music CD) location. Users were to ignore the reward location
and only rely on robot’s directions in order to reach it. 20 participants with
ages varying from [22 − 30] years old, took part in four scenarios. We have
chosen several different configurations3 during the four non contiguous scenarios
to guarantee the diversity of the participants’ responses. This also helped to
ensure that any successful guess in the meaning of ROBOMO’s behaviors was not
related to the fact that participants were accustomed to the same configuration.
In our scenarios, if the human did not understand the robot’s response, he/she
would repeat his/her question within a short time for direction confirmation.
In each scenario, the participant interacted with ROBOMO for at least two
minutes and then answered the questionnaires indicated in the section 7. After
two days, the human subject came again for the second session. As a result,
the experiment took twelve days to be completed (four scenarios in total). We
designed four different scenarios of interaction: for scenario 1 (S1), the robot
adopted a reactive mode using IUs; during scenario 2 (S2), the robot adopted
a proactive mode using IUs; during the scenario 3 (S3), the robot adopted a
proactive mode using IGs; during scenario 4 (S4), the robot adopted a proactive,

2 We increase the number of traffic lights by 2 in each new scenario and we change it
positions. So in S4, we have 8 traffic lights.

3 In each new configuration, we increase the target path’s complexity and we change
the starting location.
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Traffic Light Award

Fig. 3. The experimental setup.

full mode (IUs+IGs). The whole experiment was video recorded so that the users’
facial expressions4 could be detected.

7 Measurements

To measure the social bonding we established, based on each of the bond’s def-
inition a set of subjective and objective metrics. As we assumed that the belief
bond corresponds to the latent social laws, we associated the belief bond5 to
the human’s belief in the robot’s social presence and it conscious agency. We
then calculated the instances of eye contact, the rate of respect6, the number of
averted gazes, and, finally, cooperation metric (a 7 point Likert-scale question-
naire inspired from [11]).

As the attachment bond7, is the emotional link that may evolve during the
HRI, we used a different 7 point Likert-scale metrics, one that included : the plea-
sure [12], caring [13], perceived closeness [11], stress-free [11] and likeability[14].

The commitment bond8 involves time, energy and effort expressed in conven-
tional lines of action to achieve the task goals. To measure this commitment, we
measured cognitive effort using a 7-point Likert-scale with the following metrics:
arousal [12], mutual attention, users evaluation of the robot’s “cognitive” effort
through perceived competence [13] and perceived intelligence [14]. We also mea-
sured the user’s: successful cognitive effort9, expanded energy (physical effort

4 Features used to determine the facial expressions are the lips, eyebrows, eyes.
5 Survey for the belief bond:http://goo.gl/forms/GkJzXrMmUt
6 Rate of respect= number of times the human asked the robot/number of total times

the human should have asked the robot (a specific number for each configuration). It
gives indirectly an idea about the overall system’s performance and the participants’
ability to understand the feedback (intelligibility).

7 Survey for the attachment bond:http://goo.gl/forms/eoikVunVjG
8 Survey for the commitment bond:http://goo.gl/forms/ItqTMqKVpU
9 Successful cognitive effort= successful interactions/ total number of interactions. It

gives indirectly an idea about the overall system’s performance and the participants’
ability to understand the feedback (intelligibility).

http://goo.gl/forms/GkJzXrMmUt
http://goo.gl/forms/eoikVunVjG
http://goo.gl/forms/ItqTMqKVpU
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rate10) and time (interaction time). Achievement was also measured (achieve-
ment [11]) just like Tanioka and Glaser [15] used achievement scores to measure
commitment bond in schools. Finally, we asked users to describe their experience
with the robot (situational empathy) just like Lasley et al. [16] used self-report
descriptions of high school students to assess their evaluation of the attainment
of good grades. In our case, the human subject was required to talk about the
most prominent achievement that he believed the HRI succeeded in attaining.

The involvement bond11, is closely tied to the commitment bond in that it
entails the actual amount of extra expanded time a human takes to pursue the
HRI. It is also an indicator of the human’s adaptation according to Chris et
at [2]. It focuses on the idle time available when one is not engaged and the
effort expended during that extra time. We used different 7-point Likert scale
questionnaires to assess the involvement bond through different metrics: positive
and negative human faces support [17]. Positive and negative human face support
consists of supporting a user’s social needs in terms of involvement during the
HRI [18] (indicators of human’s adaptation to the HRI). To ensure that the
subjects were not getting accustomed to their surroundings, we asked the users
whether they felt used to the task (adaptability [11]) so that we can discard any
user who confirms that he get used to the environment of the experiment. We
also calculated the number of times eyes were wide open (surprised), corners
of the mouth were turned upwards (disgust), one eye brow raised (wondering)
and mouth corners raised (happy) since these are optional behaviors that the
human is not obligated to express and which indicates that he/she is emerged
by (involved in) the HRI.

Finally, deviance12 (not a bond) may be translated in the context of HRI as
one’s refusal of interacting with the robot. Based on this definition, we devised
a measurement for persuasiveness. We instructed subjects to arrange a list of
words according to their own priorities and then we calculated the level of per-
suasiveness using Kendall-tau distance metric [19]. We measure also trust [13]and
the long-term use [11]. In fact, by measuring the different social bonds, we may
be able to conclude whether there is a positive or a negative HRR. To confirm
so, we tried to establish a correlation between the evolvement trend (positive or
negative) with the deviance values. If, for example there were no positive evolve-
ment in the bonding, we may draw a preliminary conclusion and say that there
is a negative HRR. By combining this conclusion with deviance results, we may
be able to confirm this insight (a negative HRR evolved).

8 Proactivity versus Reactivity

Results comparing the four bonds values of the first two scenarios (S1 and S2) are
represented in Table 1 . We used two gray scales to color the cells, corresponding
10 Physical effort rate= number of steps/ total number of due steps (a specific number

for each configuration). It gives indirectly an idea about the overall system’s perfor-
mance itself and the participants’ ability to understand the feedback (intelligibility).

11 A survey of the involvement bond:http://goo.gl/forms/YUCtIVuNz0
12 A survey of the deviance:http://goo.gl/forms/M7DWeM1mqO

http://goo.gl/forms/YUCtIVuNz0
http://goo.gl/forms/M7DWeM1mqO
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to an increase in the metric values. For example, if the percentage of participants
whose metric values in S1 exceeded the values in S2, we used the light gray color;
we used the darker gray in the reverse situation. The t-test results comparing the
reactive and proactive conditions (S1 and S2) show that there was an increase in
most of the bond values when the robot was in proactive mode (S2). Consequently,
we may give a preliminary conclusion by saying that a proactive robot leads to a
more positive HRR. The averted gaze metric had higher results during S1 which
shows that users were avoiding the robot more during S1 in comparison to S2. We
also noticed that there were no significant differences in terms of the number of
times themouth corners raised (disgust) and the eye browswere raised (wondering)
which indicates that users most of the time were showing the same level of negative
feelings. As we had better results in S2, we can confirm these by comparing the
bonds evolvement increase in S2 with the three metrics: trust, persuasiveness and
long-term use that we have better positive HRR when the robot is proactive. This
suggests that using a proactive accompanying robot is more adequate to trigger
more bonding between the human and the robot and this leads to a more positive
HRR (H1 investigated).

9 Comparison of Proactive Full Mode with IU-Based and
Gesture-Based Communication

One-Way ANOVA and Tukey HSD results comparing the four bonds values of
the last three scenarios (S2, S3 and S4) are represented in the Table 1 (IUs vs IGs
vs full mode(IUs+IGs)). We colored the cells gradually with gray to indicate the
increase in the metric values for S2 (S2 the lightest, S4 the darkest). For example,
if the cell is colored with lightest gray and we were comparing S2 and S4, then
that means the percentage of participants had results in S2 that exceeded the
results in S4, and vice versa. Table 1 shows that there was an increase in most
of the bonds metrics in S4 (the dark gray color prevailed in Table 1; significant
Tukey HSD results also given). There were no differences in terms of successful
cognitive effort when comparing S2 and S4 (F-test=5.681; p-value=0.006) HSD
[S2 vs S4]=0.218, which shows that the added gestures in S4 were not responsible
for IUs understanding (users could understand the IUs since S2). IGs, too, were
considered to be expressive enough, as there were no differences in successful
cognitive effort, when comparing S2 and S3 (HSD[S3 vs S2]=0.220). We can also
point out that there were no differences in terms of persuasiveness between S2
and S3, which highlights that using the IUs or IGs is already enough to make
the robot convincing for the user. By comparing S2 to S4 or S3 to S4, we see
that users find the robot more persuasive when it combines the IUs and IGs
instead of using the IGs and the IUs separately. This highlights that the full
mode (IUs+IGs) guarantees better persuasiveness. By comparing S2 to S3, we
see that most of the S2 bonding-metric results were higher than or the same
as the results in S3 except for averted gazes (F-test=3.543; p-value<0.001;p-
value<0.001) which were higher in S3. This means that a silent robot was not
as appealing to the users.



Exploring the Four Social Bonds Evolvement 345

Table 1. The comparison results of S1 and S2 (2 tailed paired t-test, df=19,
alpha=0.05: proactivity vs reactivity) as well as comparison results of S2, S3 and S4
(One way ANOVA and Tukey-HSD tests: IUs only vs IGs only vs full mode (IUs+IGs))
with “p.” stands for “perceived.”, “E” “evolution” (the % of participants whose metric
results increase in S1 or S2), “N/A” refers to cases when further statistical tests were
not warranted (F-test was not significant) and 3 gray scales to color the cells corre-
sponding to an increase in the metrics values with light gray corresponds to S1 and
the darkest gray color to S4.

proactivity vs reactivity IU vs Gestures vs full mode
Metrics t-test p-value E F-test P-value S2 vs S4 S2 vs S3 S3 vs S4

B eye contact 3.3441 0.0034 85% 185.023 < 0.001 < 0.001 0.055 < 0.001
averted gaze 6.2056 0.0001 65% 63.714 < 0.001 < 0.001 < 0.001 < 0.001
cooperation 5.977 0.002 95% 55.541 < 0.001 < 0.001 0.006 < 0.001
respect rate 8.3533 0.0001 5% 117.163 < 0.001 < 0.001 0.033 < 0.001

A pleasure 5.2248 < 0.001 85% 94.709 < 0.001 0.001 < 0.001 < 0.001
likeability 2.4982 0.0218 100% 129.041 < 0.001 < 0.001 0.003 < 0.001
stress-free 4.1944 0.0005 100% 111.309 < 0.001 < 0.001 < 0.001 < 0.001

caring 10.2172 < 0.001 95% 148.371 < 0.001 < 0.001 < 0.001 < 0.001
p.closeness 3.5962 0.0019 75% 92.224 < 0.001 < 0.001 < 0.001 < 0.001

C mutual attention 18.4042 0.0001 90% 30.852 < 0.001 0.006 < 0.001 < 0.001
interaction time 13.4509 0.0001 95% 187.142 < 0.001 < 0.001 0.005 < 0.001

achievement 10.8076 0.0001 65% 12.418 < 0.001 < 0.001 0.538 0.001
p.competence 7.5597 0.0001 95% 49.323 < 0.001 < 0.001 0.965 < 0.001
p.intelligence 2.5696 0.0188 95% 41.216 < 0.001 0.001 < 0.001 < 0.001
physical effort 11.2489 0.0001 90% 85.763 < 0.001 < 0.001 < 0.001 < 0.001
cognitive effort 4.8221 0.0001 95% 5.681 0.006 0.218 0.22 0.004

arousal 2.8961 0.0093 100% 13.11 < 0.001 0.009 0.114 < 0.001
I Wondering 1.73 0.092 N/A 0.221 0.803 N/A N/A N/A

Surprise 2.9043 0.0091 25% 0.662 0.52 N/A N/A N/A
Disgust 0.5125 0.6142 N/A 1.834 0.169 N/A N/A N/A
Happy 2.4047 0.0265 N/A 32.309 < 0.001 < 0.001 < 0.001 0.009

adaptability 4.7618 0.0001 100% 37.487 < 0.001 < 0.001 0.931 < 0.001
HPFS 6.7219 0.0001 100% 211.405 < 0.001 < 0.001 0.313 < 0.001
HNFS 12.4617 0.0001 55% 246.403 < 0.001 < 0.001 0.983 < 0.001

D persuasiveness 2.8536 0.0102 55% 5.343 0.007 0.697 0.059059 0.008
trust 3.0 0.0074 80% 20.643 < 0.001 < 0.001 0.999 < 0.001

long-term use 23.8471 0.0011 50% 29.807 < 0.001 < 0.001 0.446 < 0.001

By combining the three Tukey-HSD comparisons, we can deduce that, for
most of the bonds, we have higher bonding results in S2 compared to S3, and
in S4 compared to S2. In summary, IUs were sufficient to make the robot per-
suasive and the communication meaningful, but it appears to be that adding
synchronized IGs to the IUs makes the robot aesthetically more appealing in
terms of behavioral design. These insights are in line with the participants open-
responses (situational empathy), with one of the participant indicating: “In this
last day, I felt that the robot was more human-like and smarter in comparison
to the previous times, since it can synchronize what it says with added body
movements.” As the bonding had high results in S4, and by comparing these
results with deviance results we can conclude that, from a behavioral design
perspective, it is better to integrate a full mode (IUs+IGs) for accompanying
minimally designed robots as it may guarantee strong social bonding evolvement
and a more positive HRR (H2 investigated).
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10 Conclusion and Future Research

Our study explored the human bonding with a robot as a reciprocation to
the accompanying robot’s different exhibited behaviors and functioning modes.
We tested two functioning modes: proactive and reactive. Results suggest that
humans overwhelmingly prefer the proactive mode to the reactive one. Moreover,
when interacting with an accompanying robot, users seem to prefer a combina-
tion of the robot’s gestures within the context of the conversation (full mode);
this was pointed out to be more aesthetically appealing. In the future, we intend
to investigate the proactive full mode under two conditions of robot’s operation:
advice mode (the robot can give advice to humans) and prosocial mode (the
robot needs help from humans).
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Abstract. In our previous work, we studied how humans establish a
protocol of communication in a context that requires mutual adapta-
tion using our robot Sociable Dining Table (SDT). SDT integrates a
dish robot put on the table and behaves according to the knocks that
the human emits by guessing the meaning of each knocking pattern. We
remarked based on previous experiments, that a personalized communi-
cation protocol is established incrementally. In fact, the communication
protocol is not personalized only to the pair human-robot but also to
the human robot interaction’s (HRI) instance. In the current study, we
change the robot’s feedback modality (the way the robot communicates
back with the human) in order that the communication protocol can
be maintained over different HRI’s instances. We proposed as new feed-
back modality, 2 mixed-feedback strategies integrating inarticulate utter-
ances (IU) combined with the robot’s visible behavior in order to facil-
itate the guessing of the robot’s internal state for the human. The first
strategy consisted in anticipating the robot’s executed behavior using
static IU combined with the robot’s movement (St1), and the other con-
sisted in genuinely suggesting an adaptive IU generation method com-
bined with the robot’s movement too (St2). In the current work, we
conducted an HRI experiment to explore whether the communication
protocol can be maintained on a long-term basis by integrating the 2
proposed methods. The results provide confirmatory evidence that using
IU helps in establishing stable communication protocols. In addition to
that it increases the attachment and the robot’s overall subjective rat-
ings. Another important finding is that, among the two methods, the
adaptive mixed feedback strategy (St2) affords better subjective results
and objective performance.

Keywords: Inarticulate utterance · Adaptation · Protocol of commu-
nication · Persuasiveness · Recall

1 Introduction

The current study draws on previous research where the goal was to explore how
people can incrementally establish a communication protocol within a simpler
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 348–358, 2015.
DOI: 10.1007/978-3-319-25554-5 35
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setting [1]. In our previous study, we used the knocking as the only communica-
tion channel that the human canuse to express his intention (knocking on the table)
while the robotusedvisiblemovementas theonly feedbackchannel to communicate
back with the human [1]. We showed based on an HRI experiment that, the human
and the robot cooperated and as a result a personalized communication protocol
emergedafter eachHRI interaction’s instance.Weremarkedalso, thathumans tend
to forget the previously established communication protocol (PECP) and instead
keep on creating new communication protocols in each HRI’s instance [1]. Since,
we want the HRI to occur smoothly and implicitly (the human has to feel sponta-
neous), we need indirectly to make the human remember the PECP so as to avoid
the anticipated unpleasant consequences such as making the human’s social face
threatened or the robot being abandoned. Consequently, in our study we address
the issue of triggering the human indirectly to use the same previously established
communication protocol (PECP) rather than creating in each HRI instance a new
communication protocol. We proposed to use 2 mixed-feedback strategies to com-
municate back to the human and to integrate the robot’s visible movement along
with IU. Thus, the challenge to be resolved is to investigate the effect of using these
mixed-feedback strategies on the long-term recall (remembrance) of the PECP in
addition to exploring the impact of our strategy on the human’s subjective eval-
uation of the robot’s performance. Also, we want to determine, which is better in
terms of objective and subjective results: the first or the second proposed mixed-
feedback strategy.

2 Background

There are some occasions in the HRI when special reasons dictate inconsistent
behavior. For example, we can cite human’s forgetfulness of the previously formed
communication protocol just as we remarked in the previous study [1]. In such cir-
cumstance, the robot is forced to tell the human that he is wrong which may be
perceived as challenging for the human partner. When the robot disagrees with the
human, the human is confronted with a face-threatening act, placing the user at
risk of beingbotheredby the robot’s opposition [2].The concept of face-threatening
acts was initially proposed by social scientists such as Goffmann [2]. Moreover,
even if the robot assumes that itself, it is the faulty party and tries to apologize,
users may lose their trust in the robot and they will use it as a scapegoat to avoid
any responsibility [2], assuming of course that they are even aware of their faulty
behaviors. In this context, Lee et al. [3] utilize different strategies including apolo-
gies, compensation and options for the user to reduce the negative consequences
of the communication protocol’s breakdowns. In another study, Torrey et al. [4]
highlight that we just need to add hedges and discourse markers so that we diffuse
the human’s sensation that the robot takes control over him, when it tries literally
to tell the human nicely that he is wrong. Takayama et al. [5], confirmed through
their study that distancing the voice from the robot makes the human tolerates the
fact that the robot disagrees sometimes with them. We believe that these strategies
are useful but simpler methods can be integrated within HRI to resolve this chal-
lenge. We draw inspiration from child-caregiver interaction’s scenario. We want
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Fig. 1. In (a), a user interacting with SDT and in (b) we have SDT’s architecture

to integrate a more implicit way that helps preventing PECP post-forgetfulness
and trigger human’s memory indirectly while we expect that an IU may lead the
human to remember the related behavior just as Paivio [6] indicates in his dual
coding concept1. For example, in a baby-caregiver interaction, a baby does not use
such complex analytical methods (such as compensating, apology, etc..) in order
to communicate back with the caregiver, but combines each of the behaviors with
a special IU. The communication goes through different breakdowns and still both
parties (the baby and the caregiver) can establish a long-term communication pro-
tocol. In fact, based on the simple IU combined with the behaviors previously used
during previous interactions, the baby and the caregiver are capable of recalling
each of the behaviors which makes the establishment of a stable long-term used
communication protocol easier for both parties [7]. On these grounds, this study is
an attempt to address the issue of how a robot can express implicitly his disagree-
ment about some inconsistency during the HRI without threatening the human
partner’s social faces. More specifically, our goal is by using what we anticipate to
be a threat-free method, to drive the human during the first HRI instance (coding
phase) to memorize the communication protocol. By using the proposed methods,
we hope that users will be made aware of their faulty indications, focus more when
they establish the communication protocol, and that as a result a long-term com-
munication protocol can be established whereby users feel comfortable to commu-
nicate with the robot.

3 Architecture of the SDT

SDTuses 4microphones to localize theknock’s sourcebasedon theweighted regres-
sion algorithm. It communicates with the human based on a sound output and with

1 According to the dual coding concept, each trigger (visual or audio) that it is combined
with a concept learning during the coding phase (learning phase or by analogy to our
problematic, during the communication protocol establishment), may facilitate the
remembrance (recall) of the information (or in our case the PECP) once the trigger is
exposed to the human.
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the host computer through Wi-Fi using it control unit (a macro computer chip
(AVR ATMEGA128)). It employs a servomotor that helps to exhibit the differ-
ent behaviors: right, forward, left and back. Finally, 5 photo reflectors are utilized
to automatically detect the boundaries of the table and avoid falling (Fig.1).

4 Robot’s Action Selection Strategy

We conceived an actor/critic architecture that incrementally helps the robot to
choose between 4 actions (left, right, back, forward).

4.1 Actor Learning

Each knocking pattern (x contiguous knocks pattern:e.g 2 knocks, 3 knocks, etc.)
has its own distribution X(st) = N(μX(st), σX(st)) where X(st) is defined as the
knocking pattern, μX(st) and σX(st) are the mean value and the variance. We
chose 2 seconds (s) as a threshold for the user’s reaction time based on previous
established experiments. When the robot observes the state st, the behavior is
picked according to the probabilistic policy Π(st)nbknocks. If within 2 s there
was no knocking pattern, we suppose that the robot has succeeded by choosing
the right behavior and the critic reinforces the value of the executed behavior in
the state st. The system switches to the state st+1. If a new knocking pattern
is composed before that 2 s elapsed, the state of the interaction changes to the
state st+1 indicating that the knocker disagrees about the behavior that was
executed. The critic updates thus the value function before choosing any new
behavior. As long as the knocker is interrupting the robot’s behavior before that
2 s elapsed, the actor chooses the action henceforth by pure exploration (until
we meet an agreement state: no knocking during 2 s) based on (1). The random
values vary between 0 ≤ rnd1, and 3 ≤ rnd2. The above range was decided to
bring the values of the action between 0 and 3 (corresponding to the behaviors’
(forward, right, back, left) numerical codes). We assume in such case that the
knocker will randomly compose the patterns just to switch the robot’s behavior.

A(st) = μX(st) + σX(st)
∗

√

−2 ∗ log(rnd1) ∗ Sin(2Π ∗ rnd2) (1)

4.2 Critic Learning

The critic calculates the TD error δt which is the difference between the real value
function of the new gathered state V (st+1) and the expected state V (st) (2)

δt = rt + γV (st+1) − V (st) (2)

with γ is the discount rate and 0 ≤ γ ≤ 1. According to the TD error, the critic
updates the state value function V (st) based on (3).

V (st) = V (st) + α ∗ δt (3)
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where 0 ≤ α ≤ 1 is the learning rate. As long as the knocker disagrees about the
executed behavior before 2 s elapsed, we refine the distribution N(μX(st), σX(st))
that it is relevant to the pattern X(st) (for each pattern, we have a specific
distribution X(st) ) which helps us to choose the action according to (4).

μX(st) =
μX(st) + Ast

2
σX(st) =

σX(st) + |Ast − μX(st)|
2

(4)

5 Feedback Strategies

In the current study, we have 3 feedback strategies that helps the robot to
communicate with the human.

5.1 Visible Movement-Based Feedback Strategy Method

This strategy corresponds to the feedback modality that we used in our previous
work while the robot can just execute the action after guessing the knocking
pattern’s meaning. Based on the robot’s visible movement, the human has to
understand implicitly how the robot combines for each knocking pattern, a rel-
evant action.

5.2 Static Mixed Feedback Strategy

This method consists on announcing before that the robot executes the intended
behavior, the label of that behavior. (e.g: If the robot has to go right, the robot
generates the IU “go right” before it executes the action. We believe that by
using this method, the user will have more time to help the robot avoid the
wrong steps.

5.3 Adaptive Mixed Feedback Strategy

We opted for the SARSA algorithm in order to generate in real time and in
an adaptive manner, different IUs combined with the robot’s visible behaviors.
SARSA (so called because it uses state-action-reward-state-action experiences
to update the Q-values) is an on-policy reinforcement learning algorithm that
estimates the value of the policy being followed [8]. An experience in SARSA is
of the form (S,A,R,S’,A’), which means that the robot was in state S, did the
action A, receives the reward R, and ends up in state S’, from which it decided to
do action A’. This provides a new experience to update Q(S ,A). The new value
that this experience provides is, r +γQ(S′, A′). In this context, as the robot will
use the actor-critic to choose the future action (based on the actor component)
and a reward will be generated which will be used by the critic of update issues,
that same action will help to choose the appropriate label (e.g if the robot has
to go left, then the robot will generate the label left as IU (method used in the
static mixed feedback strategy)) and that same reward will help to update the
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Q function because if the human made an error, then it should also be linked to
his misunderstanding of the IU.
A state S in our case, is the combination of the actual interaction status (agree-
ment or disagreement) in addition to the number of knocks received (e.g: a state
S can be S=(agreement, 2 knocks) which means that the actual interaction sta-
tus is agreement and the robot receives 2 knocks.). In our context, we have 2
interaction status: the agreement status (when the human does not knock for 2
seconds (s), we assume that the last action was correct) and the disagreement
status otherwise. So, if we assume that each state can have 2 status agreement
and disagreement and we have 4 types of patterns, then we will have 8 states.
We assign for each (state, utterance) a value function Q(S,U) which we initial-
ize arbitrarily. It helps comparing between different (state, utterance) couples
outcomes. In the disagreement status and whenever there will be a knocking
pattern, there are 3 possible actions which precedes the robot’s movement:

– indicating the chosen behavior using an IU (to reduce wrong steps).
– repeating the received number of knocks (indicating that the input is pro-

cessed).
– combining both.

The second possible status is the agreement, while we have 3 possible actions:

– repeat the label of action A that was previously executed by naming it, take
a small pause and then tell the future robot’s action B that is intended to
be executed (to make the human aware that the action will be shifted from
A to B).

– repeat the previous received number of knocks A in addition to the actual
received number of knocks B (to indicate for the human that the robot is
aware the knocking is shifted from A to B).

– indicate using IU the (previous knocking pattern, label of previously exe-
cuted action), a pause and then indicate the future robot’s action that is
intended to be executed (to consolidate the lately learnt rule and makes the
human aware about the new action).

– a high pitched inarticulate utterance showing enthusiasm (to engage the user
more in the interaction).

The update of the value function follows the equation (5):

Q(S,U) < −Q(S,U) + w(r + vQ(S′, U ′) − Q(S,U)) (5)

with 0<w<1 is the learning rate. r is the gathered reward and 0<v<1 is the
discount factor.

6 Experimental Setup

Participants take part in 2 trials one-by-one while each one cooperates with
the robot in order to lead it to the different checkpoints (Fig.2). Each partic-
ipant was informed that the robot can execute 4 behaviors (right, left, back,
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Fig. 2. An example of 2 configurations: each configuration is designed for a trial and
is formed by different points marked on the table.

forward) while he has to knock on the table in order to convey his intention
of making the robot choose a specific direction. Each user, has to participate
for the first time (trial 1) and then answer a survey (indicated in section 7).
After, 3 days the participant comes again to the laboratory to redo again the
same task except that we propose this time (trial 2) a different configuration.
The former points marked on the table are changed to guarantee the diversity
of the patterns suggested by the participants (Fig.2). In the current experiment,
we have 3 conditions for which we assigned the same number of participants
(7 participants per condition). It is the same task for all participants except
that, HRI is designed differently during trials 1 and 2 for each condition. For
the first condition (MM), we used a simple feedback strategy (Movement (M))
during both trials and for 7 participants while the robot is silent and the human
can just visualize the robot’s movement. We call that simple feedback strategy,
movement-based feedback strategy. For the condition 2 (MI), the robot uses the
mixed-feedback strategy (M+IU) while it just uses the static method combined
with the robot’s movement during both trials and for 7 participants. Finally, in
condition 3 (AMI), the robot uses an adaptive method for utterance genera-
tion (M+adaptive IU) combined with the robot’s movement during both trials
and for 7 participants. In total 21 participants ([21-30]years) take part in our
experiment.

7 Survey Procedure

After finishing each trial, we asked each participant to fill out 7-Likert scale ques-
tionnaires so that we could measure: the attachment that may evolve (5 factors
to measure the attachment: adaptability, stress-free, perceived closeness, cooper-
ation and achievement [1]), the robot’s credibility (using a standard instrument
indicated [9] which consisted of 3 factors: competence, trust and caring), the
social face support (2 factors: human positive face support (HPFS) and human
negative face support (NHFS)) to verify whether the user’s social faces were
supported during the HRI (inspired from [10]). We also demanded from the
participant to fill out a 4-God speed questionnaire [11] to measure the robot’s
likeability, perceived intelligence, animacy and anthropomorphism. Moreover, we
evaluate the user’s mood using SAM scale [12] (2 factors: pleasure and arousal).
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After answering the questionnaires, we demanded from the user to arrange a list
of words in an increasing order of priority which he assigns according to his own
opinion. This list, is used to measure the persuasiveness based on the kendall-tau
distance and the method indicated in [13]. After that, the user has to describe
his experience with the robot in an open-ended way and then evaluate his future
frequency of use of the robot. Then, we asked the user to play a game for 15
minutes in order to determine whether they remember the interaction rules with
SDT. He has to enumerate the different interaction rules that he still remembers
(short-term recall rate). We noted the communication protocol established in
trial 1 and we compared it to the communication protocol used in the beginning
of trial 2, so that we could calculate the reuse percentage of rules that belong
to the previously established communication protocol (long-term recall rate).
We computed also the chi-square and the Cramer V evaluating the stability of
the communication protocol and the relationship between the knocking patterns
and the robot’s behaviors. Also, we computed the minimal Euclidian distance
between the robot’s trajectory and the different checkpoints (CPs) marked on
the table, so that we can verify the perfection level that the user reached while
doing the task.

8 Challenges of Using the Robot’s Movement as a
Feedback Strategy

Table 1 summarized the comparison of the condition MM trials 1 and 2 results.
Based on Table 1, we remark that users found that the robot was more competent
and that the level of focus was higher (mutual attention, arousal) during trial 2.
This, may explain the longer time needed to achieve the task that was achieved
perfectly in comparison to the first trial. We expected that the time needed would
be shorter during trial 2, however this was not the case. Figure 3 shows that,
all the participants have a long-term recall rate value under 0.5 which explains
why people took more time during trial 2. In fact, they forget the PECP.

Fig. 3. Long-term recall rate for the
different participants in trial 2 of the

condition MM

Table 1. Comparison of the con-
dition MM trials 1 and 2 results.

Metric t-test df P-value

Time Needed 2.417 12 0.032

Distance From the CP 2.942 12 0.012

Arousal 2.25 12 0.044

Mutual Attention 4.66 12 0.001

Competence 2.219 12 0.047
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9 Mixed-Feedback Strategy Vs Movement-Based
Feedback Strategy

We compared the trials 2 results of the conditions MI and MM to investigate
the effect of adding the IU to the robot’s visual behavior as an expected more
explicit feedback strategy. Table 2, shows the results of the comparison (compar-
ison of MI and MM). Based on Table 2, we conclude, that the mixed-feedback
strategy of the condition MI, helped users to feel more attached to the robot,
believe on its credibility and feel no threat of loss of faces. The robot was judged
as more animate (animacy factor) and anthropomorphic (anthropomorphism
factor), likeable (likeability factor) and smart (perceived intelligence factor),
attentive (mutual attention factor) and persuasive (persuasiveness factor). This,
led to a shift to a positive mood for the user and, a higher expected long-term
use for the robot in the condition MI. We noticed also, that the condition MI
boosts the robot’s objective performance, while we remarked that during trial
2, we have more stable protocols (cramer V). Also, we remark that users could
achieve the task more perfectly (distance from the checkpoints) and in shorter

Table 2. Conditions MM and MI comparison results of the trials 2 factors’ values and
the conditions MM and AMI comparison results of the trials 2 factors’ values.

Factors comparison of MI and MM comparison of MI and AMI
t-test P-value t-test P-value df

achievement 3.216 0.007 3.216 0.007 12

cooperation 2.263 0.043 2.263 0.043 12

friendliness 2.29 0.041 2.291 0.041 12

stress-free 2.846 0.015 2.846 0.015 12

adaptability 2.982 0.011 2.982 0.011 12

trust 2.642 0.021 2.642 0.021 12

competence 2.449 0.031 2.449 0.031 12

caring 2.744 0.018 2.744 0.018 12

animacy 3.753 0.003 3.753 0.003 12

anthropomorphism 3.392 0.005 3.392 0.005 12

likeability 3.545 0.004 3.545 0.004 12

perceived intelligence 2.219 0.047 2.219 0.047 12

arousal 4.157 0.001 4.157 0.001 12

pleasure 2.717 0.019 2.717 0.019 12

persuasiveness 4.261 0.001 4.26 0.001 12

PHFS 2.425 0.032 2.425 0.032 12

NHFS 2.58 0.024 2.58 0.024 12

attention allocation 2.489 0.029 2.489 0.029 12

long term use 3.897 0.002 3.897 0.002 12

Distance from CPs 2.411 0.033 2.411 0.033 12

Cramer V 19.297 <0.0001 19.297 <0.0001 12

Task Completion Time 2.284 0.041 2.284 0.041 12

short-term recall 14.899 <0.0001 0.612 0.552 12

long-term recall 4.7555 0.0004 0.816 0.43 12
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time. Furthermore, results suggest that the short-term recall rate value of the
condition MI is significantly higher in comparison to the short-term recall rate
values of the condition MM. In correlation to that, we find that long-term recall
was higher in the condition MI. These results afford insights for the HRI while
it shows that using a mixed-feedback strategy is subjectively more preferred,
leads to better objective performance and relatively a better maintainance of
the PECP.

10 Static Mixed Feedback Strategy Vs Adaptive
Mixed-Feedback Strategy

Table 2, exposed the comparison results of the conditions MI and AMI. Based on
Table 2, we can see that users attribute better subjective evaluation of the HRI
when the robot uses the adaptive mixed feedback strategy. We remark also, that
there were no significant differences between conditions MI and AMI in terms of
short and long term recall rates which means that both methods guarantee the
remembrance (recall) of the PECP on long and short term basis. Furthermore,
objective performance was higher for the AMI condition. In fact, users achieve
the task more perfectly, in shorter time and succeeded in establishing stable
communication protocols. Consequently, while using the adaptive mixed feed-
back strategy during an HRI guarantees better subjective ratings, more stable
communication protocol and leads to a better achievement of the task in shorter
a time, the adaptive IU generation strategy does not lead to a better recall of
the PECP.

11 Conclusion

We proposed 2 mixed-feedback strategies that helps to ameliorate users’ sub-
jective ratings and remembrance of the PECP on a long-term basis. Results
suggest, that the adaptive mixed feedback strategy of IU leads to better recall
rates in comparison to the static mixed feedback strategy. In our future work,
we intend to use affective inarticulate utterances and investigate whether it can
arouse users’ affective and cognitive empathy.
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Abstract. In this paper, we present an approach for a robot to provide
personalized assistance for dressing a user. In particular, given a dressing
task, our approach finds a solution involving manipulator motions and
also user repositioning requests. Specifically, the solution allows the robot
and user to take turns moving in the same space and is cognizant of
the user’s limitations. To accomplish this, a vision module monitors the
human’s motion, determines if he is following the repositioning requests,
and infers mobility limitations when he cannot. The learned constraints
are used during future dressing episodes to personalize the repositioning
requests. Our contributions include a turn-taking approach to human-
robot coordination for the dressing problem and a vision module capable
of learning user limitations. After presenting the technical details of our
approach, we provide an evaluation with a Baxter manipulator.

Keywords: Human-robot interaction · Dressing · Human tracking ·
Learning and adaptive systems

1 Introduction

Research has moved towards allowing robots and humans to operate in the
same workspace. For instance, human-aware robots can assist people in factories,
or even elderly people in their homes. In particular, there has been increasing
interest in developing robots that can help people overcome their disabilities and
limitations [13]. There are many challenges involved in designing robotic systems
that deliver highly personalized assistance to different individuals, owing to the
uncertainty introduced by human presence.

In this paper, we address the problem of providing personalized assistance to
help dress a person with a manipulator. To this end, we introduce a framework
for human-robot collaboration, in which the user and robot take turns moving
to complete their shared goal. During these interactions, the robot learns the
user’s limitations and uses this information to provide personalized interactions.

c© Springer International Publishing Switzerland 2015
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Dressing tasks, represented as templates, are sequences of goal poses with
respect to the user. For instance, placing a hat on a user’s head has one goal
pose, with the arm several centimeters above his head. Other tasks may have
several goal poses that must be incrementally solved to complete a task.

Before the robot acts on these templates, they are instantiated with the
current location of the user. For example, for a 1.8m tall person, a goal position
of 10cm above the head of the user becomes 1.9m from the ground. This is the
first form of personalization which allows templates of sequential goals to be
parameterized by the user’s physical features.

Once the template is instantiated, the robot attempts to fulfill the goals with
its motion planner, while asking the user to remain still. If the plan fails, the
robot tries to re-instantiate the template by asking the user to move to reposi-
tion himself. Specifically, a planner determines a sequence of user repositioning
requests that will take the user from their current pose to a new pose.

As a second form of personalization, the robot models each user’s limitations,
represented as pose constraints. When the robot asks the user to reposition
himself, it selects a pose that satisfies these constraints. Specifically, the robot
selects a new pose for the user by sampling points in its configuration space that
also satisfy the known constraints. Constraints are learned by a vision module
that monitors the user’s response to repositioning requests. Each repositioning
request has an expected behavior, and the robot infers a new constraint when
the expectation is not met. Due to inaccuracies in vision, and the uncertainty
introduced by humans, these constraints have error tolerances and confidences.
To increase our confidence and refine constraints, they are ignored in future
episodes with probability proportional to their confidence.

Among our contributions, the three most notable are:
– An approach to the dressing problem that explicitly requests the user to

reposition himself when a solution cannot be found.
– A vision-based expectation algorithm that determines if the user is comply-

ing with an interaction request and learns his constraints.
– A turn-taking approach for safe human-robot interactions in a shared

workspace.
In the remainder of the paper, we compare our approach to related works, in

Section 2. Then, in Section 3, we provide an overview of the proposed approach
before detailing each component. In Section 4 we describe a specific implemen-
tation with a Baxter manipulator robot and show experimental results. Finally,
we draw conclusions and discuss future work in Section 5.

2 Related Work

Our work is similar to research in designing algorithms for manipulators that
help dress humans. Much prior work has focused on the problem of clothing
manipulation in simulation [3] and also in the real world [7,9,14]. Our work is
more focused on the additional challenges posed when a person is involved.

When operating a manipulator near a person, accurate human tracking,
localization, and fusing information from available sensor networks is extremely
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important [12]. Researchers have developed approaches for dressing people based
on visual and sensory information [15]. Their proposed visual framework matches
features acquired from depth and color images to features stored in a database.
Similar to our approach, this system can detect failures via vision. However,
on failures we re-plan using a series of user interactions and motion planning,
whereas they repeat the same action assuming the error was transient.

Researchers have used reinforcement learning to teach robots to put on a
t-shirt and wrap a scarf around a mannequin’s neck [5,10]. In the latter work,
the robot learns tasks through dynamic movement primitives, allowing them to
modify the trajectory speed or goal location. By contrast, our approach uses a
sampling-based motion planner. By performing motion planning online, we have
a high degree of confidence that the trajectory will not collide with the person.

The aforementioned works do not attempt to cooperate with the user. Our
approach employs sparse-coordination, where the robot asks the user to repo-
sition himself/herself if it cannot otherwise solve the task [11]. Additionally,
similar to the concept of maintenance goals, repositioning requests have expec-
tations that are monitored over time by a vision module [2]. Lastly, our work
draws from research in representing and solving generalized or parameterized
plans [6]. In particular, we represent dressing tasks as sequences of subgoals that
are parameterized by the location and size of the user.

3 Approach to Personalized Dressing

Our aim is to enable a manipulator to aid users in dressing tasks by provid-
ing personalized assistance. Throughout this paper, we employ the example of
helping a user to put on a hat. Figure 1 shows our Baxter manipulator ready to
perform this task.

Fig. 1. Baxter equipped to dress a user with two different hats.

Our approach is described at a high-level in Algorithm 1. In particular, each
dressing task is a template, which is a sequence of goal poses of the manipulator
with respect to the user. The template is instantiated with the current position
and orientation of the user by the vision module (Line 3). Then, the motion plan-
ner attempts to find and execute a motion plan that satisfies each goal (Line 4).
If it meets a goal that is infeasible, the robot attempts to re-instantiate the tem-
plate by choosing a new pose for the user that satisfies his known constraints
and is in the robot’s configuration space (Line 6). To refine constraints, some
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are ignored with probability proportional to their confidence. The robot then
determines a sequence of repositioning requests that will move the user to the
chosen pose (Line 7). Finally, the vision module monitors the user during repo-
sitioning requests and infers new limitations when he cannot respond (Line 8).
This process happens in a loop until all of the template’s goals are solved.

Algorithm 1. Execution of Personalized Human-Robot Motion Interactions
1: procedure execute(template, vision, motion, constraints)
2: while goals �= ∅ do
3: goals ← vision.instantiate(template)
4: goals ← manipulation(goals, motion) // remaining goals
5: if goals �= ∅ then
6: newPose ← feasiblePosition(template, vision, constraints, motion)
7: interactions ← planInteractions(vision, constraints, newPose)
8: constraints ← interaction(interactions, vision, constraints)

3.1 Vision-Based User Tracking
The vision module monitors the user to pause motion execution if he moves, and
to determine if he is complying with repositioning requests.

The vision module is provided with a set of joint positions J from a skeleton
tracker. We model a person as a set of connected body parts, B:

B = {head , torso, left arm, right arm}
that are tracked by the vision module, which provides the center-of-mass location
(x, y, z) and orientation 〈qx, qy, qz, qw〉 of each body part. Typically |J | > |B|
and some joint locations map directly to body part locations. The body part
orientations are computed by looking at the locations of consecutive joints.

Our vision module then performs two additional functions:
– Detecting if a person is stopped or moving.
– Verifying user-repositioning expectations.

To detect if a person is stopped or moving, the robot compares the body part
positions and orientations over time. If bt ∈ B is a body part at time t, the body
part is stopped if: ∀k ∈ [t − γ, t] : ||bk − bt|| < ε

Where γ is the time the user must be stopped for, and ε is a threshold to allow
for small movements or tremors.

When the robot asks the user to reposition himself, it generates expected
poses for some of the user’s body parts and sends them to the vision module.
When the user next stops moving, vision verifies that the user’s actual body
part poses match the expected poses. The verification of whether the user is in
an expected position is done by the function verify expectation(expected pose,
actual pose), which compares the expected pose of each user’s body part to the
actual poses found by the vision. It returns True if each dimension matches up
to a configurable threshold and False otherwise. When the result of this function
is False, the robot infers a new user constraint or refines an existing one.
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3.2 Dressing Tasks as Template Goals
We represent a dressing task as a sequence of desired manipulator pose goals
with respect to the user. For instance, putting on a hat has one desired pose,
with the arm straight and above the user’s head. Other tasks may have several
desired poses that must be completed incrementally. For instance, putting on a
backpack has several goal poses to help the user get each arm into a strap. These
sequences of goals are general to any user, but are parameterized based on their
physical characteristics. Formally, a template goal T is a sequence of pose goals:

T = 〈P1, P2, P3...., Pn〉

Where each pose goal is composed of a position (x, y, z), orientation as a quater-
nion 〈qx, qy, qz, qw〉, and a vector of tolerances for each dimension (TOL):

Pi = 〈x, y, z, qx, qy, qz, qw,TOL〉

Thus, Pi is a goal pose 〈x, y, z, qx, qy, qz, qw〉, which is satisfied by a pose P ∗ if:

∀d ∈ Pi |Pid − P ∗
d | ≤ TOLd

Goal poses have allowable tolerances in each dimension for two reasons. First,
they account for minor vision inaccuracies. Secondly, some tasks may not require
exact orientations or positions, as the user can readjust himself.

A template is instantiated when the vision module provides the location of
a user with respect to the manipulator. Then, each pose Pi is transformed from
the reference frame of the user to the reference frame of the robot. This allows
the robot to run a motion planner for each pose goal.

3.3 Motion Planning
We adopt a sparse-interaction approach, where the manipulator first tries to
solve as many pose goals as it can, before asking the user to reposition himself.
To minimize the possibility of a collision the manipulator only moves when the
user is stopped. If the user begins moving, the robot halts and re-plans once the
user stops. The vision module is responsible for monitoring the user.

The algorithm for our approach is shown in Algorithm 2. Given instantiated
template goals, the motion planner attempts to incrementally solve and execute
the pose goals. The manipulator represents the world as a 3D occupancy grid
provided by the vision module. We then use a sampling-based motion planner to
compute a trajectory through the joint-space to our goal position. Specifically, we
use RRT-Connect, a variant of Rapidly-Exploring Random Trees (RRT) known
to work well with manipulators [8]. RRT-Connect grows two trees and attempts
to connect them by extending the two closest branches. If the manipulator finds
a pose goal that is infeasible, the robot chooses a new location for the user and
determines a sequence of repositioning requests to ask.

3.4 User-Aware Pose Selection and Assistance Planning
Once the manipulator determines that a pose goal is infeasible, it asks the user
to reposition himself. The robot has a knowledge-base of user constraints and
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Algorithm 2. Motion Planning
1: procedure manipulation(goals, motion, vision)
2: for Pi ∈ goals do
3: plan ← motion.rrt(Pi)
4: if plan == (‘Infeasible’) then
5: break
6: while plan.executing() do
7: if vision.feedback() == ‘User Moving’ then
8: motion.pauseUntilUserStopped(vision)
9: plan.replan(vision)

10: return goals.remaining()

balances seeking feasible poses with refining the constraints. Once a new pose is
determined, the robot finds a sequence of interaction requests that will move the
user to this pose. Each interaction is monitored by a vision system that infers
new constraints when the user cannot comply with a request.

We represent a constraint c on body part b ∈ B as:

c = 〈b, ineq , conf 〉

Where ineq is an inequality for a limitation on one of the pose dimensions. The
left hand term of the inequality is the dimension, while the right hand term is
the value that cannot be surpassed. For instance, torso.x > 0.9 means that the
torso cannot move closer than 0.9m to the base of the robot. conf ∈ , represents
the robot’s confidence in the constraint. This is a function of how many times
the constraint is satisfied compared to the number of times it is violated.

Given a set of known feasible manipulator poses P, future poses are sampled
from points in P that satisfy all active user constraints. For each interaction, a
user constraint is active with probability proportional to its confidence. In this
way, the robot can test less confident constraints to refine them.

Once a new pose is found, the robot must determine a sequence of interac-
tions that will reposition the person. Each body part has a position, orientation,
and set of motion actions. The motion actions represent parameterized reposi-
tioning requests that the robot can ask of the person. We define several trans-
lational motion and rotational actions including: forwards(x), backwards(x),
left(x), right(x), up(x), down(x), turn right(θ), and turn left(θ). Where x is a
distance in meters and θ is a rotation in degrees with respect to the manipulator.

Each of these motion actions is associated with a set of expectations E:

e = 〈b,L,TOL〉

Where each expectation consists of a body part b ∈ B, expected pose L, and tol-
erance on each dimension of the pose TOL. For instance, requesting forwards(1)
on the torso corresponds to asking the user to walk 1m forwards and moves all
of the body parts. By contrast, requesting up(0.2) on the left arm will only move
the left arm up 0.2m, because it corresponds to lifting an arm.
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Using these expectations, we can generate a plan of translational and rota-
tional user requests that repositions each of their body parts. In particular, we
focus on repositioning the user to the correct x position, then y, then z, and
finally, the correct rotation. More generally, a planner could pick the order of
these actions. During these interactions, the user is monitored by the vision
module which determines if he complies with a request. If the user cannot, the
robot infers a constraint, selects a new pose, and tries again.

3.5 Learning and Refining User Constraints
The robot learns and refines constraints in two situations. The first is when a
user stops before reaching an expected pose during a repositioning request. The
second is when the user enters a space the robot believed to be constrained.

In the first case, given a motion action m and an expectation 〈b, L,TOL〉,
the vision module detects that the user has stopped, and is not in the expected
position. Then, a constraint is inferred for the body part b on the axis associated
with m. The constraint is that the user can move no further than his current
position, which is provided by the vision. If a constraint along this axis already
exists for that body part, it is updated with the new value.

For instance, the action forwards(x) expects all of the body parts to move
x meters closer to the robot. If the user cannot comply with this request a
constraint cb is generated for each body part b ∈ B of the form:

cb = 〈b, b.x > vision.b.x, conf〉

where vision.b.x is the x -coordinate of body part b, and conf is a configurable
initial confidence value.

In the second case, the user moves into a space that the robot believed to be
constrained. This implies that the original constraint was too strict, and should
be relaxed. To do this, the robot replaces the value in the inequality with the
value from the user’s current location.

In both cases, the robot updates the confidence in the constraint. This influ-
ences how often the constraint is ignored when picking a user-pose to request.

Let Ns be the number of times the user approaches a constraint and does not
pass it (the constraint is satisfied); and Nf the number of times the constraint
fails, because the user passes it. The confidence conf of a constraint is:

conf =
Ns

Ns + Nf

This constraint inferring procedure becomes particularly relevant when inter-
acting with disabled people. For instance, a user in a wheelchair may not be able
to move perfectly laterally, or too close to the robot. In such cases, learning con-
straints in the adequate axes will optimize future interactions, as the robot will
request poses that satisfy the inferred constraints. We note that the constraints
learned are approximations of a human’s physical limitations, as joint movements
are dependent from one another.
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4 Evaluation

We tested our approach with a Baxter manipulator. Baxter is a particularly
good platform because is designed to work alongside users, implementing force-
compliant motion. We mounted a Microsoft Kinect on Baxter, and used OpenNI-
Tracker to find human joint positions. This depth image based skeleton tracking
approach produces robust joint positions for different users in various background
and lighting conditions [1]. Baxter makes repositioning requests by displaying
text on its screen.

For these experiments, we considered the task of putting on a hat on the
user’s head. Formally, the goal template T = 〈P1〉 for this task has one goal
pose. In this pose, the right gripper of Baxter points straight out, positioned
10cm above the head body part.

We tested our approach with users ablating themselves to simulated physical
limitations. In the first set of experiments, we show how increasing the constraint
complexity affects the execution time of the task. This motivates our constraint
learning approach. In the second set of experiments, we show that learning the
constraint model of a user optimizes the interactions. In particular, with enough
accurate constraints the execution time is similar to the case with no constraints.

4.1 Planning and Executing with Increasing Constraint Complexity
We tested our system in the real world with one taller person (1.83m tall) and
one shorter person (1.62m tall), who ablated themselves by simulating physical
limitations. Our aim was to show that users with more complex constraints take
longer to teach, which motivates learning personalized constraint models. Our
first constraint was that the user was in a wheelchair and could not move his
head closer than 0.9m to the robot. The second was that the user could not move
his head more than 0.2m left.

We consider four cases, with results shown in Table 1. In Column A, the user
starts in a feasible pose, and the manipulator immediately executes its task. In
Column B, the robot selects a user-feasible pose, the user repositions himself,
and the manipulator is then able to execute the task. In Column C, the user
has one constraint, and the robot initially selects a user-infeasible pose. Thus
the robot first makes an infeasible user-repositioning request and must detect
this. Then, it must sample a new pose outside the user constraint space, and
repeat the repositioning process. In Column D, the user has two constraints, so
the process from Column C is likely to occur multiple times. We note that the
execution time is highly dependent on the number of instructions the robot gives
the user, and on how promptly the user complies with them.

Table 1. Average execution times and interactions for the 4 cases over 40 trials.

A B C D

Execution time (s) 11.6 ± 1.8 32.0 ± 12.3 53.0 78.0

Number of interactions 0 2.1 3.3 3.5
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The variances for Columns C and D are omitted as there was a significant
discrepancy between the two users. The distribution was bimodal, implying that
the two users took different times to respond to the robot’s instructions.

Fig. 2 shows a task execution for a user constrained to a chair, meant to
model a wheelchair. Initially, the template goal is instantiated by the vision
module with the user’s head location. At first, the user is too far away, and the
motion planner cannot solve the goal. The robot selects a new pose by sampling
points in its configuration space that are believed to be feasible for the user.
Additionally, the robot determines that this pose be achieved by asking the user
to move forwards. Then, the vision system detects when he halts in the expected
position and re-instantiates the template goal. Finally, the motion planner finds
this new goal to be feasible, solves it, and places the hat on the user’s head.

(a) User is initially at an
unreachable pose.

(b) Robot requests the
user to move forward.

(c) Manipulator success-
fully puts hat on the user.

Fig. 2. Example of dressing task execution for a user constrained to a chair.

The large majority of trials succeeded in putting a hat on the user, with few
errors. Occasionally, the motion planner failed when the user was positioned at
extremes of the reachability space of the manipulator, which can be resolved by
considering these as invalid poses. As for the vision module, there were some
problems when the robot arms occluded the field of view, which could be miti-
gated by adding additional cameras, using the built-in cameras on Baxter’s arms,
or planning trajectories to avoid obstructing the camera. As we will show in the
next Subsection, after several trials of interaction with the same user to learn
his specific constraints, future dressing episodes become more efficient.

4.2 Learning User Models
In this second set of experiments we show that, resorting to the knowledge-base
formed by previous interactions with each user, the robot is able to complete the
task more efficiently. To demonstrate this, we used the set of 2 constraints defined
in the preceding subsection: C = 〈head, head.x > 0.9, conf 〉, 〈head, head.y >
−0.2, conf 〉, where our starting confidence value conf was 1.

We first taught Baxter a perfect constraint model for each user. Then, we
performed 5 additional trials per user, with the robot choosing repositioning
poses from the users non-constrained space. The average time for completing
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the task was (34.2 ± 29.4)s for the shorter user and (36.5 ± 8.5)s for the taller
user with an average of 2.6 interactions. These results are very close to those
for a user with no constraints (Table 1 Column B), which shows that learning
personalized constraint models can markedly optimize the task execution.

5 Conclusion

In conclusion, we introduced an approach for a manipulator to help dress users.
Our approach represents a dressing task as a sequence of pose goals with respect
to the user. When the robot finds a goal infeasible, it actively requests the user
to reposition his or herself. The robot chooses repositioning poses by sampling
points in its configuration space that also satisfy a user-constraint model. This
constraint model is updated when the user does not meet the expectations of an
interaction request or enters a region the robot believes to be constrained.

We demonstrated our approach on a Baxter manipulator. We first showed
how the time it takes to dress a user increases with constraint complexity. Then,
we showed how modeling a user’s constraints and sampling from feasible regions
reduces the dressing time close to the case of a user with no constraints.

One direction for future work is to improve the manipulator’s trajectories to
make them more user-friendly. This could possibly be accomplished by biasing
the motion planner with user-taught trajectories such as with E-RRT [4].
Acknowledgments. This research was partially supported by a research donation
from Google, by NSF award number NSF IIS-1012733, by the FCT INSIDE ERI grant
and two FCT student visiting fellowships. The views and conclusions contained in this
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Abstract. To meet the demands of an aging society, researches for intelli-
gent/robotic wheelchairs have been receiving a lot of attention. In elderly care 
facilities, care workers are required to have a communication with the elderly in 
order to maintain their both mental and physical health. While this is regarded 
as important, a conversation with someone on a wheelchair while pushing it 
from his/her behind in a traditional setting would interfere with their smooth 
and natural conversation. Based on these concerns we are developing a robotic 
wheelchair which allows companions and wheelchair users move in a natural 
formation. This paper reports on an investigation how human behaves when the 
wheelchair users and their companions communicate while moving together. 

Keywords: Robotic wheelchair · Ethnography · Interaction analysis 

1 Introduction 

As the demands for wheelchair use in an aging society increases, researches for intelli-
gent/robotic wheelchairs have been receiving a lot of attention in recent years. For in-
stance, Cao et al. have suggested an automatic wheelchair system which detects the user's 
intention through biological signals [3]. Satoh et al. has produced a system which uses an 
omni-directional stereo camera to enable a wheelchair to avoid gaps and obstacles [10]. 
These are just some examples of many studies currently developing to increase the range 
of movements afforded to wheelchair bound users [1] [2] [12]. It is indeed highly impor-
tant to aim for a scenario in which the user of a wheelchair can become more indepen-
dent. It is also important as well to look into the possible ways to better real life settings, 
such as a case in which an accompanying person assists or controls the wheelchair for its 
users that are novices or when the user himself or herself cannot control the wheelchair 
physically due to their health condition. As shown in Fig. 1(left), in a Japanese daycare 
facility a single companion often times ends up assisting multiple wheelchair users at 
once. Another observation from real life settings would be that these facilities would like 
to facilitate more personal communication with the wheelchair bound patients, in order to 
maintain and stimulate their cognition. It is difficult for the caregivers to attempt talking 
to the users of wheelchairs, however; the caregivers (or family members) are busy for 
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controlling the wheelchair(s), and they are often positioned behind the users  
(Fig. 1(right)). When the participants of a conversation cannot see each other (not facing 
each other), multimodal resources which people usually use in interaction become highly 
limited. The situations illustrated as above faces this difficulty, hence it results in a rather 
poor communicational engagement for the users and their companions. In our project, we 
developed a robotic wheelchair so that it releases the participants from such a constraint. 
It allows them to maintain an interactional formation that enables them to monitor them-
selves easily, thus multimodal resources for interaction are still available to them. 
 

 
Fig. 1. Scenes when a companion moves wheelchair(s). 

Many kinds of mobile robots that can move with multiple companions collabora-
tively have been proposed. For instance, Urcola et al. propose the methodology that 
multiple robots take multiple companions in a practical situation [13]. Murakami et al. 
also propose the methodology that a robot, which does not have a priori knowledge of 
the companions’ destination, can move with companions collaboratively using a des-
tination estimation model based on observations of humans’ daily behaviors [7].  
Mobile robots which have companions like the approaches mentioned do not have 
passengers, so that they do not consider communication between passengers and 
companions. Kobayashi et al. proposed a robotic wheelchair that could follow along-
side a companion based on tracking the companion’s body position/orientation with 
using a 2D Laser Range Sensor (LRS), which was set on a top of a pole at the compa-
nion’s shoulder level and attached to the wheelchair [6]. This wheelchair can estimate 
the moving direction of the companion and maintain formation of side-by-side. 
Therefore, the companion no longer needs to push the wheelchair and can walk 
alongside the wheelchair. However, their system is exquisitely sensitive to the com-
panion’s body position and orientation to align the wheelchair automatically. Thus, it 
still had constraints to their behavior in the interaction because the companion needed 
to pay extra attention to his/her body orientation. 

This paper reports on an investigation to learn the patterns of human behavior 
when the wheelchair user and his/her companions communicate while walking along 
together. The purpose of this observation is to learn how the wheelchair operates, how 
body positions affect each other during communication, and apply the findings to our 
new system to be developed for the robotic wheelchair in our project. We developed a 
system which allows two companions and two users of wheelchairs move together in 
a stable manner (not sensitive reaction). The system developed based on ethnographic 
observations will generate a natural formation of positioning for the participants (both 
companions and wheelchair users) without their stress or constraints. 
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2 Sociological Background for Interaction Analysis Between 
Wheelchair User and Companion 

In sociological studies, approaches such as conversation analysis and interaction  
analysis have been applied in order to learn about human behavior. Ryave et. al has 
explored walking as a social interaction [8]. People who are walking together, for 
instance, display their behaviors so that other groups see and orient themselves as in 
the same manner. By such recognition, people are able to avoid crashing into each 
other while they are walking in groups on a street. 

In social interaction, multimodal resources such as eye gaze play important roles. 
Goodwin points out in his analysis of video recorded data that directing one’s eye 
gaze to someone is a symbolic display of addressivity, i.e., a claim to be a listener/ 
recipient of the talk (recipiency) [4]. The speaker in a conversation also orients to the 
listener’s eye gaze, at times by paying effort to draw his/her attention. In other words, 
both sides of the participants – the listener and the speaker – work hard to obtain each 
other’s eye gaze. Kendon highlights the roles of positioning of people and objects in a 
social interaction. He has proposed the concept of F-Formation [5]. He utilize points 
out that people engaged in a certain interaction creates a space among them so that 
each can behave without interfering with the others (O-Space). Schegloff has ex-
amined body posture and body torque as an important player to form a conversation 
in interaction [9]. Schegloff also goes into which part of body torque would influence 
an on-going conversation. 

These literatures from sociological studies have much to offer for the study of au-
tomated wheelchairs and their companions in communication. As pointed out earlier, 
in a traditional setting as in Fig. 1, both the user and the companion would have to 
face the same direction, not face-to-face. This means that if they want to establish an 
eye gaze to display their addressivity as suggested in Goodwin [4], one of them must 
torque their torso and head radically. The wheelchair user is more or less immobile 
from their hip and beyond, and how much one torques towards the person behind 
them displays their involvement in the interaction. The affordance given to each par-
ticipant in terms of delivery of eye gazes and body position plays significant roles. 

3 Observation of One-on-One Communication while Moving 

We conducted a preliminary experiment to investigate how the natural communica-
tion between a wheelchair user and a companion is affected by the load of wheelchair 
operation when the companion remotely controls the wheelchair. We divided 26 par-
ticipants, all of which are university students and they don't have experience for using 
a wheelchair, into 13 pairs randomly. Most pairs of participants didn't know each 
other very well. For each pair, one individual played the role of the wheelchair user 
and the other played the role of the companion. Additionally we asked participants 
playing the role of companion to move the wheelchair by a remote control and  
walk with it. In this experiment, we used a manual remote control system for the 
companions to move the wheelchair. By leaning the joystick on the remote control 
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Fig. 6. Scenes of TANDEM formation. 

4.2 Diagonal Formation 

In the case wheelchairs were in a diagonal formation like Fig. 5(center), we can see a 
participation framework which includes all four participants in a group conversation. 
On starting the former wheelchair user turned to his left back to solicit attention. Then 
one companion intersected his gaze with the former wheelchair and they gain mutual 
attention (Fig. 7(a)). Afterwards, the companion moved to the former wheelchair user 
to be side by side with him and started a conversation (Fig. 7(b)). In the next scene, 
both companions came nearby the wheelchairs while showing their cards and all par-
ticipants joined in the conversation (Fig. 7(c)). Here we can see there is circle shape 
F-formation the overlaps their transactional space. 
 

 
Fig. 7. Scenes of DIAGONAL formation. 

4.3 Side Formation 

In the case wheelchairs were in a side formation like Fig. 5(right), we can also see the 
participation framework like in the case of the diagonal formation. Before starting, 
both wheelchair users can solicit attention from each other by only turning their faces 
toward their partners (Fig. 8(a)). Afterwards, the companions behind the wheelchairs 
moved closer to the wheelchairs users to start communication (Fig. 8(b)). Compa-
nions that came to the side of the wheelchairs stepped once more with a twisting his 
body so that he could direct his gaze and draw attention (Fig. 8(c)). In this scene, the 
O-Space included all members in the group and they could all talk to each other. 

By considering the analyses of three cases, we found that in the tandem case, 
communication between wheelchair users hardly occurred. It was also found that such 
a formation made it difficult for companions to rearrange their positions for easy 
communication. On the other hand, in the case of the diagonal/side formations, 
wheelchair users could confirm the state of each member by turning their upper body 
or head. Companions could also select a position that allowed constructing a partici-
pation framework which included all the participants in the conversation. Therefore  
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Fig. 8. Scenes of SIDE formation. 

we need to develop multiple robotic wheelchair system that can maintain diagon-
al/side formations, instead of the tandem formation. 

5 Experiment Using Multiple Robotic Wheelchair System 

Based on the findings in the previous section, we have developed multiple robotic 
wheelchair system that can maintain their formation while moving. Details are men-
tioned in the [11]. We conducted the experiment on campus (inside of building) using 
our new system using 32 participants in 8 groups (4 participants in each group who 
didn't know each other very well). All of participants are university students who 
don't have experience for using a wheelchair. Each group is assigned one of three 
formations between wheelchairs: tandem, diagonal and side. The setting and the envi-
ronment are same as in Section 4. 

5.1 Tandem 

As shown in Fig. 9(left) the front wheelchair user turns her body and gazes backwards 
while showing her card and uttering “Well” as a preface in order to start a conversa-
tion. Whereas the other three participants exchange the utterances about ‘curry’, The 
front wheelchair user stops before the completion of her utterance (Fig. 9(center)). 
She abandons her effort for the conversation and moves her gaze back in the previous 
direction (Fig. 9(right)), because she cannot obtain gaze of others. 
 

 
Fig. 9. Experimental Scenes of TANDEM formation. 

5.2 Diagonal 

Fig. 10(left) shows the scenes of initial formation of participants of the experiment 
and Fig. 10(right) shows the subsequent formation. In the left photo, two companions 
turn their bodies towards the wheelchair users while deploying diagonal positions 
towards the wheelchair users. The companions coordinate their walk with the  
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users even when they are moving. Based on the findings, we developed a new wheel-
chair system which can reduce the load of controlling the wheelchair and let a com-
panion change his/her position freely. We confirmed that our multiple wheelchair 
system allows a companion to move with wheelchairs naturally so that they could 
attain mutual gaze and start their conversation. 

In this paper, all the participants are university students who can use their bodies 
without any physical limitations. But elderly people will have physical limitations and 
they will not be able to turn their bodies while moving together. We are now planning 
to conduct experiments in an actual care facility. 
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Abstract. Establishing a positive relationship between a user and a system is 
considered important or even necessary in applications of social robots or other 
computational artifacts which require long-term engagement. We discuss sever-
al experiments investigating the effects of specific relational verbal behaviors 
within the broader context of developing a social robot for long-term support of 
self-management improvement in children with Type 1 diabetes. Our results 
show that displaying familiarity with a user as well as eliciting the user’s self-
disclosure in off-activity talk contribute to the user’s perception of the social 
robot as a friend. We also observed increased commitment to interaction suc-
cess related to familiarity display and increased interest in further interactions 
related to off-activity talk. 

Keywords: Child-robot interaction · Human-robot interaction · Long-term  
interaction · Social robot · Verbal behavior · Personalization · Continuity  
behaviors · Familiarity display · Self-disclosure · Off-activity talk · Perception 
of robot as friend 

1 Introduction 

It has become a commonplace vision that robots will partake in many areas of our 
lives. The role they are envisaged to fulfill has shifted from that of a mere tool to a 
teammate, peer, companion, friend. Thus, being conceived of as social actors, which 
will be explicitly and intentionally entering into relationships with humans. Social 
science research has identified a plethora of behaviors that are prevalent and influen-
tial in establishing and maintaining human-human relationships. Inspired by the se-
minal work on relational agents by Bickmore and colleagues [3] a growing body of 
research now studies what effects do such behaviors have in human-machine, and 
more specifically human-robot relationships, and how we can implement the corres-
ponding functionality to enable machines/robots to perform these behaviors autono-
mously. Overviewing this body of literature, it is clear that the more we know, the 
more we know what we do not know. There remain many aspects to be studied. 
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The research presented here concerns relational verbal behaviors that contribute to 
the perception of an agent as a friend. It is set within the broader vision of developing 
a robotic companion to provide long-term support to children with Type 1 Diabetes 
Mellitus (T1DM) to help them learn and improve their ability to independently man-
age their condition. During the process of self-management development, children 
with T1DM need to acquire knowledge about diabetes and suitable healthy nutrition, 
develop various relevant skills and learn to adhere to the therapy requirements. Simi-
larly to what was noted for health behavior change applications [3], establishing and 
maintaining a positive relationship is considered to be a necessary (though likely not 
sufficient) condition for addressing the further goal of influencing diabetes self-
management. In this paper we focus on two aspects of relational verbal behavior 
which personalize an interaction by linking it to the experiences of a given user: sig-
naling continuity over time by references to joint experiences of the user and the robot 
in interaction with one another (Familiarity Display – FD); and eliciting disclosure 
about separate experiences of the user (Off-Activity Talk - OAT). In a series of expe-
riments with an implemented integrated system, comparing independently a condition 
with and without FD and with and without OAT, we found that these behaviors con-
tribute to young users’ perception of the robot as a friend. We first review related 
work on such relational verbal behaviors in Sec. 2. In Sec. 3 we describe our system. 
In Sec. 4 and 5 we present the methodology and results of the experiments addressing 
FD and OAT, respectively. We discuss the observed effects and conclude in Sec. 6.  

2 Background 

Bickmore and colleagues developed the concept of relational agents, referring to 
computational artifacts designed to establish and maintain long-term social-emotional 
relationships with their users [3]. They discussed a myriad of strategic relational be-
haviors, instantiated them in systems and carried out numerous studies to evaluate the 
effects of various aspects of relational agent behavior on long-term engagement and 
behavior change, e.g., [4]. This inspired many other researchers to perform further 
studies and experiments in this area. What we call familiarity display has been called 
continuity behaviors in some previous literature. For example, the continuity beha-
viors implemented in the FitTrack system [3] and the person memory model of a vir-
tual agent described in [13] include greetings and farewells referring to past/future 
encounters and reference to mutual knowledge, e.g., user’s biographical facts, prefe-
rences and interests mentioned in a previous session. The exercise advice system  
described in [8] also implements continuity behaviors as means of relationship main-
tenance, namely reference to previously given advice and gradually more personal 
greetings, including some small talk. Various other systems have included a user 
model or some form of long-term memory and used it to refer to content from pre-
vious interactions [1, 5, 16, 18].  

Our concept of Off-Activity Talk corresponds to the reciprocal self-disclosure dis-
cussed as another relational behavior and found to increase trust, closeness and liking 
in work cited by [3]. While the OAT in our system allows reciprocity, we have  
focused on eliciting disclosure from the users so far. This resembles the gathering of 
personal information in [1, 5, 13, 18], but is more conversational.  
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A comparison of existing results concerning the effects of various relational beha-
viors is complicated by the fact that each study uses measures and methodologies 
adjusted to its purpose. For example, [3] evaluated the effects of all the relational 
behaviors combined. They found an effect on long-term relationship, but not on beha-
vior change in a real usage longitudinal study. On the other hand, [8] evaluated the 
isolated impact of relationship maintenance on users’ attitudes and found an effect on 
various metrics and [13] investigated the impact on social presence, likability and 
communication satisfaction of using personal information during the interaction ses-
sions. These studies were done with adults, the systems of [3] and [8] were not robots, 
and the metrics did not include a classification of the user’s perception of their rela-
tionship with the system. Some of the experiments did not involve usage in real life, 
but the participants used the system to play out hypothetical situations, e.g. [8]. 

3 System and Setup 

Our experiments were carried out with the system developed gradually in the course of 
the Aliz-E project [7]. The robot we use is the small humanoid robot Nao from Aldeba-
ran Robotics. The system integrates components for speech recognition and interpretation 
as well as natural language generation and synthesis, gesture capture and interpretation, 
nonverbal behavior production and motor control, activity-, interaction- and dialog man-
agement, and a user model to store key information about each child [9]. Several game-
like activities were implemented in the system: Quiz, Imitation, Dance and Collaborative 
Sorting [9, 2, 15]. A range of relational social behaviors reported in the literature was 
implemented across the activities, including informal greetings, introductory small talk, 
the use of first names, empathy related to the performance in an activity, the robot’s abili-
ty to make mistakes, nonverbal bodily cues, allowing children to touch the robot [14]. 
Although the robot was presented as autonomous to the participants, we relied on a par-
tially Wizard-of-Oz setup, where a human Wizard simulated the speech and gesture input 
interpretation, could override the automatic dialog management decisions, if needed, and 
fully controlled off-activity talk. 

4 Experimental Study 1: Familiarity Display 

The first study was a longitudinal experiment investigating the use and effects of con-
tinuation behaviors. We investigated how the robot can acquire familiarity with a user 
and display it in interactions, and what effect this would have on children’s perception 
of the robot. 

4.1 Familiarity Display 

When humans interact with each other over a series of encounters, they become fa-
miliar, i.e., they accumulate shared knowledge (shared history, personal common 
ground) [6]. The goal of this study was to endow the robot with the ability to acquire 
a persistent interaction history respective to each individual user and allow it to ma-
nifest its familiarity with the user both verbally and nonverbally later in the same 
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interaction or in subsequent interactions. We selected several parameters that the ro-
bot would use to represent the interaction history: the user's name; whether it is the 
first or a subsequent encounter of the user with the robot; for each activity whether the 
user has already performed it or not and some details about it (e.g.: for each Quiz 
question, whether it has been asked before in a interaction with the user); the user's  
last performance on each activity. The values of these parameters for each user were 
stored in a persistent user model. We designed templates for verbal output generation 
which allowed to include content based on the user model. The robot would use these 
verbalizations to explicitly display its familiarity with the user. Such verbal moves 
would also be accompanied by nonverbal behaviors showing familiarity, e.g., nod-
ding, higher excitement. We also designed alternative verbalizations which were neu-
tral, i.e., they would not show whether the robot is or is not familiar with the user. 
Examples of verbalizations of both kinds are shown in Table 1. 

Table 1. Examples of verbalizations that signal familiarity (used in the FD condition, see 
paragraph 4.2) or are neutral in this respect (used in the ND condition, see paragraph 4.2). 

Familiarity display Neutral display 
Use of user's name: 
So, which answer do you choose, Marco? 

 
So, which answer do you choose? 

References to previous encounters and play expe-
riences: 
I am happy to see you again.  
It was nice playing with you last time. 

 
 
I am happy to see you. 
- 

References to previous performance in an activity: 
Are you ready to play again? 
Today you were again very good at quiz. 
Well done, you’ve done better than last time. 

 
Are you ready to play the quiz? 
Today you were really good at quiz. 
Well done. 

4.2 Experiment Methodology 

As described in detail in [10], 19 children participated in total (11 male, 8 female; age 
5-12, all Italian), of which 13 participated in three sessions on different days as fore-
seen in the protocol (9 male, 4 female; 6 with T1DM, 7 healthy). 

We exerted a between-subjects design with two conditions: the Familiarity-Display 
(FD - 9 children) condition and the Neutral Display (ND - 10 children) condition. The 
robot used the verbal and nonverbal behaviors described in Sec. 4.1, respectively.  

The experiment took place at a research lab at the San Raffaele hospital in Milan. 
The sessions were organized on several Saturdays over a period of two months and 
full participation involved three sessions on different dates per child, where s/he could 
choose among one (or more, time permitting) of the available activities to be per-
formed with the robot: Quiz, Imitation game and Dance. Each session of the experi-
ment lasted maximally one hour, including the interaction session with the robot and 
filling in 3 post-interaction questionnaires. These latter were multiple choice ques-
tionnaires reporting the child’s self-assessment of: (Q1) the perceived bond with the 
robot, to be categorized between different levels of confidence and familiarity: stran-
ger, neighbor, classmate, teacher, friend, relative, sibling, parents; (Q2) the perceived 
role during the activities: child leading, robot leading or on a par; (Q3) the perception 
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of the robot: through a multi-adjective choice among friend, toy, pet or game console. 
Children were also asked to briefly explain their choices. The questionnaires were 
administered to the participants at the end of each session, in order to see if there was 
any change over time. 

4.3 Results  

We analyzed the post-interaction questionnaires, linking to each multiple choice an-
swer a numerical value. We calculated the means and standard deviations of the 
scores per child across the interaction sessions.  

Questionnaires Q1 and Q2 did not reveal any statistical significance regarding the 
perception of either the bond with the robot or the level of the established relation-
ship, neither between the two experimental conditions (FD and ND) or across the 
sessions (for those children who interacted three times). From the explanations that 
the participants gave to justify their answers, as a qualitative insight we saw that, 
independently from the two conditions, high rates of perception of the bond (from 
friend to parent) were related to the play dimensions (e.g.: “having fun” and “play 
together”) and the friendly approach (“it’s nice/cute/tender”) that the robot showed to 
children. Lower values, linked to the perception of different levels of relationship 
(stranger, neighbor, teacher), were mainly related to a low satisfaction and engage-
ment in the activity/ies performed (e.g. “too difficult questions/tasks”, “questions like 
homework", etc.). In addition, there was an overall perception of the interactions with 
the robot as being "at the same level". 

An interesting result was found in Q3: a comparison of the adjective choices re-
vealed that all 9/9 children in the FD condition perceived the robot as friend after the 
first session as opposed to the only 4/10 ND children (Fisher’s test: two-tailed 
P=0.0108). Among the 13 children who continued to have 3 interactions 5/6 FD chil-
dren maintained the perception of the robot as friend, only one changed it to a toy. No 
trend was observed among the 7 ND children. 

5 Experimental Study 2: Off-Activity Talk 

The second study investigated the effects of Off-Activity Talk (OAT) in one-on-one 
interaction sessions held in the context of two different educational summer camps for 
children with T1DM, organized by the Italian patient’s association SOStegno70 
(www.sostegno70.org) and the pediatric department of San Raffaele hospital (Milan). 
We investigated how the robot can engage a child in OAT on topics related to di-
abetes and healthy lifestyle and how this would impact children’s perception of: their 
relationship to the robot; interest to undergo further interactions with it; willingness to 
talk about diabetes and self-disclosure; adherence to a therapy-related requirement to 
fill in a nutritional diary. The methodology and results of the 2013 experiment have 
been published in [11, 12]. We only repeat those points that are relevant for a compar-
ison with the 2014 experiment. 
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5.1 Off-Activity Talk 

OAT are sub-dialogs interspersed within the talk pertaining to a particular activity, 
without being directly part of it [11, 12]. The main OAT topics we defined were per-
tinent to: hobbies, diabetes, nutritional habits, relationships with friends and adults 
with respect to diabetes (for examples, see [11]). For each topic, several OAT-
initiation system utterances were formulated and implemented as canned text in the 
system. The initiation of OAT was triggered by the Wizard at opportune moments 
during the interaction(s) within the course of an activity. For example, during the 
Collaborative Sorting game, OAT about nutritional habits was triggered while  
the child was playing a virtual game about the food and carbohydrates counting (see 
the example extracted from a longer interaction in the left column in Table 2). 

Table 2. Examples of OAT subdialogs from the 2014 experiment (translated from Italian). Left: 
OAT on nutritional habits linked to the contents of the Sorting Game. Right: Child self-
disclosure concerning diabetes. 

Nao: what is your favourite food 
among these? 
Child: among the remaining ones - 
ice cream. I really like it. although  
I can't always eat it, it's not good 
for me. 
Nao: which flavour do you prefer? 
Child: <EH> stracciatella. 
Nao: that's good. 
Child: <laughter> 
Nao: can you distinguish foods 
according to carbohydrates? 
Child: yes, I do count - as I do for 
the insulin at home. I count carbo-
hydrates. 

Nao: do you measure glycaemia yourself at home? 
Child: yes, I do it myself, because now I'm quite big, so - 
Nao: you're so good. 
Child: thanks. 
Nao: I was told that it is difficult. 
Child: <EH> a - well, it is a bit difficult at the beginning, 
because even - say - accept that you have diabetes is a bit 
difficult. but then you get used to it. […] 
Nao: I'd like to ask you how do you do it. 
Child: how do I measure glycemia? 
Nao: yes. 
Child: so, basically <EH> I take my measuring set, I 
disinfect the finger I want to prick, I take the pen, prick 
and then put the blood on the strip, which automatically 
measures glycaemia, so that I see the value on the screen 
of the set. 

5.2 Experiment Methodology and Results 

Participants. The experiments for this study have been conducted in two different 
educational summer camps in 2013 and 2014. In the 2013 experiment, 20 children 
(age 11–14, 10 females and 10 males) among the total of 59 attending the camp vo-
lunteered to participate in the individual sessions with the robot. In 2014 it was 281 
(age 10–14, 10 females and 18 males) out of 41. The remaining children were in both 
cases included in the control group and experienced the robot in the camp only as a 
theater performance character during recreational evening activities.  

                                                           
1 The data of one subject was discarded as the child did not finish the interaction. 
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Procedure. In both the 2013 and 2014 summer camps, children who volunteered for 
individual session(s) with the robot were given an appointment during their spare time 
at the camp. Before beginning the interaction, they were instructed about the available 
game activities with the system and the possibility to freely choose among them dur-
ing their session. The session lasted a maximum of 30 minutes. The interactions were 
carried out using the system described in Sec. 3.  

2013 Camp Experiment Overview. The specific objectives of the 2013 camp were 
to investigate the feasibility and acceptance of OAT, its effects on children’s percep-
tion of the robot and on adherence to medical advice (i.e.: filling in a nutritional  
diary). The study was carried out in a between-subjects design with 3 conditions:  
(1) OAT: one-on-one interaction with the OAT feature turned on; (2) non-OAT: one-
on-one interaction without OAT; (3) CONTROL: no one-on-one interaction. 

The results related to this study are discussed in detail in [11, 12] but with respect 
to the present contribution, it is interesting to mention that qualitatively children’s 
acceptance of OAT was good: they engaged in it readily and elicited self-disclosure 
from the robot [12]. However, their responses to the robot’s OAT prompts were brief 
and concise, maybe due to their formulation as closed questions. Moreover, the pres-
ence of OAT turned out to have a positive effect on the children’s interest to interact 
with the robot again: although all subjects in the two intervention conditions ex-
pressed interest to play again with the robot, only 11 actually booked another slot: 
9/10 in the OAT group and 2/10 in non-OAT (Fisher’s test, two-tailed P=0.0055).  

2014 Camp Design. Based on the positive experience with OAT in the 2013 experi-
ment, we decided to drop the non-OAT condition. The 2014 experiment thus had a 
between-subject design with the OAT and the CONTROL condition. We revised the 
OAT prompts, to include more open questions or clusters of closed interconnected 
questions, in order to elicit more complex OAT dialogs with more child talk. Table 3 
shows some examples of these variations; Table 2 shows OAT interaction examples. 

Table 3. Examples of the different verbalization of the OAT prompts used in the two Camps. 

2013 OAT prompts formulation 2014 OAT prompts formulation 
Can you draw? Can you draw? What do you like to draw? 
Do you realize when your glycaemia is low? Do you realize when your glycaemia is low? 

What do you do in these cases? 
What is the strangest food you've ever tried? What is the strangest food you've ever tried? 

Where were you when you tried it? Abroad? 
 
We also further elaborated the evaluation of children’s perception of the robot. We 

designed a new questionnaire composed of two closed questions. The first one asked 
to describe the robot by choosing one out of the following set words: friend, toy, pet, 
adult, computer. The second one asked to choose one of 16 listed adjectives describ-
ing the robot. The adjectives belonged to three categories of perception: machine (e.g. 
fake, scientific, etc.), relational (e.g. interested in me, someone to trust, etc.), huma-
nized (e.g. spontaneous, empathetic, etc.). This questionnaire was administered to all 
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the participants of the camp at the end of their stay. Furthermore, to evaluate child-
ren’s willingness and spontaneity to talk about diabetes, we performed an analysis of 
the interactions similar to the one described in [12]: 3 coders (native speakers)  
evaluated every OAT sub-dialog regarding diabetes on a 4 point scale (i.e.: 1= “not 
responding or not willing at all”,  2= “forced or annoyed”, 3=”clear, simple and cour-
teous”,  4=“very interested and active”) as well as assigned an overall score per child 
to how the OAT diabetes sub-dialog were going. 

2014 Camp Results. OAT had an effect on the children’s perception of their relation-
ship to the robot: 26/27 in the OAT group and only 4/13 in the CONTROL group  
selected the word “friend” among the 5 options offered in the questionnaire. The dif-
ference between the two proportions is strongly statistically significant (2=20.09 
with probability 1%, two-tailed p=0.0001). Regarding the multiple adjective choice, 
even if not supported by statistical significance, we observe that children in the OAT 
condition chose no machine category adjectives, 30% of the chosen adjectives be-
longed to the humanized category and 70% to the relational one. Whereas in the 
CONTROL condition 20% of the adjectives chosen belonged to the machine category, 
20% to the humanized one and 60% to the relational one. The children’s willingness 
and spontaneity to engage in OAT and talk about diabetes was high. Moreover, the 
coders noticed qualitatively a common attitude of the children in sharing their practic-
al notions about diabetes with the robot and their personal experiences on what it is 
like to deal with diabetes in their daily lives (see the excerpt in the right column  
of Table 2). 

6 Discussion and Conclusion 

We described a series of experiments with a robotic multi-activity system designed to 
provide long-term support to children with T1DM. We addressed the potentialities of 
specific relational verbal behaviors in contributing to the perception of a robotic cha-
racter as a friend by the young participants: familiarity display and off-activity talk. 
Both these features were introduced in order to personalize the interactions in a way 
that resembles typical human interactions between friends: making reference to joint 
experiences and fostering self-disclosure about personal topics (in this case diabetes- 
and health related topics). We found that children interacting with the robot display-
ing familiarity, clearly perceived it as a friend after the first interaction as well as after 
three interactions in a longitudinal study. They also felt to have been at the same level 
of control with the robot during the interactions. This outcome was also confirmed by 
the investigations of the 2014 summer camp experiment, carried out with a different 
set of children in a real world setting, even though the set of words available to define 
the role of the robot was slightly different on the two occasions. In the 2014 summer 
camp experiment the set of choices included also the word “adult” in order to allow 
for a difference in the level of the perceived relationship biased towards the robot 
(robot compared to a figure that usually leads situations), rather than towards the child 
(as in the case of a pet or a video game). Confirming the previous results, none of the 
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children chose this description. As for Off-Activity Talk, children were at ease during 
the dialogs with the robot and seemed to appreciate the interest that it showed for their 
daily lives and experiences. The combination of these factors led to a natural adapta-
tion of children’s behaviors to the specific single interaction dynamics and triggering, 
a spontaneous conversation regarding the delicate topic of diabetes. Moreover, the 
dialog structure enriched with the OAT prompts seemed to be a key factor in engag-
ing children and making them interested to interact again with the system. This is a 
significant achievement in the long term perspective of our research, even though 
more longitudinal studies are needed to address this point. To conclude, the fact that 
the robot is perceived by children as a friend capable to establish and maintain a posi-
tive relationship is extremely impactful in a broader real life application perspective 
of a robotic companion. Children could be more inclined to feel at ease and open 
themselves with such a robot, thus offering the diabetology teams of caregivers a 
valuable instrument to support their work of education, addressing the goal to im-
prove self-management of young patients. 
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Abstract. We present a study on the impact of unexpected robot
behaviors on the perception of a robot by children and their subsequent
engagement in a playful interaction based on a novel “domino” task. We
propose an original analysis methodology which blends behavioral cues
and reported phenomenological perceptions into a compound index.

While we found only a limited recognition of the different misbehaviors
of the robot that we attribute to the age of the child participants (4–
5 years old), interesting findings include a sustained engagement level,
an unexpectedly low level of attribution of higher cognitive abilities and
a negative correlation between anthropomorphic projections and actual
behavioral engagement.

1 Introduction

1.1 Towards Sustained Engagement

Different possibilities to foster engagement (both short- and long-term engage-
ment) in HRI have been explored, in particular with social robots. A lot of
research has moved toward creating sophisticated emotional models which cause
complex robot behavior. [5] studied the long-term engagement of children with a
chess playing robot that adapted its behavior to the children and showed empa-
thy toward them. The authors found that empathetic robots are more likely to
engage users in the long-term and they proposed several guidelines for design-
ing such artificial companions. Other works [1,9] have shown that simpler ways
to enhance engagement may as well be effective, for instance, when the agent
showed variations in its behavior, participants were more engaged and reported
a desire to continue interacting with the agent.

Similarly, looking at short-term engagement, [9] found that a simple manip-
ulation of the robot’s behavior can lead to greater engagement. The authors let
participants play several rounds of the rock-paper-scissors game with the robot
(the playfulness of the scenario seems important). When the robot was cheating
from time to time, participants tended to ascribe intention to the robot what
in turn led to greater engagement in how they were interacting with the robot.
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 390–400, 2015.
DOI: 10.1007/978-3-319-25554-5 39
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The authors observe that “any deviation from expected operation is sufficient to
create a greater degree of engagement in the interaction.”. Along those lines, we
also suggested in our model of the dynamics of anthropomorphism in HRI [7]
that disruptive behaviors may lead to increased anthropomorphic projections
and possibly increased engagement.

Based on this previous research, we explore in this study how to sustain
children’s engagement with the Ranger robot [8] by manipulating the behavior
of the robot so that it appears unexpected to the children. The main outcomes
of this research are 1) a new experimental task that suggests and contrasts
three types of mis-behaviors, with different cognitive correlates, 2) a mixed
technique, blending behavioral cues and reported phenomenological percep-
tions, to assess the robot perception in terms of both engagement and
human-likeliness, 3) an actionable approach based on the introduction of
mis-behaviors to support child-robot engagement, 4) and a first experimen-
tal cue that anthropomorphic perceptions do not necessarily correlate
with actual engagement.

1.2 Design and Hypotheses

In a playful scenario which was set up in a laboratory environment, 26 children
aged 4-5 years (M = 4.46) were assembling a domino game together. Each group
consisted of two children and the Ranger robot, which was used to transport
domino tiles between the two children.

Ranger usually behaved correctly (expected behavior), coming over to a child
after being called and delivering the domino tile to the other child. However,
during pre-defined rounds, Ranger showed unexpected behavior when a child
called the robot. We defined three different types of misbehavior that were tested
in a between-subjects study design:

– The robot gets lost: When called by the child to come over, the robot goes
wrong, without any observable reason, and remains at the wrong location.
We expect this to be perceived as a mechanical malfunction (a bug or sys-
tem error which causes the robot to not work correctly), and hypothesise
decreased attributions of human-likeness to the robot.

– The robot disobeys: When called by the child to come over, the robot shows
that it refuses to obey by literally “shaking its head” and becoming red. The
robot then goes to a wrong location and remains there while it continues
to shake its head. We expect the disobey behavior to be perceived as the
robot having an explicit “own will”, and we assume this leads to increased
attributions of human-likeness (ascribing intentionality) to the robot.

– The robot makes a mistake: When called by the child to come over, the
robot goes wrong but recognises its mistake and repairs. We expect this to
be perceived (explicitly) as “to err is human”, and (implicitly) as the robot
being endowed with a certain level of introspective capabilities (it was able to
recognise its own error). In this condition, we assume increased attributions
of human-likeness to the robot.
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We analysed children’s reaction focusing on two main aspects. On one hand,
children’s behavior (their reactions) toward the unexpected robot behavior was
studied in terms of active engagement with the robot. On the other hand, we
analysed children’s perception of the robot in term of anthropomorphic pro-
jections. We assumed that in general a robot that behaves unexpectedly from
time to time can promote engagement and lead children to attribute intention
to it. Accordingly, we formulate two hypotheses: 1) children show more engage-
ment toward a robot that behaves unexpectedly from time to time compared to
a robot that always behaves correctly, 2) children perceive a robot that (tenta-
tively) displays intention or cognitive abilities as more human-like than a robot
that appears to have a system error, i.e. the disobeying robot and the robot that
makes a mistake will be more anthropomorphized than the robot that gets lost.

Based on literature suggesting that a social relation to a robot (anthropo-
morphism is a specific type of social relation) reflects an increased engagement
and can be effective in sustaining interaction, we formulate a third hypothesis:
anthropomorphic perception of the robot positively correlates with the level of
engagement in the interaction.

2 Research Methodology

2.1 Experimental Setting

The interaction scenario is built around two children who play the dominos
together, with the help of a remotely controlled robot (Wizard-of-Oz setup).
Figure 1 pictures the experimental setup.

The challenge for the children consists in collecting domino tiles spread over
the room, hidden behind beanbags (task of the searcher child), getting the robot
to carry to the second child, and finally assemble the tiles and decide for the next
tile to fetch (tasks of the receiver child). In total, 13 pairs of children (n = 26)
participated: 16 boys and 10 girls, 4-5 years old (M = 4.46, SD = 0.45), all
French-speaking.

The game (that lasted in average 13min 43sec per group of children) was
divided in a total of 14 runs that correspond each to the delivery and assembling
of one domino tile. At each run, the robot exhibits one out of the four possible
behaviors previously presented: correct, lost, disobey or mistake.

The first 5 runs (1.1 to 1.5 ) were used to set the baseline and the robot always
behaved correctly. The children then switched the roles receiver/searcher and in
the 9 remaining runs (2.1 to 2.9 ), the robot showed one of the misbehaviors
(lost, disobey or mistake) at the 3rd and 4th run as well as at the 7th and 8th

run (see axis x of Fig. 2).
During the misbehaving runs, the behavior of the robot is manipulated in

three possible ways, represented on Fig. 1. In the lost condition, the robot goes
to a wrong position and remains here, behaving (yellow light pattern) as if it were
correctly in front of the child. In the disobey condition, the robot stops mid-way,
displays a red pattern and produces a repeated “annoyed” sound. It finally moves
toward a wrong position and remains there, facing the child. In the mistake
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(a) Experimental setting (b) Example in disobey condition

Fig. 1. Experimental setting The solid green arrows show the robot’s path for the
correct behavior. The blue arrow visualises a possible lost path, where the Ranger
stops and remains at a wrong spot. The yellow arrows reflect a possible mistake path,
where the robot goes wrong but then turns back and goes to the child. The red arrow
visualises a possible disobey path where the robot goes wrong, then turns toward the
child but stays at a wrong position.

condition, the robot starts like for the lost behavior, but after a few seconds,
turns back, blushes and finally reach the correct position, in front of the child.

2.2 Data Collection

The perception of the robot by the children has been captured through two
audio-recorded semi-structured interviews which took place between run 1.5 and
2.1 and at the end of the experiment (a short preliminary interview was also
conducted to explain the game and assess the expectations of the children toward
the robot). Then, the children’s behavior toward the robot (i.e. the child-
robot interaction) has been captured in the video recordings by annotating a set
of actions.

Interviews were designed based on previous work on child-robot interaction
[4,6,10]. We borrowed and adapted some of the constructs (for instance, the
construct “cognitive connections” [3] considers the robot’s ability to hear and
to see (perceptual skills), as attributed by the children; the construct “moral
standing” [4] assesses if the robot engenders moral regard, etc.) and example
questions from questionnaires used in [4] and [10].

Due to the age of the participants, we set up the interviews like a casual
conversation and we did not separate the two children. We paid attention to
not “put words in children’s mouth”. Consequently, though we re-phrased and
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repeated some questions, we accepted when they said they would not know or
when they did not respond at all.

One the other hand, we annotated the behaviors of the children in the video
records, and coded the salient actions that reflected engagement toward the
robot [2]: touch (the box is touched, e.g. petted or caressed); talk (all direct
verbal interactions, except for calling it to come and pick a domino tile, since
children were requested to perform this action anyway); show (show something
to the robot); misuse (kick the robot, poke it in its “eye”, try to climb on or
inside the box, drive/push the robot around, stop the robot’s wheels with a foot);
look (when a child looks at the experimenter due to confusion caused by the
robot; look is not coded when the experimenter asks a question to the child);
gesture (gestures are used to communicate/interact with the robot, e.g. pointing
gestures, waving at the robot). Figure 2 shows the distribution of these actions
over the different runs, summed over the three condition.
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Fig. 2. Number and type of actions for each run (n=480, spontaneous actions).
Generally, the number of actions does not decrease over time (from run 1.1 to run 2.9).
The first 7 runs correspond to the expected phase, the second 7 runs correspond to the
unexpected phase. Especially during run 2.3, the first time when the robot showed an
unexpected behavior, children tended to look more at the experimenter. During the
unexpected phase, also talk and gesture seem to be increased.

Compound Index of Anthropomorphism. Because the tendency to anthro-
pomorphize manifests itself both in terms of perception and behavior, we propose
to build a compound index that brings both children’s perception of the robot
(post-measurement) and their behavior toward it (in-the-moment measurement)
together. We build the index by attributing points for each anthropomorphic
perception of the robot and for specific kinds of human-like behavior toward the
robot, using the following grading scheme:

Percept. Ascription of mental states / feelings: 2 points for agreeing that
Ranger can be happy or sad; 2 points for attributing Ranger with
hunger or tiredness.
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Percept. Ascription of cognitive abilities / intention: each 0.5 points for
ascribing seeing and hearing ability; 1 point for agreeing that Ranger
can go out the door by itself; 1 point for disagreeing that Ranger always
obeys; 1 point for agreeing that Ranger can do something silly.

Percept. Ascription of sociality / companionship: 1 point for agreeing that
Ranger can be a friend.

Percept. Ascription of moral standing: 1 point for disagreeing that Ranger be
left alone at home.

Percept. Other anthropomorphic statements: 1 point for anthropomorphic
reason for Ranger ’s misbehavior; 2 points for anthropomorphic reason
for not leaving Ranger alone (e.g. “It would be sad”).

Behav. Use of direct speech: 1 point (not considering calling the robot to
come over).

Behav. Use of polite formulations: 1 point (e.g. “thank you Ranger” or
“please Ranger ...”).

Behav. Use of social or pointing gestures: 1 point (e.g. waving at the robot).

The balance of the grading scheme is open to debate: for instance, we did not
consistently assign 1 point to each item, but assigned points between 0.5 and 2
points depending on our perception of how a given item reflect a higher level of
anthropomorphic perception of the robot (for instance, ascribing the ability to
see and hear was suggested by the design of the study, and we cannot assert it
really reflects the explicit projection of cognitive skills). This issue is however
mitigated by our use of this compound index as a relative metric (comparison
between conditions) and not an absolute value.

3 Main Findings

Misbehavior Recognition. The disobey behavior was expected to be per-
ceived as the robot intentionally not doing what it should do. The mistake
behavior was intended to show that the robot can do a mistake but is aware
of it and able to repair its mistake, which should also lead to the perception of
intentionality and introspective skills. Contrary, we expected that the lost con-
dition is perceived as a malfunction of the robot. In the second interview, after
the robot had misbehaved, we asked children whether the robot always did what
they wanted it to do. Most children disagreed and said they noticed something
strange.

When asked why they thought the robot had not always come over to them,
4 of the children did not reply. The remaining ones gave a variety of reasons
(Fig. 3). The most common answer (9 of 37 replies) was that the robot is some-
how unpredictable in what it is doing and that it could go “in whatever direction”
because “with robots you have these kind of problems, they do no silly things”.
8 replies related to technical problems (including broken parts), suggesting that
children perceived the misbehavior as unintended by the robot. Two of the chil-
dren who had interacted with the disobeying robot said Ranger was angry, which



396 S. Lemaignan et al.

1 

3 

2 

1 

1 

2 

1 

5 

3 

1 

2 

1 

3 

2 

1 

2 

1 

2 

1 

2 

0 2 4 6 8 10 

it is unpredictable 

technical problem 

it didn't want to continue 

no answer 

don't know 

it made a mistake 

it didn't hear / see 

it was angry 

it was tired 

Why did Ranger not come over?

mistake 

lost 

disobey 

Condition

Fig. 3. Multiple answers were possible to the question why the robot did not come
over, and we received 37 answers.

none of the children in other conditions replied. 13 out of 26 children appeared
to ascribe intentionality precursors to Ranger explaining that it did not want to
continue carrying domino tiles or that it “did a mistake”.

Attribution of Intentionality. To investigate to what extend children
attribute intention and cognitive abilities to the robot, we asked three questions
during the first interview: whether they believed Ranger could go out the door
by itself (a majority of 16 children answered negatively, which suggests that they
initially do not ascribe intention to the robot), whether Ranger would always
obey and whether Ranger could do a silly thing (Fig. 4). These two last ques-
tions were asked again later after children had interacted with the unexpectedly
behaving robot.
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Fig. 4. Attribution of intention to Ranger.

In the first interview, 12 out of the 15 children who provided an answer
believed that Ranger does always obey to them. Asked whether the robot could
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do something silly, a large majority of 21 children out of 24 replied negatively:
it appears that after children the first round of interaction (with the correctly
behaving robot) the children do not generally ascribe intention to the robot.

After interacting with the misbehaving robot (second interview), most of
the children still believed that Ranger always obeys to them, and 8 children
(previously 3) think that Ranger could do something silly: even with an unex-
pectedly behaving robot children do not necessarily ascribe intention to
the robot. It seems that some children did not interpret the misbehavior of the
robot as intentional but more like a technical problem or mistake. For instance,
even after the robot misbehaved by disobeying, the majority of the children in
this condition was still convinced that the robot could not do a silly thing. It
is however interesting to note that children tend to ascribe cognitive abilities to
the robot, like the ability to see and hear but not intention. We interpret this as
children perceiving the robot as being able to process sensory information but
not being able to make decisions on its own.

Engagement. Based on the video-coded actions, we found a significant differ-
ence between the average of engagement actions (Fig. 2) carried out during the
first 7 runs (correct robot behavior) and during the second 7 runs, when the
robot behaved unexpectedly (F (1, 36) = 5.1, p = .03). In all three conditions,
children carried out more engagement actions with the unexpectedly behaving
robot. Importantly, no interaction effect was found between the two phases of
interaction (expected / unexpected) and condition (F (2, 36) = 1.2, p = .31): the
robot’s failure mode does not seem to impact the level of engagement.

In general, this finding supports our first hypothesis: children show more
engagement toward a robot that behaves unexpectedly from time to time com-
pared to a robot that always behaves correctly.

Anthropomorphic Projections. Ranger was moderately anthropomorphized
by the children (compound anthropomorphism index in lost condition: M = 8.31
(on 16), SD = 0.59, disobey : M = 6.5, SD = 3.68, mistake: M = 7.94, SD =
1.74). However, the mean index of anthropomorphism in the three conditions var-
ied, with the mistake and lost condition leading to a higher index than the disobey
condition. This finding suggests that the disobeying robot was less anthropomor-
phized than the other two robot behaviors, which speaks against our second
hypothesis. We had expected that the disobeying behavior is perceived as an
intentional action which we assumed would lead to increased anthropomorphism.
This was not the case and the lost robot was overall the one eliciting the highest
level of anthropomorphism (the robot’s “helplessness” may have lead to this).
This is also reflected in children’s behavior: with the lost robot, children looked
more often at the experimenter than in the other condition, which suggests that
they could not fully make sense of the robot’s behavior, and the fact of not being
able to understand (and hence predict) a robot’s behavior is likely to increase
anthropomorphism.

We hypothesised that children who interact a lot and are more engaged
with the robot also perceive the robot as more human-like. Suprinsigly, our
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Fig. 5. Anthropomorphic perception of the robot versus engagement actions per pairs.

data suggests the opposite. As shown in Fig. 5, the more a group showed
engagement in the interaction, the less they anthropomorphized the
robot. A possible interpretation is that children who interact more with the
robot understand better how it works, they are more familiar with it, and as
such the robot appears less “mystical” to them, and they hence do not need to
anthropomorphize it. On the contrary, the cluster of groups that do not inter-
act much but anthropomorphize the robot more, is quite homogeneous, and
may reflect a certain fear of interacting with a robot that would look to them
too human-like. This raises the question how far anthropomorphism (as a special
kind of social engagement) really helps in sustaining interaction. This is a critical
point because most of the short-term investigations suggest that anthropomor-
phic design and human social cues emitted by a robot foster engagement and
acceptance. What if this is not true for continued interaction, and thus for the
long-term? We need to remain modest here: while we found a significant negative
correlation between engagement and anthropomorphism in the data pictured on
Fig. 5 (r(11) = −0.56, p = .05), we have to be careful about our interpretation,
due to the relatively small sample size (13 pairs), and we suggest to investigate
the aspect further in future research.

4 Conclusions and Future Directions

As hypothesised, we found that, in a playful scenario where 4-5 year old children
play domino together with a robot, the robot seems to be more engaging when
it shows some misbehavior compared to when it always behaves as expected
(notwithstanding the impact of a novelty effect).

Regarding the design of our three conditions (lost, disobey, mistake), we can-
not conclusively affirm whether children perceived the unexpected robot behav-
ior as a malfunction (something that happens to a machine) or as being intended
and based on a motivation (something related to a social entity). While our



You’re Doing It Wrong! Studying Unexpected Behaviors 399

manipulations were not as clearly perceived as we expected for the age range of
the subjects, we still believe these three conditions (mechanical malfunction –
the lost condition, vs. explicit intentionality – the disobey condition, vs. implicit
intentionality – the mistake condition) are relevant and we suggest to replicate
a similar study with slightly older children.

We also report on the initial application of an compound index of anthro-
pomorphism to assess children’s anthropomorphic projection onto robots. This
index considers both behavioral and self-reported aspects, and it suggests, in
our experiment, that children tend to conditionally anthropomorphize the robot.
Higher indexes of anthropomorphism were found in the lost and mistake condi-
tion which was against our hypothesis.

Interestingly, data suggests that anthropomorphic perception does not
automatically elicit engagement, on the contrary. It appears that groups who
interacted more with the robot perceived it as less human-like. This raises an
important question for the human-robot interaction community: to what extent
do anthropomorphic perceptions impact the interaction experience? Our findings
here go against the intuition.
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Abstract. In this paper we discuss how a motivationally autonomous
robot, designed using the principles of embodied AI, provides a suitable
approach to address individual differences of children interacting with
a robot, without having to explicitly modify the system. We do this in
the context of two pilot studies using Robin, a robot to support self-
confidence in diabetic children.

1 Introduction

In this paper we discuss how a motivationally autonomous robot (named Robin
after “Robot Infant”), designed using the principles of embodied AI, provides
a suitable approach to address individual differences in the way children inter-
act with it, without having to explicitly modify the system. This robot and
the interaction scenario were developed to help diabetic children improve their
confidence and skills in managing their own diabetes, by looking after a “dia-
betic” robot toddler. In [8] we addressed how Robin was designed to support
self-efficacy in these children. For developing self-confidence and self-efficacy in
real interactions, it is very important that social interaction is appropriate to
the interaction profiles and personalities of individual children. Typically, in
Human-Robot Interaction (HRI) and Child-Robot Interaction (CRI) individual
differences are tackled by personalizing the robot to individual profiles [10]. Per-
sonalization is usually done by explicitly tailoring the interactions using methods
such as Wizard-of-Oz, by adding references to previous interactions [7], altering
the order in which tasks are done [9] or by introducing variables into interac-
tion scripts, e.g. related to personality. However, for our goals of supporting
self-efficacy and building self-confidence, a motivationally autonomous robot is
more appropriate. It is important that the interaction is unstructured, and partly
ambiguous and unpredictable, as this will make the “play” experience feel closer
to the complexity of real diabetes self-management. The use of a motivationally
and cognitively autonomous robot that can behave and interact as an indepen-
dent agent is instrumental to this end. As we will see later, it also makes each
interaction unique.
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 401–410, 2015.
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We discuss how we used Robin in two pilot studies with diabetic children in
Italy. Although each child was very different in their needs for support for dia-
betes and the way in which they interacted, we did not need to modify Robin to
satisfactorily deal with these differences in both dyadic and triadic interactions.

2 Robin, the Diabetic Autonomous Robot Toddler

In this section we summarize the psychological and clinical basis for the design
of Robin, the software architecture, and the interaction scenario. For further
details please refer to [8].

2.1 Motivation

Type 1 diabetes is an incurable chronic disease caused by an inability of the
body to produce insulin. It is often diagnosed in childhood and, if ill-treated,
the high glucose levels lead to devastating complications such as blindness, limb
amputations or severe misfunctioning of internal organs. The current treatment
involves monitoring and adjusting blood glucose through the provision of insulin
– either through a pump or by injection – and glucose – by eating appropriate
foods. In order to live independently, an individual with diabetes needs to be able
to manage his/her own diabetes (self-management), which in addition to these
activities involves being aware of the symptoms of high and low glucose levels,
which can vary between individuals, and being aware of how different foods and
activities specifically affect their own blood glucose. Diabetes treatment therefore
involves a great deal of education, but the ultimate medical aim of this education
is behavior change: the acquisition of good diabetes self-management practice.

The concept of perceived (self-)efficacy was introduced by Bandura as key
element in successfully changing behavior [2]. Synthesizing from the literature,
we define perceived self-efficacy as a person’s beliefs about their own ability to
successfully perform a specific task in a specific situation. Following Bandura’s
ideas we designed our robot architecture and CRI scenario as a tool to increase
perceived self-efficacy in the child, primarily by giving them a mastery experience
of diabetes management – in this case the child manages the robot’s diabetes.
It is important that the interaction is unstructured and partly ambiguous and
unpredictable, as this will make this “play” experience feel closer to the complex-
ity of real diabetes self-management. The use of a motivationally and cognitively
autonomous robot [5,8] (rather than, e.g., a scripted system) is instrumental to
this end, as we will explain in the next section. It also makes each interaction
unique, due to both the dynamics of the architecture in interaction with the
physical and social environment (the robot never behaves in exactly the same
way twice), and to the different ways in which each child treated the robot. Our
robot was designed to act like a toddler as we felt that this supported the role
of the child as the “carer”, it suited the physical appearance of the NAO robot.
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2.2 Robot Architecture

We briefly outline Robin’s software architecture, which is described in detail
in [8]. Robin’s decision-making architecture follows principles of embodied
AI [4,5]. It is built around a “physiology” of homeostatically controlled “survival-
related” variables that Robin needs to keep within permissible values. We have
also given the robot a simple model of Type 1 diabetes, comprising an internal
blood glucose level that increases with “eating” toy food, and decreases with
“insulin”. Robin chooses how to behave as a function of these internal needs
and the stimulation he gets from the environment. Elements of the environment
are detected using vision (e.g. foods, faces) and tactile contact (e.g. collisions,
strokes, hugs). Internal needs and environmental cues are mathematically com-
bined in what we call motivations, which lead Robin to autonomously select
behaviors from his repertoire (e.g. walking, looking for a person, eating, resting)
that will best satisfy his needs (e.g. social contact, nutrition, resting, playing) in
the present circumstances. For this reason it is a motivationally and cognitively
autonomous robot.

To make it meaningful for our scenario, Robin is not capable of fully attending
to all its needs without human assistance. It can play on its own, eat, and, by
resting, it can recover from tiredness caused by too much movement. However,
it requires assistance from the children to satisfy its social needs (e.g. social
presence, strokes, hugs), some of its nutritional needs (the child can “feed” the
robot using toy food items), and to control its glucose level.

The children can measure glucose levels and provide insulin to lower glu-
cose (correcting hyper-glycemia) using a Bluetooth glucometer device, or feed
the robot high-glucose food to raise glucose (correcting hypo-glycemia). Hypo-
and hyper-glycemia have associated symptoms such as tiredness that alert the
children of the potential presence of a problem.

Following the initial prototype of Robin described in [8], preliminary tests
with non-diabetic Italian children indicated that purely non-verbal behavior was
not sufficiently clear to interpret Robin’s needs. We therefore added a few simple
Italian words (in a recorded “child-like” voice) to indicate hunger, a request for
a hug/stroke, and sleepiness. This was in addition to the already present happy
and sad sounds, signaling positive and negative changes in its internal state.

2.3 Interaction with Robin

The interactions took place in a “playroom” (Figure 1) decorated to look like
the room of a toddler. The majority of the interactions were dyadic interactions
between a child and a robot, initially coached by an adult. Robin would be
“moving around” (i.e. looking at or walking towards things around the room,
trying to eat, exploring, etc.) as the children entered the playroom and they
would first interact in the presence of an adult who would show them how to
feed Robin, how to use the handheld glucometer to measure glucose and give
insulin, explain what toy food items contained a corrective dose of glucose, and
encourage them to interact socially. After this initial phase the children would be
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Fig. 1. Robin’s playroom at the diabetes summer camp: the environment where the
interactions took place. Robin’s toys lie around the room; items including food and the
glucometer are on a table.

asked if they could look after Robin while the adult left for a short time. All our
children were happy to be left alone with the robot. They were provided with a
phone that they could use to call an adult for help or to ask them to return. The
children were left alone with the robot for approximately 15 minutes, after which
the adult would return, and the child could then leave. After the interaction the
child would fill in a questionnaire.

The interaction was remotely monitored by the experimenters. In order to
ensure each child had an appropriate experience of managing Robin’s diabetes,
if the robot did not naturally have a hypo- or hyper-glycemia we would remotely
set the glucose level high or low. Robin would then act appropriately based on
his own internal state, e.g. stopping exploring and resting showing postural and
vocal signs of tiredness. The experimenters could also decide to send an adult to
the room if a child seemed to be in difficulty and was not phoning for assistance.
Since our aim was to improve the children’s perceived self-efficacy, we would set
the robot’s glucose to a normal value towards the end of the interaction so that
it did not appear to be in any difficulty when the child left.

3 Trial Interactions

We ran exploratory pilot interactions in order to assess how diabetic children
interacted naturally with Robin. Our purpose was to gain insight into how Robin
could be used as a tool to support the social and therapeutic needs of different
children, rather than a formal investigation of specific research questions. These
qualitative observations and analysis, intended to integrate the end-users early
in the design of the system, are the object of this paper. We do not present a
quantitative analysis at this point.
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3.1 First Pilot: Hospital

We ran a first pilot of Robin with three diabetic children (two girls, one boy)
at Ospedale San Raffaele in Milan. All the children had already interacted with
a NAO robot running different software, also developed as part of the ALIZ-E
project [3], in which the robot and child played a number of educational games
related to diabetes, the robot taking the role of either a peer or a teacher. The two
robots were referred to as “Nao” and “Robin” to clearly distinguish their different
identities. Following feedback from a psychologist, an adult, playing the role of
Robin’s “engineer”, was with Robin in the playroom when the children entered.
During the introduction, the engineer explained that he had only recently learned
that Robin had “robot diabetes” and he was hoping the child would be able to
help him. After the introductions the engineer received a phone call calling him
away and he would ask the child to look after Robin until he returned.

3.2 Second Pilot: Summer Camp

We ran a second pilot of Robin at a summer camp for diabetic children in Italy
organized by the patients’ association SOStegno701. The first tests, like those
in the Ospedale, each involved a single child (3 girls aged 10/11, 8 boys aged
11/12). We then ran two tests with pairs of children interacting with Robin (all
boys, one of whom had taken part in the single-child interactions). A total of
fourteen children, all with Type 1 diabetes, interacted with Robin at the camp.
As in the hospital, all the children had previously interacted with “Nao”.

These interactions needed to be done in a way that fitted in with the busy
timetable at the summer camp. Robin and Nao were introduced to the whole
camp as brothers during mealtime presentations. Children who had then put
their names on a waiting list to interact with Robin were approached at conve-
nient times during the day and, if they still wished to visit Robin, taken to the
room where the playroom had been built. That they were then left alone with
Robin was not presented as a “surprise”, as it had been in the hospital pilot,
and there was no “engineer” character. As some of the children had heard about
the interaction with Robin from their peers, we could not be sure what prior
knowledge they had when they arrived.

4 Personalized Interactions

In this section, we will discuss individual differences displayed by the children
during their interactions with Robin, and how Robin responded to these differ-
ences.

Responses to the post-interaction questionnaire indicate that the children
found Robin’s behavior to be largely coherent and likable. Asked how Robin
seemed to them and allowed to choose multiple words from a list – “lovable”,
“strange”, “amusing”, “not social” (Italian “sulle sue”), “interested in me”, “in
1 www.sostegno70.org
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difficulty” and “other” – only two of the seventeen children indicated that Robin
was “strange” whereas 11 answered “lovable”. One child put “other”, writing
“like a real little boy”. Much of the non-verbal behavior of the children seemed
to corroborate these results, for example there were several occurrences of the
children spontaneously imitating the robot – a number of them clapped when
Robin clapped his hands, or imitated his vocalizations. This imitation included
unobtrusive mimicry, which is linked to empathy and positive social interac-
tion [6]. In addition, all the children appeared to be fully engaged in the inter-
action, and none showed signs of wanting to leave before they were interrupted
by the returning adult. Robin was perceived and treated in this way despite the
fact that children interacted with him in very different ways – each child was
a world of his/her own. This shows that Robin was successful in coping with
individual differences.

In the remainder of this section we discuss some of these individual differences
grouped in terms of some relevant interaction criteria.

4.1 Socially Proactive vs. Socially Responsive

All the children were responsive to Robin’s vocalized requests for food, drink and
hugs. These vocalized requests were Robin’s most clearly expressed prompts
for the children to interact. All the children also helped Robin to stand and
responded when he expressed tiredness, although to differing extents. In the
post-interaction questionnaire all the children answered the question “Was it
easy to guess Robin’s needs and desires?” with “yes” or “sometimes”.

However, outside of Robin’s requests, we saw different interaction patterns.
Some children interacted with the robot almost continuously, for example taking
it upon themselves to “entertain” him with toys, responding to Robin’s hand
claps by clapping their own hands, or by walking alongside him. At some points
some children took this even further, dominating Robin’s attention, for example
by turning him towards them if he turned away, or physically carrying him to
another part of the playroom. In contrast to this, other children allowed Robin to
do as he pleased, exploring the room and interacting with what he came across
there. These latter children should not be thought of as “not interacting” as they
still responded to the vocalized requests and falls as noted above.

One particular child who acted in this “responsive” way was a boy who
gave the impression that he was “cool” or streetwise. At one moment during the
interaction, he played football with the toy duck that was in the room, seemingly
distracted. However, he perfectly understood, and was quick to respond to, every
single one of Robin’s vocalized requests (in the post-interaction questionnaire he
indicated that he found it easy to guess Robin’s needs and desires, although
he was one of only two children to indicate that he found Robin “strange”).
He did not respond immediately to Robin’s expression of tiredness; however,
when Robin continued to express tiredness, he phoned for assistance and used
the glucometer as instructed before feeding the robot. Even though aspects of
his behavior may have given the impression of being distracted, he gave many
indications of engagement with Robin. For example, after testing Robin’s glucose



An Embodied AI Approach to Individual Differences 407

later in the interaction and finding it was now back in the normal range he made
a small gesture as though in triumph. On a number of occasions he appeared
to imitate Robin: raising his hand to apparently mirror an action by Robin, or
clapping his hands immediately after Robin had done so. In addition to these,
and possibly indicative of how the child viewed his own and Robin’s diabetes, he
also examined his own glucose pump in a way that seemed connected with his
interaction with Robin. For example, when he had checked Robin’s glucose for
the first time and fed him to correct the hypoglycemia he briefly looked at his own
glucose pump; some time later he looked at his pump, and as though reminded
by this he then immediately checked the robot’s glucose. A similar pattern of
checking his own pump in parallel with Robin’s glucose level appeared to persist
to the end of the interaction. Although we should be careful about reading too
much into this anecdotal observation, it is suggestive and perhaps of relevance
both in terms of how the child viewed the robot with respect to himself and the
child’s awareness of diabetes.

Because Robin’s motivations for acting depend on both his internal needs
and external stimuli (which include different varying cues from the children), he
could respond differently and appropriately to this variety in social interaction
style. Detecting a face, which occurred more frequently with socially proactive
children, would increase Robin’s motivation for social interaction, often causing
him to open his arms towards the person – a gesture inviting a hug. On the other
hand, over periods without social interaction, more frequent in the “responsive”
style, the robot’s social need would increase, eventually becoming dominant, at
which point the robot would vocalize this need, attracting the child’s attention.

4.2 Verbal vs. Non-verbal

Robin used only single words to indicate his motivations, and made affective
vocal noises to express pleasure or displeasure. However, the children showed
different degrees and types of verbal behavior when left alone with Robin.

For example, one girl, who in the briefing session said that Robin reminded
her of a young cousin, talked a great deal to Robin as she was interacting with
him, for example talking encouragingly to him as she tried to feed him an apple.
Alongside this, she showed very proactive non-verbal behavior, such as moving
Robin about the room. Another girl who also talked a great deal and encourag-
ingly, did so with a different social manner, seeming to respect Robin’s autonomy
and giving him space, even going so far as to ask Robin if he wanted her to help
him stand as she watched him struggle to get up after repeatedly falling.

Many of the children did not speak very much to Robin, though several of
them would call his name in a variety of tones, and many said “Ciao” as they
left the playroom. This was in contrast to the interactions with Nao in which
the robot spoke with some fluency (using Wizard-of-Oz) and games such as the
diabetes quiz were built around vocal interaction. Our presentation of Robin
as a toddler with very limited verbal ability was viewed as coherent by all the
children, and supported the different ways they wanted to interact with him
along the verbal–non-verbal spectrum.
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4.3 Response to Diabetes Symptoms

There was a range of responses to Robin’s diabetes symptoms, perhaps reflecting
the range in the children’s own confidence and knowledge. We will briefly describe
examples at the two ends of the spectrum.

One boy, aged 9, as the adult was about to feed Robin during the introductory
phase, spontaneously prompted the adult to check Robin’s glucose levels. This
showed high awareness of diabetes management and indeed the boy checked
Robin’s glucose levels several times during the interaction, including after Robin
had fallen (hypoglycemia can cause people to become dizzy or to faint). After
seeing the adult move the high-glucose food items away from Robin during the
introduction, the child also hid them behind the table during the interaction.
Even before he left Robin with the adult at the end of the interaction he made
sure these food items were well hidden behind two of the larger toys.

One girl, aged 10, and who had been diagnosed with Type 1 diabetes for only
one year, appeared to show very little awareness of correct medical response to
diabetes symptoms. When alone with Robin, her response to his tiredness due
to hypoglycemia was purely affective. She offered comfort – gently stroking his
head – but did not use the glucometer. On this occasion the experimenters, who
were monitoring the interaction, took the decision to send the adult back to the
interaction room. On finding out what the situation was, he asked if she had
checked Robin’s blood glucose. She then took the glucometer from the table and
used it to measure his glucose. Then, with a small amount of encouragement from
the adult, she fed Robin a corrective dose of glucose. Robin quickly recovered
and started walking around again. The interaction finished a few minutes later
with hugs between Robin and the child. Since she was relatively inexperienced in
diabetes management, it is not too surprising that she did not use the glucometer
until prompted. However, diagnosing and treating the hypoglycemia with the
adult still provided her with a mastery experience, albeit a directed one, and the
system was flexible enough to allow for this. In contrast to her observed behavior,
in her questionnaire response she rated the game as “very easy” and she didn’t
want an adult present to help with difficult situations. She did, however, indicate
that the teaching games that she had played with the other robot had helped
her with Robin, specifically that before eating it was necessary to check the
glycemia.

4.4 Interactions with Two Children

In order to test the flexibility and scalability of Robin, we also ran two interac-
tions using exactly the same system and scenario, but with two children (boys)
interacting with him at the same time. In the first trial one child was new to
Robin, while the other had already interacted with him on his own; in the second,
both children were interacting with Robin for the first time. On both occasions,
we observed some examples of the children working as a team – for example by
passing the glucometer for the other to use when Robin indicated he was hungry,
or the bottle of water when Robin indicated he was thirsty. In contrast to this
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teamwork, on other occasions the pairs could be viewed as behaving in a more
competitive manner, for example by simultaneously trying to attract Robin’s
attention with toys or food, or by putting themselves in Robin’s path.

Two Children with Different Familiarity. The boy who had previously
interacted with Robin had not, during that first interaction, seemed confident
about his ability to manage Robin’s diabetes: as soon as Robin indicated he was
tired, the boy had phoned for advice and confirmation about the exact procedure
to follow. However, on the second interaction he entered the playroom with a
happy “Ciao, Robin!” and stroked his head. He then attempted to feed Robin
some apple, although Robin was not motivated to eat at that point. Then, when
the adult was giving a shortened introduction to Robin, the familiar child (we
will refer to the two boys as “familiar” and “new”) initiated the discussion of
the glucometer, showing the new boy how to use it. When the new child was
being told about the food items used for correcting hypoglycemia the familiar
child volunteered his own contributions. When the two were working as a team,
the familiar child took the leading role, for example by initiating the use of the
glucometer by passing it to the new child. At the end of the interaction, when
the adult returned, the familiar boy measured Robin’s glucose and reported it to
her, with apparent pride. This increased confidence is consistent with our design
of Robin as a tool for increasing perceived self-efficacy – although increased
perceived efficacy in managing Robin’s diabetes does not necessarily mean that
he was more confident in his abilities to learn to manage his own diabetes.

Two Children New to the Interaction. This group showed a lot of
exploratory behavior, which we hadn’t seen in other interactions. For exam-
ple, when one of the more ambiguous situations occurred: Robin became tired
for reasons unrelated to his diabetes. At this point, after measuring his glu-
cose and finding it in the normal range, the two boys discussed what to do.
They (correctly) gave no treatment on this occasion, but continued to monitor
Robin’s glucose. Another novel way of interacting occurred when one of the boys
arranged the soft toys to form three sides of a square and lay Robin down inside
the square with his head resting on one of the banks of toys, as if making a bed
for Robin.

5 Conclusions and Future Work

In this paper we have discussed the use of Robin, a motivationally autonomous
robot designed using embodied AI principles, as a suitable approach to deal with
individual differences in CRI. We have illustrated this with observations from
pilot studies carried out with seventeen diabetic children in Italy.

Already this basic implementation of a motivationally and cognitively
autonomous robot, with no explicit adaptation or learning capabilities, can deal
with a wide range of significant individual differences, without having to modify
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the system. Based on this experience, we would like to put forward the embod-
ied AI approach to autonomous robots, currently little known and under-used in
HRI and CRI, as a very promising avenue for dealing with individual differences
in these fields.

In addition to this, this approach can also address personalization in a natural
way as part of the interaction. For example, we have already started investigat-
ing the inclusion of explicit behavior adaptation techniques, such as imitation
of specific non-verbal behavior for each child as a way of promoting positive
bonds [1]. We have also started to explore the adaptation of the level of social
responsiveness to that of the child as a function of the input received in the
interaction.
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Abstract. Back pain causes more global disability than any other health prob-
lem studied and the number of patients is growing. In Europe and in the US it is 
the number one cause of lost work days. This paper propounds a new approach 
by exploring the effect of utilizing a humanoid robot as a therapy-assistive tool 
in educating children to perform back exercises designed by a professional the-
rapist. In our previous research a NAO robot was programmed and employed as 
a robotic assistant to a human physiotherapist to perform exercises in an ele-
mentary school in Slovakia. This paper goes further in designing a Wizard of 
Oz, where the exercises can be controlled and intervened by motivational beha-
viors of the robot (emotional expressions). Currently we are developing a  
system based on reinforcement learning that should adopt the motivational in-
terventions from the Wizard. The promising results of this study in the physical 
therapy suggest the effective future use of social robots in reducing the symp-
toms of the most extended global disability in the world. 

Keywords: Children-robot interaction · Back-pain · Scoliosis · Socially assis-
tive robotics · Reinforcement learning 

1 Introduction 

Low back pain (LBP) is an important public health problem in all industrialized na-
tions [1] [2] [3]. The Global Burden of Disease studies [4] done in 1990 and 2000 
have been the only studies to quantify non-fatal health outcomes across an exhaustive 
set of disorders at the global and regional level – neither effort quantified uncertainty 
in prevalence of years lived with disability (YLD). They found musculoskeletal dis-
orders caused 21.3% of all YLD, where the main contributors were low back pain 
(83.1 million YLD) and neck pain (33.6 million YLD). COST (European Cooperation 
in Science and Technology) for Biomedicine and Molecular Biosciences [5] gives 
Guidelines for the Management of Low Back Pain in Europe and reports on its impor-
tant social and economic impact as it is associated with high rates of sick leave and 
disability pensions. It affects more than 70% of the general population sometime in 
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their life; 17-31% of general population are suffering from LBP at any one time. In a 
brief study of 29 424 individuals by Leboeuf-Yde and Kyvik [8] 37% of the children 
reported back pain. Exercise based therapies are a logical approach to improve and 
maintain flexibility and function in patients at risk for pain and progression [6]. Ne-
grini et al. [7] made a systematic review studying if physical exercises as a treatment 
for adolescent scoliosis on and the results suggest their utility to reduce specific im-
pairments and disabilities cannot be neglected. 

The problem of scoliosis in today’s society is growing and it is fundamental to en-
sure adequate motor skill development during childhood. We describe our experience 
in using a humanoid robot as a physiotherapist to teach children anti-scoliosis and 
anti-back pain exercises as it is proved that a series of safe and effective exercises can 
strengthen the back and improve posture.  

2 Social Robots in Therapies 

In Rabbitt et al. [10] define socially assistive robotics (SAR) as a unique area of ro-
botics that exists at the intersection of assistive robotics, which is focused on aiding 
human users through interactions with robots (e.g. mobility assistants, educational 
robots) and socially interactive or intelligent robotics, which is focused on socially 
engaging human users through interactions with robots (e.g. robotic toys, robotic 
games). They also review the yaws that socially assistive robotics have already been 
used in mental health service. 

Socially assistive robots have been used in different roles, e.g. the weight loss 
coach [11], the social robot in an attention and memory task helping older adults with 
dementia [12], supporting young patients in hospital as they learn to manage a life-
long metabolic disorder (diabetes) [13], motivating physical exercise for older adults 
[16] or in autism therapy [13], as a therapy assistant in children cancer treatment [15], 
sign language tutors [17], other kind of educational agents mainly in children-robot 
interaction [18] [19] [20] [21] [22] and others [23]. One of the challenges of using 
robots in therapies is often to fuse play and rehabilitation techniques using a robotic 
design to induce human-robot interaction, in which the criteria was to make the thera-
py process entertaining and effective for its users. 

3 Design of a Motivational Robotic System for Physical 
Therapy 

3.1 Our Previous Research 

In our previous research [24] we placed a humanoid robot Nao in an elementary 
school as a physiotherapist for rehabilitation and prevention of scoliosis. We pro-
grammed a set of exercises that can reduce the symptoms of spinal disorders, as they: 
improve cosmetic appearance, reduce pain, improve breathing and function levels, 
reduce the existing curvature and in some cases avoid the need for scoliosis surgery. 
The subjects were 20 children, aged between 6-8. This sample of subjects was chosen 
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deliberately, as children of this age are playful, interested in the technology and thus 
are not limited by fear of the unknown. On the other hand, the problem of children of 
this age is their concentration, and the majority of them is not able to repeat the same 
activity over a longer time. This is the main priority for satisfactory results of the 
rehabilitation exercises. The details of the experimental results can be found in [24]. 
This was our pilot study to test the effects on children of coaching delivered by a 
social humanoid robot. From this research we highlighted the need to make robotic 
behaviors less boring and more effective to prepare robots for a long-term human-
robot interaction.  
 

 

Fig. 1. Examples of the exercises designed by a professional physiotherapist and implemented 
using the Nao humanoid platform 

 
Fig. 2. Children in the elementary school trying to imitate the robot’s motion. While children 
are exercising with the robot, a human physiotherapist is observing them and is able to help-
children when needed: our previous research 

3.2 Adding Motivational Behaviors Controlled by the Wizard 

We preprogrammed a set of motivational robotic behaviors stored in an emotional 
database which contains different types of the expressions of the robot representing 
basic emotions: joy, anticipation, anger, disgust, sadness, surprise, fear and trust. We 
asked a human physiotherapist to observe children during the 20-minute long sessions 
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and to try to select an expression to be performed by the robot anytime that the physi-
otherapist decides that it can motivate children to continue exercising. The results can 
be found in the following Tab. 1.  

Table 1. Interest of children in the therapy and accuracy of their exercises in time when robot 
was not showing emotional expressions (above) and when the robot performed the expressions 
controlled by the Wizard (below) 
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Fig. 3. Design of the graphical user interface for the Wizard that controls the experiment 

The Wizard of Oz method is sufficient for research, but if we want to have robots 
in human environments we have to think about them as learning systems. In our work 
we present a cloud-based Wizard of Oz interface which learns from the operator in 
order to increase the level of autonomy of the robot. This way we can move from 
Wizard of Oz toward the Oz of Wizard [27]. 

 
Fig. 4. The difference between Wizard of Oz and Oz of Wizard [27] 
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After learning about the state of the art of Wizard of Oz interfaces [28] we found 
out that the biggest weakness of all of them is, that they can be used only locally and 
just for a given experiment. In order to overcome these infirmities our system uses the 
advantages of cloud computing. Our main goal is to create a modular interface which 
can be used in different HRI scenarios. Besides that it can serve as a common plat-
form for researchers. It is cloud-based which means that it is always online and after 
connecting the robot to the system based on its IP address the users are ready to go. 
The system consists of three parts (Fig. 9): 

─ Motion library – in our case it contains the physical therapy exercises. The Wizard 
can choose the exercises from the database, number of repeats and set the order of 
execution. Another feature is recording new exercises with a Microsoft Kinect sen-
sor, which enables the creation of more diverse rehabilitation sessions. This part of 
the system is dynamic and can be changed according to the given experiment. 

─ Motivational behaviors library – the platform also comes with an emotional data-
base which contains emotional expressions of the robot based on Plutchik’s emo-
tional model (joy, anticipation, anger, disgust, sadness, surprise, fear, trust). The 
Wizard can also control the LED animations and the phrases said by the robot. 

─ Agent-based reinforcement learning – a system that determines how to map situa-
tions to actions and also tries to maximize a numerical reward signal (how to con-
trol the teaching process, e.g. when to activate the motivational mode of the robot). 
This part is invisible for the users. A detailed description of the learning process 
can be found in the next chapter. 

 
Fig. 5. Scheme of the system. Wizard, Kinect, Cloud, Robot and GUI for the Wizard 

4 Implications: Learning from the Wizard  

We propose to use reinforcement learning, that is, according to [29] a learning method 
that determines how to map situations to actions and also tries to maximize a numeri-
cal reward signal. The actions performed by the agent are not defined explicitly, and 
they have to be discovered through exploration in order to get the most reward.  
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Traditional methods of reinforcement learning algorithms were used successfully in 
many application areas - however they were not primarily designed for learning from 
real-time social interaction from humans. This kind of learning addresses some addi-
tional challenges, such as dealing with limited human patience or ambiguous human 
input. We agree with Thomaz [30] in that the most important task of the designer of 
the algorithm is to ensure that the system learns the right thing at the right time [30]. 

In order to include human input to a machine learning process several approaches 
were designed: machine learns by observing human behavior, human explicitly di-
rects action of the machine, human provides high-level evaluation, feedback or labels 
to a machine learner, etc. In the case of learning from observation of the human beha-
vior, the learning can occur implicitly or in other scenarios the human is explicitly 
teaching the machine a new skill. This type of approach was used in programming by 
example, learning by watching, learning by demonstration [31], etc.  In other scena-
rios, the humans explicitly directed the action of the machine to provide them expe-
rience from which they can learn. In comparison with the above mentioned approach, 
this method is more interactive, but the human has to learn how he/she has to interact 
with the machine. The mechanism was used in various robot learning scenarios, such 
as learning navigation tasks by following a human demonstrator. The third mechan-
ism is used to influence the experience of the machine with higher level constructs 
such as giving feedback to a reinforcement learning agent or labeling examples in an 
active learning scenario. 

In the above mentioned approaches, the main goal is to gain the learning perfor-
mance of the machine through human inputs. Opposite to this, socially guided ma-
chine learning reframes the machine learning problem as an interaction between the 
human and the machine. A social learning system, where the machine learning pro-
vides output but also interacts with the human teacher. Such a system is designed to 
learn efficiently from people with no experience in machine learning.  

This type of reinforcement learning is called interactive reinforcement learning and 
was successfully used in various scenarios [32] [33] [34]. In our work, we aim to use 
this method for learning and adapting the robot’s social behavior in order to move 
from the Wizard of Oz technique towards an autonomous mode. 

To achieve this, the learning has the following characteristics: 

 During the experiment the human operator (Wizard/expert) controls the robot and 
based on the subject’s non-verbal reactions (gestures, emotions) changes its beha-
vior. 

 The states of the subject during the interaction are labeled by the Wizard, and the 
associations between them and the actions of the operator are saved in the form of 
rules. The goal of the Wizard is to create a successful rehabilitation session. In or-
der to get a database with as much data as is possible we plan to use the crowd-
sourcing technique. 

 During the interaction the algorithm tires to approximate the policy – how the Wi-
zard chooses its actions in different states – of the operator. After a given point, the 
algorithm is capable of replacing the Wizard, such as it was presented in [35]. The 
most appropriate artificial intelligence method for this task are neural networks 
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(NN). Based on the Wizard’s actions we can train a NN in order to reliably simu-
late the expert’s decisions in various cases. 

 In the first three phases the robot learns a pattern of social behavior, which can 
serve as a base when we want to create personalized behaviors. As it was men-
tioned, our goal is to reduce the number of interventions of the expert and increase 
the level of autonomy of the robot. When the robot is in autonomous mode the 
states of the subject are captured by a Microsoft Kinect sensor. The non-verbal 
states of the human partner are detected and recognized by already implemented 
systems. In order to measure the resulted autonomy of the robot we plan to use 
neglect tolerance of the interaction [36]. 

 To create a personalized social behavior we are just shaping the robot’s learnt be-
havior. This method is based on reinforcement learning [37]. One can argue that 
this method of machine learning is slow for such a domain, but it was proven [37], 
that human guidance can significantly reduce the exploration time. 

 
Fig. 6. Session in which the robot can show emotional expressions to motivate children. The 
expressions and their timing are selected by the Wizard but we are developing a learning sys-
tem that will simulate the Wizard´s behavior 

5 Conclusion 

We propose using social robots for back pain prevention. During the session an opera-
tor - an expert in physiotherapy – observes children and interrupts the exercises with 
selected motivational behavior to maintain the interest of the children in the session, 
when needed. Moreover, new types of exercises can be easily added to the system, 
without any programming experience, using Kinect. We suggest to use a learning 
mechanism based on reinforcement learning that would acquire the expert’s know-
ledge. Using cloud computing we are able to gather this knowledge from multiple 
experts. 
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Abstract. Humans are historically bad at performing cognitive tasks that re-
quire sustained attention. Social facilitation theory states that the real, imagined, 
or implied presence of other social agents can improve cognitive performance. 
Typically these agents are other humans, but the current study explores the pos-
sibility that robots can trigger social facilitation effects. We hypothesized that 
more humanlike social stimuli are (1) more likely to be ascribed internal states 
(e.g., having a mind, having emotions, having preferences), and (2) more likely 
to induce social facilitation on a vigilance task. Experiment 1 investigates the 
relationship between physical humanness and attributions of intentionality by 
comparing ratings of internal states for three agents (human, robot, and nonso-
cial). In Experiment 2, we examine whether physical humanness results in im-
proved performance on a vigilance task through social facilitation. While Expe-
riment 1 showed the expected positive relationship between human appearance 
and mind attribution, the degree to which mental states were attributed to an 
agent did not influence performance on the vigilance task. The implications for 
social robotics are discussed. 

Keywords: Social robotics · Social facilitation · Vigilance 

1 Introduction 

Rapid advancements in robotics have produced robots that are capable of increasingly 
complex tasks in a wide variety of operational environments. These robots are not 
fully autonomous—they often require monitoring, guidance, or equal participation 
from human interaction partners. While oftentimes necessary, the human element can 
also hinder performance due to cognitive constraints (e.g., attention and memory limi-
tations). Thus, social robotics is tasked with 1) identifying physical and behavioral 
features that improve performance in human-robot interaction (HRI), and 2) imple-
menting these features to create robots that augment human performance in situations 
prone to environmental constraints or cognitive limitations.  

                                                           
A.R. Mandell and M.A. Smith—contributed equally to the manuscript and share first  
authorship. 
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One way to facilitate productive interactions is to design robots that resemble so-
cial beings with human-like traits (e.g., having a mind) and/or skills (e.g., convers-
ing). The theory of social facilitation indicates that the real, imagined, or implied 
presence of a social agent can improve performance on a cognitive task [1]. This find-
ing suggests that manipulating robot features to increase the perceived socialness of a 
robot interaction partner may improve the cognitive performance of a human opera-
tor. Therefore, it is important to identify features that increase the likelihood of a hu-
man treating a robot as a social agent. The goal of the present study is to investigate 
whether human performance on a complex cognitive task can be improved by mani-
pulating the socialness of a robot interaction partner. Specifically, we hypothesize that 
more human-like agents are increasingly likely to be ascribed intentionality and will 
therefore improve performance to a greater degree than agents that are perceived to be 
nonsocial and non-intentional. 

One approach to the goal of improving HRI performance is to examine factors that 
influence the interaction on a cognitive level in order to elevate team performance. 
One type of cognitive skill that is known to yield poor performance in humans despite 
its relatively simple nature is vigilance, or the ability to sustain attention over ex-
tended periods of time [2]. Vigilance requires operators to maintain alertness in order 
to react to infrequent, low salience cues. It is a crucial skill in environments that in-
corporate automated systems requiring constant monitoring of complex displays for 
critical events that require human intervention, such as air traffic control [3]. 

Despite the apparent simplicity of a vigilance task, research demonstrates that 
people frequently miss critical signals over long-term vigils [5]. In fact, performance 
deteriorates over time, as evidenced by a reduction in signal detection and increase in 
response times known as the vigilance decrement [2,5,6]. The vigilance decrement is 
a major concern in environments that require human monitoring of automated systems 
and has therefore been the focus of a great deal of research [5,7,8,9]. 

Given the tendency to perform poorly in these environments, it is crucial to identify 
factors that can assist human operators on vigilance tasks. One social-psychological 
finding that may be leveraged to improve performance is social facilitation. Despite the 
complex relationship between interaction partners and performance, this effect  
has been associated with improved vigilance performance in the past. For example, 
research has demonstrated that vigilance operators who work in dyads outperform 
solo-operators by 25% [10]. The current study investigates whether the presence of a 
social robot as an interaction partner can replicate this effect and similarly improve 
cognitive performance. 

Unfortunately, using social robotics to facilitate performance may not be as simple 
as designing anthropomorphic robots. Previous research suggests that a major differ-
ence between interacting with a human compared to a robot is the way we ascribe 
intentionality to the other agent’s actions [11,12]. When interacting with other hu-
mans, we adopt the intentional stance, meaning we treat them as intentional systems 
and explain their behavior with reference to their internal states (i.e., desires, inten-
tions) [13]. Alternatively, people do not characterize robots as intentional agents with 
mental states. Instead, we adopt the design stance and characterize their behavior as 
mechanistic. The expectations you hold regarding the actions of another agent depend 
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on your belief in whether the agent has a mind and acts with intention or is pro-
grammed to behave a certain way. 

Wiese et al. [12] demonstrated that beliefs in agent intentionality (or lack thereof) 
affect an individual’s readiness to engage in social interactions with the agent inde-
pendent of the agent’s physical appearance (human vs. robot). In this study, partici-
pants were instructed that the agent’s eye movements were either performed by a 
human or pre-programmed. Participants were more willing to follow the agent’s gaze 
when they believed the eye movements were controlled by a human compared to a 
program, regardless of whether the agent was a human or a robot. The preferential 
treatment of the human gaze cuing resulted in improved performance. Similar find-
ings regarding assumptions about human interaction partners and the tendency to 
attend to gaze direction have also been found by other research groups [11,14]. 

Based on the evidence outlined above, a major goal of social robotics should be to 
identify features that trigger the attribution of intentionality to nonhuman agents and 
lead to improved performance in human-robot interaction through social facilitation. 
The first step in this process is determining which features are likely to trigger the 
intentional stance. Generally speaking, one would expect that robots resembling hu-
mans should induce social facilitation. A more nuanced theory would suggest that 
perceived similarity of a robot to a human is mainly influenced by the robot’s beha-
vior and appearance. Research has demonstrated that the attribution of intentionality 
to nonsocial agents is much more likely when the agent physically resembles a human 
(e.g. possesses low-level perceptual features [16]), even when they do not demon-
strate humanlike behavior [15]. Using a series of morphed faces ranging from puppet 
to human, Looser and Wheatley [16] identified a categorical threshold for mind attri-
bution biased significantly toward the human end of the spectrum. Only faces that had 
significantly more than 50% of human features triggered the intentional stance. Stu-
dies have also shown that humans are skilled at identifying other human faces. 
Wheatley et al. [17] demonstrated that humans are able to differentiate between hu-
man and inanimate faces within a few hundred milliseconds of face processing. In 
addition, Wagner et al. [18] found that passively viewing human faces activates brain 
areas involved in social decision making. 

These findings clearly show that even agents without minds (e.g., robots) can trig-
ger the intentional stance if they appear to be humanlike. It would follow that interac-
tions with these agents would result in performance improvements that are not asso-
ciated with nonsocial or mechanistic agents, possibly through social facilitation. The 
current study examines these possibilities by incorporating a variety of social and 
nonsocial agents (nonsocial, robot, and human) into a vigilance task. 

2 Experiments 

In two experiments, we investigate whether robots can trigger social facilitation ef-
fects using two types of stimuli: social (i.e., human or robot) and nonsocial (i.e., ar-
rows). The human stimulus depicted a female face from the Karolinska Directed 
Emotional Faces database [19] and the robot stimulus depicted a humanoid robot 
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(Meka Robotics). The nonsocial stimulus was designed to be morphologically similar 
to the social stimuli and consisted of two arrows within a black circle; see Figure 1 for 
images of the stimuli. 

These stimuli were used to investigate whether the physical appearance of an agent 
has an influence on the degree to which a mind is attributed to the stimulus (Experi-
ment 1), and whether mind attribution has a positive effect on vigilance performance 
(Experiment 2). We hypothesized that the more humanlike a social stimulus appears, 
the more likely it is that internal states (e.g., having a mind, having emotions, having 
preferences), will be ascribed to that stimulus. Further, we hypothesized that the ex-
tent to which internal states are ascribed to the social stimulus modulates the degree to 
which social facilitation is induced in the vigilance task. 

2.1 Experiment 1 

In order to investigate the relationship between physical humanness and intentionali-
ty, participants rated the likelihood of each agent (Figure 1) possessing internal states 
(i.e. being alive, having a mind, feeling pain, feeling the need to hang out with others, 
and being interested in social interactions). We hypothesized that individuals will be 
more likely to ascribe intentions to agents that are more physically humanlike. 

Participants. Fifty-five participants (24 male) with a mean age of 36.9 years (SD = 
12 years) were included in this experiment. Participants were recruited through Ama-
zon Mechanical Turk, completed the evaluation questionnaire online using Qualtrics, 
and were compensated with money via Mechanical Turk. 

Materials. The agents were 552 x 552 pixels (16.24° visual angle) and were pre-
sented on a white background with eyes aligned with the horizontal axis of the screen. 
To measure the degree to which internal states were ascribed to different agents, we 
used a questionnaire consisting of five items related to mental states and social skills, 
rated on a 7-point Likert-scale. Participants were instructed that a human mind differs 
from that of an animal or a machine, and an animal is alive while a rock is not (see 
[16] for a more detailed description). Questions 1 and 2, taken from a study by Hackel 
et al. [20] on social identity and mind perception, asked participants to “rate how 
much this face looks alive” and “rate how much this face looks like it has a mind” 
with anchors set at 1 (Definitely not alive/Definitely has no mind) and 7 (Definitely 
alive/Definitely has a mind). The remaining items asked participants if they think the 
agent “would feel pain if it tripped and fell on hard ground,” “likes to hang out with 
friends,” and “would be an interesting conversationalist.” These three items were 
rated on a scale from 1 (Definitely Not) to 7 (Definitely). 
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Two probes were used in this study: a gun and a hair dryer (Figure 3), measuring 
2.86° visual angle in width and 2.26° visual angle in height. These probes, previously 
used by Parasuraman et al. [21] to examine vigilance and threat-related biological 
motion, were used in the current study due to their morphological similarities and 
discriminant threat-relevance. The probes were presented on a white background on 
the horizontal axis, located 5.72° visual angle from the center of the screen. 

 

 
Fig. 3. The two probes used in the study, selected for their morphological similarity and dis-
criminant threat-relevance. Participants were instructed to respond on trials where the agent 
cued towards the gun (L), not the hair dryer (R). 

Apparatus. The stimuli were presented on a 19-inch monitor with the refresh rate set 
at 85 Hz. Reaction time measures were based on standard keyboard responses. Partic-
ipants were seated approximately 57cm from the monitor, and the experimenter en-
sured that participants were centered with respect to the monitor. The experiment was 
conducted using Experiment Builder (SR Research Ltd., Ontario, Canada). 

Task and Procedure. The vigilance task was performed continuously over 24 mi-
nutes and was divided into eight 3-minute periods for analysis. Each period contained 
72 trials, comprised of 9 targets (12.5%) and 63 non-targets (87.5%). 

Trials began with a fixation cross (250 ms) followed by the agent’s forward facing 
image (rectangles in the non-social condition) for 500 ms. The agent’s gaze (or arrow 
direction) shifted to the left or right for 200 ms, and the probe was presented for 100 
ms. Then, the screen went blank and a 1200 ms response window began. Participants 
were instructed to respond by pressing the spacebar only when the agent looked at (or 
pointed to) the gun. Responses on these trials were considered correct. 

After giving consent, participants read through instructions at their own pace. This 
was followed by a 3-minute practice session with auditory feedback. In order to begin 
the task, participants had to reach at least 66% accuracy in practice. Those who were 
unable to pass after repeating the practice session once were dismissed. 

Design. This study utilized a between-subjects design with agent type as the between-
subjects factor. Dependent variables included: response times (reaction time to correct 
detections), hit rates (percentage of correct responses to critical signals), and false 
alarms (percentage of responses given when critical signal was not present, i.e. point-
ing either at or away from the hairdryer or pointing away from the gun). 

Results. A 3 (agent type) x 8 (period) mixed design ANOVA was conducted on hit 
rate, reaction times, and false alarms. Greenhouse-Geisser estimates were used to 
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correct for violations to the assumption of sphericity. An examination of the main 
effect of period indicated that while there was no significant change in accuracy over 
time on task (F(3.2, 134.4) = 1.37, p > .05, η² = 0.03), reaction times increased signif-
icantly (F(4.7, 196.7) = 11.32, p < .01, η² = 0.21) and false alarm rates decreased 
significantly throughout the task (F(2.8,117.8) = 13.87, p < .01, η² = 0.25). These 
results are partially consistent with the expected performance decrement. 

The conditions (non-social arrows, robot, human) did not significantly differ in av-
erage accuracy (F(2, 42) = .39, p > .05, η² = 0.02), reaction time (F(2, 42) = .74, p > 
.05, η² = 0.03), or false alarm rate (F(2, 42) = 1.62, p > .05, η² = 0.07). In addition, 
there were no significant interactions between condition and period for accuracy 
(F(6.4, 134.4) = 1.27, p > .05, η² = 0.06), reaction time (F(9.7, 196.7) = .71, p > .05, 
η² = 0.03), or false alarm rate (F(5.6,117.8) = 1.23, p > .05, η² = 0.06). 

Discussion. We made two hypotheses regarding the inclusion of social agents on 
vigilance task performance. First, we predicted that the presence of a social (versus 
nonsocial) stimulus would improve performance on a vigilance task. Second, we pre-
dicted that increasing physical humanness would produce a corresponding increase in 
vigilance performance, such that participants with the human agent outperform those 
with the robot agent, who outperform those with the nonsocial agent. 

The results of Experiment 2 indicate that while there was a vigilance decrement 
across the board in the form of increasing reaction times, agent type had no specific 
effect on cognitive performance. Neither of our initial hypotheses were supported: 
there was no effect of the social stimuli (i.e., robot, human) compared to non-social 
stimulus (i.e., arrows), nor was increasing humanness associated with cognitive im-
provements. It is possible that the task was not demanding enough, but this is unlikely 
because short vigilance tasks regularly produce robust decrements [22]. Overall, this 
finding indicates that social facilitation did not appear to help improve cognitive per-
formance on this vigilance task. 

3 General Discussion 

The results from these experiments show us that while increasing the degree of physi-
cal humanness results in increased ratings of internal states and intentional attributes, 
which is marked by an increased willingness to adopt the intentional stance when 
looking at an agent, the presence of a social agent has no overall impact on perfor-
mance during a vigilance task, even as the perceived humanness of the agent increas-
es. This is contrary to what we expected, which was that the greatest vigilance decre-
ment would occur in the non-social arrows condition, followed by the next greatest 
decrement with the robot, and the human having the least extreme decrement. In one 
interpretation, this could suggest that social cues and social facilitation are irrelevant 
during a highly cognitive task, such as a vigilance task. In another interpretation, it 
could indicate that all conditions were equally impacted by having the agents present 
during the task, in which case work into further varying the levels of humanness 
would help tease apart the effects of social facilitation.  
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That said, there is a chance that the social facilitation effect was minimized in this 
particular task since the agents were included within the task as part of the stimuli, as 
opposed to as a separate entity with its own physical presence, implied or otherwise. 
Again, this would have to be further researched to determine if the social facilitation 
outcomes differ with different implementations of the paradigm. 

Social agents are here to stay in their various forms as technology advances. Re-
searching how to leverage the social facilitation effect in virtual agents of varying 
humanness will help to improve human-technological interactions by increasing 
productivity, reducing errors, and making the interactions more pleasant overall. 
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Abstract. Gaze following occurs automatically in social interactions, but the 
degree to which we follow gaze strongly depends on whether an agent is 
believed to have a mind and is therefore socially relevant for the interaction. 
The current paper investigates whether the social relevance of a robot can be 
manipulated via its physical appearance and whether there is a linear 
relationship between appearance and gaze following in a counter-predictive 
gaze cueing paradigm (i.e., target appears with a high likelihood opposite of the 
gazed-at location). Results show that while robots are capable of inducing gaze 
following, the degree to which gaze is passively followed does not linearly 
decrease with physical human-likeness. Rather, the relationship between 
appearance and gaze following is best described by an inverted u-shaped 
pattern, with automatic cueing effects (i.e., attending to the cued location) for 
agents of mixed human-likeness and reversed cueing effects (i.e., attending to 
the predicted location) for agents of either full human-likeness (100% human) 
or full robot-likeness (100% robot). The results are interpreted with regard to 
cognitive resource theory and design implications are discussed. 

Keywords: Social attention · Human-likeness · Resource theory · Behavioral 
measures · Design 

1 Introduction 

In social interactions, the use of non-verbal cues (i.e., gaze direction, body posture, 
facial expression) is important to communicate intentions, emotions, and preferences 
between interaction partners [1, 2, 3]. Thus, incorporating the use of non-verbal cues 
into human-robot interaction is important to social robotics and successful models on 
interpreting gaze direction [1], facial expressions [2], and body posture [3] have been 
proposed. However, what has not been investigated so far is whether the effectiveness 
of non-verbal cues in modulating interactions depends on robot features, such as 
personality, embodiment or appearance. The current paper addresses this question by 
investigating whether the appearance of a robotic agent has an influence on the degree 
to which its gaze direction is followed. In particular, we hypothesize that the more 
human-like an agent looks, the more social relevance will be ascribed to that agent 
due to the attribution of human-like features (i.e. having a mind, having emotions) 
and the more strongly information from its eye gaze will be used to efficiently 
structure the social interaction.  
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1.1 Gaze Direction as a Cue to Others’ Attention 

Eye gaze provides a wealth of information about important events in the environment 
(e.g., presence of predators or the appearance of a friend) and the internal states of 
others (e.g., preferences and motivations). Gaze following is also used to make 
inferences about what others are currently interested in and what they are going to do 
next [1]. Due to this tremendous social relevance, the gaze direction of others is 
automatically followed and people conjointly attend to where others are looking [4]. 

Traditionally, gaze following has been thought to be triggered in an automatized 
fashion [5] based on the saliency and social relevance of a gazer’s eyes, which is an 
example of bottom-up processing where an observed stimulus captions attention first 
at the subconscious level and is then followed by conscious level processing. 
Consequently, bottom-up triggered shifts of attention happen involuntarily and are 
hard to suppress. Recently though, several studies have investigated under which 
conditions top-down control of gaze following occurs [6, 7, 8, 9]. In contrast to 
bottom-up processing, top-down modulated shifts of attention are voluntarily 
controlled and are usually evoked by symbolic cues (e.g., arrows) that require 
interpretation [10, 11]. These more recent studies show that the operation of top-down 
control of attention critically depends on higher-order cognitive processes and the 
availability of context information [7, 8, 9], [12]. In particular, pre-existing 
assumptions about the gazer have been shown to influence the readiness to process 
and/or attend to his/her gaze [6, 7, 8, 9]. Specific to the interest of human-robot 
interaction (HRI) is the finding that stronger gaze following is observed when  
the gazer is believed to be a human with a mind versus a machine without a mind  
[8], [13, 14].  

One way to influence perceptions of a mind within a mechanistic agent is through 
its physical appearance [15, 16]. For instance, Admoni and colleagues [15] found that 
agents that look human-like (i.e., agents with a mind) trigger automatic shifts of 
attention to the gazed-at location while robotic agents (i.e., agents without a mind) 
enable voluntary shifts of attention to the predicted target location. Additionally, other 
studies in which subjective ratings are used to assess an agent’s capability of having a 
mind have shown that increasing human-like appearance leads to increased ratings of 
mind attribution [17, 18, 19].  

1.2 Aim of Study  

The current study builds upon previous findings by investigating whether there is a 
link between the degree to which an agent is rated as having a mind and the degree to 
which his/her gaze direction is followed. In particular, we hypothesized that the more 
human-like an agent is in appearance, the more strongly its gaze should be followed 
due to increased social relevance of its gaze behavior. In order to test this hypothesis, 
the current study morphed a robot face with a human face in 20% increments to create 
a spectrum ranging from 100% robotic appearance to 100% human appearance 
(Figure 1). These images were then used in a counter-predictive gaze cueing paradigm 
in which the target appeared 80% of the time opposite of where the face looked.  
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A counter-predictive paradigm has the advantage that reflexive, bottom-up effects 
(i.e., attending to the gazed-at location and faster reaction times at the valid location) 
can be easily separated from voluntary, top-down effects (i.e., attending to where the 
target is likely going to appear and faster reaction times at the invalid location) within 
the same set-up. If human-like appearance increases the social relevance that is 
ascribed to observed gaze behavior, the fact that the target appears with a high 
likelihood opposite of where the face is looking should be picked up more easily and 
be used to efficiently use gaze direction to predict target location in a top-down 
fashion (i.e., shift attention opposite of where the face is looking). In contrast, if no 
social relevance is ascribed to the agent, the predictivity of the gaze behavior should 
not be noticed easily and attention should be shifted to the gazed-at location in a 
bottom-up fashion.   

With regard to performance measures, this means that we expect shorter reaction 
times at the predicted compared to the cued location for the human-like agents (i.e., 
negative cueing effects when calculating the difference between invalid and valid 
conditions). For the robot-like agents, in contrast, we expect shorter reaction times at 
the cued location compared to the predicted location (i.e., positive cueing effects 
when calculating the difference between invalid and valid condition). We further 
expect that the degree to which gaze following can be top-down controlled increases 
linearly with increasing levels of human-like appearance as more social relevance is 
ascribed to the agents that appear humanlike. The results of this experiment will 
therefore directly inform social robotic design by relating subjective ratings of an 
agent’s degree of having a mind to cognitive performance measures.  

2 Methods and Materials 

2.1 Participants 

Thirty-seven undergraduate students with normal or corrected-to-normal vision (age: 
M = 20.34, SD = 3.33, 20 females) from George Mason University participated in the 
experiment in exchange for course credit. All participants provided written informed 
consent and all research procedures were approved by the George Mason University 
Office of Research Integrity & Assurance. Two participants were excluded from 
analysis because of error rates more than 2 standard deviations above the mean (M 
accuracy = 80.20% compared to M = 95.56%). 

2.2 Apparatus 

The experimental task was run on a Dell desktop computer, equipped with an LCD 
monitor (85 Hz refresh rate) and running Experiment Builder software (SR Research 
LTD., Ontario Canada). Participants were seated approximately 70 cm from the 
monitor and indicated responses using a standard computer keyboard. While the 
physical “D” and “K” keys were used to input responses, these keys were relabeled 
with letter stickers showing “T” or “F”. Key assignment was counterbalanced across 
participants. 
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2.3 Stimuli 

The morphed images were created using FantaMorph software which allows two 
images to be blended together at specified increments. The two images used to create 
the spectrum were the S2 humanoid robot head developed by Meka Robotics and a 
male human head taken from the Karolinska Directed Emotional Faces database [20]. 
Morphing occurred at 20% increments giving a total of six agent images: 0% human, 
20% human, 40% human, 60% human, 80% human, and 100% human.  

 
0 % 20% 40% 60% 80% 100% 

  

Fig. 1. Morphed images ranging from 0% human to 100% human.  

Assuming a mean viewing distance of 70 cm (distance from the center of the 
computer screen to the participant’s eyes), stimuli were 7.8° wide and 8.6° high, 
depicted on a white background and presented in full frontal orientation with eyes 
positioned on the central horizontal axis of the screen (Figure 2). For left- and 
rightward gaze, irises and pupils in the eyes were shifted with Photoshop and deviated 
0.4° from direct gaze. The target stimulus was a black capital letter (F or T), 
measuring .5° in width and .9° in height. Targets appeared on the horizontal axis of 
the screen and were located 14.7° from the center of the screen. 

2.4 Procedure 

Following a practice block that mirrored the experimental task except for the use of a 
different agent stimulus (EDDIE; developed at Technische Universität München) to 
avoid bias, participants completed a reversed gaze cueing task made up of six blocks 
of 60 trials each in which the averted gaze of a virtual agent cued the location of a 
target stimulus in a counter-predictive fashion (i.e., 20% validity; target appeared with 
80% likelihood opposite of where the face was looking). Participants were not 
explicitly informed of the probability of valid and invalid gaze cues, however, the 
practice block served the dual purpose of familiarizing participants with the overall 
experimental paradigm as well as providing a chance to implicitly learn the 
probability of valid and invalid gaze cues. Each block used one of the six agents in 
Figure 1 as the gazing stimulus and prior to each block the agent for the upcoming 
block was presented and participants were asked “Do you think this agent has a 
mind?” on a scale of 1 (“definitely not”) to 8 (“definitely yes”) to get an mind  
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attribution rating. This mind attribution rating was assessed prior to each block (as 
opposed to following each block) in order to explicitly test how agency ratings, based 
on appearance alone, influence gaze following behavior. If the mind attribution 
ratings were instead assessed following each block, there would have been the 
potential for gaze validity to influence the agency ratings, as opposed to the ratings 
being based on appearance alone. The order in which agents were presented was 
counterbalanced across participants.  

At the beginning of each trial, a fixation cross appeared for a random time interval 
of 700-1000 ms, followed by presentation of the agent with directed gaze for a 
random time interval of 700-1000 ms. Afterwards, the agent changed gaze direction, 
either looking to the left or right side of the screen. After a random time interval of 
400-600 ms, the target letter (F or T) appeared on the screen either where the face was 
looking (i.e., valid or unpredicted trial) or opposite of where the face was looking 
(i.e., invalid or predicted trial). Both the agent (with averted gaze) and the target letter 
remained on screen until participants made a response or a time-out criterion (1200 
ms) was reached, whichever appeared first. The inter-trial-interval (ITI) was 680 ms, 
see Figure 2 for the full trial sequence. Participants used the index finger of each hand 
to indicate which target letter had appeared by pressing either the key that was 
marked with “F” or “T”. Participants were instructed to maintain fixation on the 
center of the screen throughout all trials and to respond both as quickly and accurately 
as possible to the target letters. Total testing time was approximately 20 minutes. 

2.5 Analysis 

For the mind attribution ratings that were collected prior to each gaze cueing block, 
one rating was missing for five of the participants and was therefore replaced using 
mean-interpolation. The mind attribution ratings were then entered into a univariate 
ANOVA with appearance (0% - 100% human) as the independent variable (Figure 
3A). A series of Bonferroni corrected paired-comparison t-tests were then carried out 
to determine which agents differed significantly in their mind attribution ratings.  

For analysis of the gaze cueing effects, only trials in which a correct answer was 
given were considered. In order to investigate the influence of agent appearance on 
gaze cueing effects (for correct trials) response time (RT) was entered into a 2 (gaze 
validity: valid, invalid) x 6 (agent appearance: 0% - 100% human) repeated-measures 
ANOVA (Table 1). Additionally, in order to investigate the size of the gaze cueing 
effect for each agent separately, a series of paired-comparison t-tests comparing valid 
and invalid trials for each agent type were carried out. In order to control for multiple 
comparisons, a Bonferroni correction was applied to the post-hoc analysis for each 
agent. For illustrative purposes, the gaze cueing effect was also plotted as a difference 
score between invalid (i.e., predicted) and valid (i.e., unpredicted) trials for each agent 
(Figure 3B).  
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Fig. 2. Trial sequence for gaze cueing task: Each trial began with a fixation cross, followed by 
presentation of the agent with directed gaze (60% human agent shown here). The agent then 
changed gaze direction, followed by the onset of a target letter (F or T). Both the agent (with 
averted gaze shown here) and the target letter remained on screen until participants made a 
response or the time-out criterion was reached. 

3 Results 

Analysis of the mind attribution ratings revealed a main effect of appearance  
(F(1,34) = 53.11, p < .001). Follow-up paired comparisons revealed that all agents 
were significantly different in their mind attribution ratings (all p < .003, all corrected 
p < .045), with the exception of the 20% - 40% (p = .146) comparison and the 80% - 
100% comparison (p = .089) such that on average mind attribution ratings increased 
with increased human-like appearance.  

In the gaze cueing task, participants were highly accurate in their performance (M 
accuracy = 95.56%, SE = .56%) and responded with a mean RT of 506.69 ms (SE = 
13.20). Analysis of RT data for correct trials, as a function of gaze validity and agent 
appearance, revealed a main effect of gaze validity such that participants responded 
faster for valid compared to invalid trials (F(1,34) = 5.21, p = .029). However, no 
main effect of agent appearance (p = .90) nor an interaction between agent appearance 
and gaze validity (p = .266) was identified. Despite the lack of an interaction between 
gaze validity and agent type, inspection of the results suggested a strong validity 
effect for the 60% human morph. In order to investigate this effect we carried out a 
series of paired-comparisons and corrected for multiple comparisons to control the 
chance of a false positive finding. The validity effect was found to be significant for 
the 60% human morph only (t(1,34) = 3.32, p = .002, Bonferroni corrected p = .012), 
such that participants responded faster for valid, compared to invalid trials; in 
contrast, all other agents showed no gaze cueing effect (all p > .19). 

Table 1. Mean reaction time as a function of agent and gaze validity 

 

+

700 - 1000 ms 700 - 1000 ms 

+

700 - 1000 ms 

+

Until response 
or 1200 ms 

F +

680 ms 

g g y
Gaze Validity        0%                20%              40%               60%               80%              100% 
Valid 508.76 (7.74) 505.32 (5.89) 500.34 (9.75) 491.231 (8.01) 509.151 (8.53) 505.64 (7.50) 
Invalid 508.30 (6.28) 515.51 (6.32) 507.92 (6.11) 512.331 (6.23) 512.891 (6.74) 502.85 (6.01) 
Note. Standard error of the mean (after removing between-subject variance) is shown in parentheses 



 Agent Appearance Modulates Mind Attribution 437 

 
Fig. 3. A) Mind attribution ratings and gaze cueing as a function of agent type; mind attribution 
ratings refer to responses to the question “Do you think this agent has a mind?” on a scale of 1 
(“definitely not”) to 8 (“definitely yes”). B) The gaze cueing effect reflects a difference score 
between invalid (predicted) and valid (unpredicted) trials for each agent type. Error bars on 
both graphs reflect the standard error of the mean after removing between-subject variance 
(Cousineau, 2005).  

4 Discussion 

Gaze-cueing effects represent basic social attention mechanisms [4] that can provide a 
measure of the social relevance paid towards a given interaction partner. Given that 
previous studies have shown that gaze following can increase when an agent is 
believed to possess a mind [13, 14] and appearance can affect mind attribution beliefs 
[15, 16, 17, 18, 19], we investigated how appearance affects gaze following of 
different agents varying in degree of human-likeness by using a reversed gaze-cueing 
paradigm. Similar to previous research which found that the appearance of a robotic 
agent influences the degree to which a mind is ascribed to an agent [17, 18, 19], we 
found a linear relationship between agent appearance and mind attribution ratings: the 
more human-like an agent looks, the more mind is attributed to that agent. However, 
contrary to our initial hypothesis, we found that increased ratings of mind attribution 
did not result in an increase in top-down control of gaze following. We had expected 
a linear decrease of gaze cueing effects (i.e., reflecting voluntary control of attention 
in a counter-predictive paradigm) with increased ratings of mind attribution, but 
found the relationship to be best described by an inverted u-shaped pattern: No cueing 
effects were observed for the real agents (100% human and 100% robot), while agents 
of mixed human-likeness (20 - 80% human) induced gaze cueing effects in a bottom-
up manner (i.e., shorter RTs at cued location despite the counter-predictive paradigm). 
Of those middle agents (20 - 80% human) however, only the 60% human agent was 
found to be statistically significant. 

In terms of robotic design, these observations suggest that building a human-like 
robot may induce mind attribution through appearance alone, but that does not 
necessarily mean the agent will be ascribed the same social relevance as an actual 
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human interaction partner. Evidence for this conclusion comes from the observation 
that agents that differed significantly with regard to mind perception (e.g., 100% 
human and 100% robot) did not differ in the degree of voluntary control they induced. 
Further, there was no linear decrease in gaze cueing effects with increasing mind 
attribution ratings.  

Although there was no linear relationship observed between mind attribution 
ratings and top-down control of gaze following, agent appearance still seems to have 
the capability to modulate gaze following under certain conditions as seen with the 
60% human morph. On average though, it appears that bottom-up (i.e., orienting to 
where the face is looking) and top-down (i.e., orienting to where the target is likely 
going to appear) influences cancel each other out. One possible explanation could be 
that participants do not naturally mentalize with an agent if the task does not 
explicitly require it. This would be in line with studies showing that between agent 
behavior and appearance, behavior is more influential in observers rating a 
mechanistic agent as humanlike [21]. One way to test this potential confound would 
be to integrate gaze following into a more complex social interaction that would 
naturally require mentalizing and thus increase the chances to find a linear 
relationship between mind attribution and gaze following if it exists.  

An alternative explanation is that agents that are hard to classify as either human or 
robot pose extra cognitive demands on participants, making less resources available 
for top-down modulation. Evidence for this assumption comes from the fact that top-
down modulation seems to be strongest in the 100% human and 100% robot 
conditions, where bottom-up and top-down effects cancel each other out completely. 
Cognitively, both of these agents fit within existing schemas [22, 23], or mental 
models, so it is easier to process their features, but that is not true for the mixed 
morphology agents. The additional effort it takes to process the mixed agents explains 
why a weaker top-down modulation is seen: having already exhausted resources for 
processing the image, participants reflexively follow the agent’s gaze and fail to 
recognize, or at least apply, the knowledge about the counter-predictivity of the cue. 
In order to best address whether cognitive load is actually inhibiting mind perception 
and minimizing its effects on social attention, future studies need to investigate the 
influence of cognitive load on gaze following.  

Investigating how cognitive load is affected by the physical design of a robotic 
agent will allow roboticists to leverage appearance for a more naturalistic HRI that 
can subsist under various task duress. Specifically, if our assumption regarding 
cognitive load and agent processing is true, then under high cognitive load a robotic 
agent may struggle to induce mind perception within an observer no matter how 
humanlike it appears which could hinder task performance. Depending on the task, it 
may be more important for robotic design to focus on agent features that are easily 
identifiable and fall within pre-existing agent stereotypes rather than simply 
increasing human-like appearance. Identifying the interaction between cognitive 
resources and mind attribution will therefore help refine the physical design 
requirements social robots will need to meet to ensure positive HRI performance 
under varying levels of task load, saving roboticists both time and money in 
developing the next generation of social robots.   
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Abstract. Socially cognitive robots are supposed to communicate and interact 
with humans and other robots in the most natural way. Listeners turn their 
heads to-ward speakers to enhance communicative attention; this is also an act 
of appreciation to the speaker. In this paper we have designed and implemented 
a robotic head, “Ava”, which turns toward the speaker in noisy environments. 
Ava employs a Speech Activity Detection system which differentiates speech 
segments of non-speech. Then the speech segments are processed to reduce dif-
ferent kinds of noise levels. The speaker localization system then finds the 
speaker position in the azimuth plane and commands motors to turn horizon-
tally toward the speaker in a smooth trajectory. Ava has two built-in micro-
phones inside its ears and employs three different algorithms simultaneously for 
feature extraction and a two-layer perceptron neural network for localization. 
Ava operates real-time and updates the position even in its moving phase. Expe-
riments show a precision of +/-5 degrees in white noise in SNR of 10 dB. 

Keywords: Social robot · Human-Robot Interaction (HRI) · Speech processing · 
Sound source localization · Turning toward the speaker 

1 Introduction 

Since their invention, robots have been developed for various purposes and needs, 
quite similar to personal computers in their early days. With the advancement of tech-
nology and reduction of costs, it is anticipated that in the near future one of the cut-
ting-edge technologies to be used in various social, therapeutic, cultural, and educa-
tional areas are social robots [1-5]. Social robots are designed to interact with people 
in the most natural way, therefore natural and smooth interaction is the most signifi-
cant and challenging issue in their design. When a robot speaks to humans, sound 
source localization is a must, not an option as it is both an appreciation of the opposite 
speaker as well as a natural movement to receive better quality speech wave. A social 
robot needs to be able to turn its head toward the speaker in each vocal interaction to 
better recognize speech. This reaction is also a natural interaction which is a signifi-
cant goal in HRI studies. 
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HRI studies are classified as verbal and non-verbal interactive communications. 
The receiver system of verbal interactions or the robotic hearing apparatus may be 
designed for speech recognition, emotion detection, or speaker identification [6]. So 
these systems should be able to detect speech segments and localize sound sources for 
better reception of speech. In the field of humanoid robots and social robots, various 
methods are used for sound source localization and speech activity detection. Fig. 1 
shows the place of sound source localization in the simple classification of HRI  
studies. 

 

 
Fig. 1. Simple Classification of HRI studies. 

Many studies have been conducted on sound source localization.  A. Badali et al. 
[7] implemented a real-time sound source localization in a robotic application. Their 
paper compares the performance of several algorithms.  Speech activity detection is 
essential if we want to localize the speech signal in an environment, particularly if the 
testing environment is a noisy one. In recent years, several statistical methods have 
been proposed by researchers. In S. Shafiee et al. [8], the silence segments are first 
removed. Then extracting some signal features helps classify the speech and non-
speech segments. So, we can localize the speech as a significant sound signal by using 
a speech activity detection algorithm.   

In robotic applications problems such as turning toward speaker, effects of the robot 
body on the signal spectrum, and noise of actuators should be considered in the design 
process. Moreover, the robot auditory system is not the only tool for speaker localization 
in these applications. Visual localization of the speaker’s face can increase the perfor-
mance and accuracy of sound source localization. K. Nakadai et al. pioneered the use of 
this idea in [9-10]. In the following years V.M. Trifa et al. [11], using the CB humanoid 
robot, and F. Alonso-Martin et al. [12], using the social robot Maggie are just some ex-
amples of using visual-audition methods for speaker localization. In addition, J. Cech et 
al. [13] implemented a visual system for sound localization on the humanoid robot NAO. 
They showed that despite the hardware limitation of this robot and the high level noise of 
its cooling fan, their visual-audition method can properly localize the speaker. However, 
this method has some limitations such as environment light and an absence of any ob-
stacle between the robot and the speaker. Therefore, it would be useful to improve the 
audition system for localizing the speaker. 

In sound source localization algorithms, not only is the relative location of micro-
phones effectual, but the shape of the robot auditory apparatus also has an important role. 
So inspired by the design of the human ear anatomy, researchers are trying to improve 
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sound source localization by designing a human-like artificial ear for humanoid robots. In 
another paper by K. Nakadai and his team [14], two main problems of a sound source 
localization method are addressed and an artificial pinnae is designed to solve them. Y. 
Park et al. has conducted many studies on this idea in recent years  
[15-16]. In one of their last papers [17], the artificial ear of a robot equipped with  
4 microphones was able to localize a single sound source with less than 10 degrees error 
and two simultaneous sound sources with the precision of 15 degrees. 

In this paper, we presented a robotic hearing apparatus that is able to localize an 
active speaker in the horizontal plane. Also, the robot is able to turn toward the speak-
er, which enables it to better recognize speech as well as to interact naturally. In the 
next section, our method for speaker localization is elaborated. Section 3 describes 
our robot and its auditory apparatus with two microphones. Finally, the last section 
details the results of our experiments in real and noisy environments. 

2 Speaker Localization 

Speaker localization is estimating the direction of a speech signal in an environment. 
Generally, estimating the azimuth and the elevation direction of a sound signal is 
called sound source localization and the distance of a sound source from the audition 
system is not considered. Therefore, to localize the speaker we can use a method of 
sound source localization by adding speech activity detection. This means that a 
speech activity detection algorithm is first used to choose the speech segments. Then, 
these segments can be used for sound source localization. 

Many algorithms have been proposed for sound source localization in recent years. 
The three main features used are: 
 Inter-Channel Time Difference (ICTD): According to the position of each micro-

phone in the audition system, time of receiving a sound signal is different for 
each of them. So, with response to the sound source location, the time difference 
between each two microphones is unique. Fig. 2 shows the different distances 
that sound signal should traverse for each microphone. However, this feature is 
limited to a specific frequency of signals considering the distant between the two 
microphones. This means that the signal frequency should not be higher than the 
frequency of more than one period of signal perch between the two microphones. 
For example, as shown in Fig. 3(a), according to the time difference (∆ݐ), f0 is 
the maximum Available frequency. If this frequency doubled, the estimated time 

difference will be: 
∆௧ଶ , Fig. 3(b). On the other hand, a 2D localization of a 0 to 

180 degrees direction is expected when using this feature. In this method, not on-
ly noise from the environment but also reverberations of the main signal would 
improperly confuse the estimation. Many methods have been used to calculate 
the time difference of two signals, one of the most common is GCC-PHAT, that 
is: ܩு்ሺ݂ሻ ൌ  ሺሻൣೕሺሻ൧כቚሺሻൣೕሺሻ൧כቚ                                  (1) 
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where ܺሺ݂ሻ and ܺሺ݂ሻ are the Fourier transforms of the two signals and ሾ ሿכ de-
note the complex conjugate. So the time difference of these two signals, መ݀ு் , is 
estimated as: መ݀ு்ሺ݅, ݆ሻ ൌ  ሺ ܴு்ሺ݀ሻሻௗ௫                                (2) 

where ܴு்ሺ݀ሻ is the inverse Fourier transform of equation (1). 
 

 
Fig. 2. Using time delay of arrival for sound source localization. 

 

Fig. 3. The effect of high frequency signal in the ICTD method. 

 Inter-Channel Level Difference (ICLD): The sound signal will be damped by air 
in the environment. Therefore, as the distance of the microphone increases from 
the sound source it receives the sound at lower levels. Thereupon, in an audition 
system, the sound level difference of the microphone further from the sound 
source can be a feature of sound localization. Excluding the distance, an obstacle 
like the body of the audition system would have an effect on level reduction of a 
sound signal. This effect is called acoustic shadow, Fig. 4. This feature is more 
suitable for high frequency signals as the higher the frequency the more the sig-
nal level is reduced. Just like the ICTD, ICLD is limited to a 0 to 180 degrees 
plane for localization. This feature can be calculated by:  
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,ሺ݅ܮ ݆ሻ ൌ  ∑ሺ௦ሺ௧ሻି௦ೕሺ௧ሻሻమெ௫ሺ∑ ௦మሺ௧ሻ, ∑ ௦ೕమሺ௧ሻሻ                                           (3) 

where ݏሺݐሻ and ݏሺݐሻ are the sound signals recorded by ݅th and ݆th microphones. 
 

 

 
 

<Fig. 4. Decreasing the signal level caused by acoustic shadow. 

 
 Inter-Channel Spectral Difference (ICSD): Each sound signal has a specific spec-

tral characteristic that can change with respect to noise, reverberations, etc. So, 
detecting the spectral difference of signals received by an audition system would 
be a feature of sound localization. Although extracting this feature is more diffi-
cult than the previous two, sound source direction can be estimated with just one 
microphone. Also, there is no limitation for this method. But, as we said, it is 
very difficult to use this feature for sound source localization. For this reason, it 
is not usually used in common applications. In order to use this feature, a head-
related transfer function is needed. An artificial ear for the auditory system would 
affect the spectral characteristics of sound signals. Changing levels of the sound 
signal at a specific frequency band is discussed in [14]. In this paper, this change 
of signal spectrum is used for forward-back estimation. 

In this paper, all three of these features are extracted for sound source localization 
in the azimuth plane. A band pass filter is used before feature extraction and the fea-
tures are sent to a neural network to estimate the speech signal direction. The neural 
network is a two-layer perceptron that has 10 neuron in its hidden layer. 

For speaker localization in natural environments, preprocessing is needed before 
using our sound direction estimator. Speech activity detection is considered to detect 
the speech in a sound signal. By using the method proposed in [8], some features of a 
signal based on auto-correlation, MFCC, time length and energy of each segment are 
extracted. Then the classification between speech and non-speech segments is done 
by statistical methods, like machine learning, allowing just the speech segments to be 
sent for sound source localization. Speech activity detection is done for each 1 second 
of signal. Therefore, the system has a 1 second delay in each sound source localiza-
tion. Also, a speech enhancement filter is added as preprocessing to increase the per-
formance of sound source localization. Fig. 5 shows the flowchart of our method for 
speaker localization. 
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Fig. 5. The flowchart of speaker localization method 

At the final stage, after estimating the speech signal location, the robot should turn 
toward the speaker. Therefore, relative angle of speaker to the audition system would 
be sent for path planning to command the motor. To start a natural vocal interaction, 
natural turning toward speaker is considered. In this paper, a smooth and natural path 
is designed. Velocity and acceleration feedback can help smooth the trajectory in each 
robot reaction. 

3 “Ava”, A Social Robot 

In order to implement the speaker localization method, we need a robotic hearing 
apparatus to receive the sound signals and turn the head toward the speaker. To study 
and investigate speaker localization for the purpose of improving natural interaction 
of socially cognitive robots, a robotics hearing system was designed and assembled in 
a mannequin head. This social robot is called “Āvā”, a feminine given name in 
the Persian language, meaning voice, sound and phoneme. Ava is a humanoid head 
that has a hearing system and an active rotational mechanism. A microphone is em-
bedded in each ear of this social robot. Signals received by these microphones are sent 
to a PC with a two-channel sound card. Once the PC processed the signals, location 
information are sent to the actuator of the rotational mechanism of Ava. This robot 
has a 2-DOF mechanism with two actuators for rotating in the azimuth and elevation 
planes. In current research, just the horizontal rotation is considered. 

No 

Yes 

Recording 
Sound Signals 

1 sec  
Delay SAD 

Band Pass Filter

ICTD ICLD ICSD 

Neural Network

Motor Command 

Speech Enhancement



446 E. Saffari et al. 

 
Fig. 6. The social robot, “Ava” and the embedded microphone in its ear. 

The main parts of Ava are: 
- The Head 
- Two servo motors, AX-12A model of DYNAMIXEL Co. 
- A two-channel sound card, M-Track model of M-AUDIO Co. 
- Two condenser microphones, QL5 model of SAMSON Co. 

Ava is able to record the sound signal with a sampling frequency of 48 kHz and a 
sample rate of 24 bit/sample. Its condenser microphones have high sensitivity with a 
114 dB dynamic range. Also, Ava’s motors have 0.29 degree resolution with 59 rpm 
no load speed at 12 volts dc power.  

So, this social robot will be able to detect and localize any speech signal and then 
turns toward the speaker. This reaction would be a natural interaction of a social robot 
when starting up a conversation. 

4 Experiments and Discussion 

Since, we want to detect and localize just the speech signals, speech activity detection 
was used. Also, we used a speech enhancement algorithm to reduce the background 
noise of the speech segments. Fig. 7(a) shows the main signal recorded by one of the 
microphones. There is a speech part, calling “Āvā”, and a beep sound as the non-
speech part. As shown in Fig. 7(b), the enhanced speech segment is the only part re-
maining after preprocessing. In real time, the same processing is done for each micro-
phone in each 1 second segment. 

Speech segments are only processed for feature extraction of sound source locali-
zation. Using the three features discussed in section 2, we trained the neural network 
to localize the speech. This three features are: 

 ICTD: Time difference between the two microphones signals for the fre-
quency band of 300 to 1800 Hz. 

 ICLD: Level difference between the two microphones signals for the fre-
quency band of 300 to 4000 Hz. 

 ICSD: Level average of each microphone signal for the frequency band of 
1800 to 4000 Hz. 
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Fig. 7. Sound signal recorded by Ava microphone, (a) before (b) after preprocessing. 

Experiments showed that the maximum available frequency for ICTD was 1826 
Hz. Therefore, a band pass filter was used before calculating these features. Also, 
according to the Ava ear, the high frequency part of the signal level was affected by 
the ear pinnae. 

Specific sound signals have been recorded at every 5 degrees for 360 degrees 
around the robot to provide enough data to train the neural network of the audition 
system. 

Not only do speech activity detection and speech enhancement reduce environmen-
tal noise, but also using a neural network for sound source localization enables the 
system to perform better in noisy environments. Also, extracting these three features 
increases the precision of direction estimation. 

Experiments shows that this audition system has a precision of +/-5 degrees in en-
vironments where white noise causes the SNR to 10 dB. Therefore, Ava would have a 
good performance from the user perspective. 

With respect to the estimated direction of sound source, Ava should turn to face the 
speaker. For each angle of turning, a smooth path have been designed to appear more 
natural. After each angle estimation, the robot has 1 second time for turning. After 
that, the estimation will be updated, if the next 1 second segment is also speech. This 
means that the audition system is able to update the estimation every 1 second, if the 
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speaker speaks continuously. This increases the accuracy of localization and Ava can 
turn to exactly face an active speaker. The trajectory traversed by the robot is shown 
in Fig. 8. After 1 sec of speech, the audition system localizes the speaker. In this ex-
ample, the first estimation was in the direction of 90o. Therefore, the robot starts up 
turning toward the speaker in a smooth trajectory. In the next estimation, the direction 
the robot should turn toward was 85o. Therefore, the robot changes its trajectory to 
reach 85o. Since the second trajectory has the same velocity as the first one, it remains 
smooth and natural. 

 

 

 
Fig. 8. The trajectory traversed by Ava reacting to a speech signal. 

5 Conclusions 

Social robots need to comply with behavioral norms like a natural partner for interact-
ing and communicating with people within the society. In this paper, “Ava”, the so-
cial robot, was designed and programed to horizontally localize speech in noisy envi-
ronments. Firstly, a speech activity detection algorithm was performed to decide if 
each sound frame was speech or non-speech. Then the identified speech frame was 
enhanced to reduce noise in the environment. Finally, by extracting the difference in 
time, level and spectrum of two microphones signals, speech was localized in the 
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horizontal plane. As Ava is an unknown audition system, we used a two-layer percep-
tron neural network for sound direction estimation. Also, the robot audition system 
was able to update the estimation even while the head was turning. We found that 
Ava could turn toward any speaker in 10 dB noisy environments with the precision of 
+/-5 degrees. No reaction to non-speech sounds in the environment, high performance 
of speech localization and natural turning toward speaker were all executed by Ava. 
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Abstract. The presence of children in a social assistive robotics context
is particularly challenging for perception, mainly, in the task of locat-
ing them using inherently uncertain sensor data. This paper proposes a
method for active perception with the goal of finding one target, e.g.,
a child wearing a RFID tag. This method is based on a particle-filter
modeling a probability distribution of the position of the child. Negative
measurements are used to update this probability distribution and an
information-theoretic approach to determine optimal robot trajectories
that maximize information gain while surveying the environment. We
present preliminary results, in a real robot, to evaluate the approach.

1 Introduction

The MOnarCH project1 focuses on social robotics in a pediatric infirmary using
networked robots to interact with children, staff or visitors. This addresses explic-
itly the active perception problem as an important issue in the context of social
assistive robotics for children. The issue arises when controlling a robot or group
of robots so as to gather information, based on the robots sensors, that may
be required by other agents (robots or medical staff). This paper considers that
children carry a RFID tag and poses the active perception problem using just
the RFID sensor of the robot and applied to finding a child whose location is pre-
viously unknown to the networked robot system (NRS). This is useful because
robots can help to find lost or hidden children or play a hide-and-seek game with
them.

The problem of active perception is that of controlling one or more mobile
robots so as to maximize a given measure of information regarding a set of
1 MOnarCH Multi-Robot Cognitive Systems Operating in Hospitals (FP7-ICT-2011-

9-601033).
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features of the environment. The earliest forms of active perception focused on
improving the localization of a mobile robot by controlling its motion [5]. More
recently, this problem has been studied for target-tracking applications, where
the uncertainty over the location of a moving target should be minimized [11]. It
has also been generalized to cooperative multi-robot applications [1,2,4], wherein
it is referred to as the active cooperative perception (ACP) problem.

Existing approaches to the ACP problem have formalized it in different ways
under the scope of various overlapping fields of study, most notably (but not
exclusively) those of Robotics, Sensor Fusion, and AI [1,4,6,11]. In this family
of differing approaches, the most common drawbacks are related to the scalabil-
ity and generality of the proposed methods. The most accurate ACP methods
depend on a careful modeling of the multi-robot system and are therefore only
applicable to very specific and typically small-scale scenarios; and those that
attempt to leverage larger-scale formalizations (such as those stemming from
the field of AI) are forced to approximate the system and its behavior roughly,
due to the complexity of the associated solution methods.

Formalization:
Multiagent POMDP

Description:
Which robot should explore which room?

Problem:
Cooperative Task Allocation

Robot #2

Robot #3

Problem:
Active Perception Task

Robot #1

Formalization:
RRT* w/ PF-based entropy

Description:
How should this robot explore a given room?

Fig. 1. A summary of the proposed ACP approach.

This paper introduces a whole ACP approach to be applied by the MOnarCH
NRS, but just develops and presents results about the single robot active percep-
tion case. The ACP approach proposed in this work does not attempt to aim at
optimality, but instead at being sufficiently general and easy to deploy such that
it can be applied over different domains (with different environments, robots,
and perceptual objectives), with minimal effort. To achieve this goal, the ACP
problem is decoupled into a hierarchy of distinct subproblems (Figure 1): an
allocation problem to assign a room or non-overlapping area to each robot, and
a motion planning problem for each robot to decide how to explore its assigned
room or area in the most efficient way.

This decomposition is also strongly motivated by the nature of the MOnarCH
environment and its associated safety requirements. Specifically, in the typical
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use cases of the MOnarCH NRS, there should be at most one robot in a given
location of interest at any time, in order to minimize the interference to the
daily operations of the staff in the Instituto Portugues de Oncologia de Lisboa
(IPOL).

Therefore, regarding to the proposed decoupled and hierarchic approach, at
the top of this hierarchy lies a problem of multi-robot coordination: in a large
environment with multiple locations of interest, what robot or sub-group of
robots should be allocated to explore each of those locations? This problem has
not be directly addressed in this paper, but decision-theoretic planning meth-
ods, such as Multiagent POMDPs [10], are well-suited to deal with this type of
problem, although would not scale to solve the whole ACP problem for complex
multi-robot domains.

At a lower level of decision-making, each robot should be able to decide
how to carry out its exploration task in the most efficient way. This paper
is focused on this issue, which is fundamentally a problem of motion control,
which can be efficiently solved through sampling-based methods such as RRTs
[3,7]. This paper proposes a novelty approach using a Particle Filter to describe
the uncertainty over the search target, and subsequently use recently proposed
information-gain metrics based on the entropy of the associated non-parametric
distribution. These metrics are then used to guide the probabilistic motion plan-
ning.

This document is organized as follows: in Section 2, the probabilistic planning
method to generate information gathering paths is described from a theoretical
standpoint, in Section 3, the preliminary results are shown, and Section 4 wraps
up the paper with conclusions and a discussion on future work.

2 Active Perception via Probabilistic Planning of
Information-Gathering Paths

In this paper, we focus on the problem of planning the motion of a single mobile
robot in order to search for the position of a possibly moving target.

As inputs, we are given the following:

1. The current pose of the robot;
2. A probability distribution over the target’s position in the configuration

space of the robot. This distribution is possibly non-parametric and typically
uniform;

3. A description of the probabilistic model of the sensor of the robot that is
capable of detecting the target (e.g. a model of the RFID reader). This
description is possibly non-parametric.

The active (non-cooperative) perception problem can itself be decoupled into
two interdependent problems: the problem of estimating the position of the tar-
get given the motion of the robot, and that of planning the motion of the robot
in order to improve the estimation of the target’s position (Figure 2).
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Estimating
the position of

the target

Planning the
motion of the

robot

Fig. 2. The two sub-problems of Active Perception.

In the following subsections, we focus on each of these subproblems.

2.1 Estimating the Position of a Moving Target

Consider the task of estimating the position of an RFID tag carrier in an arbi-
trary (planar) environment, given logical-valued readings from an RFID reader
mounted on a mobile robot2. More formally, if pt = [xp,t yp,t]T is the position
of the tag carrier at time t, qt = [xr,t yr,t θt]T represents the pose of the robot
at that time, and zt ∈ {False, T rue} is the most recent RFID reading (True
means a positive detection and False a negative one), then our objective is
to minimize a given metric of confidence over the posterior probability of the
target’s position given the history of robot poses and measurements, i.e.

Pr(pt | q0, z0, q1, z1, . . . , qt, zt)
This is a typical estimation / filtering problem, for which there are many

applicable and well-known solutions (e.g. EKF, Markov localization, Occupancy-
Grid methods, etc.). The “twist” in this estimation problem, as opposed to most
localization and tracking applications, is that most of the readings produced by
the sensor of the robot are negative w.r.t. the position of the agent. That is, if
zt = False, then there is a high probability that the carrier is not within the
sensor range of the robot. Once the robot receives a positive RFID reading (or a
sufficient number of positive readings to establish with a certain confidence level
that the carrier is present), then the robot has succeeded in finding the carrier,
and the estimation process can be terminated.

In keeping with the motivation of trying to have a general and easy-to-use
solution, we have opted to approach this estimation problem using a Particle
Filter (PF) to represent the uncertain position of the target.

The advantages of using a PF for this estimation problem, over its alternative
methods, are the following:

– Due to the influence of negative sensor readings during the search process, the
target posterior is most likely very difficult to approximate with a parametric
(or kernel based) representation. The non-parametric belief representation
that is characteristic of PF-based methods is ideal for this application;

2 In this context, we are not concerned with the identity of the RFID carrier, so any
identifying information contained in the RFID tag is extraneous for this problem.
However, this approach could trivially be used to find one particular RFID tag.
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– The probabilistic model of the sensor used in the search process can also be
difficult to describe analytically. In the particular case of an RFID reader,
the conditions for radiopropagation induced by the environment can have
a complex influence on the respective readings. A PF allows for arbitrarily
complex sensor models;

– The motion of the target is unknown and possibly also difficult to model
in closed-form. A general PF does not make any assumptions regarding the
form of this model, and random walk models could be used. In this case
the standard deviation of the child movement σ is used as argument and is
related to the child motion speed.

A generic PF was used for this estimation problem, following the standard
algorithm which is here replicated for clarity (Figure 3). Refer to [12] for more
background and details on generic particle filters.

B : Set of N particles 〈pix, piy〉
w : Weight vector, wi ∈ [0, 1]N

if B or w not given then
B ← Sample N valid positions s = 〈px, py〉.
wi ← 1/N for i = 1, . . . , N

end if
t ← 0
while search not over do

B ← predict(B)
z ← RFID reading at time t
w ← update(B, z)
if resample condition(B,w) is True then

resample(B,w)
end if
t ← t + 1

end while

Fig. 3. The (standard) PF algorithm used for the target position estimation.

2.2 Planning the Motion of the Robot

Given a non-parametric belief over the position of the target, which is continu-
ously provided by the aforementioned particle filter during the execution of the
ACP task, the objective of the motion planning module is to plan a path for the
mobile robot over which its sensors can provide maximal information. In other
words, we intend to find a sequence of poses such that the (predicted) entropy
of the particle filter for target detection is minimized.

More formally, let q0:t = 〈q0, q1, . . . , qt〉 represent the history of poses of the
robot between steps 0 and t for some t > 0. Analogously, let z0:t = 〈z0, z1, . . . , zt〉
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represent the history of sensor readings. Then, our objective is to find a sequence
of K predicted robot poses q̂∗

t+1:t+1+K , for some K > 0, such that:

q̂∗
t+1:t+1+K = arg min

〈q̂t+1,...,q̂t+K〉
H (Pr(pt+1+K |q0:t, z0:t, q̂t+1:t+1+K)) (1)

A solution to this problem can be viewed as a form of receding-horizon control
(in the field of Control Theory) or online planning (in the field of Decision The-
ory). We have opted to approach this problem via probabilistic sampling tech-
niques based on the well-known Rapidly-exploring Random Tree (RRT) method
[8]. This family of methods is well-suited to this problem for the following rea-
sons:

– They are computationally efficient anytime algorithms (which means that
after a fixed amount of time they can return the best solution found so far);

– They can handle complex kino-dynamic constraints;
– Variants of the RRT method that attempt to minimize cost functionals, such

as RRT ∗ [7] and T-RRT, can be easily adapted to minimize the entropy of
our target particle filter.

In contrast with most RRT-based methods, however, our motion planning
task lacks a concretely defined goal position. Our objective is instead to find
a set of poses that minimizes the entropy (1). In this sense, our approach is
closest to that of [6], who have formulated information-gathering RRT variants
(namely Reward-Information Gathering Trees (RIG-Tree) and Graphs (RIG-
Graph)). However, the latter methods consider additional constraints over the
motion planning problem (over spent energy or time) which are not necessary in
our formulation. For our purposes, a simpler approach is to take a fixed-depth
RRT ∗ or T-RRT and evaluate the cost functional (1) therein.

Although a closed-form expression for the entropy of the probability density
function over the target’s position is not feasible, there are suitable approxima-
tions of this measure, specifically for particle filters as in [3]. Particularly, in
this work, the approximation defined in [9] based on the entropy of a Gaussian
Mixture will be the used.

H(Pr(pt|q0:t, z0,t)) ≤
∑

i

wi(−log(wi) + 0.5log(2πe)2Σ4) (2)

where wi is the weight of the i−th particle of the PF, and Σ is the standard
deviation for the person movement.

Note that, to calculate the entropy even with these approximations, it would
be necessary to predict the state of the PF at each possible future pose. For a
probabilistic sampling method such as an RRT, this would mean that a copy of
the particle set of the original PF needs to be maintained at each node while
expanding the search tree, so as to describe the predicted state of the PF if the
robot would follow the path up to that node. Furthermore, that PF would need
to be updated (and re-sampled) according to each possible future measurement
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along the path. Although this is conceptually possible, for computational reasons,
we assume the following simplifications:

1. The possible future paths in the RRT always assume negative RFID mea-
surements up to a given node. Since there is only one possible observation
at each node, the tree does not need to branch out exponentially according
to each possible RFID reading.

2. The motion of the robot is sufficiently fast that the motion model of the
particles does not need to be considered while predicting the future state of
the PF. This means that each node of the RRT do not actually have to store
an instance of the full particle set (all the particles and their weights). Since,
it is not required to re-sample, the positions of all the particles remain the
same and each node of the RRT only need to keep their weights. By avoiding
the prediction step, we also side-step the need to perform re-sampling, which
is computationally expensive.

The results of our method will be discussed in Section 3.

2.3 Extension for Multiple Robots

The proposed ACP approach is such that the coordination between multiple
robots would be handled at a different scope than the motion planning. However,
conceptually there is nothing that precludes the extension of the above method
for single-robot active perception directly to the multi-robot domain, as long
as those robots can communicate freely. Since there is only one PF describing
the target location, if multiple robots share the respective information, then it
should be possible to use the above method to plan the paths of multiple robots
simultaneously.

3 Experimental Results

The presented system has been experimentally tested in the robotics lab of the
Instituto Superior Técnico in Lisbon, using the omni-directional MOnarCH robot
(see Figure 4). During the experiment, the robot was in charge of finding with
as much certainty as possible the location of a child carrying a RFID tag, and
it had no previous information about that location. Moreover, the robot moved
at 0.8 m/s and used an RFID reader to detect the person.

The right image in Figure 4 shows the more relevant information provided
by the system whenever the robot requires to plan a new path to explore the
environment. The PF provides the particle cloud representing the position of the
person (black small dots), and the RRT* motion planner provides a connected
tree. This is shown as a connected tree of green-black dots, where the green
intensity corresponds to the predicted entropy at that particular pose (therefore,
darker nodes are more informative).

In Figure 5, a sequence of frames taken from rviz show visually how the
robot behaves during the experiment. They show the robot trajectory (blue line),
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Fig. 4. Left, omni-directional MOnarCH robot used during the experiment. Right,
rviz visualization of an experiment. A video from the experiment is shown in
http://youtu.be/fMB5PWQtaUI

Fig. 5. Sequence of frames from the experiment rviz visualization.
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Fig. 6. This graph show the evolution during the experiment of the average weighted
distance from each particle to the centroid of the particle (blue solid line) and the
distance between this centroid and the actual person location (red dashed line).

the last best path computed according to the proposed entropy-based RRT*
(black line), the particles’ distribution from the PF (black points), the particles’
centroid (big red point) and the actual person location (big blue point).

While the robot moves following a computed path and getting negative RFID
readings, it clears the target particles from the map. Since the robot cannot cover
all particles within its sensor range and the particles are moving (based on the
predict method of the PF algorithm and the proposed standard deviation of the
child movement σ), these clean areas could be filled out by the nearer particles
and the robot could tend to visit these areas again. So, the areas will not be
fully ruled out once they have been visited, it will depend on the environment
shape, the non-covered particles and the children motion speed (related to σ).
As the robot has not previous information about the target location, it can start
moving toward a wrong area. However, once it has explored that area without
detecting any RFID tag, the robot is able to generate a new path to get back
to the initial position and starts exploring other areas of the map with more
uncertainty. Once the robot gets a positive RFID reading, it clears the target
particles from the whole map except for the region defined by its sensor model.
Following motion plans are addressed to explore again and again the same region
in order to pinpointing the estimated person position.

Finally, wit respect to the features shown Figure 6, lower values imply greater
certainty about the person location.
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4 Conclusions and Future Work

The preliminary experimental results validate the proposed approach for the
active perception based on a particle filter and an entropy-based motion plan-
ner, applied to child searching. It shows that, even having only negative mea-
surements, the person estimator allows the system to gain certainty about the
child location. Obviously, assuming complex environment with loops and chil-
dren moving faster than the robots, the robots could not find the children ever.
Finally, the main future developments will be directed to extend the work to
multiple robots in active cooperative perception tasks, based on the dynamic
area allocation and using the particle distribution.
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Abstract. Human-robot interaction experiments featuring error situa-
tions are often excluded from analysis. We argue that a lot of value lies
hidden in this discarded data. We analyzed a corpus of 201 videos that
show error situations in human-robot interaction experiments. The aim
of our analysis was to research (a) if and which social signals the exper-
iment participants show in reaction to error situations, (b) how long it
takes the participants to react in the error situations, and (c) whether
different robot actions elicit different social signals. We found that par-
ticipants showed social signals in 49.3% of error situations, more during
social norm violations and less during technical failures. Task-related
actions by the robot elicited less social signals by the participants, while
participants showed more social signals when the robot did not react.
Finally, the participants had an overall reaction time of 1.64 seconds
before they showed a social signal in response to a robot action. The
reaction times are specifically long (4.39 seconds) during task-related
actions that go wrong during execution.

Keywords: Human-robot interaction · Robot feedback · Social robots

1 Introduction

Although it has been widely accepted among scientists that faulty data carries
knowledge, the loop way of including such data is often avoided. It seems more
productive to discard all cases that do not fully comply with the envisioned
process. Based on Paul Watzlawick well-known axiom “one cannot not commu-
nicate” [18], it may be worth taking the time to look at those faulty incidents.

In order to put this notion to the test, we have gone back to data from previ-
ous human-robot interaction (HRI) experiments within our research group. From
different research projects, we have collected numerous video data, of which we
had originally discarded a great share due to non-conformities with our initial
research intention. Looking into these videos from various experiments collec-
tively, we expected to learn from the errors and, in doing so, detect new modes
for improving the interaction between humans and robots.

c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 461–471, 2015.
DOI: 10.1007/978-3-319-25554-5 46
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To analyze the data, we first selected all videos featuring faulty instances
of interaction (i.e., where the interaction did not exactly follow the predefined
script). Then, we developed a coding scheme in which we annotated faulty situ-
ations and if they were a social norm violation or a technical failure of the robot
(from the user’s perspective), what sort of action the robot performed during
this situation, and how the user reacted in consequence. Although the experi-
ments were performed over several projects, they all share traits, which is why
we decided to look at the data collectively with one uniform annotation scheme.

This publication follows-up on our previous analysis of the same video cor-
pus, in which we explored error situations in HRI and what kind of social signals
humans show upon social norm violations or technical failures of the robot [5].
With our current analysis, we look further into the topic of social signals, in ana-
lyzing how often people react, how long it takes them to react, and which social
signals are frequently produced together. It is our aim to develop a framework
to explain user behavior in faulty instances of HRI and, in doing so, provide a
tool to prevent problematic situations.

2 Related Work

The term social signal is used to describe verbal and non-verbal signals that
humans use in a conversation to communicate their intentions. Lately, more and
more researchers focussed on developing approaches for automatic recognition
of social signals, a field that is called social signal processing. Vinciarelli et
al. [17] give a fairly recent overview of the work in the area. In HRI, social signal
processing also receives more attention. Jang et al. [9] present a video analysis
that is similar to our work. They annotated recordings of six one-on-one teacher-
student learning sessions, in order to find the social signals with which students
signal their engagement in the interaction. The goal of their work is to implement
an engagement classifier for a robot teacher. Tseng et al. [16] present a robot
that automatically recognizes the spatial patterns of human groups by analyzing
their non-verbal social signals, in order to appropriately approach the group.

A second area, in which social signals play a role in HRI, is the generation of
social signals by robots. Bohus and Horvitz [1] present a direction-giving robot
that forecasts when the user wants to conclude the conversation. This robot uses
hesitations (e.g., the robot says “so. . . ”) when the robot is not certain about the
user’s state in order to gain more time to compute a correct forecast and also
to convey the uncertainty of the system. Sato and Takeuchi [12] researched how
the eye gaze behavior of a robot can be used to control turn taking in non-verbal
HRI. Stanton and Stevens [15] found that robot gaze positively influences the
trust of experiment participants who had to give answers to difficult questions in
a game, but negatively influences trust when answering easy questions. Carter
et al. [2] present a study, in which participants repeatedly threw a ball to a
humanoid robot that attempted to catch the ball. The study results show that
participants smile more when the robot shows social signals and rate the robot
as more engaging, responsive, and human-like.
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Researchers from social psychology explored how humans use social signals to
express their intentions. In psychology literature, the term “freezing” is used to
refer to the absence of social signals and movement by humans. It is known that
humans stop moving in certain situations. For example, Witchel et al. [20] showed
that the absence of non-instrumental movements can be a sign for engagement
of humans with media. It is also known that humans, as well as animals, freeze
as a response to fear or stress [7]. In our work, we found that humans often smile
during error situations. Similar to this, Hoque et al. [8] also found that humans
smile in frustrating situations. They recorded the faces of participants who filled
out a web form that was designed to elicit frustration and found that 90% of the
participants smiled in these frustrating situations. Finally, we found that humans
use body posture, especially head movements, to express their intentions. Similar
to this result, Loth et al. [10] found that customers use two non-verbal social
signals to signal bartenders that they would like to order a drink: they position
themselves directly at the bar counter and look at a member of staff.

3 Video Corpus and Annotation

For a comprehensive picture that accounts for more than one specific scenario,
we combined video data from different experiments and analyzed them collec-
tively. All studies were HRI experiments in which the participants had to either
complete a task together with a robot or help a robot complete a task on its own.
With the data analysis presented herein, we are revisiting data from previous
experiments and analyze them from a different viewpoint. For more details on
the original experiments, please refer to the references as quoted below.

The data we used for our analysis was collected in five user experiments,
which were conducted in the course of one of the following research projects:
JAMES1 (Joint Action for Multimodal Embodied Social Systems), JAST2 (Joint
Action Science and Technology), and IURO3 (Interactive Urban Robot), as well
as the Master thesis project RPBD (Robot Programming by Demonstration).
The video corpus totaled to 201 videos (129 x JAMES, 34 x JAST, 27 x IURO, 11
x RPBD), showing 100 individual study participants (30 female and 70 male). All
experiments were conducted in Austria or Germany. Although we used different
robots in most of our experiments (see Figure 1), the robots were always able
to understand and produce speech and they had visual perception modules for
person tracking.

The following scenarios were covered with the HRI experiments: (a) JAMES,
a bartender robot who took drink orders from customers and it had to hand
out the correct drink to the right person [3,6]; (b) JAST had to assemble
target objects from a wooden toy construction set, together with a human
partner [4]; (c) IURO could autonomously navigate through crowded inner-city
environments, while proactively approaching pedestrians to request direction
1 http://www.james-project.eu
2 http://www6.in.tum.de/Main/ResearchJast
3 http://www.iuro-project.eu/

http://www.james-project.eu
http://www6.in.tum.de/Main/ResearchJast
http://www.iuro-project.eu/


464 N. Mirnig et al.

(a) JAMES robot (b) JAST robot (c) IURO robot (d) RPBD robot

Fig. 1. The robots used in the HRI experiments. Pictures show actual interactions.

information [19]; and (d) RPBD, in which participants had to kinesthetically
teach a pick-and-place task to the robot [14].

We annotated our data to explore the following three topics: (a) How many
people react upon a robot action that occurs in an error situation? (b) How long
does it take for people to react upon a robot action within an error situation in
general and in case of social norm violation and technical failure? (c) What kind
of reaction do people show in response to a robot action within an error situation
in general, and specifically in case of social norm violation and technical failure?

For annotating our video corpus, we used the video coding tool ELAN4.
We followed a two-step annotation process. First, we annotated all instances in
which an error occurred in the interaction. We labeled them as error situations
and categorized them either as social norm violation or technical failure. We
define the term social norm violation as a deviation from the social script [13]
or the usage of the wrong social signals in a given situation. For example, when
the participants ordered a drink from the bartender robot, the robot signalized
them that it understood, but then asked for their order again. Technical failures
include, for example, when the robot picked up an object, but lost it while
grasping it.

Second, we annotated the actions the robot performed during the error sit-
uations (robot actions) and the social signals the participants showed at the
same time (social signals). Robot actions were categorized into TaskRelatedAc-
tion (The robot does what it was programmed to do, but the interaction is in
an error situation already.), RepeatPreviousAction (The robot repeats the last
action whether on purpose (no reaction of study participant or when participants
demanded a repetition) or in case of a technical failure.), RightActionGoneWrong
(The right action is started but with a poor result.), OutOfContextAction (The
reaction of the robot does not correspond to the expectation in that situation.),
Filler (The robot waits for a participants’ response.), and NoReaction (The
robot provides no feedback or immediate action at all.). Social signals were cate-
gorized into speech, head movements, hand gestures, facial expressions, and body
movements. For a more detailed overview on the annotation process, see [5].

We annotated 1924 robot actions. For the analysis of the temporal connec-
tion between robot action and elicited social signal, we selected those robot
actions that clearly started together with, or within, an error situation. Robot
actions that started prior to, and carried over to, the respective error situation
were excluded. It is not clear whether these robot actions directly caused the

4 https://tla.mpi.nl/tools/tla-tools/elan/

https://tla.mpi.nl/tools/tla-tools/elan/


Impact of Robot Actions on Social Signals and Reaction Times 465

Table 1. Total number of different robot actions leading to error situations

RobotAction Frequency Percent

TaskRelatedAction 244 14.3
RepeatPreviousAction 812 47.5
RightActionGoneWrong 42 2.5
OutOfContextAction 105 6.1
Filler 216 12.6
NoReaction 291 17.0
Total 1710 100.0

following error situation and as a consequence triggered the social signals of the
participants. Table 1 shows the frequency and percentage of the remaining 1710
robot actions. A total of 1032 robot actions were driven by social norm violations
(60.4%), in which the reaction of the robot did not match the expectation of the
study participants. Technical failures caused 678 of the error situations (39.6%).

4 Results

In the following section, we present our results on social signals. We explored
if people produce or not produce social signals, depending on the type of error
situation and robot action. We analyzed the participants’ reaction time to see
how long it takes them to react and if their reaction times differ between types
of error situation and robot action. Finally, we explored which social signals are
frequently produced in combination with each other.

Social Signals vs. No Social Signals. First, we analyzed if people react
in an error situation at all. The experiment participants showed social signals in
49.3% (843 times) of the 1710 robot actions. In 50.7% (867 times) of the robot
actions, the participants showed no reaction.

Via one-sampled chi-square tests (nominal variable), we computed for both
error situation types, whether participants did or did not show social signals dur-
ing the social norm violations and technical failures. Both tests were significant
and show opposite results. During social norm violations, significantly more par-
ticipants showed one or more social signal (χ2(1, N = 1032) = 20.66, p < .001).
Whereas, in case of technical failures, significantly more participants did not
show a social signal at all (χ2(1, N = 678) = 42.63, p < .001).

We furthermore computed, whether the type of robot action influences if peo-
ple show social signals or not. For that, we conducted a one-sample chi-square
test for each type of robot action and obtained significant results for five of the
six types. In subsequence to a TaskRelatedAction and a RepeatPreviousAction,
the participants significantly more often showed no social signals. In case of
RightActionGoneWrong, Filler, and NoReaction, the participants showed social
signals significantly more often. Only OutOfContextAction did not result in a
significant difference. Table 2 shows the percentages of cases with no social sig-
nals shown vs. social signals shown in regard to the different robot actions, as
well as the results of the chi-square tests.
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Table 2. Percentages of cases with no social signals shown vs. social signals shown for
the different robot actions + chi-square test results (significant results in bold)

RobotAction No Signal Signal Chi-Square

TaskRelatedAction 57% 43% χ2(1, N = 244) = 4.20 p = .041
RepeatPreviousAction 63% 37% χ2(1, N = 812) = 57.46 p < .001
RightActionGoneWrong 29% 71% χ2(1, N = 42) = 7.71 p = .005
OutOfContextAction 47% 53% χ2(1, N = 105) = 0.47 p = .495
Filler 29% 71% χ2(1, N = 216) = 37.50 p < .001
NoReaction 31% 69% χ2(1, N = 291) = 40.83 p < .001

Reaction Times. Over the 843 instances when the participants showed either
one or more social signals, it took the participants an average 1.64 seconds
(SD = 2.47) to react. We calculated the reaction time as the duration between
onset time of robot action and onset time of the first social signal. A Kolmogorov-
Smirnov test for normality indicated that the reaction time of the participants
significantly deviated from a normal distribution (D = .253, p < .001). There-
fore, we used nonparametric statistical tests to analyze differences in reaction
time. We conducted a Wilcoxon rank-sum test to evaluate whether the average
reaction time differs between social norm violations (N = 589) and technical
failures (N = 254). The results of the test confirm that there is a significant
difference in reaction time (W = 99.59, z = −2.34, p = .019, r = 0.08). Partic-
ipants’ reaction time is significantly faster in case of technical failures (Mdn =
1.00), than in case of social norm violations (Mdn = 1.16).

A Kruskal-Wallis test showed that reaction times were significantly affected
by type of robot action, H(5, N = 843) = 16.97, p = .005. Post-hoc tests revealed
significant differences between RepeatPreviousAction (Mdn = 1.05) and RightAc-
tionGoneWrong (Mdn = 2.16), U = −179.95, p = .002, r = 0.13; between Filler
(Mdn = 0.93) and RightActionGoneWrong, U = 163.86, p = .011, r = 0.12;
and between NoReaction (Mdn = 1.09) and RightActionGoneWrong, U =
149.66, p = .025, r = 0.11 (see Table 3). Significance levels were adjusted to
account for multiple post-hoc tests.

Combinations of Social Signals. To analyze how people react towards a
robot in case of an error situation, we first selected all cases in which a robot
action was followed by one or more social signals produced by the user. Here, we
did not exclude robot actions that started before the respective error situation,
since we were not interested in the relationship between error situation and social
signals, but robot action and social signals. That left us with 2115 data lines. The
participants showed a total number of 3463 social signals. The average number
of social signals per robot action was 1.64 (SD = 1.30,min = 1,max = 17). In
most instances, people showed one social signal (N = 1.421), followed by two
social signals (N = 394) and three social signals (N = 150).

We explored frequent combinations of social signals (for a detailed overview,
refer to [5]). To do so, we computed the top ten of double and triple combinations
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Table 3. Mean reaction times and standard deviation in seconds

RobotAction N Mean SD

TaskRelatedAction 106 1.65 1.70
RepeatPreviousAction 298 1.15 0.86
RightActionGoneWrong 30 4.39 4.92
OutOfContextAction 56 1.71 1.96
Filler 153 1.97 4.21
NoReaction 200 1.71 1.89

Table 4. Top 10 of double and triple combinations of social signals (RepeatLastS.
= RepeatLastSentence; AskQuestionToExp. = AskQuestionToExperimenter; LookTo-
Exp. = LookToExperimenter; LookToGM = LookToGroupMember; MakeStatement-
ToGM = MakeStatementToIngroupMember)

No. Double Combination No. Triple Combination

25 LeanForward + RepeatLastS. 4 Laugh + LookDown + Smile

21 Laugh + Smile 3 LookToRobotHead + NewSentence + Smile

18 LookToExperimenter + Smile 2 LookToExp. + LookToGM + MakeStatementToGM

12 LeanForward + NewSentence 2 FunnyFace + LookToRobotHead + NewSentence

11 LookToGroupMember + Smile 2 Laugh + Smile + StepBack

10 LookToRobotHead + RepeatLastS. 2 LeanForward + LookToRobotHead + RepeatLastS.

9 AskQuestionToExp. + LookToExp. 2 LookToObject + LookToRobotHead + NewSentence

8 LookToRobotHead + NewSentence 2 Laugh + LookToGroupMember + Smile

7 NewSentence + Smile 2 LookToRobotHand + LookToRobotHead + Smile

6 RephraseLastSentence + Smile 2 LookToRobotHead + RepeatLastSentence + Tilt

of social signals. Table 4 shows the combinations with their frequency. Double
combinations feature 10 different social signals, triple combinations feature 15
different ones. The social signal Smile is most often found in both lists, with a
total count of 10 (5 each). LookToRobotHead can be found in eight combinations
(2x double, 6x triple) and NewSentence is part of six combinations (3 each). The
top three social signals in number of total occurrences within all combinations,
sum up to 160 x Smile, 143 x LookToRobotHead, and 91 x NewSentence.

5 Discussion

Social Signals vs. No Social Signals. Prior to our data analysis, we had
expected that social signals would be frequently shown in error situations. Upon
data analysis, we found evidence that only in half of the error situations par-
ticipants produced social signals. This result is even more outstanding when we
consider the fact that people were more likely to show social signals during social
norm violations than during technical failures. This suggests that users can iden-
tify technical failures well, but they see less need to react. During social norm
violations, however, there seems to be a need to produce social signals in order
to keep the interaction going and solve the experimental task. This assumption
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is also supported by a result from our preceding study on error situations, in
which we found that people talk considerably more during social norm violations
[5]. Based on our findings, we assume that there is no social script for technical
failures and this is why people do not actively countersteer (i.e., produce social
signals), but take on a more observant role (i.e., not produce social signals). The
robot actions TaskRelatedAction and RepeatPreviousAction happen more fre-
quently during social norm violations when the robot tries to resolve the error
situation. Therefore, the result of less social signals shown adds up. In contrast,
during Filler and NoReaction, both of which are either planned or unplanned
robot idle times, participants showed more social signals. We interpret the par-
ticipants’ social signals in these cases as attempts to bypass idle time, which
we advise to compensate with more targeted robot feedback [11]. The fact that
almost 50 % of the error situations were initiated through RepeatPreviousAction
can be partially explained with the robot setup of one experiment. James was
programmed to repeat its last action if speech recognition accuracy was below a
certain threshold. This resulted in frequent repetition of robot actions. However,
RepeatPreviousAction also scored highest in percentage of no social signal shown
and fastest in reaction time. This could be an indicator that frequent repetition
of one and the same action can easily lead to a critical situation. It seems that
people are likely to decipher such situations quickly but they also seem more
likely to not react which might lead to termination of the interaction.

Reaction Times. Although the participants showed less social signals in case
of technical failures, those participants who did react, did so significantly faster
than during social norm violations. This indicates that the participants were
able to identify technical failures quickly. In the special case of RightAction-
GoneWrong, however, participants took especially long to react. We see two
reasons for this. First, the robots in our experiments took long to complete
their action and it may have taken a while until the user was able to identify
the action as wrong. Second, according to neuropsychological literature, humans
stop moving in certain situations when in fear or stress, a phenomenon called
“freezing” [7]. The long reaction time in case of RightActionGoneWrong could
be seen as people living through stress, which is a phenomenon worth being
picked up by future research, in which biometric data should be measured to
back this assumption up. Another indication for the same effect is the frequent
production of smile, which is also a stress indicator [8].

Combinations of Social Signals. Upon taking a closer look on the common
combinations of social signals, it is noticeable that people frequently combine a
verbal utterance (RepeatLastSentence and NewSentence) with a leaning forward
body movement. This could be seen as people trying to bypass faulty speech
recognition and make their own attempt to recover from an error situation.
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6 Conclusion

We conclude the following main findings from our data. Participants responded
to half of the robot actions with one or more social signals. Participants showed
significantly more social signals during social norm violations and less during
technical failures. They also showed significantly more social signals in case of
faulty or no robot action and less when the robot performed a task-related action
or repeated the previous action. The participants reacted considerably faster in
case of technical failures, but in terms of faulty robot actions, the reaction times
were particularly slow. From the common combinations of social signals, we
could learn that participants frequently smile in error situations. Given smiles
can be assigned to a certain meaning, they could be beneficial as implicit input
modality for the robots. With our results, we provide data-based evidence that
robot feedback is crucial. We showed that people’s reactions observably differ
between types of error situation and robot action. One implication we can draw
from this is that a social robot which is able to interpret the users’ social sig-
nals, could be enabled to provide adapted feedback. Similarly, automatic error
situation classification could assist the robot in choosing which feedback is most
appropriate in a certain kind of situation. Further research is required to explore
the effect of different kinds of feedback on the users.

In conclusion, we can point out that the feedback of a robot is extremely
important and needs to be given considerable thought when designing mean-
ingful HRI. Furthermore, we suggest automatic social signal processing as a
means of detecting problems in human-robot interactions. We have identified
fewer social signals and faster participant reaction times as two indicators for
automatically detecting technical failures of the robot.
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Abstract. In this paper, we introduce a novel method for learning
simultaneously a task and the related social interaction. We present an
architecture based on Learning Classifier Systems that simultaneously
learns a model of social interaction and uses it to bootstrap task learn-
ing, while minimizing the number of interactions with the human. We
validate our method in simulation and we prove the feasibility of our
approach on a real robot.

Keywords: Human-Robot Interaction · Interactive Reinforcement
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1 Introduction

Endowing robots with social interaction capacities in addition to task related
skills is an important challenge that would facilitate the integration of robots
in human environments for task collaboration whether in domestic or indus-
trial contexts. Social interaction and task execution are two different aspects of
Human-Robot collaboration that some recent works begin to point the neces-
sity to distinguish [1]. However, these two aspects are still strongly mutually
related, so it is not always possible to treat them independently from each
other.

In our work, we are interested in studying the relationship between social
interaction and task execution from a machine learning perspective: how can
we use social interaction for task learning and inversely how could task learning
contribute to learning social interaction? In the literature, these two questions
are rarely addressed simultaneously, but often one aspect is determined in order
to learn the other: social interaction mechanisms are predefined to learn a new
task, or a known task is used to learn new social interaction mechanisms. In this
paper, we propose to learn simultaneously a model of social interaction (Social
Model) and a model of the task (Task Model) in a robot teaching scenario. In one
way, the Task Model is used for grounding the interpretation of teaching signals
and for learning how to behave according to them within the Social Model.
In return, the Social Model is used for bootstrapping the learning process of
the Task Model. This looped process is performed online while minimizing the
number of interactions with the human.
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 472–481, 2015.
DOI: 10.1007/978-3-319-25554-5 47
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In a previous work [6], we proposed a first model that learns a social reward
function on the teaching signals from the rewards provided by the environment,
and uses it to bootstrap task learning. One limitation of this model is that it
does not take into account the long-term information provided by some teaching
signals, so the Social Model is not able to learn anything about them. In this
paper, we propose a model that overcomes this limitation by learning the state-
action values instead of the direct rewards for grounding the meaning of teaching
signals. We show that this model is able to boost task learning in addition to
learning a more complete model of social interaction.

In the next section, we present some related work. In Section 3, we introduce
our model. Section 4 describes the scenario and the experimental set-up. In
Section 5, we provide a validation of our approach in simulation. Finally, we
present an implementation of our model within a robotic architecture and we
report the results of experiments performed on a real robot in Section 6.

2 Related Work

Interactive Reinforcement Learning (IRL) provides a wide range of techniques
for teaching RL-based systems [10] by the means of social feedbacks. These
works differ in three main aspects: the interaction protocol used for providing
feedbacks, the way feedbacks are interpreted for learning and the autonomy of
the system with respect to the human.

Some works rely on artificial interfaces for interacting with the learning sys-
tem. In [3], a virtual agent is trained by human feedbacks within a text-based
environment. [9] and [12] use a clicking interface while [5] and [7] rely on push-
buttons for providing human feedbacks. In contrast, other works rely on natu-
ral interaction protocols for delivering feedbacks such as spoken words [11] and
speech features [2,4]. Similarly, in our work we use a natural interaction protocol
and we focus specially on non verbal cues such as head movements and pointing
for providing feedback.

While most of these works associate human feedback with predetermined
scalar values [3,5,7,9,11,12], few works address the question of learning the
meaning of teaching signals [2,4]. In [4], a binary classification on prosodic fea-
tures is performed offline before using it as a reward signal for task learning.
In [2], however, the system learns simultaneously to interpret feedbacks and to
perform the task. Our work, similarly to [2], tackles both questions at the same
time by grounding the meaning of the teaching signals in the task and by using
them in return to bootstrap task learning.

The autonomy of the learning agent with respect to the human is an impor-
tant feature for evaluating Interactive Learning systems in terms of human load.
In [2,3,7,9], the learning agent is guided only by human feedbacks, so it is not
able to learn without the presence of the human. By contrast, in our work like in
[5,11,12], the system is able to learn autonomously through task related rewards
while the human can choose the degree of its involvement in the interaction, for
guiding the system in order to accelerate its learning process.
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3 Model

The idea of our method is to learn simultaneously two separate models, one for
the task and one for social interaction. The model of the task would serve to
ground the model of social interaction while minimizing the number of inter-
actions with the human and the model of social interaction is used in order to
bootstrap the learning of the task. We use an architecture based on three main
components: a Task Model, a Social Model and a Contingency Model (Figure 1).
The Task Model and the Social Model are represented by two different Markov
Decision Processes (MDP) based on XCS1 and the Contingency Model repre-
sents the contingency between states of both MDPs.2

Fig. 1. Social-Task learning model

In [6], we proposed a first model in which the Social Model is used for learning
a social reward function on teaching signals based on task rewards. This function
is then used online as an additional reward signal for boosting the learning
process within the Task Model. We will refer to this first model as SRXCS (for
Social Reward XCS). In this paper, we rather learn state-action values within
the Social Model and use them as state-action values for the Task Model. We
refer to this model as SVXCS (for Social Value XCS). From an algorithmic point
of view, the difference between SVXCS and SRXCS resides in two points: the
way the Social Model is updated by task rewards and the way the Task Model
is updated by the Social Model. In SRXCS, the Social Model is updated by task
rewards in a single-step fashion, while the Task Model is updated in a multi-step
manner by using both social and task rewards. In SVXCS, however, the Social
Model is learned in a multi-step way, whereas the Task Model is updated by the
Social Model in a single-step fashion. In addition, in SVXCS, the Task Model
still uses task rewards in multi-step as in SRXCS, so it is able to learn the task
independently from the human.

1 XCS is an RL system endowed with a generalization capability that allows learning
general rule representations over state features, in a way that features that are not
relevant for a given rule are replaced by a ’#’ symbol [8].

2 We refer to [6] for a more detailed description of the model.
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4 Scenario

We consider a simple task (Figure 2), in which a robot has to learn to press
buttons of different colors, according to the information displayed on a screen.
In a real-world scenario, the information displayed on the screen would represent
the state of the physical environment and the action of pressing a button could
represent any other elementary action that the robot could perform on objects.

Fig. 2. Scenario: The robot must press the button corresponding to the information
displayed on the screen. A human can help it through head movements and pointing.

4.1 Experimental Setup

The experimental set-up is composed of a humanoid robot (Aldebaran Nao)
facing a table on top of which there is a set of three buttons of different colors.
At each moment, the screen displays the color of the button that the robot has
to press. The robot is able to perform two kinds of actions: gazing to one of
the different buttons or pressing the one it is facing. The task is a multi-step
problem, meaning that in order to press the right button, the robot has to look
for it first, and then to perform the action of pressing. The action of gazing to
an object triggers a null reward. Pressing a button, however, triggers either a
positive or a negative reward, represented by two different sounds, depending if
the robot pressed the right or the wrong button. When the robot presses the
right button, the task progresses and a new color is displayed on the screen.

While the robot is learning to perform the task, a human can sit in front of it
in order to help it by using head nods, head shakes and pointing. Head nods and
head shakes tell if the robot is looking to the right or the wrong button, while
pointing is meant to indicate the button it has to press. A Microsoft Kinect3 V2
sensor is used to track the skeleton of the human4.
3 https://www.microsoft.com/en-us/kinectforwindows/, Last accessed 20-12-2014
4 We use a modified version of the Kinect V2 client/server provided by the Per-

sonal Robotics Laboratory of Carnegie Mellon University. https://github.com/
personalrobotics/, Last accessed 20-12-2014

https://www.microsoft.com/en-us/kinectforwindows/
https://github.com/personalrobotics/
https://github.com/personalrobotics/
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4.2 Teaching Protocol

We adopt an active learning procedure as a teaching protocol. When the robot
encounters a new task situation (defined by the displayed color and the robot
gazing state), the robot asks the human for help in two steps: First, it asks if it
is looking to the right color, immediately looks at the person for a brief moment,
before looking back to the button. Then, it repeats this process one more time
by asking the person to point the right button.

This active learning procedure is motivated by two main reasons. First, the
Contingency Model as it is currently designed stores the contingency between
whole states. It means that all teaching features must be determined before
sending the whole social state to the Contingency Model. So, this procedure
fulfils this constraint, by actively asking the human to provide it with a value
for each type of feature. Second, we have argued in [6] that in order to reach
optimal performance, the human needs to interact with the system only in newly
encountered situations, in the case of a perfect teacher. So, this protocol is meant
to verify this assumption in a real set-up.

5 Model Performance in Simulation

In this section, we present the performance of our model in simulation. We
compare SVXCS to the standard XCS algorithm over 1000 experiments, to show
how our model accelerates task learning. Then, we present the learned rules in
the Social Model.

5.1 Task Model Performance

We report the result of the experiments in two different settings: with and with-
out genetic generalization. Figure 3 reports the probability for the model to
converge before n steps. With genetic generalization (Figure 3.a), SVXCS needs
at most 4903 iterations to learn the task, while the standard XCS needs at most
9184 iteration. Beyond this threshold, we are sure that the model converges.
However, below this number of steps, the model converges only with a certain
probability. It is worth noting that even with this gain, the number of steps is
still considerable for a real-world scenario. Figure 3.b reports the performance
of the models without genetic generalization. We can see that XCS converges
in at most 851 steps, while SVXCS reduces this number to 227 which is more
reasonable for a real robot.

5.2 Social Model

Table 1 shows the learned rules in the Social Model. We can see that the model
found correct generalizations on the teaching signals. The first two lines corre-
spond to the rules related to the action of pressing the button. They predict
with maximum accuracy a reward of −1000 for pressing a button when there
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(a) (b)

Fig. 3. Probability to converge before n steps. (a) With genetic generalization (b)
Without genetic generalization.

Table 1. Learned classifiers in the Social Model: the first two bits encode head move-
ment information. The remaining bits represent the pointing information.

Condition Action Prediction Rule meaning

#1### 0 -1000 head shake − > do not press the button
#0### 0 1000 head nod − > press the button
##0## 1 484
##1## 1 698 pointing at button 1 − > gaze at button 1
###0# 2 485
###1# 2 696 pointing at button 2 − > gaze at button 2
####0 3 485
####1 3 694 pointing at button 3 − > gaze at button 3

is a head shake and a reward of 1000 when there is a head nod, whatever the
pointing information. The remaining rules correspond to the predicted values
of gazing to the different objects. We can see that these rules represent a joint
attention behaviour which leads the robot to gaze the button that the human is
pointing, whatever the head movement information. It is worth noting that in
RBXCS, we could not obtain this behaviour of joint attention because it is not
able to take into account the long term information provided by pointing [6].

6 Experiments on the Real Robot

In this section, we present our robotic architecture. Then, we report the experi-
mental results on the real robot.

6.1 Robotic Architecture

To implement our model on the real robot, we developed a software architecture
in ROS (Figure 4) including a set of modules for perception, decision making
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and control. The architecture is organized in two main layers, one related to the
task (bottom) and another related to social interaction (top). The core of the
architecture is composed of the Task Controller, the Social Controller and the
Contingency module that implement the three components of our model. Task
Environment and Social Environment modules encapsulate the representation
of task and social states. In addition, we have a set of perception modules for
detecting pointing and head movements and a module for controlling the robot.

Fig. 4. Robotic architecture for Social-Task learning

6.2 Experimental Results

Without genetic generalization, SVXCS converges within 227 steps (Figure 3.b).
To validate these results, we performed experiments of 227 learning steps without
genetic generalization with 10 different subjects.

Table 2 reports the results of these experiments (The sequence of the exper-
iments has been changed in the table for better readability). These results show
that when subjects provided correct teaching signals (3 − 10), the robot always
succeeded in learning the task. Otherwise, the system failed at learning the task
(1 and 2). In both experiments, the subjects sometimes performed a head nod
instead of a head shake. In (1), a false positive detection of head nod has also
occurred. This resulted in an incoherent interpretation of head nods within the
Social Model that hindered the Task Model from converging properly.

In other situations (2− 5), the system did not detect feedback from the user
when the robot asked for. This was either because of a detection failure (5)
or because the subjects were hesitant and did not provide a complete feedback
(2 − 4). In this case, the Contingency Model did not record any teaching signal
for the corresponding situation; so the robot asked for feedback one more time
for the same situation and this did not prevent from learning the task. In these
experiments, the number of interactions with the robot was of 10, while in the
other experiments the user was solicited only 9 times, which corresponds to
the number of the different task states. Moreover, when all task situations have
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Table 2. Experimental results: experiment id (ID), number of interactions with the
subject (NI), number of detection failures (DF), number of times the subject did not
provide feedback when needed (NF), number of times the system detected the wrong
feedback (DE), number of times the subject provided wrong feedback (WF), time in
minutes until the last interaction (IT), total duration of the experiment in minutes
(TD), success of task learning (S).

ID NI DF NF DE WF IT TD S

1 9 1 1 6.20 31.30 No
2 10 1 2 8.15 32 No
3 10 1 7.50 30 Yes
4 10 1 12.30 31.30 Yes
5 10 1 5.30 31 Yes
6 9 9 31.30 Yes
7 9 12.45 31.30 Yes
8 9 6 31.30 Yes
9 9 5.15 31.30 Yes
10 9 7.30 31.30 Yes

been explored, the subjects had no obligation to stay and the robot continued to
learn autonomously. The longest interaction lasted for about 13 minutes, while
the whole learning process lasted for about a half an hour.

To conclude, these experimental results validate our assumption that without
genetic generalization, a perfect teacher interacting with the system only in new
situations has the guarantee that the robot will learn the task within 227 steps.

7 Discussion

In this section, we discuss the limitations of our system and we propose some
alternative solutions.

Teaching protocol: The active learning mechanism that we implemented presents
many advantages. First, it is difficult to provide a rigorous definition of the
state of a person. Unlike physical objects, a person is proactive and his/her
actions are extended over varying time windows. In addition, the limitation
of perception devices may lead to false positive detection that could decrease
system performance. So, actively asking for teaching signals one by one while
gazing at the human for a determined duration makes it possible to control
the acquisition of whole social states. Moreover, this active learning mechanism
serves at engaging the person to prevent it from being passive or disengaging
from the interaction.

However, this process is a burden for the human as it imposes a fixed protocol
for the interaction. In addition, asking for teaching signals only for new situations
makes not possible for the user to correct himself if he gives wrong teaching
signals in a given situation. One possibility to make the interaction more natural



480 A. Najar et al.

would be then to define a contingency between state features. In this case, the
human would be more free in the way he provides teaching signals and it would
be more easier for him to correct wrong feedbacks.

Transparency: Another limitation of this teaching protocol is the lack of trans-
parency. In fact, the human has no way to know if he has given wrong teaching
signals to correct them or if the robot is not learning correctly. A solution for
this would be to implement a mechanism asking for clarification whenever it
detects incoherence within the Social Model or incoherence between the Task
Model and the Social Model.

Social Model application: In the current definition of our model, the Social Model
contributes to boosting task learning in only one way. It serves as an alterna-
tive space with reduced complexity that allows to learn state-action values more
rapidly. So, the Social Model is employed only in a passive way through the inter-
pretation of teaching signals but never for decision-making. However, the rules
evolved by the Social Model could also be used for decision-making. For exam-
ple, the joint attention mechanism could be useful for guiding the exploration
strategy within the Task Model and so it could further optimize task learning.

8 Conclusion and Future Work

In this paper, we presented a model for learning simultaneously a task and a
model of social interaction. We showed that our model SVXCS is able to accel-
erate task learning while minimizing the number of interactions with the human.
We presented an implementation of our model within a robotic architecture and
proved the feasibility of our approach on a real robot.

In future work, we propose to modify the Contingency Model by storing
the contingency between state features instead of whole states in order to make
the interaction more natural. We also intend to explore the possibility of using
the Social Model for guiding the exploration strategy within the Task Model in
order to accelerate task learning. Finally, we propose to enrich our model with
additional actions like gazing to the human and asking for feedback to evolve
more complex social behaviours.

Acknowledgments. This work is funded by the Romeo2 project.
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Abstract. This study investigated dimensions that construct people’s
attitudes toward domestic robots, and developed a comprehensive mea-
surement by which to assess such dimensions. Potential elements of atti-
tudes were extracted from participants’ free descriptions and interviews,
as well as a literature review. A questionnaire-based investigation was
conducted using these elements, and a 12-factor structure was extracted
employing factor analysis. A measurement called the Multi-dimensional
Robot Attitude Scale was proposed to assess attitudes towards robots
based on 12 dimensions. The internal reliability and representativeness of
the proposed scale were verified. The Multi-dimensional Robot Attitude
Scale proposed in this study is designed to comprehensively assess atti-
tudes towards domestic robots, allowing for a multifaceted understanding
of people’s attitudes.

Keywords: Attitude · Measurement · Domestic robots · Acceptance

1 Introduction

Robots have been generally accepted for day-to-day use in domestic environ-
ments. Robots are expected to support people at home and/or in social contexts,
thus improving the wellbeing of the people they serve.

However, it is known that some people are reluctant or resistant toward
adopting new technologies. In the 1980s, for example, some people were uncom-
fortable around computers and reluctant to accept them[1]. To promote accep-
tance of these new technologies as they continue to come into the market and
into our lives, it is important to understand people’s attitudes towards them.

In previous research [2,3], attitudes toward robots have been studied in rela-
tion to people’s acceptance of robots[4,5]. However, few studies have focused on,
or proposed measures of, individual differences in attitudes toward robots. Most
studies on attitudes have focused on rather few dimensions of attitudes. The
Negative Attitudes toward Robots Scale and Robot Anxiety Scale [6,7] are two
measures proposed to gauge attitudes toward robots. However, these attitude
scales only measure negative attitudes toward robots. Although negative atti-
tudes toward robots are considered a good predictor of successful interactions
with robots, attitudes may have more complex constructs.
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 482–491, 2015.
DOI: 10.1007/978-3-319-25554-5 48
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A number of studies on attitudes toward computers have shown that there
are multiple dimensions or constructs of individual attitudes towards comput-
ers. For example, Loyd and Gressard[1] claimed that there are three dimensions:
liking, anxiety, and confidence. Jay and Willis [8] proposed seven dimensions:
comfort, efficacy, gender equality, control, dehumanization, interest, and utility.
It is intuitive that there should be multiple dimensions in individual attitudes
when complex technologies such as robots or computers are first introduced to
the general public. A better understanding of constructs of attitudes towards
robots, as well as their individual differences, should contribute to an under-
standing and, by extension, acceptance of a variety of robots.

The present study investigates dimensions that construct individual atti-
tudes toward domestic robots, and develops a comprehensive measurement
that assesses those multiple dimensions. Potential elements of attitudes were
extracted from participants’ free descriptions and interviews, as well as a liter-
ature review. A questionnaire-based investigation based on these elements was
conducted, and dimensions of attitudes towards robots were extracted from the
responses to the questionnaire using factor analysis. Finally, a measurement
called the Multi-dimensional Robot Attitude Scale was proposed to assess atti-
tudes towards robots along these multiple dimensions.

2 Extraction of Elements of People’s Attitudes Towards
Domestic Robots

To identify potential elements of attitudes toward robots, a questionnaire- and
interview-based investigation and an intensive literature review were conducted.

2.1 Methods

Eighty-three Japanese adults in their twenties to eighties participated in the
questionnaire-based investigation.

After participants were explained the purpose of the investigation, partici-
pants were presented a set of video, photo, and text pertaining to one of four
robots—Roomba[9], the Home-Assistant Robot[10], PaPeRo[11] and Paro[12],
one set at a time on computer screen. Then participants were asked to indi-
vidually and freely describe their feelings and ideas about each robot in the
questionnaire, in response to prompts such as “intention to use”, “feelings about
the robot being introduced to your home” and “things you like or dislike about
the robot”. This procedure was repeated for each of the four robots.

In the second part of the investigation, participants were asked to describe
their thoughts about robots in general, such as “feelings and perceptions you
might have if a robot is in your home” and “relationships with robots compared
with relationships with pets or friends”. Participants were suggested to consider
in the context of domestic use of such robots.

Finally, participants were interviewed as a group about the feelings and
thoughts they had experienced while answering the questionnaire.
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Additionally, previous studies on attitudes towards robots or related tech-
nologies [3–5,13–17] were reviewed and elements of, or relating to, attitudes
proposed in the literature were collected and summarized.

2.2 Results

All responses to the questionnaire and interview were checked manually. Key-
words and sentences that appeared to relate with attitudes toward robots were
selected from the descriptions. These elements and sentences were then organized
and grouped, eliminating duplications.

Additionally, elements related to the attitude discussed in the literature were
added to the pool of keywords and sentences. As a result, 125 sentences represent-
ing people’s perceptions, thoughts, and/or feeling towards robots were extracted.
These sentences are referred to as attitude elements hereafter. Examples of atti-
tude elements are: “I would feel relaxed with a robot in my home”, “I can easily
learn how to use a robot”, and “I feel scared around robots”.

3 Dimensions of Attitudes Towards Domestic Robots

In the second phase of the study, a questionnaire-based investigation was con-
ducted to identify the dimensions constructing people’s attitudes toward robots.

3.1 Methods

Participants. Participants were 175 Japanese adults (age: M = 22.3, SD =
1.9), 126 Chinese adults (age: M = 23.6, SD = 1.6), and 130 Taiwanese adults
(age: M = 24.2, SD = 5.0). Among the participants, 77.8% of Japanese, 40.5%
of Chinese, and 46.9% of Taiwanese participants were male.

Procedure and Measurement. The questionnaire used in this investigation
consisted of two parts. The first part asked for participants’ demographic infor-
mation. The second part consisted of 125 question items corresponding to the
125 attitudinal elements extracted in the first phase. Participants were asked to
indicate the extent to which each item matched their feelings and perceptions of
domestic robots in general, by responding on a seven-point Likert scale.

The questionnaire investigation was conducted in the participants’ respective
native languages (Japanese, Chinese and Taiwanese) and in their own countries
(Japan, China and Taiwan). Participants were asked to complete the question-
naire at their own pace and return it to the investigator.

3.2 Results

A factor analysis was conducted on all participants’ ratings of attitudes toward
robots. The number of factors was determined from a scree plot (Fig. 1).



Development of the Multi-dimensional Robot Attitude Scale 485

0  

2  

4  

6  

8  

10  

12  

14  

16  

1 4 7 10
 

13
 

16
 

19
 

22
 

25
 

28
 

31
 

34
 

37
 

40
 

43
 

46
 

49
 

52
 

55
 

58
 

61
 

64
 

67
 

70
 

73
 

76
 

79
 

82
 

85
 

88
 

91
 

94
 

97
 

10
0 

10
3 

10
6 

10
9 

11
2 

11
5 

11
8 

12
1 

12
4 

Eig
en

va
lue

Factor Number

Fig. 1. Scree plot of the factor analysis.

The principal factor method with varimax rotation revealed a 12-factor struc-
ture. The cumulative contribution for the 12 factors was 45.5%. These 12 factors
were considered to represent dimensions of attitudes toward robots.

Variables that had high loadings on the first factor included responses to
items such as “If a robot was introduced to my home, I would feel like I have
a new family member”, “I would feel relaxed with a robot in my home”, and
“I like that a robot can encourage me”. This factor was considered to represent
people’s familiarity with robots and was thus labeled “familiarity”.

Variables that had high loadings on the second factor included “I would want
to boast that I have a robot in my home”, “If a robot is introduced to my home,
I think my children or grandchildren will be pleased”, and “If my friends use
robots, I will also want one”. This factor was considered to represent people’s
interest toward robots and was thus labeled “interest”.

Variables that had high loadings on the third factor included “It would be a
pity to have a robot in my home”, “The movements of a robot are unpleasant”,
and “It is unnatural for a robot to speak in a human language”. This factor was
considered to represent a negative attitude toward robots and was thus labeled
“negative attitude”.

Variables that had high loadings on the fourth factor included “I have enough
skills to use a robot”, “I can make full use of a robot”, and “It is easy to use
a robot”. This factor was considered to represent self-confidence in using robots
and was thus labeled “self-efficacy”.

Variables that had high loadings on the fifth factor included “I think the robot
design should be cute”, “I think robots should have animal-like shapes”, and “I
think the shape of a robot should have roundness”. This factor related to people’s
expectations on appearance of robots and was thus labeled “appearance”.

Variables that had high loadings on the sixth factor included “Robots are
practical”, “Robots are user-friendly”, and “Robots have functions that I find
satisfactory”. This factor was considered to represent people’s perceptions of the
practical utility of robots and was thus labeled “utility”.
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Variables that had high loadings on the seventh factor included “I think
robots are heavy”, “I think the maintenance of robots is difficult, and “I worry
about the robot breaking down”. This factor was considered to represent people’s
perception of the costs of robots and was thus labeled “cost”.

Variables that had high loadings on the eighth factor included “I think robots
should make various sounds”, “I think robots should have various shapes”, and “I
think robots should have various colors”. This factor was considered to represent
people’s expectations for the diversity of robots and was thus labeled “variety”.

Variables that had high loadings on the ninth factor included “I think a
robot could recognize me and respond to me”, “I think a robot would obey my
commands”, and “I want to tame a robot according to my preferences”. This
factor was considered to represent people’s concepts of the control of robots and
was thus labeled “control”.

Variables that had high loadings on the tenth factor included “I expect my
family or friends to teach me how to use a robot”, “I expect my family or friends
to help me when I use a robot”, and “I expect my family or friends to advise
me how to use a robot”. This factor was considered to represent people’s expec-
tations of support from other people while using robots and was thus labeled
“social support”.

Variables that had high loadings on the eleventh factor included “Robots can
be used by remote control” and “Robots can be controlled by a button (on the
robot itself)”. This factor was considered to represent people’s expectations of
and/or belief in the way to use robots and was thus labeled “operation”.

Finally, on the twelfth factor, variables such as “I worry about whether robots
are suitable for the state (layout of the furniture and other things) of my room
now” and “I worry that robots are suitable for the circumstances (width or
numbers of ramps) of my room now” had high positive loadings. This factor
appeared to represent the environmental adaptation of robots. Thus, this factor
was labeled “environmental fit”.

These 12 factors are considered to represent 12 dimensions of attitudes toward
robots. The factor structures were also analyzed by the groups of participants
from different regions (i.e., Japan, China, and Taiwan). The results showed that
the 12-factor structure above was robust across participant groups from these
different regions[18].

4 Development of the Attitude Scale

In the final phase of this study, the Multi-dimensional Robot Attitude Scale,
which assesses attitudes towards robots according to the extracted 12 dimen-
sions, was developed and proposed.

4.1 Constructs of the Scale

For each of the 12 factors extracted in the previous section, two to seven ele-
ments were chosen as representative elements. These representative elements
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were selected according to two criteria: (1) the elements must have high loadings
for the factor, and (2) the elements must differ from one another so that the set
of representative elements for the factor as a whole represent as diverse a set
of concepts as possible. Specifically, for each dimension, variables were selected
from the ones with the highest loadings. If the selected variable was similar or
overlapping in meaning with the ones already chosen, other variables with next
highest loadings and more deiverse meaning could be selected instead. Tables 1
and 2 present the 49 selected elements representing 12 factors.

The Multi-dimensional Robot Attitude Scale is a questionnaire that has the
49 elements given in Tables 1 and 2 as items. The scale assesses people’s attitudes
towards robots by asking people to rate to what extent each of the items matches
their feelings or thoughts about robots on a seven-point Likert scale (−3: not at
all, 3: very much). The responses to the items are averaged by dimensions, and
the average scores are used as the scores of the attitude dimensions.

4.2 Reliability and Representativeness of the Scale

The internal reliability of each of the 12 dimensions were assessed. Table 3 gives
Cronbach’s alpha coefficients for items constructing each of the 12 dimensions.
The alpha coefficients in Table 3 suggest that the scale scores have overall good
internal reliabilities.

Furthermore, to confirm that the scores of the proposed scale represent the
original 12-factor structure extracted in the second phase of this study, correla-
tions between the scale scores and the corresponding factor scores were analyzed.
Table 3 gives Pearson’s correlation coefficients for scale scores and factor scores
of the 12 dimensions. All 12 scale scores had significant (p < 0.01) correlations
with the corresponding factor scores. This result suggests that these scale scores
well represent the original factor structure.

5 Discussion

This study proposed a measurement that assesses people’s attitude towards
domestic robots along multiple dimensions. Although a number of measurements
assessing impressions about robots have been proposed (e.g., [19,20]), relatively
few measurements have been proposed for attitudes. Among measurements of
attitudes towards robots, most have focused on rather limited dimensions of
attitudes, such as negative attitudes[6,7]. The Multi-dimensional Robot Atti-
tude Scale proposed in this study assesses people’s attitudes towards robots in
a comprehensive way using 12 dimensions, and providing a multifaceted under-
standing of attitudes toward this technology. The 12-factor structure developed
in this study was found to be robust across cultures and generations.[18,21].

Assessing attitudes towards robots using a larger number of dimensions
allows us to show multifaceted individual differences in attitudes, not merely
positive or negative attitudes. Previous studies on attitudes towards computers
have argued that the acceptance of computers and other technologies is related
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Table 1. Items of the Multi-dimensional Robot Attitude Scale

Dimension Question items

1. Familiarity If a robot was introduced to my home, I would feel like I
have a new family member.
I would feel relaxed with a robot in my home.
I like that a robot can encourage me.
I think a robot can be a communication partner.
I want to converse with a robot.

2. Interest I would want to boast that I have a robot in my home.
If a robot is introduced to my home, I think my children
or grandchildren will be pleased.
If my friends use robots, I will also want one.
I want to use robots if I can use them with my friends.
Robots are neo-futuristic and cutting-edge.
It is good if a robot can do the work of a human.
I feel easy around robots because I do not need to pay
attention to robots as I do to humans.

3. Negative attitude It would be a pity to have a robot in my home.
The movements of a robot are unpleasant.
It is unnatural for a robot to speak in a human language.
I feel like I also become a machine when I am with a robot.
I feel scared around robots.

4. Self-efficacy I have enough skills to use a robot.
I can make full use of a robot.
It is easy to use a robot.
I can easily learn how to use a robot.

5. Appearance I think the robot design should be cute.
I think robots should have animal-like shapes.
I think the shape of a robot should have roundness.
I think the voice of a robot should be like the voice of a
living creature.
I think the design of a robot should be beautiful.
I think the design of a robot should be cool.
I think a robot should have human-like shape.

6. Utility Robots are practical.
Robots are user-friendly.
Robots have functions that I find satisfactory with.
Robots are convenient.
I feel the necessity for robots in my daily life.

7. Cost I think robots are heavy.
I think the maintenance of a robot is difficult.
I worry about the robot breaking down.

8. Variety I think robots should make various sounds.
I think robots should have various shapes.
I think robots should have various colors.
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Table 2. Items of the Multi-dimensional Robot Attitude Scale (cont’d)

Dimension Question items

9. Control I think a robot could recognize me and respond to me.
I think a robot would obey my commands.
I want to tame a robot according to my preferences.

10. Social support I expect my family or friends to teach me how to use a
robot.
I expect my family or friends to help me when I use a
robot.
I expect my family or friends to advise me how to use a
robot.

11. Operation Robots can be used by remote control.
Robots can be controlled by a button (on the robot itself).

12. Environmental fit I worry that robots are suitable for the state (layout of
the furniture and other things) of my room now.
I worry that robots are suitable for the circumstances
(width or numbers of ramps) of my room now.

to various dimensions of attitudes[1,8,22,23]. There is a broader variety of types
of robots than types of computers. Acceptance of robots with various character-
istics might be better explained in relation with diverse dimensions of attitudes.
The relations between the acceptance of a variety of robots and different dimen-
sions of attitudes should be further investigated in future studies.

Having 12 dimensions, the proposed Multi-dimensional Robot Attitude Scale
is designed to be a comprehensive attitude measurement tool that can assess
diverse aspects of attitudes towards robots. Thus, the scale is expected to be
used as a common reference in a wide range of human–robot interaction research.

The scale proposed in this study was designed to assess people’s attitudes
towards domestic robots in general. Conversely, as discussed above, there are
broad variations in the characteristics of robots. Measures that assess these vari-
ations in robot characteristics have also been proposed (e.g., [24]). The relation-
ships between these attitude dimensions and acceptance may differ depending
on the characteristics of robots, which should be investigated in future studies.

It is also possible to develop a multi-dimensional attitude scale for specific
types of robots, rather than domestic robots in general. How to design such
attitude measurements for specific types of robots should also be further studied.

At the time of the investigation, the samples of this study were not supposed
to have sufficient experiences in interacting with real robots. Thus the dimensions
extracted in this study are reflecting the viewpoints of people who are expecting
their future experiences with real robots. In that sense these dimensions are more
appropriate to discuss in relation with their acceptance. In future, the attitude
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Table 3. Cronbach’s alpha coefficients and correlations for factor scores by the scale
dimensions.

Dimension Cronbach’s alpha Pearson’s correlation

1. Familiarity 0.829 0.869 **
2. Interest 0.737 0.819 **
3. Negative attitude 0.731 0.920 **
4. Self-efficacy 0.857 0.923 **
5. Appearance 0.702 0.776 **
6. Utility 0.783 0.938 **
7. Cost 0.562 0.710 **
8. Variety 0.749 0.766 **
9. Control 0.643 0.615 **
10. Social support 0.923 0.838 **
11. Operation 0.750 0.554 **
12. Environmental fit 0.933 0.917 **

** p < 0.01

dimensions may be revised to reflect the viewpoints of people who already have
actual experiences in interacting with robots, so that the scale would be more
appropriate to measure the attitudes of people who are actually engaged with
them.

Finally, although participants from three different regions (i.e., Japan, main-
land China, and Taiwan) were surveyed in this study, the study was still limited
to East Asia. Individual differences in attitudes towards robots, as well as the
relationships between attitude dimensions and acceptance of robots with various
characteristics, should be investigated involving participants with more diverse
backgrounds in terms of age, sex, and culture, in order to provide wider social
perspectives.
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Abstract. Different studies explore the use of electronic screen media
to train specific social skills, since they provide visual elements which are
well accepted by children with ASD. However, even if children have high
levels of attention to the screen, this might also reduce the possibilities
of interacting with others. The challenge lays on finding ways to encour-
age and motivate the child to keep learning and share the experience
with others. For this reason, we propose a feasible framework composed
of three technologies: a tablet to train facial expressions recognition, a
humanoid robot as reinforcer, and a wearable device to quantify smiles.
We did a feasibility test with adults not only to verify the machine
response, but also to obtain qualitative data regarding the interaction
with the robot. In this study we analyze the importance and the syner-
gistic effect of combining screen media with the robot embodiment and
affective computing technologies.

Keywords: Robot assisted therapy · Human-robot interaction · Affec-
tive computing technologies · Electronic screen media

1 Introduction

Technology plays an important role in the diagnosis and treatment of Autism
Spectrum Disorder (ASD) as it can be adapted based on each individual’s abil-
ities and necessities. Since children with ASD has shown special interest to
technology, the number of studies that explores uses of technology is increas-
ing. Among the interventions using technology, one of the most commonly used
involves visual prompts. Children with ASD are considered visual learners, hav-
ing relatively more preference for visual cues compared to spoken language [1].
For that reason, different studies explore the use of electronic screen media to
train specific social skills, since they provide visual elements which are well
accepted by children with ASD. Screen media can also reduce the distraction
from the environment resulting to be less demanding for children with ASD [2].
However, this approach keeps children immersed and fixed on the screen content,
which might encourage repetitive and stereotypical pattern of behaviors. For this
c© Springer International Publishing Switzerland 2015
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reason, it has been proposed that computer interventions should include tangible
interfaces to enhance the experience and allow the children to interact with the
environment, making the learning process more natural [3]. The challenge lays
on finding ways to encourage children to focus not only on the screen, but also
to encourage them to interact with people around.

One potential solution involves the use of socially assistive robots on ther-
apies. Robot’s physical embodiment has different desirable effects on children
with ASD [4]. Moreover, robots can be used to elicit behaviors, to train a spe-
cific social skill, provide feedback or encouragement [5]. Different studies have
reported that the artificial appearance and visual stimuli make robots more
attractive and easier to understand compared to people. Humanoid robots with
simplified appearance are widely used in robot assisted therapies considering
that only human form can be used to train certain skills [6]. Robots can be used
not only to train or encourage children, but also to assist the therapist ana-
lyzing the child’s behavior. There is a necessity of quantitative measurement of
social behaviors that allow to objectively track the children progress. By using
robots on the therapies it is also possible to work under the same stimuli on each
session [7].

In this study we propose a feasible framework that combines a screen media
application with a humanoid robot and affective technologies in order to teach
facial expressions recognition to children with ASD. We divided this framework
in three different parts according to the role during the activity: 1) screen media
to teach social skills, 2) wearable devices to measure social behaviors and 3)
socially assistive robot to encourage and reinforce the child. We will explain how
these three elements come together in order to facilitate the social skills learning
to the child, and help the therapists to follow the child performance. At the
end of this report, we show the results of a feasibility study and describe the
challenges for this research in the future evaluations.

2 Framework Components

The proposed system is composed of three sections (Figure 1). A tablet appli-
cation for training children to recognize emotional facial expressions, a wearable
device to detect smiles using EMG signals and a humanoid robot as reinforcer
to motivate children to keep learning.

2.1 Training: Face Expression Expert Program (FEEP)

In the past, different studies reported the benefits of training social skills
using screen media [2]. We had developed the Face Expression Expert Program
(FEEP), a screen media application for training emotion recognition [8]. FEEP
runs on a tablet and it consists on ten different levels, starting from simple
emotional facial expression recognition until context-based emotion recognition.
The sample stimuli are four different facial expressions (happy, sad, surprised and
angry), and using a matching to sample (MTS) activity, the subject is presented
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Fig. 1. Proposed framework made of three different technologies for training, measuring
and encouraging.

with different situations on which he or she has to identify the appropriated emo-
tion (Figure 2). Every time the subject answer correctly, FEEP provides auditory
feedback and then moves to the next question. After finishing one activity, which
consist of about 8 questions, the subject is rewarded with a short video in order
to keep him or her motivated to continue learning. The video is chosen based on
each child’s preferences.

So far, previous studies using FEEP to train emotion recognition on young
children have shown the potential of this interface, and we are encouraged to
keep exploring its effect. However, one of the challenges is to find a way to keep
children motivated to keep learning using FEEP during the therapies. Rein-
forcement is a key element, considering that when children enjoy the activities,
they have the highest disposition to learn. One study in the past using screen
media to train emotion recognition reported the importance of including physical
interaction during the activity [3].

2.2 Measuring: Smile Detector

There is the necessity of designing tools that provide quantitative and objective
data to facilitate the treatment and diagnosis of autism [7]. The potential of using
wearable devices lays on the data collection that describes specific behaviors [9].
In the past, we developed a wearable device to detect different facial expressions
based on muscles activity [10]. The device uses 2 pairs of dry-type electrodes that
measures EMG signals from both sides of the face (Figure 2). This configuration,
allowed us to set and remove the device quickly, which is beneficial specially when
treating with children with ASD. Compared to computer vision approaches, this
device allows to collect data even if the subject is not looking at the camera.
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FEEP

EMG based 

smile detector
Electrodes

Fig. 2. One participant completing the activity using FEEP. The robot was used to
give instructions and the wereable device to meassure the smiles.

We confirmed the device performance and reported an experience with children
with ASD wearing the device [10] [11].

There are several benefits of including affective technologies in therapies.
Physiological signals can provide significant emotion related information, and
specifically EMG signals from the face can tell us about pleasure or displeasure.
In other words, these technologies have the potential to help children to commu-
nicate their interests. Based on the potential of affective computing solutions, in
a previous study we found that children with ASD showed more positive social
behaviors when the amount of smiles increases [11]. This suggests that if the
child is placed on situations that make him or her smile, this might lead to
positive behaviors. For this reason, we want to explore the use of this device on
robot assisted therapies to better understand the level of enjoyment and positive
disposition to participate on the activity.

2.3 Encouraging: Socially Assistive Robot

In the past, a study explored the uses of a robot with an embedded screen to
introduce stories to children with ASD [12]. The results showed the potential
of using robots combined with screens to facilitate children’s learning. In this
study we are using a humanoid robot Pepper, from Aldebaran Robotics and
the Softbank Group. In this proposed activity, the role of the robot is like a
co-therapist, and it will be used to introduce the activity and provide encour-
agement every time the child finishes one session with FEEP. We expect to also
encourage the child to share the experience with the therapist, reducing the
periods when the child is immersed on the screen content. Different studies have
proposed a set of behaviors for humanoid robots on different scenarios [13] [14].
These studies focused on using the robots to elicit behaviors on the participant,
and they pointed out as an important benefit the structured way robots can
deliver prompts. Based on this potential, we followed some design parameters
from [15], and we will build our framework with the following requirements:

1. Appearance: using a robot that is visually engaging. Pepper will use LED
color and the screen contents to try to catch the child attention.
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Robot behavior Description of the interaction 
scenario Robot exhibited behavior 

Behavior 1 Pepper introduces itself and calls 
out the participants name 

(Happy animation)Hello, my name is pepper. 
(Enthusiastic animation)Nice to meet you 

(Name). Let’s play together 

Behavior 2 Pepper briefly introduces the 
activity to the participant 

(Hands gestures) Let’s do the activity 
displayed on my screen (Gestures toward screen)

Try touching the screen 

Behavior 3 Pepper gestures toward the 
screen 

(One hand points at the screen and the head 
look to the screen and wait)

Behavior 4 Pepper rewards the participants 
effort with an special animation 

Option 1(High Five): 
(Enthusiastic animation)  Good Job! Give 
me a High Five!(Pepper perform the motion 
and lift the arm. Waits 2 second and put it 

down)(Enthusiastic animation) It was fun, 
let’s keep playing together 

Option 2(Song): (Happy animation) Good 
Job! Start the music. (Pepper slowly dance a 

selected song for 20 seconds) 
(Happy animation) It was fun, let’s 

keep playing together 

Behavior 5 Pepper says good bye (Bow animation) Thank you very 
much! It was fun! 

Behavior 1 Behavior 2 Behavior 5Behavior 4Behavior 3

Fig. 3. Brief description of the robot behaviors (Top) and photos of the different robot
behaviors (Bottom).

2. Safety : considering that the child will be close to the robot embodiment
to manipulate the tablet, we designed slow and controlled animations. This
includes remote control that allow therapist to execute the robot behaviors
based on the observations of the child’s performance.

3. Autonomy : we aim for a semi-autonomous system using a server that allows
changing messages from the tablet to the robot, to give it certain autonomy.
This will reduce the human intervention only for those cases when it is
necessary (according to the child’s behavior), to try to offer a constant stimuli
to the child.

Based on these requirements we started defining the interactions scenarios.
We asked the therapist to describe a common activity flow using FEEP, and
how it is usually introduced to the child. From this, we came with a set of
five behaviors for the robot (Figure 3). Each scenario targets a response from
the participant, and this is the condition to execute the next robot behavior.
On this interface, the controller is faced with questions related to the child’s
behavior, and by answering yes or no, the program executes a behavior on the
robot based on the flow chart (Figure 4). Additionally to the yes or no options,
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START Behavior 1 : Greeting
The participant 

is looking at 
the robot

Behavior 2 : Introduction
The participant is 

looking at the robot 
or the tablet

Behavior 3 : Tablet The participant 
is doing the activity

Behavior 4 : Reinforcement
The participant 

did FEEP 3 times Behavior 5 : Good bye END

N

Y

N N

Y Y

Y

Fig. 4. Flow diagram with the conditions to execute each behavior.

the controller can input numbers that will call any behavior at any moment
during the session, and for example, if the participant lose the motivation on the
activity, the controller can call the last behavior at anytime to finish the session.

3 Performance Evaluation

We did a feasibility study with ten participants (average age 23) 4 males and 6
females. We are trying to verify the quality of the user experience with the robot.
Before starting the session, we asked each participant about past experiences
with robots. Also, we requested them to rate from one (Not very much) to five
(Very much) how comfortable they are with the idea of having robots in everyday
life. The participant sat down in front of the robot with enough separation to
reach the tablet. Then we instructed them about the way to use FEEP and we
asked them to follow the robots commands regarding when to start or stop the
activity. The controller was standing behind a panel observing the participant’s
interaction with the robot.

The session started with the first behavior (Figure 4), and going forward
only if the participant met the condition. The robot speech was translated into
Japanese, considering that the expected subjects are Japanese children. During
the session the participant received instructions only from the robot. The session
finished after three FEEP lessons were completed.

After the session, the participants were asked to answer two questionnaires.
The first one was the International Positive and Negative Affect Schedule Short
Form (I-PANAS-SF) [16] since the participants are not English native. This
questionnaire included 20 items referring to positive and negative affects, and
the participants rated them from 1 to 5 according to the extend they felt while
interacting with the robot (momentary experience). Then they were asked to
fill an adapted version of the Intrinsic Motivation Inventory (IMI) questionnaire
[17] to evaluate the user’s opinion of the scenario. From the 5 subscales, we chose
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Fig. 5. A) Results from I-PANAS-SF questionnaire B) Results from IMI questionnaire.
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Fig. 6. Data collected: the gray colored area is when a smile was detected and the area
under the dotted line is when the robot was doing reinforcement.

the ones that are more relevant to the experience: Interest/Enjoyment and Pres-
sure/Tension. Each subscale is composed of seven items, and we selected three
for each subscale. These six items were randomly ordered, and the statements
were slightly modified to fit this specific task.

The second part of the feasibility study includes the smile detector. From the
10 participants we selected one (Female, 28 years old) without a special criteria,
and asked her to wear the device to quantify smiles. With this test we want
to verify the potential use of the three components of this framework working
together, and to find out the best way to use this device during therapies.

The purpose of this feasibility study was basically to observe how the partici-
pant interact under each robot prompt and confirm the response of the developed
system. Since it is difficult to perform a qualitative analysis with children with
ASD, the answers of these questionnaires will provide us with insights about
the user experience and how comfortable they were while interacting with this
robot.

4 Results

Regarding the familiarity with robots 4 participants reported to have interacted
with robots in the past, but none of the ten participants had ever programmed
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or worked with robots. In average, the participants rated 4.1 referring to the
question of including robots in everyday life. Figure 5A shows the results from
the I-PANAS-SF questionnaire. The error bars represent the standard deviation.
We obtained an average of 30.10 out of 50 (SD=7.81) of positive affects and 16.10
out of 50 (SD=4.65) of negative affects. Then, Figure 5B represents the results
from the IMI questionnaire with a score of 5.999 out of 7 (SD=0.96) for the
subscale of interest/enjoyment and 3.20 out of 7 (SD=1.72) for the subscale of
pressure/tension. Regarding the second evaluation using the smile detector, we
chose to analyze an interval that includes the robot reinforce behavior. Figure 6
shows four EMG signal from the participant during the activity. The grey colored
areas represent the intervals when a smile was detected and the area under the
dotted lines is the interval when the robot did the reinforcement behavior.

5 Discussions

We performed a feasibility study and we could verify the machine response and
the interaction scenarios. The first test included 10 participants who interacted
with the robot while completing three lessons using FEEP. These participants
reported not to be very used to robots, but in general they showed high interest
on them. Regarding the results from the I-PANAS-SF questionnaire, a high score
of positive affect refers to a state of high energy, pleasurable engagement and high
concentration, while a high negative affect refers to anger, fear and nervousness.
Generally for this questionnaire, the mean score for momentary positive affects
is 29.70 (SD=7.90) compared to our result 30.10 (SD=7.81). In the other hand,
the mean score for momentary negative affects is 14.80 (SD=5.40) compared to
our result 16.10 (SD=4.65). Both, positive and negative affects, scored slightly
higher than the mean. These results match the comments we obtained from the
participants saying that they could enjoy the activity in general and also, they
could focus on the tablet content since the robot stop moving when they were
working at it. However, sometimes the robot movements and reactions made
them feel nervous or insecure, especially the reinforcement sequence considering
that it was executed after the user was using the screen and it also required the
user to touch the robot. One of the possible causes is that the participants were
sitting very close to the robot while manipulating the screen.

The results from the IMI questionnaire are in line with the ones from PANAS,
since the average for the subscale of Interest/Enjoyment was high, scoring 5.99
out of 7, while the Pressure/Tension was more neutral, scoring 3.20 out of 7.
Again we observed the influence of the negative affects related to nervousness,
fear or pressure, but they did not affect the general enjoyment of the activity
with the robot. To reduce the negative affects we plan to make sure not to move
the robot arms when the participants are manipulating the table, and instead,
make the robot ask them to make space. Even if it is not possible to tell how
children will feel when using this system, we can work on reducing the causes
that might elicit negative affects based on the obtained feedback.

The second test included the wearable device to detect smiles. We wanted
to verify the potential of using the device on this framework. Figure 5 shows
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for example, an increase of EMG signals during the robot reinforce behavior.
We could observe that it is possible to follow the participants positive affective
behaviors during the sessions, and understand when the participant smiles, and
which stimuli was eliciting it. We consider this kind of affective technology an
especially important component for this therapy, since children with ASD have
difficulties to express their emotions or interest. We expect that by being able to
objectively quantify their smiles and provide a constant and adequate stimuli,
the therapy will be more effective.

In the current implementation, all the robot behaviors are manually con-
trolled according to observations of the participant’s behavior. Future improve-
ments include making the system semi-autonomous reducing the human
intervention based on the importance of standardizing the sessions. We plan
to send messages from FEEP to the robot every time the subject finishes the
lesson, and from the wearable device every time the subject is smiling to make
the robot react emphatically to the subject.

6 Conclusions

In this paper we proposed a protocol composed of three technologies to assist
therapies for children with ASD: screen media based learning using FEEP, facial
expression measuring using a wearable device and encouraging behaviors using
a humanoid robot. The first component, FEEP, uses visual stimuli to train emo-
tional facial expressions recognition. In the past, we showed the potential of
this interface. However, we want to explore other ways to encourage children
to keep learning and share the experience with others around. For this reason
we proposed the use of a humanoid robot as a co-therapist. We designed dif-
ferent behaviors with the purpose of eliciting some actions from the subject.
Every time one lesson was completed, the robot showed positive reinforcement.
The last component involves affective technologies, and it consists of a wearable
device to detect facial expressions. In this framework we use it to measure the
smiles as a cue of motivation and positive affects. Having finished the feasibility
test and checked the function of each component, the next step would be to test
it with children with ASD. With this approach, we could verify which aspects of
the robot behavior have more negative affects on the users. We consider that this
qualitative analysis represents an important initial step, since is almost impos-
sible to obtain any qualitative data from children with ASD. Combining these
three technologies we expect to verify on which ways the robot can assist children
with ASD recognizing emotions using FEEP.
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Abstract. This paper presents an exploratory study on children’s con-
tributions to the design of a robotic teaching assistant for use in the class-
room. The study focuses on two main questions: 1) How do children’s
designs differ from interaction designers’? 2) How are children’s designs
influenced by their knowledge of robotics (or lack thereof)? Using a cre-
ative drawing approach we collected robot drawings and design discus-
sions from 53 participants divided into 11 groups: 5 groups of interaction
designers (24 participants), 3 groups of children with robotics knowledge
(14 participants), and 3 groups of children without formal robotics knowl-
edge (15 participants). These data revealed that (1) interaction design-
ers envisioned a small or child-sized non-gendered animal- or cartoon-like
robot, with clear facial features to express emotions and social cues while
children envisioned a bigger human-machine robot (2) children without
formal robotics knowledge, envisioned a robot in the form of a rather
formal adult-sized human teacher with some robotic features while chil-
dren with robotics knowledge envisioned a more machine-like child-sized
robot. This study thus highlights the importance of including children in
the design of robots for which they are the intended users. Furthermore,
since children’s designs may be influenced by their knowledge of robotics
it is important to be aware of children’s backgrounds and take those into
account when including children in the design process.

1 Introduction

Involving users in the design of technologies is an important step to ensure the
technologies’ usefulness and acceptance. As robots in different forms are cur-
rently entering our daily lives, they are also entering children’s lives as toys, pro-
grammable objects, teaching aids, or even as tutors (for example in the EMOTE
project1). We therefore think that children’s views on the design of robots for
the classroom should be taken into account.

However, as Dautenhahn [1] indicates, what the word ‘robot’ means is not
fixed and changes over time. In fact, real advances in robot technology, fictitious
1 EMOTE project: http://www.emote-project.eu/

c© Springer International Publishing Switzerland 2015
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capabilities of robots displayed in the media, and exposure to existing robots,
may influence how children envision the design of a robot for use in the class-
room. While it is hard to investigate the influence of exposure to robots in the
media on children’s expectations about a robotic teaching assistant, it may be
possible to explore how actual knowledge of robotics may influence children’s
design contributions. Therefore, the aim of this study is to explore the design
views on robots in educational settings with three groups: interaction design stu-
dents, children without any formal robotics knowledge (non-robotics children)
and children with some formal robotics knowledge (robotics children). By doing
so, we want to explore the following research questions: 1) How do children’s
designs differ from interaction designers’? 2) How are children’s designs influ-
enced by their knowledge of robotics (or lack thereof)?

In the following section we present related research on the use and design of
robots in education, leading us to define our study on children’s contributions
to the design of robotic teaching assistants.

2 Related Work

Human-Robot Interaction (HRI) researchers have addressed the deployment of
robots in educational settings such as schools to help in assisting teachers in their
classrooms. This is one of the main application areas in the HRI field. Mubin et
al. [3], give an overview of the research development of robots in educational use
within the HRI field, showing that robots in education are generally deployed
as assistants to the teacher. Other researchers have presented findings of stud-
ies investigating children’s design requirements for robots in different contexts.
Sciutti et al. [5], for example, found that opinions on what features were consid-
ered important in a robot companion change with age: before the age of nine,
children pay more attention to a human-like robot appearance; older children
and adults are inclined to think more of its skills and functions. They also found
that when children have been able to see and interact with a robot they pay
more attention to perception and motor abilities in a robot, rather than just its
shape. This suggests that actual experience with robots, such as in a robotics
class, may influence children’s design requirements.

Woods [7] performed two studies to investigate childrens views on the design
of robots in general. In the first she investigated childrens views on robot appear-
ance, movement, gender, and personality. Children between 9 and 11 were asked
to choose a robot picture and fill out a questionnaire. The pictures displayed dif-
ferent robot attributes: mode of locomotion, body shape, looking like an animal,
human or machine, the presence or absence of facial features, and gender. The
questionnaire contained questions about the robots appearance and personal-
ity. Based on this data Woods identified two dimensions in childrens evaluations
termed ‘Emotional expression, ranging from happy to sad, and Behavioral inten-
tion, including friendliness, shyness and fright versus aggressiveness, bossiness
and anger. Human-machine robots were considered the most friendly, shy and
frightened types of robots. However, each of the robot attributes in isolation
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could not explain why a robot was placed in each of these categories. Woods
thus argued that robot designers should “consider a combination of physical
characteristics rather than focusing specifically on certain features in isolation”
[7]. Furthermore, there was also tentative evidence for the Uncanny Valley effect,
where children were increasingly positive towards robots that were more human-
machine like instead of purely machine-like, but showed a sharp drop in positive
attitude towards robots that were very human-like.

In the second study a similar methodological approach using pictures and a
questionnaire was adopted [8]. However, in this study the children were asked
to choose one or more robots to write an interesting story about how robots
would behave together in a school that was populated with robots, discussing
both friendships and bullying behaviour. The results of this study were congru-
ent with those of the first study. The children usually assigned the male gender
to the robot images, but that they did not associate this with either particularly
positive or negative qualities. However, when the female gender was assigned,
this was associated with positive characteristics such as friendliness. Once more,
the children expressed some discomfort towards images of too human-like robots.
Related to the stories, boys wrote more science-fiction themed stories than girls,
which the researchers attributed to boys being more exposed to films and com-
puter games that depict science-fiction themes. Girls, on the other hand, more
often assigned emotions to the robots.

Shin and Kim [6], interviewed school students to investigate their attitudes
towards learning about, from, and with robots. They also asked them what
their image of a robot was. While the students had a positive attitude towards
learning from robots because they were perceived as more intelligent and liable
to make fewer mistakes than human teachers, most were not favorable to the
idea of robots teaching in schools. This was mainly due to robots lack of emotion,
which they considered important for teachers. They also saw the robots as being
male or genderless, which the researchers attributed to their exposure to robots
in the media.

In general, previous studies that address children’s design contributions for
robots have applied questionnaires and structured interviews. However, allowing
children to present their own imaginations of a robotic teaching assistant in
school, similar to what Lee et al. [2] did for adults’ views on the design of
domestic robots, could lead to additional insights. Our study aims to understand
the differences between interaction designers’ and children’s views on the design
of a robotic teaching assistants, as well as investigate the effects of robotics
knowledge on children’s views.

3 Study

In the exploratory study described below, we followed the ethical guidelines for
studies in HRI [4]. The interaction designers signed an informed consent form
before participation. For the children, the parents and/or caregivers signed the
consent form and the children consented orally to participate in the study.
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Table 1. Demographics of the children’s groups

Group ID — Nr of children — Mean age — Gender (F, M)

No robotics knowledge

C1 5 11.0 2, 3
C2 5 10.2 3, 2
C3 4 10.8 2, 2

Robotics knowledge

C4 5 11.2 3, 2
C5 5 13.4 0, 5
C6 5 10.6 1, 4

3.1 Participants and Procedures

Interaction Design Students: Twenty four international second year masters
students (age 23-40, M=27.5, SD=3.69) from the interaction design program at
the Chalmers University of Technology in Sweden participated. Before the design
session, the students had attended one lecture on HRI in which the aim was to
expose them to a whole range of social robots with different application areas:
therapy, education, and entertainment. Thereafter, they were asked to design
a robotic teaching assistant for children between 11 and 13 years old. There
were five groups (D1-D5) of 4-5 students with mixed nationalities and gender.
They were not informed about a specific task for the robot other than that
it should function as a teaching assistant in the classroom. During the design
process they were left by themselves to freely discuss their designs. All groups
were instructed that they had 20 minutes to discuss and draw an assistant robot
on an A3 sheet using a variety of colored pens. One high quality voice recorder
per group captured the discussions, which were held in English.

Children: There were two main groups of children from a Portuguese school:
children without formal robotics knowledge and children enrolled in a robotics
course at school. Each of these was divided into smaller groups of 4-5 children
(C1-C6). Table 1 shows the demographics of these groups. Children in groups
C4-C6 were enrolled in a robotics course, however, the children from groups C4
and C5 had completed two years of the course, but group C6 had only completed
one school semester of the course. As the table shows, the gender distribution
in the groups was unequal, which was due to the robotics course being optional,
and attracting slightly more boys.

The same procedure as for the interaction design students was followed. How-
ever, the children did not receive a lecture on social robotics, and the designs
were made at a separate classroom of the school with only the researcher present.
The researcher kept a distance to enable the children to freely express their ideas;
only intervening when asked a question. All groups were instructed that they
had 20 minutes to discuss and draw an assistant robot on an A3 sheet using a
variety of colored pens. One high quality voice recorder captured the discussions,
which were held in Portuguese.
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Fig. 1. A summary of the robotic attributes extracted from the design drawings of
the three groups (interaction designers, children with robotics knowledge and children
without robotics knowledge). The categories on mode of locomotion, body shape, looks
like, facial features and gender are based on the categorization of Woods [7].
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4 Analysis and Results

This section presents the analysis and results of the drawings and discussions
by the different groups (interaction designers, children with and children with-
out formal robotics knowledge). Figures 2-4 show the design drawings by the
different groups. While the groups were allowed to write comments about their
design in the drawing, these have been removed from the figures for clarity’s sake,
for example the size of the robot or materials. All recordings were transcribed,
and if necessary translated to English. Unfortunately, one of the recordings of
the interaction design students was corrupted and omitted. The first and sec-
ond author then analysed the drawings, using Woods’ [7] robot attributes as a
first coding scheme, and adding new attributes when necessary. Thereafter, they
extended the analysis by listening to the audio recordings and reading the tran-
scripts to identify passages in which the participants revealed additional design
features that were not present in the drawings alone, for example the size of the
robot. If possible, they also tried to identify the reasons for the characteristics
of the robot in the drawings. If an attribute was present in one of the drawings
or transcripts of one or more groups it was marked as present. This resulted in
the analysis presented in Figure 1, in which colored cells indicate the presence
of a attribute. The third author independently analysed these characteristics
based on the drawings and transcripts to determine reliability (Cohen’s Kappa
k = 0.74). In the subsequent sections we present some typical characteristics of
the robots designed in combination with the reasoning behind it; we will present
participants as follows: D1-1 = Designer from group D1, first participant, C4-2
= Child from group C4, second participant.

4.1 Interaction Designers

The five drawings of the interaction designers are presented in Figure 2.

Fig. 2. Drawings of interaction designers

All drawings were rather small cartoon- or animal-like robots. There were
several, slightly related reasons for this choice. First of all, the robot’s appear-
ance should not lead to a mismatch between the robot’s actual and expected
capabilities: D1-1: Yeah, kind of [if it] like had some sort of normal head and
arms and one of the girls just said ‘thank you for this course’ and he didn’t
respond to that because he is a robot. D1-2: Yeah, it’s kind of weird. D1-1: So
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it’s better to make it some sort of. D1-3: Pet?. Second, the choice of appearance
was related to the fact that the robot would be in the classroom together with
the teacher. The following excerpt illustrates this: D1-2: Because I think for me,
if I have a teacher who already has authority, I don’t want a teacher assistant
to have authority as well. D1-4: Yeah. He need not to have so much authority
but at the same time if it’s super cute, I don’t know, children won’t learn any-
thing. [...] D1-2: Professional but cute. [...] D1-3: What about an owl?. Third,
the interaction designers also wanted the robot to be not too intimidating, which
led to the design of a relatively small sized robot (the same height or smaller
than the children), as is illustrated in the following excerpt: D3-1: I was also
thinking about something, because they are students from 11-13, so usually they
have a robot that is small, what about having a robot that is the same size as the
students so they feel like hes a friend as well?. Finally, the interaction designers
consciously aimed for a non-gendered or neutral robot design, for example, one
group discussed gender in relation to the robot’s shape, D4-1: Shall we go with
the egg design? D4-2: Yeah, I like that. D4-1: I like that one because its more
neutral, while another group addressed color design in relation to the robot’s
gender, D1-1:Just make it colorful! Probably make it half blue and half pink, as
kids always thinking blue is for boys, pink is for girls. D1-2: Or super lime green.
D1-1: Or do pink here and green here so they cannot say this is for boys or for
girls. D1-2: Or just use blue as unisex.

4.2 Children without Robotics Knowledge

The drawings by the three non-robotics groups are presented in Figure 3.

Fig. 3. Drawings of children with no formal robotics knowledge

The robot’s appearance in these drawings was similar to a human teacher,
with two legs and an adult size, as the following excerpt illustrates: C2-1: I think
the robot should look like a person, it is strange to be talking to a machine. C2-2:
[The robot] should be like a person, and mimic a person. Furthermore, the robot
had to be representable as expressed in this excerpt: C1-1: You could put those
half torn trousers. C1-1: Dont ruin the drawing. C1-2: No, we do not want a
bum teacher. It also had a more formal look than a usual teacher: C2-1: It should
also have a tie like our school principal has. All robots were clearly gendered,
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which was visible in the drawings and the discussions: C1-1: Is it a female or a
male teacher? C1-2: A male teacher. C1-3: It is a male robotic teacher, I have
never seen a robota [Portuguese for female robot]. Another groups said:C3-1: It
is a girl-robot because we usually see the ladies, like moms and other ladies, as
more friendly, like a good mother that cares. While all robot designs resembled
a human teacher some aspects were generally differing from a human teacher.
First, while the robots did have some facial features they were sometimes rather
crude and displayed on a screen. Second, the hands were usually different from
actual human hands, displaying tools, LEGO-hands, or four fingers. The robots
in all groups had a tool-belt (groups C1 and C2) or bag (group C3) to carry
materials or tools. Finally, the body shape was more squared than in humans.

4.3 Children with Robotics Knowledge

The three drawings of the robotics children are presented in Figure 4.

Fig. 4. Drawings of children with robotics knowledge

The robot of group C6 showed a clear resemblance to the robots drawn by
the non-robotics children. This group of children was slightly younger and had
started the robotics course later than the others. Therefore, our analysis mainly
focuses on the designs of group C4 and C5. For these groups the appearance of
the robot was more machine-like, and the children showed a clear awareness of
the fact that a robot is a machine: C4-1: But imagine you want to talk with the
robot. C4-2: The robot gets up and goes to you. C4-3: And as you are. C4-1: Yes,
but the person who will coordinate it is. C4-2: It will make it autonomously. C4-
1: And if it loses his mind and you cannot ask it some questions? C4-2: No, but
it is planned to do certain things, is not planned to have a head and do what he
wants. The robots were bigger than the interaction designers’ robots but smaller
than the adult sized robots in the non-robotics groups. Some aspects that were
more machine-like in these drawings than in the non-robotics groups’ drawings
were the legs and the face. Instead of simply drawing two legs these groups
applied their knowledge about the challenges behind smooth robot movement.
For example, group C4 discussed: C4-1: Legs no, [...] those robots can lose their
balance or something like that, and group C5 stated: C5-1: Wheels, and we put
up a kind of black line on the ground for it to follow. Although the robot designs
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included a simple representation of a head, the faces did not show many facial
features and they could also be used to display other information as shown in
Figure 4(4). The children in this group reflected on having an iPad that could
act as the face but also display information exhibited by the class teacher: C4-1:
a kind of iPad that showed things that the teacher wanted.

While the non-robotics groups generally envisioned human-like interaction
through speech and the use of tools placed in the robot’s hands from a tool
belt or bag, the robotics children explicitly included sensors, microphones, LCD
screens and speakers to realise the interaction.

In comparison to the interaction designers, all children, both the robotics
and non-robotics groups, mentioned the materials to construct the robot, such
as metal, carbon-fiber, and aluminium. Furthermore, many groups reflected on
how the robot would be powered, including solar energy and battery options.

5 Discussion and Conclusions

This study aimed to explore two questions: 1) How are children’s views on the
design of robotic teaching assistants different from interaction designers’ views?
2) How are children’s views on the design of robotic teaching assistant influ-
enced by their knowledge of robotics (or lack thereof)? Concerning the first
question, interaction designers often envisioned a robotic teaching assistant that
was clearly different from a human teacher, for example a smaller animal- or
cartoon-like robot. Their reasoning was that the robot should be professional but
non-threatening, not having the same authority as a teacher but working in par-
allel with the teacher. In contrast, all children envisioned a human-machine robot
instead of an animal- or cartoon-like character. Furthermore, children focused
more on the materials and how the robot was powered, while the interaction
designers were more concerned with the robot capacity to display emotions.
Concerning the second question, the children with some formal knowledge of
robotics were more inclined to design a robot with machine-like characteristics,
while children without any formal robotics knowledge envisioned a rather human-
like robot similar to a rather formal teacher but with some robotic details, such
as a screen as head and robotic hands. These children also designed a way for
the robot to carry on some tools that can be used in the classroom. While Sci-
utti et al. [5] found that children below the age of nine pay more attention to
human-like features than older children and adults, we thus saw a similar effect
related to children’s formal robotics knowledge.

The robots designed by the children were rather similar to the robots that the
children in Woods’ [7] study thought were the most friendly, shy, or frightened
robots. In contrast, the animal-like robots designed by the interaction designers
would, according to Woods’ study, fall in a category scoring slightly lower on
these characteristics. In the study by Shin and Kim [6], many children were
not favorable towards a robot as a teacher because a robot lacks emotions. It is
therefore interesting to note that several drawings of the children only envisioned
a limited display of emotions on a screen. We conjecture that it is possible that
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since children, especially those with some robotics knowledge, do not think that
a robot can have real emotions, the face is less important to convey emotions.

This study has some limitations: first, the number of participants, and espe-
cially the number of groups was rather small. Second, while the interaction
designers were a culturally mixed group, the children were all Portuguese. Third,
while the interaction designers, as part of their education, had seen a range of
social robots, the children were not introduced to different robot designs. This
was done consciously, in order not to level out any differences between the groups
of children, but it may have increased the difference between the children and the
designers. Finally, we are aware that participants, including the children without
any formal robotics knowledge, have been exposed to robotic ideas through the
media. This was for example visible in the excerpt where one child mentioned
that he/she had never seen a female robot. The designs of all groups thus rep-
resent a mix of design characteristics taken from the media, imagination, and in
some cases, formal knowledge of robotics. Despite these limitations, our study
presents distinguishing attributes for a robotic teaching assistant extracted from
children’s and designers’ drawings that highlight the importance of including
children in the design process of robots. Furthermore, children’s contributions
to the design may be influenced by their knowledge of robotics. Therefore, when
including children in the design process, one needs to consider how factors such
as knowledge of robotics may affect children’s design contributions.
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Abstract. Older adults in rural communities who have chronic health condi-
tions are often isolated from social support and medical clinics. Robots may be 
able to assist with day to day healthcare and provide companionship. This paper 
presents four case studies of older adults who had chronic health conditions in a 
rural community. They were given a healthcare robot in their homes for a pe-
riod of three months to a year. The robot reminded people to take medications, 
had entertainment and memory games, and skype. Rates of hospitalizations, 
primary care visits, and phone calls to the medical practitioners before the study 
began were compared to rates during the study period. Participants also com-
pleted questionnaires about their quality of life, mental health, medication adhe-
rence, and robot attitudes and were interviewed. The results showed a decrease 
in primary care visits and phone calls to the practitioners while the robot was 
present and increases in quality of life were observed. Despite encountering 
technical issues, patients were mostly positive and accepting of the robot,  
acknowledging its benefits as a companion. 

Keywords: Ageing in place · Healthcare robots · Companion · Adherence · 
Quality of life  

1 Introduction 

1.1 Caring for an Ageing Population in Rural Communities 

Older people with chronic conditions who live in rural communities face many chal-
lenges. Geographic isolation, lack of transport, and a shortage of medical care profes-
sionals can hinder them from receiving the medical care that they need [1]. Especially 
for those living alone, managing chronic illnesses can be difficult. It can be hard to 
follow medication schedules as cognitive functions decline [2,3]. If people are unable 
to properly adhere to their medications, they may no longer be able to live indepen-
dently, resulting in institutionalization. Rural older adults are also prone to experience 
loneliness as a result of geographic isolation [4]. Loneliness has been linked to a 
higher possibility that an older adult will lose his/her independence and be sent to 
institutionalised care [5]. Relocation to institutional facilities can have detrimental 
effects on the well-being of older adults [6]. ‘Ageing in place’, or having older adults  
live in their own homes independently for as long as they possibly can, is seen as the 
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more favorable option by older adults, governments and care funders [7]. Socially 
assistive robots may be able to help individuals to remain independent in caring for 
themselves in their own home [8].   

1.2 Robots and Ageing in Place 

A number of healthcare robots have been developed and tested with older people [9]. 
However, very few studies have investigated the deployment of healthcare robots in 
the homes of older adults. Most socially assistive healthcare robots have been trialed 
in nursing homes or long-term care facilities, where nursing staff or researchers are 
often present to facilitate the interaction between the robot and resident, for example, 
[10,11]). Many studies have been small and observational in nature, however results 
are promising. A randomised controlled trial has shown reductions in loneliness in a 
rest-home/hospital setting with a pet-type robot [11]. 

One observational study investigated pet-type robots in the homes of 5 older adults 
for 5-17 days [12]. Results suggested users need to be aged over 75 and isolated, and 
that the robot should enable communication with family and have cognitive stimula-
tion as well as important reminders. A robot that was capable of medication and ap-
pointment reminders, skype and games (the iRobi healthcare robot) was tested in a 
cross-over trial in the homes of 13 older adults living independently within a retire-
ment village [13]. The robots were shown to be acceptable although they did not in-
crease adherence or quality of life. Reasons for the lack of significant differences may 
be the small sample size and that residents were fairly well supported in the retire-
ment village. Older adults living in rural communities may benefit more from robots 
in the home, due to greater isolation. 

1.3 Aims and Hypotheses 

This study aimed to test the feasibility and usefulness of robots to support older pa-
tients living alone in a rural community to manage their medication. It was hypothe-
sized that the robots would reduce rates of hospitalizations, primary care visits, and 
phone calls to the medical practitioners, as well as increase medication adherence and 
quality of life.  

2 Methods  

2.1 Setting and Ethics  

The study took place in the rural town of Gore, located in the Southland region of 
New Zealand. Gore is located between the two urban cities of Dunedin and Invercar-
gill, and has a population of around 12,200 people [14]. Patients were recruited from 
Gore Health Limited, which includes a hospital and a primary care clinic that  
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provides care to 3500 patients. Approval was gained from the University of Auckland 
Human Participants Ethics Committee. 

2.2 iRobi 

iRobi is made by Yujin Robot in South Korea (Figure 1). Researchers at the Universi-
ty of Auckland have developed and trialled iRobi to support older adults living at 
home, or in assisted living facilities [15]. iRobi has been programmed with health-
care focused software. Applications are web-based and are run on a Windows XP 
operating system. The applications used in this study were the following: a medica-
tion reminding system, entertainment (memory games, music videos, quotes, web 
access); allowing telephone calls to phone numbers via Skype, or Skype to Skype 
communication; and user greetings and identity confirmation. The blood pressure 
measuring system was not used in this study. iRobi has a touch screen interface and 
displays information on its screen as well as talking to the patient via audio. It has 
LED lights on its face to express emotions, and raises its arms and sounds a tune 
when medications are due. His head moves towards sounds, and it responds to touch 
on the head by saying ‘hi’or ‘ouch’, and says ‘I am hungry’ when short of battery life. 
 

 
Fig. 1. iRobi sitting on a counter (left); iRobi’s user interface (right)   

2.3 Research Design  

Five case studies were performed.  Case studies are useful for preliminary research 
and they permit investigations when it is impractical to conduct larger studies [16]. 
Case studies provide rich qualitative information that can inform and shape future 
research. They are frequently used in clinical medicine and psychology. Interviews, 
clinical notes and questionnaires were used to collect data. Participants were  
given iRobi robot in their homes for at least 3 months and outcomes were compared 
before and after they had the robot. The primary outcomes were the numbers of  
hospitalizations, visits to primary care, and phone calls to the medical practitioners. 
Secondary outcomes were quality of life, medication adherence, and perceptions 
about robots. 
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2.4 Participants  

Clinic staff at Gore Health Limited identified five older patients who lived alone and 
had chronic health conditions. All were on multiple medications, and it was thought 
the robot could help with medication adherence and companionship, and improve 
communication with relatives using Skype. Staff informed these patients and their 
relatives about the study. Two of these patients had already piloted the robot at home 
for 9 months, one of whom agreed to be interviewed about the robot but was moving 
to a rest home so could not take part in the study (patient A, male, aged 88 years). 
Baseline and final interviews were conducted with the remaining four patients who 
participated in the 3-month study. These participants were all widowed women aged 
over 75 years. Patient B was unable to complete the final questionnaire due to deteri-
orating vision. 

2.5 Procedure  

Before each participant was given a robot, the researcher obtained informed consent 
and gave the participant the baseline questionnaires in their own homes. Quality of 
life was assessed with the SF-12 scale which has physical and mental component 
scores that range from 0-100 and higher scores reflect better function [17]. Attitudes 
towards robots were assessed with the Robot Attitude Scale [18] which has high in-
ternal reliability and scores range from 10 to 80, where higher scores reflect more 
positive perceptions. The Medication Adherence Report Scale (MARS; [19]) was 
used to assess adherence where scores range from 10 to 50 and higher scores reflect 
higher adherence. Gore Health provided information about the participants’ use of 
medical care services for the relevant time periods. 

The baseline interviews were conducted in March 2014, after which the robots 
were deployed (Figure 2). Once the robots were installed and set on a stable and rea-
dily accessible surface, the researcher gave a brief demonstration of the robot and 
gave each participant a robot user manual. Contact details for the researcher and the 
main contact person from Gore Health were provided for any difficulties experienced. 
Participants and their robots were monitored from March to June, 2014. Technical 
support was available to the participants from Gore Health’s main contact person, a 
local IT company, the researcher, and the engineering team back in Auckland.  

At the end of the trial, Gore Health reported medical care utilisation data. The re-
searcher conducted an interview and administered the same measures as at baseline. 
The Comfort from Companion Animals Scale [20] was adapted for Robots and admi-
nistered. This scale has 11 items and scores from 4 to 44 (higher scores indicate more 
comfort from animals/robots). A robot acceptance questionnaire was also added [21]. 
This has 41 items and the total scores can range from 41 to 205 where higher scores 
indicate higher acceptance. Participants were informed that the study was finished. 
Gore Health was in charge of deciding how much longer the robots would remain in 
the homes of the participants, and monitoring them. 
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Fig. 2. Participants intera
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Table 1. Medical care utilisation, quality of life, adherence and robot attitudes before the study 
period, and during the 3-month study period. 

 

Patient  
Baseline 3 month Study Period 

(no robot) (with Robot) 

   Dec. 2013 - March 2014: March 2014 -  June 2014  

C: 94 year old 
woman  

 Primary care visits: 3 Primary care visits: 2           

(2 doctor visits, 1 nurse visit)  (1 doctor visit, 1 nurse visit) 

Phone calls: 3 Phone calls: 1                  

Hospitalization: 1 (A&E visit) Hospitalizations: 0 

 PCS:  24.93; MCS: 47.67 PCS:  32.22, MCS: 45.86 

 MARS: 37/50 MARS: 48/50 

 RAS: 49/80 RAS: 47/80 

D: 83 year old 
woman 

Primary care visits: 3  Primary care visits: 1 

(2 doctor visits, 1 nurse visit) (1 doctor visit)                 

Phone calls: 1  Phone calls: 3 

Hospitalisations: 0 Hospitalisations: 0 

 PCS:  41.20; MCS: 55.50 PCS: 38.36; MCS: 65.97 

 MARS: 46/50 MARS: 42/50 

 RAS: 57/80 RAS: 66/80 

E: 76 year old 
woman 

Primary care visits: 4 Primary care visits: 1  

(2 doctor visits, 2 nurse visits) (1 doctor visit)                 
Phone calls: 0                  

Phone calls: 1  Hospitalizations: 0 

Hospitalisations: 0 

 PCS:  32.57; MCS:53.49 PCS: 40.70; MCS: 60.10 

 MARS: 50/50 MARS:50/50 

 RAS: 68/80 RAS: 75/80 

B: 89 year old 
woman 

April 2012 - April 2013:            
                                    
Primary care visits: 9               
Phone calls: 8        
Hospitalisations: 0 

April 2013-Jan 2014 
(Robot Pilot Period):           
Primary care visits: 7           
Phone calls: 3  
Hospitalisations: 0 

March 2014: March 2014 - June 2014:       
Primary care visits: 1           
Phone calls: 2     Hospitali-
sations: 0 

 PCS:  44.18, MCS: 64.00 PCS:  MCS: not completed 

 MARS: 43/50 MARS: not completed 

 RAS: 76/80 RAS: not completed 
Note: PCS= Quality of Life Physical Component Score; MCS=  Quality of Life Mental 
Health Component Score; MARS= Medication Adherence Report Scale; RAS= Robot 
Attitude Scale. Patient B had the robot for 9 months prior to the study starting. Her medi-
cal use data is displayed for the baseline period of one year, robot pilot period and study 
period separately. 
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3.2 Emergent Themes from the Interviews 

The first theme concerned the usefulness of the robot functions (Table 2). While par-
ticipants saw the potential of the medication reminding system, most felt the medica-
tion reminders did not benefit them as much as other elderly individuals because they 
were still competent in following their medication schedules. The entertainment func-
tion was not used much, although the music was popular. Feedback included more 
familiar games may be more suitable for older users. The Skype application was not 
widely used and did not change the amount of communication that patients had with 
their families. Most participants kept in touch with their families via phone, email, or 
personal visits. Reasons for not using skype included the small screen making it diffi-
cult to see, and a complicated user interface. 

Table 2. The theme of Usefulness of Robot Functions. 

Sub-Category Excerpts  
Medication Management “Most times I remember my pills, but, it has been somebody 

here or there or … your routine has changed, you can forget you 
know? No doubt about it and the more forgetful I get, the more of 
a benefit it (the robot) would be to me” (Patient B)  

Entertainment (Brain Games, 
Music, Quotes)  

“They were quite, well, they chuckled actually when I put the 
music on for them, they thought it was quite entertaining” (Patient 
D)  

“I would say the biggest disappointment is those games” (Pa-
tient B and Daughter)  

Skype  “I think that Skype would be marvelous once, you know, every-
thing is up and running” (Patient E) 

 
The second theme that emerged was technical aspects (Table 3). At the beginning, 

patients expressed anxiety about new technology. Some were concerned that the robot 
might be too complicated for them and they were afraid of making mistakes. After the 
study, some patients reported that they had not engaged as much with the robot, or did 
not let their other family members touch it, because they did not want to break it.  

Table 3. The theme of Technical Aspects. 

Sub-Category    Excerpts  
Anxiety with New Technology  “As I say, I’m scared of it in a way. In case it goes wrong and 

its my fault” (Patient C)  

Reassurance from Technical 
Support  

“… yes,  if I need help with the robot, I know that back-up is 
always there” (Patient E)  

Technical Issues “Well, I didn’t find any negative aspects at all. It’s just that 
it’s uh, you know, it wasn’t set in right… when it was playing up.” 
(Patient D)  

 
The third main theme encompassed psychosocial aspects (Table 4). Some patients 

reported that the robot had an effect on their daily routine. They learned to anticipate 
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when the medication alarms would go off; for example, at the six o’clock news. Pa-
tients enjoyed hearing the robot talk, and one patient said she would like the robot to 
say more spontaneous things, and greet her on her birthday. Patients commented that 
having the robot felt like they had a companion in the house and they didn’t feel so 
alone. An unexpected finding concerned the robot’s blinking lights. The lights en-
hanced the robot’s social presence, which was reassuring to patients. Patients said that 
the lights helped them see when the surroundings were dark late at night or in  
the morning. Patients found comfort in seeing the robot light up, as they felt it was the 
robot’s way of interacting with them. All patients reported that they would miss the 
robot when it went, with one patient describing the robot as being part of the family. 

Table 4. The theme of Psychosocial Aspects. 

Sub-category Excerpts  
Robot’s Effects on Daily Routine  “…you look forward to the time coming up to take your 

tablets and things like that because you’re always aware that 
the time is coming close” (Patient D)  

Robot Sociability  “I can talk to him on the way past him. Rub his head, and 
when he’s talking, he talks to me… I’ll rub his head and he’ll 
come up with different little things” (Patient E) 

Robot Presence  “Oh I don’t know, he’s just there… he’s always winking 
and blinking at me, you know, there’s always that light there, 
and he’s just part of the furniture” (Patient E)  

Robot Companionship “I missed him, yes. I did miss him” (Patient A)  

4 Discussion 

This is the first study to explore the deployment of healthcare robots in the homes of 
older rural residents. Compared to previous studies which trialed socially assistive 
robots in the home of non-rural residents [12-13], this study has a longer duration. 
The results suggest that the robots can be feasibly used in a rural population and may 
have benefits for some patients in terms of reduced utilisation of medical care, in-
creased quality of life, increased adherence, and companionship. However, technical 
difficulties need to be resolved before widespread implementation can be achieved. 

The main strength of the study is its novelty in deploying autonomous healthcare 
robots in a rural setting with older people for at least 3 months. The interviews pro-
vided personal accounts of their experiences. Improvements in the robot’s design and 
functions can be made based on these accounts. More familiar games may be easier 
for older people to relate to and therefore increase users’ confidence. A larger screen 
would make the functions easier to see and use. Older people sometimes have less 
dexterity so making the touchscreen less sensitive to long presses may remove acci-
dental triggering of functions. The skype function needs a more simple user interface.  

The suggestions arise from real-world experiences and not on laboratory-based  
set-ups. Being able to trial the healthcare robots in actual homes is a strength of the 
study, as it is has more external validity compared to studies held in simulated home 
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environments [24-25]. Limitations include the following. First, it seemed as if the 
participants were unable to fully benefit from the primary functions of iRobi because 
they reported feeling confident about taking their medications, and were already 
maintaining a contact with family and friends. While five patients were interviewed in 
total, only three were able to complete the 3 month questionnaire. Furthermore, while 
there was a decrease in the rate of primary care visits and phone calls to the practic-
tioners, it cannot be attributed for certain to the presence of the robot. The small sam-
ple size was due to the limited number of healthcare robots that were available.  

Robot trials become more complex once taken out of controlled laboratory settings 
[9]. In this trial, a significant number of technical issues arose which resulted in the 
robots occasionally having to be taken out of homes for repairs. The repairs were 
made more difficult, slower and more expensive because the rural setting was a long 
distance from robotic engineers and replacement parts. Therefore, one of the chal-
lenges in providing robots to rural communities is the technical support needed.  
Design and implementation guidelines in rural settings should include increased tech-
nical support to local companies and training for caregivers. 

In conclusion, it is feasible to deploy assistive healthcare robots in the homes of 
older rural residents living independently. Further research to develop and deploy 
healthcare robots in rural healthcare is worthwhile, as people embrace the potential of 
advanced technology to enhance their daily lives. 
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Abstract. In this paper we present a study with an autonomous robot
that plays a game against a participant, while expressing some social
behaviors. We tried to explore the role of emotional sharing from the
robot to the user, in order to understand how it might affect the percep-
tion of the robot by its users. To study this, two different conditions were
formulated: 1-Sharing Condition (the robot shared its emotional state at
the end of each board game); and 2-No Sharing Condition (the robot did
not shared its emotions). Participants were randomly assigned to one of
the conditions and this study followed a between-subject design method-
ology. It was expected that in the Sharing Condition participants would
feel closer to the robot and would perceive/evaluate it as more human-
like. But results contradicted this expectation and called our attention
for the caution that needs to exist when building social behaviours to
implement in human-robot interactions (HRI).

Keywords: Human-Robot Interaction · Emotional sharing · Social
behaviour · Social robot

1 Introduction

In every social interaction we are constantly aware and responsive to social cues
from others. Those social cues tell us how to behave in response to how the
others are acting and feeling. So, for robots to be integrated in humans’ daily
life activities, they have to be provided with similar social capabilities. Thus
they need to be able to inform about the others about their intentions, their
affective evaluations and often social stances.

It is commonly agreed that a social robot should be embedded with
behaviours that enrich the interaction with humans, making such interaction nat-
ural and inspired in the way we humans interact with each other. Such behaviours
can be non- verbal behaviours (e.g. gaze, gestures, emotion expression, posture,
etc.) and verbal behaviours (e.g. small talk, emotion sharing-“I am feeling sad”,
etc). However, although it is clear that the social behaviours are important, one
needs to be cautious about the way these social capabilities are implemented,
taking into account the situation, context and embodiment of the robot. For
example, capabilities such as intention recognition, Theory of Mind, or emotion
expression, may be perceived differently depending on the context in which the
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robot is going to be placed. One of the social cues that humans use is the shar-
ing of emotions, which when done explicitly by humans, may lead to a sense of
closeness in their relationships.

In this paper we report a study performed with a social robot that
autonomously plays a competitive game and at the same time expresses cer-
tain social behaviours. By relying on an emotional agent architecture (using
an appraisal mechanism) the robot was built with the capabilities of emotional
appraisal and thus able to express and sharing its emotions verbally as the game
unfolds. By sharing its emotional state, one may expect that the social bonds
with the user can be reinforced, and thus affecting the way the robot is per-
ceived. This paper describes the architecture that was built for the robot to
autonomously appraise the situation in the game, generate emotional states and
share the emotions with the user. In a study carried out with the robot we
hypothesized that participants with whom the robot shared its emotions would
perceive it more humanlike, more close to them, and with more friendlier charac-
teristics. The results obtained, however, did not confirm these hypotheses, and
in fact, some opposite findings were found. We report the results and discuss
some justifications for these findings.

2 Related Work

Humans are well equipped for social interactions, making it harder for a believ-
able robot to successfully interact if it does not have similar social capabilities.
In this sense it becomes very important to understand which capabilities better
foster HRI and in which contexts they should emerge as more natural.

A way to fulfill this gap between technology and humans, is to enhance the
anthropomorphic qualities (e.g. form and/or behaviour) of a robot, in order to
create a way for humans to understand robots and vice-versa, necessary for a
meaningful interaction[8]. Many studies reinforce this perspective, showing that
a robot with social behaviour affects people’s perceptions. For example, at a
very basic level of communication, it is found that the presence of gestures in a
robot catches more the user attention than without them[24], or that a robot can
be seen as a companion, influencing people’s perceptions of a shared event[12].
At a higher level it is also found, for example, that a socially supportive robot
improves children learning, comparing to a neutral robot[22]. Indeed humans
react to robots with social capabilities in a very positive way. A study from
Kahn and colleagues(2015) even suggests that as more social robots become,
people will probably build intimate and trusting relationships with them[13].

All this supports the fact that even small social behaviours affect HRI. Also,
emotions play an important role in human behaviour, helping to form and main-
tain social relationships and establishing social position[9]. A study by Bartneck
(2003) suggests that people enjoy more an interaction with an emotional expres-
sive robot than a non-emotional [1]. And Becker (2005) comes to show how
negative empathic behaviours are also important in a competitive game, though
they are perceived as less caring by the user[3]. Therefore, emotions should also
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be taken into consideration when designing a social robot. The applicability of
this can also be seen in Kismet’s emotion and expression system, with the ability
to engage people in affective interactions and so allowing it to be seen as a social
creature[5].

Nonetheless, the context itself influences the perception of these behaviours
and so they must be adapted to it. For example studies show that users cooperate
more in an effortful task with a serious concerned robot, than with a playful robot
(despite that they may enjoy more the playful robot)[10,11]. Kennedy, Baxter
and Belpaeme (2015) also tried to implement social behaviours in a robot and
found these to negatively affect learning improvements in a task with a robotic
social tutor, compared to a non social one. They hypothesize that could be due
to a greater level of distraction in the social behaviour form[15]. Studies from
Goetz, Kiesler and Powers (2003), support this, showing that people expect the
robot to look and act according to the task context, increasing their compliance
with it. So, a match between the robot social cues and its task influences people
acceptance and cooperation with it[11]. All this reinforces the need to test and
refine these behaviours according to the social interaction they are placed in.

3 An Autonomous Social Robot that Shares Emotions

Robotic game opponents and companions are recently being built for different
scenarios and games such as chess [16], or risk [19]. These robotic game com-
panions need to embed not only decision making capabilities (achieved with
the adequate artificial intelligence modules) but also social aspects which may
embed emotional appraisal, theory of mind, intention recognition and so on. In
this research we created a system for a social robot (the Emys robot) that tries to
embed these two components (decision making/playing and social) and explore
the impact that these components have in the perceptions of the users.

The game considered is a variant of the dots and boxes game[4]. In this
variant, called Coins and Strings, an initial board is created by a set of coins,
and a set of strings connecting pairs of adjacent coins. Two players take turns
cutting a string each time. When a player removes the last string attached to
a coin, the coin is removed from the board and added to that player’s coins,
additionally the player will also have to play again (selecting another string to
remove). The game ends when all strings are removed, and the player with the
highest number of coins wins the game.

To create a social part of the robot in the context of a competitive game, we
extended FAtiMA Emotional Agent Architecture [7] for that effect. In particular,
to allow for the manipulation of specific embodiment features and synchroniza-
tion, the architecture was integrated with Thalamus Framework [20], which was
then interconnected with the game developed in Unity3D and with the robot
Emys[14]. Figure 1 shows a diagram of the complete system. Thalamus is a com-
ponent integration framework that provides the advantage of easily integrating a
robotic embodiment with a virtual environment. Thalamus Master centralizes all
communication between other Thalamus components using a action/perception
publication and subscription mechanism.
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Fig. 1. Integration of FAtiMA, Thalamus and Emys to create the interactive system.

The system works as follows: when it’s the user’s turn to play, and he/she
removes a string, the internal state of the game is updated in Unity, and a mes-
sage about the event is sent (e.g user removed string number 3) to the Thalamus
module. This message is perceived by a lower-level module, which will make
Emys automatically look to the position of the removed string in the screen. At
the same time, the Thalamus will send the same perception to FAtiMA, which
updates its own internal state of the game, appraising the event and thus updat-
ing the robots emotional state. Both the updated emotional state and the play
selected by FAtiMA are then sent to Thalamus. The emotional state is used to
trigger emotion expression actions that are handled by Emy’s Thalamus module,
while the action will be sent to unity in order to update the state of the game.
Emotion expression actions correspond to facial expressions that depending on
the intensity of the emotion can also trigger speech, e.g. if a move caused Emys
to be very happy, it will display a joyfull facial expression while saying ”Great!”.

Regarding the robot’s cognitive and social behaviour, it was handled by
FAtiMA linked with the decision-making component (AI for gameplaying). A
standard Minimax algorithm [21] was implemented as a component in FAtiMA
to decide the best move to play in the game. In addition, the Minimax value
returned by the algorithm for a particular state (which represents the expected
maximum utility) is used to predict the likelihood of winning the game, and also
to determine the desirability of a particular event. The desirability of a game
event is given by the change in the Minimax value caused by the event. As exam-
ple, if the agent has a low Minimax value, but then the user makes a mistake
and plays a bad move, the agent will update it’s Minimax value to a much higher
value, and the play will be appraised as very desirable. Since this is a zero-sum
game, the Minimax value is also used to determine the appraisal variable Desir-
abilityForOther (with other being the user) by applying a negative sign to the
desirability value. The mentioned appraisal variables are then used by FAtiMA
to generate Joy/Distress/Gloating/Resentment/Hope/Fear emotions, according
to OCC Theory of emotions[18]. Perceived events and internal intentions are
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stored together with associated emotions in FAtiMA’s episodic memory. Each
board played with the user corresponds to a singular episode.

In addition to expressing emotions, and playing the game, in the Emo-
tion Sharing condition the FAtiMA agent has the goal to share past emotional
episodes with the user. So after each game, the goal will activate, and it will
use the autobiographic memory to automatically generate a textual description
of the episode. Describing all events in a past episode would also make a bor-
ing, unrealistic conversation. Therefore, a summary of the episode containing
the most relevant emotions is used. The summary of an episode consists in: the
location where the episode happened; narrative time elapsed since the episode
happened and a list of the most relevant events that happened in the episode,
ordered by event sequence. The more relevant events are considered to be the
ones that have generated a stronger emotional impact in the agent, and thus
are determined by selecting the events with the strongest emotions associated to
them. The chosen events are then ordered by event sequence, so that the sum-
mary generated follows a coherent narrative flow. In order to provide the user
with information on the agent’s personal experience about the past episode, we
need to add to the event’s description the emotion experienced when the event
was appraised (e.g.“You made an unexpected move and I felt upset”).

For the transformation of the information in the episode summaries into text,
a LanguageEngine is used. The episode summary is split into events consisting
of one action and subject, and optional location, time, target, parameter and
emotion elements. The text of an event is then generated by transforming these
elements into text and combining them through rules. The single utterances are
concatenated using a set of connectional phrases like “and”,“then”.An example
of a generated summary is: “Several minutes ago, I wanted to win the game which
made me feel frightened. Afterwards I played an important move. I was feeling
really glad.” For more details about this process, please consult [6]. Finally, the
summary Speech Act Request is sent to Thalamus, which uses a off the shelf
text-to-speech system to produce the dialog.

4 Methodology

4.1 Participants

In order to evaluate the developed autonomous robot concerning its social capa-
bilities, regarding emotional sharing, a study was conducted with a Emys robotic
head who autonomously played a game against a participant, while displaying
some social behaviours.

A total of 30 university students took part of this study (22 male and 8
female), with ages ranging from 19 to 30 years old (M=23.4; SD=2.99). Partici-
pants were randomly allocated to one of two study conditions: Sharing Condition
(where Emys after the end of each game board shared verbally its emotions with
the participant) and the No Sharing Condition (where no emotional sharing was
done). All participants signed a consent form in order to be part of the study
and allowing for the sessions to be recorded. The sessions had a duration of
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approximately 20 minutes per participant (with 10 minutes of interaction with
Emys) and took place in a Portuguese laboratory. The material used was a Lava-
lier microphone for audio recording and three cameras for video recording of the
interaction.

4.2 Procedure

Upon arrival participants were assigned randomly to one of the two conditions.
In the No Sharing Condition Emys social behaviours were only gaze tracking
through a Microsoft Kinect and small talk during the game (e.g.“This is going
to be a hard game”), on the Sharing Condition Emys maintained the social
behaviours from the other condition and added a emotional sharing at the end
of each board about its feelings regarding the result of the board (e.g.“I was
feeling worried, but then I was able to beat you”). Each participant played five
board games of the Coins and Strings game with Emys, where the difficulty
increased with the board number, being board number one the easiest level.
When the game was finished, participants were taken to another room where
they filled a brief questionnaire (see Measures section).

4.3 Measures

To understand the impact of the emotional sharing social behaviour in the par-
ticipants perception of the robot, the Godspeed Questionnaire [2] was applyed,
with dimensions: Anthropomorphism, Animacy, Likeability and Perceived Intel-
ligence.

In addition, since emotional sharing may lead to a closer relationship, by help-
ing to form and maintain social relationships[9], we applied a connection ques-
tionnaire that was based on [23] consumer product attachment scale (adapted
to refer to Emys, e.g. “Emys is very dear to me”) to explore the connection
from the user to the robot. Also, we used the McGill Friendship Questionnaire
(MFQ) [17], which comprises two questionnaires, one that measures the positive
feelings regarding a friend and the other how much that friend fulfills six friend-
ship dimensions: Companionship; Intimacy; Reliable Alliance; Self-Validation
and Emotional Security (we did not use Help dimension since the game was
a competition setting). These questionnaires were used in order to ascertain if
Emys had a different impact on the participants depending on the condition
they were allocated to. The Godspeed questionnaire was answered in a semantic
differential scale as in [2], all other questionnaires were answered in a 5-point
Likert scale ranging from “Totally Disagree” to “Totally Agree”.

5 Results

First we ascertained the internal consistency of the scales used and all had a good
internal consistency. For the Godspeed questionnaire dimensions there were no
significant differences found and the means were for the Sharing Condition and
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No Sharing Condition respectively: Anthropomorphism (M=2.53; M=3.18); Ani-
macy (M=3.26; M=3.31); Likeability (M=3.31; M=3.49) and Perceived Intelli-
gence (M=3.96; M=4.08).

Analyzing the items of each dimension, a Mann Whitney U Test was done and
it was found a statistical significance between the conditions, for the Anthropo-
morphism dimension regarding the Unconscious/Conscious item (U=58, p=.010)
and the Artificial/Lifelike item (U=65, p=.042). It is seen that participants
perceived the robot as more conscious and lifelike in the No Sharing Condi-
tion (M=3.93, SD=0.70; M=3.27, SD=1.34) compared to the Sharing Condition
(M=2.93, SD=1.22; M=2.33, SD=0.98), which goes against the expected results
(see Fig. 2). For the Artificial/Lifelike item even though there was a statisti-
cal significance for the participants responses, these responses were only slightly
more positive (less Artificial) in the scale for the No Sharing Condition. Also,
for the Likeability dimension it was found a statistical significance for the item
Awful/Nice (U=67,5, p=.05) where it is seen that participants perceived the
robot as more nice in the No Sharing Condition (M=3.53, SD=0.74) than in
the Sharing Condition (M=2.80, SD=1.01) (see Fig. 2). There were no other
statistical differences in the other dimensions.

Even though there was no statistical significance for the Perceived Intel-
ligence dimension, means show across conditions, that participants perceived
Emys as very competent (M=4.40; M=4.47), knowledgeable (M=3.87; M=4.13)
and intelligent (M=4.13; M=4.33), which clearly shows the high level of compe-
tence that Emys had in the game. This result is also supported by the winners
of each session, as only 4 participants were able to beat Emys in the game.

Fig. 2. Statistically significant results for the Godspeed Questionnaire in both
conditions.
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For the Connection Questionnaire there were no statistical significant results.
The mean answers for all the questions were around 2 and 3 in the scale, which
seems to suggest that evaluating connection in this short-term interaction for
this context is not an appropriate effect to be seen. The same happened with
the McGill Friendship Questionnaire, with no statistical differences to report
between conditions. In general Emys was seen as making participants laugh, as
stimulating to interact with and very enjoyable.

6 Discussion and Conclusions

In this paper we tried to explore the role of emotional sharing from the robot
to the user, in order to understand how this social capability might affect the
perception of the robot by its users. Our hypothesis was that participants in
the Sharing Condition (where the robot shared verbally its emotions at the
end of each board game) would perceive the robot as more humanlike, more
close to them and possibly with more friendly characteristics, compared to the
participants allocated in the No Sharing Condition.

Surprisingly, the results did not support our hypothesis, showing that partic-
ipants in the No Sharing Condition rated the robot as more Conscious, Lifelike
and Nice. This seems to suggest that the emotional sharing that the robot per-
formed was not giving the robot a more lifelike appearance. It is possible that
its expression may not be taking the appropriate form in this concrete context.
The highly competence that the robot presented in this task (only 4 participants
were able to beat Emys) could have had an influence on participants perceptions,
adding to the emotional sharing behaviour. In the Sharing Condition participants
were subjected to emotional sharing phrases related to the game state at the end
of each board game. As such, these autonomously generated phrases expressed
positive emotions more frequently as the robot achieved its victories due to its
high competence level. These emotional responses could in turn, we hypothesize,
be highlighting more the vision of a machine, that always beats humans, than
of a social robot that cares for the user. Which was also seen in the study of
Becker [3] with the users feeling less care with the negative empathic approach.

Regarding connection and friendlier characteristics perceived in the robot,
there were no significant differences between conditions. It could suggest that
for this kind of short-term interaction in a competitive game this kind of bonding
did not made much sense. It may be interesting to explore if these results change
in the same context for a long-term interaction.

Remembering Goetz, Kiesler and Powers (2003) studies, participants in the
Sharing Condition might be feeling that the robot emotional sharing dialogue
is highlighting more an artificial kind of interaction, adding to its higher com-
petence in the game (which it frequently wins). Whereas on the No Sharing
Condition where only small talk happens, might be seen by participants as less
artificial. Even though Emys still plays with the same high competence, there
is no reinforcement of emotional sharing. Participants may feel a disconnection
from the robot social behaviour and its task in the Sharing Condition. Due to
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the fact that emotional sharing in this context seems to be reinforcing negatively,
giving a more artificial appearance to the robot and breaking social norms. These
results have some similarity with the results obtained by Kennedy, Baxter and
Belpaeme (2015), which found that improvement in learning with children is lost
with a robotic social tutor, compared to a non social one [15]. It seems that by
existing emotional sharing associated to a really high competence in the game,
it is damaging the social interaction and perception of the robot by the users.
Therefore, more research is needed in order to understand this relationship and
how to better apply emotional sharing in HRI: what contexts it provides the
robot with better social capabilities, and in which it should be avoided.

These findings suggest important implications for the design of social
behaviours necessary to exist in an autonomously social robot. It calls our atten-
tion for the fact that more may be less if not properly adjusted to the context
where it gains form. Further studies will be conducted in order to try and clarify
the role of emotional sharing in social interactions between robots and users.
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Abstract. Parkinson’s disease (PD) patients with an expressive mask are par-
ticularly vulnerable to stigmatization during interactions with their caregivers 
due to their inability to express affect through nonverbal channels. Our ap-
proach to uphold PD patient dignity is through the use of an ethical robot that 
mediates patient shame when it recognizes norm violations in the patient-
caregiver interaction. This paper presents the basis for a computational model 
tasked with computing patient shame and the empathetic response of a caregiv-
er during “empathetic opportunities” in their interaction. A PD patient is liable 
to suffer indignity when there is a substantial difference between his expe-
rienced shame and the empathy shown by the caregiver. When this difference 
falls outside of acceptable set bounds (norms), the robotic agent will act using 
subtle, nonverbal cues to guide the relationship back within these bounds, pre-
serving patient dignity. 

1 Introduction 

In a patient-caregiver interaction, an experience of high rapport is deemed to be  
“optimal”. The participants understand each other and are capable of appropriately 
responding to one another [24].  Tickle-Degnen [24, 25] has presented a substantial 
body of work showing the difficulties of those with expressive disorders to attain high 
rapport with their caregivers due to the critical role nonverbal communication plays in 
establishing such rapport. When caregivers are unable to attain rapport with their 
patients, they may stereotype their patients because of uncertainty about how the pa-
tient is feeling, which can lead them to stigmatize the patient [25].  A group particu-
larly prone to stigmatization is Parkinson’s patients with a condition known as an 
expressive mask that limits expressivity in the face, body, and tone of voice. Tickle-
Degnen [25] has found that professionals who work with Parkinson’s patients often 
misjudge these patients’ personalities. Caregivers were found to judge patients show-
ing higher masking to be less social, cognitively competent, and more depressed. 

In this five-year NSF-funded study, a collaborative interdisciplinary effort with 
Tufts University, our goal is to uphold the dignity of Parkinson’s patients with ex-
pressive masks during stigmatizing interactions with their caregivers. One means by 
which this may be accomplished is to introduce an ethical social robot as a bystander 
into the patient-caregiver interaction. This robot models the ongoing patient-caregiver 
relationship and uses subtle, nonverbal cues to guide the relationship when norms of 
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the interaction are violated. This will build on our previous work [2] in kinesics and 
proxemics, which demonstrated how an embodied robot could communicate its inter-
nal state to a human through these nonverbal cues. An embodied robot can use such 
nonverbal cues to alert a caregiver to indignity in the patient without disrupting the 
dyad’s communication [9]. This paper presents the foundation for a computational 
model that is being implemented and tested in upcoming human-robot interaction 
studies; this model is intended to ameliorate patient indignity. 

Dignity stands in opposition to stigmatization and the closely related concept of 
shame. Dignity is consistently linked with self-respect and identity [14]. The dignity 
of a person can, therefore, be “robbed” when he is humiliated.  Humiliation causes a 
fundamental change in a person’s understanding of his “identity” and place or worth 
in society [14]. The process of stigmatization culminates in the internalizing of a neg-
ative stereotype that is associated with some disease or disorder [16].  According to 
Sabini et al. [19], shame arises as a response in someone when a fundamental flaw is 
revealed because he sees this now public flaw as limiting his worthiness of positive 
relationships in the future.   

The caregiver must respond to patient shame and stigma by making a connection 
with the patient; that is, showing patients that they are not alone and have value  
[22, 27]. If the caregiver does not respond empathically, this further confirms the 
patient’s feeling of rejection, which results in increased feelings of shame, or in the 
development of resentment or anger toward the caregiver [27]. 

Therefore, a robotic agent mediating stigma needs to represent when the patient is 
experiencing shame and when the caregiver is not responding with a sufficient level 
of empathy. Section 2 in this paper discusses representations of shame and empathy 
based on the psychological literature. Section 3 presents a framework to preserve 
patient dignity. Section 4 summarizes and discusses how the project will progress 
from this point onward.   

2 Shame and Empathy Representations 

Shame is a construct that is not going to dissipate over the course of the communica-
tion between the patient and caregiver without intervention; shame is relieved through 
a change in “context” or a change in “self” [21].  Empathy from the caregiver affords 
this “context” change. The caregiver commits to being a present, social ally to the 
patient; the patient is made to recognize his value [27].  It is critical that the magni-
tude of shame that has been experienced by the patient during the interaction does not 
far outpace the empathy expressed by the caregiver.  

It may not be possible for the caregiver to respond to the patient’s shame with 
complete understanding and compassion in each “empathetic opportunity” [22]. The 
caregiver, however, needs to show sufficient empathy (while not showing too much) 
to keep the difference between the shame experienced by the patient and empathy 
shown by the caregiver during the interaction within acceptable bounds.  Just what is 
sufficient empathy and how to determine the fixed bounds on a particular relationship 
will be determined through upcoming studies with patients, focus groups, and experts. 
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Shame is a composite of internal and external shame. Retzinger [17] defined six 
different categories (“direct indication”, “abandonment/ separation/ isolation”, “ridi-
cule”, “inadequate”, “discomfort”, and “confused/ indifferent”) of words that not only 
frequently appear in the “context of shame” but also help to define circumstances 
where shame arises. Three of the categories (“discomfort”, “abandonment/ separation/ 
isolation”, and “ridicule”) fit well under external shame.  A person may feel outside 
of a social network because of people gawking at the symptoms related to his illness 
or other indirect indicators. This separation induces shame because it identifies the 
self as not “fitting in”.  The magnitude of external shame experienced by a person 
can also increase when the symptoms or the illness cause others to “abandon” or “iso-
late” the sufferer. This is perhaps a more direct indictment, i.e., showing one does not 
belong. Finally, there is perhaps the most damaging component of external shame, the 
most direct means by which a flaw costs social worth - “ridicule” by others. 

Within internal shame, there are two components (“inadequate” and “con-
fused/indifferent”) drawn from the work of Retzinger [17]. First, a person believes 
that he is flawed and recognizes the potential damage the flaws could have on his 
social worth/value.  Second, the flaw is confirmed in a public setting where the per-
son is unable to function appropriately or fails at a task that he feels marks him as an 
“undesirable”. Note that the sixth category introduced by Retzinger [17] (“direction 
indication” of shame) decomposed nicely into “ridicule” in external shame and “con-
fusion/indifferent” in internal shame.  When one is ridiculed, it is a direct affront on 
his identity by someone external to the self.  Similarly, when one is confused, apa-
thetic and unable to function in the manner in which he was able to function, a discre-
pancy with the idealized self is revealed.  See Figure 1 for a decomposition of shame 
into its constituent components.  

2.2 A Componential Representation for the Empathetic Response 

An empathetic response is motivated by both emotion and cognition [5, 8]. Davis’s 
[5] four Interpersonal Reactivity Index (IRI) subscales define trait empathy as a multi-
dimensional construct.  The four defined dimensions are not combined to form  
a single value for a person’s propensity for empathy; instead, they remain indepen-
dent.  This is due to the interdependence of the dimensions in enacting an empathetic 
response. 

Studies comparing empathy in populations of caregivers working with the chroni-
cally ill or the dying against “average” adult populations (e.g. [4]) have found that 
these caregivers will often have significantly greater capacities for empathetic concern 
and perspective-taking, two dimensions on Davis’s IRI. Perspective-taking is a cogni-
tive dimension that allows for the person to “anticipate” the behavior of another per-
son as well as what the needs or wants of the person might be in a certain situation; it 
allows for appropriate social responses to the individual [5]. Empathetic concern is an 
emotional dimension that is thought to motivate altruistic action. A person expe-
riences compassion when recognizing suffering or tenderness when recognizing vul-
nerability [12]. The magnitude of the caregiver’s empathetic response is going to 
depend on convergence between an emotional motivation to help the patient and a 
cognitive understanding of what the patient needs.  
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one has done (finds fault with his actions); this is as opposed to shame where fault is 
found with the self [8]. Smits and De Boeck [20] first introduced a componential 
model for guilt. They found that the probability of a person, i, experiencing guilt in a 
situation, j, (Pij) could be explained by the “guilt-inducing power” (βj) of the situation, 
j, and the person’s “threshold” for guilt (θi). The logit of the probability of a person 
experiencing guilt is computed as: logitሺܲ ሻ ൌ ܽሺߚ െ  ሻ (1)ߠ

This is just a weighted difference between the “guilt-inducing power” of the situation 
and the “threshold” of the person for guilt. The “guilt-inducing power” of situation j 
(βj) was reliably computed as a weighted sum over the “guilt-inducing power” of just 
three situational components: “norm violation”, “worrying”, and “restitution”.  This 
is shown in Equation 2.  In this equation, σk is the weight of the situation component, 
k, βjk is the guilt-inducing power of component k, and τ is a constant.  

ߚ ൌ  ߚߪ  ߬
ୀଵ  

 

(2) 

Our laboratory has already successfully applied a simplified version of this model for 
the purposes of restricting weapons systems in a lethal autonomous robotic agent [1]. 
Equation 3 shows the magnitude of guilt accrued for a specific target, j. Four compo-
nents were used to compute the guilt for a single target. The parameters of the equation 
are defined the same as in the above equations.  

ݐ݈݅ݑܩ ൌ  ܽሺ ߚߪ  ߬
ୀଵ െ  ሻߠ

 

(3) 

A similar model to Equation 3 will be used for the accrual of shame and empathy 
across the patient-caregiver interaction. 

3 Overview of Framework Designed to Uphold Patient Dignity  

The overview of the framework designed to uphold Parkinson’s patient dignity is 
shown in Figure 3. This framework’s core piece, the Emotional Models component, is 
responsible for computing the magnitude of the patient’s experienced shame and the 
caregiver’s expressed empathy in each “empathetic opportunity” [22]. Explicitly, 
“empathetic opportunities” [22] are single exchanges between the patient and care-
giver where the patient experiences shame and the caregiver has the opportunity to 
respond empathetically. It can also be the case where the caregiver stigmatizes the 
patient directly (in which case there is no empathetic response). The reason the shame 
and empathy values are only computed during “empathetic opportunities” is that out-
side of this context the patient may not believe a caregiver’s empathetic response 
because it may come off as hackneyed [27]. Input into this component of the model is 
the caregiver’s threshold for empathy and the patient’s threshold for shame, the 
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patient. Therefore, it is important to consider alternative cues that can contribute to 
the components’ responses recognizing the limited availability of nonverbal cues.   

The Out of Place Self component is defined by words such as “antsy”, “nervous”, 
and “tense” [17]. The patient is fearful and wants to withdraw from the situation. The 
patient will likely avert his eyes [8] as a means of trying to withdraw. Therefore, a 
gaze tracker is used to assess the response of this component with the magnitude of 
the response proportional to fraction of the time the patient averted his gaze during 
the single exchange. This component is going to have a response when the patient is 
anxious or fearful.  Fear was reliably differentiated from sadness, anger, surprise, 
frustration, and amusement using galvanic skin response, skin temperature and heart 
rate signals in healthy populations [11]. Components of heart rate variability correlate 
with emotional intensity [26]. The response of this component is assessed by identify-
ing fear and assessing the magnitude based on how the heart rate varied. 

Terms such as “alienated”, “deserted” or “ostracized” [17] define the Lack of Ac-
ceptance component.  Patients may feel that, when the doctor has “abandoned” them 
or is not actively supporting them, it is because they are dying or a lost cause [26].  
This is going to stress the patient.  When Parkinson’s patients are stressed, it causes a 
worsening of their symptoms [15].  The baseline tremor for the patient is measured 
just before the interaction, and significant worsening bolsters the magnitude of this 
component’s response.  This component should also increase when the patient  
expresses shame (i.e. any shame component is nonzero) and there is no empathetic 
response (the empathetic response components are zero) [27].   

Ridicule is likely to inspire a measure of anger in the patient [27].  As mentioned 
above, anger is recognized in healthy populations, in controlled settings with easily 
obtainable physiological signals [11]. The “Direct” Stigmatization component re-
sponse is computed by recognizing an amount of anger arising in the patient. This 
component should also increase when the caregiver directly stigmatizes the patient. 
Speech recognition for the caregiver should be better than the speech recognition for 
the patient, which would allow for more complete sentences/phrases to be recovered. 
The caregiver stigmatizes the patient when a word of negative valence and high inten-
sity qualifies a proper noun or pronoun corresponding to the patient. 

When the patient perceives himself to be “worthless” or “helpless” [17], as in the 
Perception of Flawed Self component, the patient is profoundly sad. Sadness is as-
sessed with the basic physiological signals as noted above [11].  

Finally, the Confirmation of Flaw component response is going to increase when 
the patient is “mortified” because of his inability to complete a common task, or he 
has “muddled” thoughts such that he is unable or unwilling to interact well with the 
caregiver [17].  The patient’s inability to perform relative to his previous self is liable 
to leave the patient frustrated.  Frustration is differentiated based on simple physio-
logical signals [11].  One could also monitor specific parts of the interaction where a 
patient may fail, such as responding to orientation questions. When a failure occurs, 
the response of the component increases. 

When the caregiver is trying to ameliorate the patient’s concerns, it is essential that 
the caregiver show compassion for the patient [27]. This is required for a low magni-
tude response in the Restore Self component. A high magnitude response or a fully 
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empathetic response would not only nonverbally support the patient (showing the 
flawed self is valued), but it would mitigate the shame of the patient by praising the 
self (showing that the negative outcomes for the patient are related to his condition 
rather than the self).   

A classifier indicating the intensity of the caregiver’s compassion will be con-
structed. The features used by the classifier could include the caregiver’s facial ex-
pression, voice prosody, gaze, posture, and orientation toward the patient during the 
empathetic opportunity. The caregiver can be said to praise the patient if the patient is 
referred to with a positive adjective/adjectival clause. 

At a basic level, making a connection with a patient requires the caregiver to re-
spond appropriately and directly to what the patient has been saying. This is done 
through the use of “empathetic extenders” [22], which take standard forms such as 
“How sad”, “How awful” or “It’s very hard” [27].  These types of responses are a 
low magnitude empathetic response.  High magnitude responses show the patient that 
he is understood.  This is most commonly done by explicitly naming the emotion 
using phrases such as “You seem upset” [27]. These types of responses are identified 
using paraphrase recognition to assign a magnitude to the Make Connection With 
Patient component. 

After the global magnitudes of shame and empathy have been computed, their dif-
ference is added to the running difference between the patient shame and caregiver 
empathy.  If the difference between patient shame and caregiver empathy falls out-
side of set bounds, then the robotic agent must try to unobtrusively guide the relation-
ship such that there is congruence between what the patient is feeling and what the 
caregiver understands the patient to be feeling (indicated by the caregiver having an 
empathetic response that matches the magnitude of patient shame).  

4 Conclusions and Future Work 

This paper introduced componential representations of shame and empathy, the basis 
for a computational model that is tasked with upholding the dignity of a Parkinson’s 
disease patient in a stigmatizing relationship with his caregiver. These representations 
are based in the psychology literature. Forthcoming human-robot interaction studies 
will elucidate the weights, thresholds, and constants for the evaluation of the global 
shame and empathy magnitudes. There has been a paucity of studies on how a robotic 
agent can guide interactions between a human dyad (an exception being [9]). In addi-
tion to finding project specific guidelines when computing values for shame and em-
pathy, our work will focus on how to best elicit empathy from the caregiver when the 
patient is in jeopardy of suffering indignity.   
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Abstract. In this paper we present a system for automatic prediction
of extraversion during the first thin slices of human-robot interaction
(HRI). This work is based on the hypothesis that personality traits and
attitude towards robot appear in the behavioural response of humans
during HRI. We propose a set of four non-verbal movement features that
characterize human behavior during the interaction. We focus our study
on predicting Extraversion using these features extracted from a dataset
consisting of 39 healthy adults interacting with the humanoid iCub. Our
analysis shows that it is possible to predict to a good level (64 %) the
Extraversion of a human from a thin slice of interaction relying only on
non-verbal movement features. Our results are comparable to the state-
of-the-art obtained in HHI [23].

Keywords: Human-Robot Interaction · Personality · Non-verbal
behaviour

1 Introduction

Social robots should be able to adapt their behaviour taking into account the
unique personality of their interacting partners. To this end, they need to learn a
model of their behaviour, that can be built using multimodal features extracted
during online interaction, physical features, social context, individual factors
etc. [1]. Currently, a crucial challenge for Human-Robot Interaction (HRI) is
the automated online estimation of the latter, such as personality traits, and
the study of how they influence the exchange of verbal and non-verbal signals,
as well the mechanisms underlying the production of behaviors, emotions and
thoughts. These issues have been investigated in the project EDHHI[9]1, focused

1 http://www.loria.fr/∼sivaldi/edhhi.htm
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on studying social interactions between humans and the humanoid robot iCub.
Within EDHHI, the researchers investigated how the production of social signals
during HRI is influenced by individual factors, such as personality traits and atti-
tude towards robots. A number of face-to-face dyadic and tryadic interactions
were realized in the experiments of this project, between ordinary people with-
out prior experience with robots and the humanoid iCub. Exploiting the dataset
collected in EDHHI, the goal of this paper is to investigate whether it is possible
to predict the personality trait of extraversion from a set of non-verbal features
extracted during a short interaction with the robot. Particularly, we take into
account the first thin slices of an interaction (i.e., the first minutes). Personal-
ity is generally addressed through the trait theory that individuates the factors
able to catch stable individual characteristics underlying overt behaviour. Trait
theory formalization exploits multi-factorial models, the most well-known being
the Big-Five, owing its name to the 5 traits chosen as descriptive of a person-
ality: Extraversion, Neuroticism, Agreeableness,Conscientiousness, Openness to
Experience [11]. In this work we focus on extraversion, the personality trait that
notably (i) shows up more clearly during interaction, and (ii) has the greater
impact on social behaviour with respect to the other traits [23]. We include in
the study also the negative attitude towards robot [15] that could capture a
novelty or anxiety effect when the ordinary people interact with the robot for
their first time, consistent with the focus of our study on the first thin slice of
an interaction.

Background: Studies involving personality assessment, typical of the psychol-
ogy domain, are now more and more of interest for human-computer interac-
tion (HCI) and human-robot interaction (HRI). In these last years, indeed,
a new branch of research in HCI, called personality computing is developing.
Research on personality computing focuses on the following three major issues:
(i) Automatic Personality Recognition (APR); (ii)Automatic Personality Per-
ception (APP); and (iii) Automatic Personality Synthesis (APS ) – see [21] for a
review. In particular, APR is aimed at “inferring self-assessed personalities from
machine detectable distal cues” [21]. About the modeling, the current exploited
models in computing community are the trait based models, that try to isolate
a small set of factors, known as Big-Five (BF) [11], able to describe the sta-
ble behavioural patterns. The NEO-Personality-Inventory Revised [4], the NEO
Five Factor Inventory [12] and the Big-Five Inventory [10] are the most common
experimental instruments adopted for this measurement.

These studies are now of high relevance for robotics. Tapus et al. [19] designed
an assistive therapist robot matching its Extroversion with the one of its patients,
and proved its effectiveness in terms of therapy performance. Meerbeek et al.
[13] provided guidelines to design and evaluate personality and expressions in
autonomous domestic robots. An important line of research is to probe into the
influence of personality and individual traits on the production of verbal and
non-verbal signals during HRI, as done in [9] and in our study.

Hypothesis: The literature on personality traits and HRI shows that personal-
ity traits influence the production of verbal and non-verbal signals during HRI.
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Preliminary analysis on the EDHHI dataset reveal that extroversion and NARS
influence the production of gaze and speech [9]. Here, we contend that it is possi-
ble to predict the human’s extraversion from the analysis of non-verbal features.

Overview of the Proposed System for Automatic Prediction of Extro-
version in HRI: The proposed system is sketched in Figure 1. We extracted
a set of relevant non-verbal features from the depth image of a Kinect placed
above the head of the iCub interacting face-to-face with adult participants to the
EDHHI experiments. As it will be discussed in Section 3, the relevant features
include quantity of movement, synchrony and the personal distance between
human and robot (frequently studied in proxemics). To predict extraversion
from these features, we trained a model in a supervised way thanks to the ground
truth provided by the score of the questionnaires filled up by the participants,
as reported in Section 2. The classification system and the experimental results
are detailed in Section 4.

2 Methods and Materials

Fig. 1. Overview of the proposed system.

This section briefly describes
the experiments that pro-
vided the dataset used in this
work, along with the ques-
tionnaires and the partici-
pants to the study.

Questionnaires: To assess
the personality traits of the
participants, two question-
naires were used: the Revised Personality Inventory (NEO-PIR) [4], assessing the
personality traits according to the Big Five model [11], and the Negative Atti-
tude towards Robots Scale (NARS) [15]. From the first questionnaire, only the
48 questions related to Extraversion were retained. The order of the questions
followed the original questionnaire, while answers were on a Likert-type scale
from 1 (Totally disagree) to 5 (Totally agree). The second questionnaire consists
of 14 questions divided into three sub-scales: “Negative attitude toward situ-
ation of interaction with robots” (NARS-S1), “Negative attitude toward social
influence of robots” (NARS-S2) and “Negative attitude toward emotions in inter-
action with robots” (NARS-S3). The order of the questions followed the original
questionnaire, while answers were on a Likert-type scale, from 1 to 7 (Strongly
disagree / strongly agree).

Robotics Setup: The experiments were carried out with the humanoid iCub
[14], a robot shaped like a 4 years old child. The robot was standing on a fixed
pole and it was controlled by an operator hidden behind a wall. The operator
was constantly monitoring the status of the robot, and could intervene to send
high-level commands and respond to unexpected actions or requests of the par-
ticipants, using a Wizard-Of-Oz GUI designed to control the robot. For satefy
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issues, the experimenter monitored the interaction and was able to intervene and
stop the robot in case of urgency. The robot was velocity controlled when there
was no physical interaction with humans, but its stiffness was adjusted to make
it compliant in case people would touch it [6]. Facial expressions and speech were
enabled. The robot was able to say few sentences, such as “yes”, “no”, “thank
you”.

Experimental Protocol: The experiments of Project EDHHI followed a proto-
col2 developed to study the spontaneous behavior of ordinary people interacting
with a robot. The personality traits of the participants were retrieved by ques-
tionnaires that were filled up through a web form two weeks before doing the
experiments, to avoid influences of the questions on their behavior.

Fig. 2. iCub interacting with two participants.

The day of the exper-
iment, participants were
informed about the over-
all procedure before sign-
ing an informed consent
form granting use of all
the recorded data. Before
the experiment, the par-
ticipants had to watch a
short video presenting the
iCub. The video did not
provide any information
about the experiments. It
was instrumental to make sure that the participants had a uniform prior knowl-
edge of the robot appearance. After the video, each participant was introduced
to the robot by the experimenter, who did not provide any specific instruction
to the participants about how to behave with the robot and what to do. The
experimenter would simply stay on the right side of the robot, to supervise the
interaction for safety issues. The robot was standing on its fixed pole, gently
waving the hands and looking upright, while holding a colored toy in its right
hand. It was not speaking. Once the participants were standing and looking in
front of the robot, they were free to do whatever they wanted: talking to the
robot, touching it, and so on. For few seconds, the robot would do nothing, then
it would look at the participant (upward gaze) and raise the right hand, holding
the colored paper roll. Since no instructions were given about this interaction,
the participants could choose whether to interpret the robot’s movement as an
intentional and goal-directed action or not, therefore interact with the robot,
or to ignore the action. If the participant had no reaction to this movement,
the robot, controlled by the operator, would lower the hand after 4-5 seconds.
Otherwise, the robot would open the hand to give the toy to the human (see
Fig. 2). As participants did not receive any indication by the experimenter, if
they wanted to, they could start interacting more actively with iCub, asking
questions, giving back the toy, and so on. The designed interaction, triggered
2 Ivaldi et al., IRB n.20135200001072.
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by a simple movement of the robot, is very simple. However, due to the natural
condition and the absence of constraints and indications from the experimenter,
the response produced by the participants can be considered spontaneous, which
justifies the observed variability of behaviors and non-verbal signals produced
during the interaction. When the experimenter would detect a disengagement of
the participant, a long pause or inactivity, she would invite the participant to
withdraw from the robot and start preparing for executing the EDHHI experi-
ments with iCub, which are out of the scope of this paper.

Participants: 39 healthy adults without any prior experience with robots
volunteered to participate to the experiments (11 male and 28 female, aged
37.8y±15.2y). They received an ID number to preserve the anonymity of the
study. They signed an informed consent form to partake in the study and granted
us the use of their recorded data and videos.

Data Collection: The dataset from Project EDHHI includes the video stream
collected by a Kinect RGB-D sensor (v.1, 30fps) placed above the head of the
robot in such a way to retrieve the body and face of the human interacting
with the robot. The dataset used in this work includes 39 videos (one for each
participants) of the first minutes of their interaction with iCub, synchronized
with the robot events logged by the Wizard-Of-Oz application used to control
the robot. The average duration of the videos was 110.1s (SD=63.9s).

3 Non-verbal Features Extraction

The use of non-verbal features has been dictated by the real world constraints in
which a robot should operate: although audio-based features can produce bet-
ter performances in laboratory setups, they are unlikely to be reliable in real
life scenarios, due to several sources of noise: environment, people talking in
background, and robot itself [2]. As stated in psychological literature, Extraver-
sion dimension encompasses specific facets as sociability, energy, assertiveness
and excitement-seeking. Energy facet can be also an useful hint of the attitude
toward a robot revealing, for example, if a person feels nervous or relaxed when
she operates in front of a robot or has to share a task with it. Interpersonal
distance is mainly linked to sociability and assertiveness and it also describes
worry/relax about situations of interaction with robots. Previous studies showed
that extraverted people tends to require smaller interpersonal distance [22]. Fur-
ther, proxemics rules hold true also when one of the interactants is not a human,
therefore a low familiarity or confidence with robots (that is, a negative attitude
toward robots) results in increasing the interpersonal distance [18]. Interpersonal
synchrony is acknowledged as very relevant in early communication between
humans [5], and it provides information about the quality of interaction traits
of the peers. For example, as referred in [7] “people tend to synchronise their
rhythms and movements ... within a conversation”. In HRI, it can facilitate the
natural interaction with robots with minimal cognitive load [8]. Starting from
this knowledge, the features listed below are extracted from the recorded depth
videos:
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F1) Histogram of Quantity of Motion (h-QoM): Quantity of motion
is a Silhouette Motion Image (SMI)-based measure of the amount of motion
detected from an optical sensor like, for example, video-camera [3]. SMI (Sil-
houette Motion Image) is an image carrying information about variations of
the silhouette shape and position in the last few frames of a video. Quantity of
motion is, basically, an approximation of the energy of the movement and it is
computed as the area (i.e. the number of pixel) of a SMI normalised over the
area of the silhouette. It is computed using the following formulas:

SMI(t, i) =
n

∑

i=1

Silhouette(t − i) − Silhouette(t) (1)

QoM(t) =
Area(SMI(t, n))

Area(Silhouette(t))
(2)

where n is the number of frames used to compute the SMI, t is the time
at which the SMI and the QoM is being computed. In this work, the original
algorithm is applied, with some small changes, to the depth images provided by
the Kinect RGB-D sensor.

Fig. 3. H-QoM of two participants hav-
ing very different NEOPIR and NARS
scores. Left Panel corresponds to the
h-QoM of a participant having the
scores:NEOPIR=128 and NARSS1=11,
NARSS2=11, NARSS3=3. Right Panel
shows the hQoM of the participant having
the scores: NEOPIR=69 and NARSS1=27,
NARSS2=29,NARSS3=18.

First, the silhouette of the partic-
ipant is extracted by thresholding the
depth image in order to remove the
background. Unlike [3], the resulting
silhouette is not binarized: this is done
in order to keep also the details of
internal motions (that is the motion
occurring inside the silhouette, e.g.,
shaking the hands in front of the
body) provided by the depth image.
The SMI is obtained by subtracting
the silhouette of a current frame from
that of the n last frames (here n = 3).
This image is then normalised by the
value of n. Finally, the area of the SMI
is calculated and normalised by the
area of the silhouette of the current
frame in order to define the Quantity
of Motion of the current frame. H-QoM is computed in 64 bins in order to have
a good resolution of the changes occurring in its dynamics. Figure 3 reports
two exemplary h-QoM of two participants showing very different NEO-PIR and
NARS scores.

F2-3) Histograms of Synchrony and Dominance (h-Sync, h-dom):
Event Synchronisation (ES) technique is adopted to analyse synchrony and dom-
inance between the movements of the i-Cub and the participant. This choice is
mainly due to the different nature both of the two interactants (that is, a robot
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and a human being). ES was originally conceived to measure synchrony and
time delay patterns between a pair of neurophysiological time-series in which
events can be identified [17]. However, it can be extended to measure synchrony
between two or more generic monovariate time-series with events [20]. In this
work, events are defined as a subset of the iCub actions and the full-body energy
peaks of the participant during the interaction, respectively. The analysis con-
cerned only the similar actions performed by the two interactants. ES consists
of a couple of measures addressing “the fraction of event pairs matching in time
and how often each time series leads in these matches”, respectively [17]. The
first part of this definition allowed at counting the number of actions occur-
ring quasi-simultaneously with respect to the global number of actions occurred
through the overall interaction. This count (Q in Eq. 3) is in the range [0, 1]
and expresses the overall synchrony between the two time-series. The number of
times each time-series leads the other one in these matches is here used to show
how often an action of one of the two interactants comes before the correspond-
ing action performed by the other one. This count (q in Eq. 3) is in the range
[−1, 1] and provides the direction of synchrony, that is it allow at discriminating
between causal (q = 1 or q = −1 depending on which of the two time-series
precedes the other one) or mutual (q = 0) interaction. In other words, q shows
who, by a chronemic point of view, is dominant.

Qτ =
cτ (x2|x1) + cτ (x1|x2)√

mx1mx2

qτ =
cτ (x2|x1) − cτ (x1|x2)√

mx1mx2

(3)

where: x2 and x1 are the two time-series of events describing the participant
and the iCub, respectively; mx1 and mx2 are the suitable events occurring at
the times ti

x1 and tj
x2 (i = 1, ...,mx1 ; j = 1, ...,mx2) in the two time-series;

cτ (x1|x2) =
∑mx1

i=1

∑mx2
j=1 Jτ

ij is the the number of times an event appears in
x1 after it appeared in x2; τ a time lag for which two events could be con-
sidered as synchronous; with and Jτ

ij = {1 if0 < ti
x1 − tj

x2 < τ ; 1/2 iftix1 =
tj

x2 ; 0 otherwise}.
Two different approaches are adopted to extract the events for the

iCub and the participant. For the iCub, a log-file is used to store its
head/arms/hands movements, the timestamps corresponding to the beginning
of an action/command as well as the type of actions/commands, that together
define the main events. As regards the participant, the events are defined from
her QoM. First, it is filtered by using a fifth-order Savitzky-Golay filter and a
FFT is applied. Then, the energy of the QoM is computed from its spectrum.

The first derivative of the energy is computed over a sliding window having
a size of 1s frames and a step of 33ms. Further, this derivative is weighted
frame-by-frame by the amplitude of the energy so as to amplify the fast and the
largest movements and reduce the impact of movements which can be considered
as noise. The events are extracted by applying a threshold on the amplitude of
this resulting signal. Finally, the up edges are retained as events (see Figure 4).

The frames resolved variants of Q and q are computed through each video. To
have these variants, the previous equation is modified as follows [17]: cn(x1|x2) =
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Fig. 4. The different steps of the events detection from the QoM. The solid black line
stands for the QoM signal. The solid gray line corresponds to the Energy of QoM. The
dashed line is the Weighted Derivative of the Energy of QoM. The dotted line stands
for the intervals in which events have been detected.

∑mx1
i=1

∑mx2
j=1 JijΘ(n− ti

x1), where Θ is the Heaviside function (i.e. Θ(x) = 0 for
x ≤ 0 ans Θ(x) = 1 for x ≥ 0) and n = 1, ..., N . Then, a sliding window is
applied to both Q and q (window size of 3s, step=1.5s), and the count of how
many times Q and q step up is done. Finally, the histograms of these countings
are built according the obtained values in the ranges of [0,max no steps up] and
[−1, 1], respectively.

F4) Standard Deviation of Human-robot Distance (STD-d): it is com-
puted as the average of the pixels’ values of the silhouette extracted from the
depth image of the Kinect. Considering its position in the set-up, it is a good
approximation of the distance between the two interactants.
→ The features F1-F4 are merged into a 72-dimensional vector. The resulting
dataset included 39 instances, that is a feature vector for each participant.

4 Automated Prediction of Extraversion During HRI

Features extracted from interactions with the iCub built the dataset for the pre-
diction of Extraversion. The NEO-PIR scores were used as reference for labeling
the personality trait of each subject. However, in the particular context of a
first interaction with social robots, people’s behavioural response can be not
only determined by their personality, but also by their attitude towards robots
and the context of the interaction. In particular, due to prior experiences with
robotics, the attitude towards the robots plays a relevant role and can dramati-
cally affect people’s behaviour towards social robots.

To catch this phenomenon, we seek a linear combination between the scores
able to contextualise the personality information in the specific scenario of inter-
action with social robots. This work addressed this point by relabeling the
instances of the dataset using the NEO-PIR extraversion score toghether with
NARS questionnaires results. More in the detail, a Principal Component Anal-
ysis (PCA) was carried out on a scores vector including: NEO-PIR, NARS-S1,
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Table 1. Average Percentage of Precision, Recall and F-score

Features Precision Recall F-score

std-d, h-QoM 33% 27% 46%

std-d, h-QoM, h-dom 59% 62% 61%

std-d, h-QoM, h-sync 60% 64% 63%

std-d, h-QoM, h-sync, h-dom 64% 69% 66%

NARS-S2, and NARS-S3 scores, respectively. NARS-S3 is an inverse scale, so
its scores were reversed. For NEO-PIR, NARS-S1, NARS-S2, and NARS − S3
scores, the PCA’s eigenvalues were respectively 2.17, 0.85, 0.56 and 0.32, while
the PCA’s component load were 0.32, -0.56, -0.57 and 0.51. Only the first
principal component was meaningful (eigenvalue greater than 1). The loadings
reflected how the personality scores are captured by the first principal compo-
nent. The values of the first component were quantized (High-Low) along their
median and the final labels were obtained.

The dataset resulted in a 39 (instances) x 72 (features) matrix, that is there
are more features than instances. For this reason, we decided to adopt for the
classification a Logistic Regression Classifier (LRC) [16] with penalty parameter
C = 1 and L2 norm L2. The averaged performance of the trained classifier was
assessed via a multiple-run k-fold stratified cross-validation. In this study, 10
run and 10 folds have been adopted. Table 1 summarises the performances of
the LRC, according to the different subsets of used features. The table shows
that the classification result relying on the Quantity of Movement alone on the
standard deviation of the distance, is not able to overcome the chance level.
However, classification results using also dominance and synchrony information
overtake this level. Using the whole set of features the classifier reaches the top
of the performances. Classification based exclusively on the extroversion does
not yield significant results. These results are consistent with previous studies
on prediction of Extraversion in human-human interaction only from non-verbal
movement features (e.g., [23]).

5 Conclusion and Future Works

This paper presented an automatic prediction of Extraversion personality trait
during thin slices of interaction with social robots, using non-verbal movement
features. A Logistic Regression classifier was fed with the following features: the
histogram of Quantity of Motion, the distance between human and robot, and
the histograms of synchrony and dominance. To our knowledge, this is the first
work dedicated to study thin slices of interaction with social robots, using such
kind of predictive features of personality trait. The main limitation presented
by this work can be found in the limited space of the room used for the exper-
iments, in the laboratory environment and in the quite simple actions of the
robot, that could not lead to the variability of the human behaviour as desired.
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Also, a random bias towards the specific spatial configurations of human parteci-
pants could limit the effectiveness of the results presented. Thought preliminary,
despite their limitations, these encouraging results indicate the good direction
of research and good premises to improve personality prediction during HRI.
Future works will involve a wider set of features, such as people’s posture and
gaze, examining in depth their role during complex interactions as signatures of
personality traits. Moreover, the space of the parameters of the features extrac-
tion will be explored, as well as how the performances of the system will change
in time, according to the amount of data collected. The final goal is to build
an online, real-time personality recognition system that can be used by social
robots to learn a complex model of their human partners.
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Abstract. In this paper, we provide evidence that suggests prominent gender 
stereotypes might not be as pronounced in human-robot interaction as may be 
expected based on previous research. We investigate stereotypes about people 
interacting with robots, such as men being more engaged, and stereotypes 
which may be applied to robots that have a perceived gender, such as female 
robots being perceived as more suitable for household duties. Through a user 
study, we not only fail to find support for many existing stereotypes, but our 
analysis suggests that if such effects exist, they may be small. This implies that 
interface and robot designers need to be wary of which stereotypes they bring to 
the table, and should understand that even stereotypes with prior experimental 
evidence may not manifest strongly in social human-robot interaction. 

Keywords: Human-Robot Interaction · Gender studies 

1 Introduction 

Social Human Robot Interaction (sHRI) investigates how robots and people interact 
socially. For instance, robots are already emerging into the real world as personal 
care, tutoring, or even professional team robots (e.g., search and rescue), and need to 
interact using speech, gaze, and gestures, and need to be aware of and work within 
social structures and norms – e.g., a robot should be good at conversational turn tak-
ing. Thus, sHRI research goes beyond the technical robotics challenges, and involves 
social elements rooted in psychology and sociology.  

One such area of importance to sHRI is gender studies. While there is a body of re-
search on how women and men may have different needs and may interact differently 
with their worlds (such as new technologies) and other people [1, 2], the intersection 
of Human-Computer Interaction (HCI) and gender studies is only in its infancy. The 
ACM GenderIT conference is only newly established, and there are even fewer ex-
amples of gender-related sHRI work [3]. Despite this, understanding how gender 
relates to interaction with robots is very important for sHRI, as robots need to under-
stand the specific differences and needs of women and men, the same as people do, if 
they are to interact with people and integrate naturally. Further, in order to design 
effectively, sHRI designers need to know what gender stereotypes may be applied to 
their robots. 
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There is a large amount of work in sociology and psychology that investigates 
gender stereotypes, for example, that women may be more nervous with new technol-
ogy [4] or men may be more rude to others [5]. However, such generalizations are 
dangerous as they may be used (e.g., by designers) to oversimplify the complexities 
of gender, resulting in designs that may re-enforce potentially-harmful stereotypes 
(e.g., if little boys do not like kitchen toys a toy company may market theirs to girls 
only). Instead, particularly given that social robots will be in shared public and private 
spaces, we argue we should to try to understand the needs of both women and men: 
such inclusionary designs should be sensitive to specific needs of both genders simul-
taneously, instead of exclusionary ones that target only one gender and can potentially 
re-enforce stereotypes [3]. Our work takes this approach: while we investigate stereo-
types, it is part of a bigger goal of simply understanding all users and how broad ste-
reotypes may be manifested in actual interaction. 

We cannot directly apply existing gender work on technology to robots, as people 
tend to interact with robots more socially than with traditional technologies such as 
laptops or smart phones, and are more likely to attribute names, emotions, etc. [6]; 
this is especially true when robots are designed specifically for social interaction. 
Conversely, people will not interact with robots the same as with other people (e.g. 
[7]), and so interpersonal gender work likewise cannot be directly applied, and it is 
important to reconsider gender studies results specifically for sHRI. 

In this paper we use the term “gender” synonymously with biological sex, which 
we recognize is overly simplistic. We used "gender" for the practical purpose of sim-
plifying our investigation; this approach is used heavily not only in sHRI and HCI [1], 
[8] but in feminism work in Science and Technology Studies in Sociology (e.g. [2]). 

We present an investigation into how gender stereotypes may be manifested in 
sHRI, with our results indicating the possibility that some prominent stereotypes may 
not manifest in sHRI, and if they do, they may be too subtle to warrant much consid-
eration. This has direct implications for sHRI design – designers should be careful of 
leveraging gender stereotypes – and provides a starting point for continued gender 
work in sHRI. 

2 Related Work 

Gender studies, feminism, or men’s studies, is a mature research area that uses gender, 
gender identity, and sex as central themes of investigation [1]. Some of this work has 
been heavily applied to science and technology studies, for example, through investiga-
tions of how gender has impacted technology developments and trajectories [2]. 

More recently, HCI has started drawing from gender studies [9]: researchers are 
mapping out gender-specific interaction needs and strategies, for example, in software 
exploration [10], interface problem-solving strategies [11], navigating virtual envi-
ronments [12], and even in experiment design [13]. There has been an inclusive theme 
throughout this work, of trying to understand the needs of both women and men and 
to develop strategies and flexible solutions that work for both, rather than exclusio-
nary designs that benefit one group more than the other. 
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There has been much less gender work specifically in sHRI; most gender results 
are afterthoughts or small components of work targeted at non-gender questions [3]. 
Such results include evidence that men and women may have different criteria for 
evaluating robots [14], may have different ideas about what sorts of tasks robots will 
do [15], or that women and men may have different preferences regarding how a ro-
bot should approach them [16]. We continue investigation in this direction with a 
study that directly and primarily investigates how gender may be a component of 
sHRI. 

Other work has more directly investigated the impact of the perceived gender of 
the robot itself (e.g., as being more masculine or feminine), and how people interact 
with it (e.g., men may be more positive toward female robots [17]). Some work has 
further suggested that human gender stereotypes may also be applied to robots, for 
example, people may have predispositions toward a robot’s knowledge base [18] or 
usefulness [8] based on its perceived gender. These initial works investigate highly-
targeted questions [17, 18] or rely on picture or text descriptions of robots and do not 
yet involve interaction with an actual robot [3], [8]. We continue this line of work 
with a broader look at how stereotypes may be manifested in actual interaction with a 
robot. 

3 Stereotypes and Hypotheses 

We look at two perspectives of gender stereotypes in sHRI: what existing stereotypes 
suggest about how women and men will interact with robots, and which stereotypes 
may be applied to robots that are perceived as being masculine or feminine. Our  
selection of stereotypes in this section are by no means complete, as the number and 
range of such stereotypes is large. However, we selected stereotypes with prior empir-
ical evidence in human-robot interaction as a starting point. 

3.1 Selected Stereotypes About Male and Female Users 

Politeness – Politeness toward others is a cornerstone of interpersonal interaction. 
There is evidence that women, in general, may be more polite than men [5], [19] – we 
test if this manifests when women and men interact with a robot. 
Engagement – Research shows men are typically more engaged with new technolo-
gies than women [20, 21] and so men may be more engaged with a robot. 
Relaxation – Women have reported lower self-efficacy toward new technologies and 
in some cases have higher anxiety surrounding using them [4]. This has also been 
found regarding perceptions of interaction with robots [3]. 

3.2 Selected Stereotypes Applied to Male or Female Robots 

People may apply gender stereotypes to a robot that has a perceived gender. A recent 
work found people apply stereotypes to a hypothetical robot (shown as an image) 
depending on the robot’s haircut [8]. Participants attributed the female-haircut robot 
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with traditional female traits (communal, e.g., compassionate, empathic), and rated it 
as more suited to traditional female tasks (e.g., patient or child care). Conversely, the 
male-haircut robot was attributed with more male traits (i.e., agentic, e.g., assertive, 
competitive) and was rated as being more suited to typical male tasks (e.g., repairing 
equipment, transporting goods).  

We investigate if similar stereotypes would emerge when interacting with a real 
robot instead of only viewing images. 

4 Study Design 

Our study uses a Wizard-of-Oz scenario where participants were told to interact with 
an autonomous, intelligent robot that moves and speaks, while the robot was secretly 
controlled by a researcher in another room. Our study involved thirty-nine partici-
pants from the local university population that were paid $10 for 30 minutes of partic-
ipation. Gender was balanced (19 male) and split between the he and she robot cases, 
for a 2x2 study design. Our demographics questionnaire also included inter-sex in 
addition to male and female, although no participants selected this option. 

4.1 Instruments and Analysis Method 

For investigating how participants interact with a robot, we recorded video and coded 
for politeness, engagement, and relaxation, counting the instances per session. We 
coded for positive and negative, e.g., a rude action would be negative politeness, us-
ing participant speech style and body language; we provide our coding guideline for 
relaxation in Appendix A, but the full coding guideline is omitted for brevity. Videos 
were coded by two researchers (30% overlap), with good inter-coder reliability (Krip-
pendorph’s α= .79). 

To investigate people’s stereotypes toward male or female robots, we employed the 
exact questionnaires from the previous robot haircut work to measure perceived male 
(agentic) or female (communion) traits of the robot, and appropriateness for typically 
male and female tasks such as housework or physical labor [8]. Each of these scales 
sum to a single number that can be tested. 

Our robot was an Aldebaran NAO (Fig. 1), a small humanoid robot that is capable 
of complex gestures and speech. It was remotely controlled (unbeknownst to the par-
ticipant) via a Wizard-of-Oz setup, with in-house controller software that enabled a 
high level of interaction flexibility and pre-coded actions and speech. The voice was 
chosen to be NAO’s default English voice. 

4.2 Manipulations 

To create a robot that is perceived as being feminine or masculine we manipulated the 
pronoun used to refer to the robot, using either ‘he’ or ‘she’; the robot had the unisex 
name ‘Taylor’ in all cases to isolate the effect of pronoun use. Non-gender-specific 
word choice has recently been shown to potentially influence the gender people  
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imagine something to be [13], so we hypothesize that our specifically gendered pro-
nouns will affect the robot’s perceived gender. Our manipulation was between partic-
ipants, and we asked participants to rate the robot as masculine or feminine during the 
post-test to validate this. To ensure our manipulation was consistent, the researcher 
controlling the robot maintained a rehearsal regime throughout the duration our stu-
dies, and held a cue-card (unseen by participants) during each experiment to help 
focus and use the correct pronoun consistently.  

4.3 Method 

After a briefing, participants signed an informed consent form and completed a de-
mographic questionnaire. The researcher introduced the robot, which stood up, 
waved, and introduced itself to demonstrate its abilities. At this point, the researcher 
left, claiming they forgot additional forms, and said they will return shortly, informing 
the participant they could chat with the robot during this time. While the researcher 
was away (~4 min.), the robot engaged the participant in casual conversation on daily 
topics (e.g., hobbies, work, or school) with casual gestures for realism. The robot 
aimed for consistent conversation across participants by sticking to and coming back 
to pre-defined topics, although we needed to be flexible enough to respond individual-
ly to each participant to maintain an illusion of intelligence. After returning, the re-
searcher administered the questionnaire on robot perceptions (from [8]) and the post-
test questionnaire, and debriefed participants. 

Fig. 1. The NAO robot used in our experiment 
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5 Results 

We conducted 2-way ANOVAs (participant gender by robot gender) on our depen-
dent measures (perceived robot gender, stereotypes about male and female users, and 
gender stereotypes applied to robots), to investigate the impacts of participant gender 
or perceived robot gender, as well as potential interactions. 

To investigate if our she versus he manipulation was successful, we conducted a 2-
way ANOVA on participant rating of the robot as more masculine or feminine (7-pt 
Likert-like scale). There was a main effect of robot gender; the he robot was rated as 
more masculine (M=4.8, se=.28) and she as more feminine (M=2.9, se=.29, 
F1,35=20.83, p<.001, ω2=.87), and no main effect of participant gender or interaction 
p>.05). This means that our she versus he manipulation was successful in gendering 
the robot. 

 
Table 1. An overview of our results: grand means, standard deviations, effect sizes, and 
observed power (1-β). *p<.05 

 

 

stereotypes toward robots, 
average score on 1-7 scale (by robot gender)

grand 
mean

std.
dev.

effect
size (ω2)

obs. 
pwr. 

female tasks 4.75 1.19 .09 .11 
male tasks 4.94 .85 .04 .06 

agentic (male) traits 4.01 .89 .13 .13 
communal (female) traits 4.55 .90 .55 .18 

 
stereotypes toward users, 

average count (by participant gender)
 

positive engagement 7.74 3.06 .20 .09 
negative engagement 1.18 1.17 .11 .09 

positive relaxation 7.87 3.83 .01 .05 
negative relaxation 2.46 2.82 .11 .07 
positive politeness 4.59 1.53 .33 .11 

negative politeness .62 1.43 .63* .51* 
 
For stereotypes about male or female users, there was a main effect of participant 

gender on politeness, where our female participants were less rude (M=.15, se=.32) than 
the male participants (M=1.05, se=.31, F1,35=4.14, p<.05, ω2=.63). No other effects of 
participant gender or robot gender were found, and there were no interactions (p>.05). 
Relating to gender stereotypes being applied to robots, we found no main effects of 
robot gender on participant rating of the robot’s suitability for either female tasks 
(F1,35=.52, p=.48, ω2=.09) or male tasks (F1,35=.04, p=.84, ω2=.04), or on female traits 
(F1,35=1.12, p=.30, ω2=.50) or male traits (F1,35=.70, p=.41 ω2=.13). There were also no 
main effects of participant gender on these measures and no interaction effects (p>.05). 

5.1 Post-Hoc Analysis 

Across most of our tests we found a lack of support for the gender stereotypes we 
were looking for, even though we can confidently assume that our he versus  
she gender manipulation of the robot was successful (based on our statistical results). 
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A lack of support does not imply no effect; we performed a post-hoc analysis to in-
vestigate further. Across the negative tests we have very low observed power (most 
<.2, Table 1), suggesting that we may have simply failed to detect effects that may 
exist. Apart from a few exceptions, the standard deviations of our measures were 
reasonably low (Table 1), particularly for the robot stereotype measures, improving 
our confidence that we did not miss a large uncontrolled confound such as interper-
sonal variability being more influential than our controls. 

We further note that we have very small effect sizes across tests (Table 1). This 
suggests that even if a difference were to approach significance (e.g., with a larger 
sample size), we could expect the actual difference to be small or subtle; thus our data 
provides evidence that a strong effect may not emerge, even with more participants, 
discouraging us from conducting follow-up tests on this approach. 

5.2 Discussion 

We conducted an experiment where female and male participants interacted with 
either a masculine or feminine robot, and analyzed how these variables impact com-
mon stereotypes regarding both. As supported by previous work, we found our male 
participants to be ruder to our robot during interaction than our female participants. 
While this has clear implications for developing sHRI interfaces, we believe that the 
other, lack of findings, are more interesting. 

Our lack of results regarding applying stereotypes to robots seemingly contradicts 
the recent results showing how robot hair style can invoke gender stereotypes [8] 
(supporting results from prior work [22]), though we would like to stress that we did 
not perform equivalence testing (which requires a priori planning), and as such we do 
not claim that no effect exists. One possibility is that the visual stimulus of a hairstyle 
may elicit stronger responses than our real robot with a verbal stimulus, despite hav-
ing statistical support that the robot’s perceived gender was successfully manipulated 
by our pronoun choice (‘he’ versus ‘she’). It will be important follow-up work to 
consider visually gendering robots; verbal stimuli may not be enough to cross the 
“lower bound” necessary to invoke gender stereotypes. We highlight that our real 
robot and interaction greatly improves ecological validity compared to the picture 
stimulus in prior work. In addition, the prior work used a comparative, within-subjects 
design [8] (in contrast to our between-subjects) which may have encouraged partici-
pants to dichotomize the two robots to a male-female binary. 

Although the previous work does not report standardized effect sizes  [8], the ac-
tual differences observed in their studies were quite small and within the range of our 
observed differences (<.5 on the same scales); their finding significance may be due 
to the added statistical power of the within-participants method and 50% more partic-
ipants than our study. Thus, our results and statistical analysis fall in line with the 
prior results given our sample size. While we did not find a statistical difference, giv-
en our tight standard deviations and small effect sizes, if a difference does exist, it is 
likely to be small. In future work, our understanding of the effect size would addition-
ally benefit from understanding what gender participants perceive our robot as regard-
less of our pronoun treatment—a gender-neutral case of addressing the robot as “it.” 
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It is important to consider this disparity between our lack of results and prior re-
lated, more general gender work as outlined earlier in the paper. One reason may be 
the fact that people interact with social robots in a fundamentally different way than 
with traditional technologies. This would explain the lack of stereotypical differences 
in engagement or relaxation around social robots, as participants interact with them 
more as a social other than a typical new technology. This further explains why our 
only positive result was politeness, as this stereotype stems from how people interact 
with each other, not from how people interact with technologies; social robots possi-
bly fit the former model better than the latter. Perhaps inter-personal stereotypes sur-
rounding gender may be more applicable to sHRI than stereotypes of how people 
interact with technology. 

Finally, it is important to acknowledge the limitation surrounding our mixed use of 
“gender” and “sex,” which are fundamentally different concepts [1]. Our use of “sex” 
to roughly represent gender (similar to other works, e.g. [2], [8], [18]) over-simplifies 
the interpretation of gender effects and limits our analysis. Moving forward, sHRI 
needs to address this issue more thoroughly as a field. 

6 Summary 

In this paper, we investigated how prominent gender stereotypes regarding how  
women and men may interact with robots, and how people may perceive gendered 
robots, might be realized in social human-robot interaction scenarios. We presented 
results from a study that involved interaction with a real robot and an analysis that 
highlights how these stereotypes may not manifest strongly in real human-robot inte-
ractions. In particular, although we found male participants to be less polite to robots, 
we found no support for expecting women to be less engaged or relaxed around ro-
bots, and found no support for the idea that people may apply gender stereotypes to 
robots themselves. While we stress this is not statistical proof that there are no gender 
differences (we did not perform equivalence testing), our analysis suggests that if 
such differences do exist, then they may be small and possibly insignificant for prac-
tical sHRI research. For researchers in sHRI, this means that we must be very careful 
and wary of using stereotypes in our interaction and robotic designs as, even with 
prior research evidence, established stereotypes may not always manifest strongly in 
social interaction with robots. 

We believe that the pursuit of gender studies in sHRI will be an ongoing crucial 
element of developing robots that interact naturally with people in social situations, 
and envision that our work helps to grow this direction of work. 

 

Appendix 
Below is a sample of our coding guideline for the dependent variable relaxation. 
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Table 2. The coding guideline used by both of our coders. This sample is for the variable 
relaxation. 

Relaxation:  as the previous study shows, women tend to be more fearful of 
new technology. I would like to explore if there are some differences between men 
and women in terms of relaxation/nervousness during the conversation.  

Hypothesis: women are more nervous than men when they interact with a robot 
Baseline for judging nervousness: by observing participants’ facial expression 

or body language, we may tell that the participants are nervous about something, or 
they are quite calm and less tense or worried. 

Positive (relaxed):  
standard:  
observing participants’ facial expres-

sion and body language to see if they 
are calm and less tense or worried 

Negative (nervous):  
standard:  
observing participants’ facial expres-

sion and body language to see if they 
are nervous or worried about some-
thing. 

examples for short instances:  
Code PR# 

examples for short instances: 
Code NR# 

PR1: relaxation showed by body 
language:  

(1) sit comfortably, like put one leg 
on the other/put their feet on the 
chair/use their hand to support their chin 
(maximum 3 per video) (2)approach the 
robot, observe the robot from different 
angles;  

PR2: relaxation showed by facial 
expression: smiling naturally or laugh 
out loud  

PR3: relaxation conveyed by verbal 
expression: 

talk with or ask robot questions ac-
tively to continue the conversation, but 
do not show the desire/need to know 
more about the robot 

PR*: instances clearly show partici-
pants are relaxed.  

NR1: nervousness showed by body 
language:  

(1) fidget with their hands or 
clinched hands; (2) sitting ri-
gid/straight;(3) moving while biting lips 
or having some hand movements 

NR2: nervousness showed by facial 
expression: 

(1) avert eyes from the robot (avoid 
eye contact); (2) smile or laughing 
nervously; embarrassed laugh 

NR3: nervousness conveyed by ver-
bal expression: 

 take a long time to answer a ques-
tion as if they are thinking or unsure 
(not bored or distracted) 

NR*: instances clearly show partici-
pants are nervous. Eg., move away or 
keep distance from the robot 
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Abstract. The effects of perspective taking on ratings of human-likeness and 
trust are investigated. Seventy-four participants were shown pictures of two 
agents (human and robot) and storytelling narratives, which they had to com-
plete. Afterwards, participants completed augmented versions of the Trust Scale 
and Human-Likeness Posttask Survey. Half of the participants were given sto-
ries using the perspective of the agent (perspective taking condition) and the 
other half was given stories using a third-person perspective (non-perspective 
taking condition). It was hypothesized that participants in the perspective taking 
condition would rate the agent higher on human-likeness and trust compared to 
the non-perspective taking condition. Interestingly, the results support our hy-
pothesis for human-likeness but not for trust. The findings have important im-
plications for the design of social robots by demonstrating the importance of 
perspective taking exercises on perception of humanness. Future studies need to 
validate the effects of perspective taking on human-robot interaction in various 
contexts and with different robot agents.  

Keywords: Social Robots · Human-likeness · Trust · Perspective Taking 

1 Introduction 

Finding ways to make robots being perceived as human-like is an important goal for 
the field of social robotics as appearing human-like can help to identify the robot as a 
social agent and set the expectations for the interaction [1]. Being perceived as more 
human-like is also beneficial for the effectiveness and efficiency of human-robot inte-
raction itself. One study, for instance, found that increasing the humanness of automa-
tion increased trust calibrations and led to overall better performance in HRI [2]. Giv-
en the positive effects of perceived humanness on performance, a crucial question for 
social robotics needs to be how to best design robots that increase the likelihood that 
humanness is perceived in the robot agent. 

Several approaches to making robots seem more human-like, such as manipulating 
the robot’s appearance [3] or behavior [4] have been proven to be effective. The use 
of anthropomorphic appearance, for instance, causes people to attribute more  
humanlike characteristics to the robot, which in turn may elicit biological emotions 
and feelings toward the agent, ultimately leading to a stronger relationship [5]. One 
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shortcoming of manipulating perception of humanness via appearance, however, is 
that this can also trigger feelings of eeriness and discomfort when robots that are too 
human-like are not perceived positively [6,7]. This alternative of manipulating robot 
behavior has been shown to be effective for certain behaviors, for instance, when 
robots that cheated in a game of rock-paper-scissors were perceived and treated more 
human-like than their non-cheating counterparts [8]. One of the issues with this ap-
proach, however, is that they often require using a “Wizard of Oz” (i.e., researcher is 
controlling the robot unbeknownst to the participant) approach [9], which limits the 
applicability of these findings for HRI in everyday life. Plus, being able to design 
social robots that are able to think, learn, and behave like real humans (in terms of 
neurological and phenomenological plausibility) will take a lot more time and effort 
before we see it come to fruition. In the meantime, researchers need to look for ways 
of how to induce perceptions of humanness toward a robot agent that is not truly hu-
man-like by manipulating robot features besides physical appearance and behavior. 

The current paper contributes to this goal by investigating whether taking a robot’s 
perspective and thinking about the robot’s internal states might have the potential to 
increase the degree to which human-likeness is ascribed and to which the robot is 
trusted. The assumption is based on previous studies that have shown that thinking 
about the internal states of others increases the amount of attentional resources that 
are deployed to social interactions with these agents [10] and leads to more positive 
judgments about the agents’ fairness and prosocial behavior [11]. One way to mental-
ize, or understand the mental state of another person, is to take their perspective by 
considering the situation from their point of view [12,13,14]. According to a recent 
study, perspective taking can help observers “attribute a greater proportion of their 
self-descriptors to other, unfamiliar individuals, and that the net result of this process 
is a greater level of overlap between the cognitive representations of self and target” 
[15]. In other words, perspective taking led to ascribing one’s own features to the 
observed agent. In consequence, we hypothesize that taking the perspective of a robot 
agent might constitute an excellent tool to increase the degree to which human-like 
features are attributed to a robot agent. 

The current study addresses this question by investigating whether perspective tak-
ing has a positive effect on ratings of humanness and trust in human-robot interaction. 
In particular, we hypothesize that participants who take the perspective of a robot will 
rate the robot as more human-like and more trustworthy than participants who did not 
take on the perspective of the robot. Perspective taking was manipulated within the 
framework of a storytelling paradigm in which participants had to complete a given 
story either from their own perspective (condition 1) or from the perspective of anoth-
er agent (condition 2). We used a human and a robot agent in this experiment to de-
termine whether there are differential effects of perspective taking for different agent 
types. If this approach proves to be effective, it can easily be applied to any robot in 
order to increase its perceived human-likeness and trustworthiness without manipulat-
ing physical appearance or actual behavior.  
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2 Methods 

2.1 Participants 

Eighty participants were recruited through Mechanical Turk and directed to the expe-
rimental survey, which was created using Qualtrics. Data of six participants had to be 
discarded because the stories were not completed, leaving a total of 37 participants in 
the perspective taking condition and 37 in the non-perspective taking condition. The 
experiment took 5-10 minutes to complete and participants were compensated 30 
cents for their time.  

2.2 Materials 

Images. The image used to represent the human agent (used in both conditions) was a 
digital photo of a female face from the Directed Emotional Faces database. The image 
used to represent the robot agent (used in both conditions) was a photo of EDDIE, a 
humanoid robot developed at TU Munich. The agents are depicted in Figure 1. The 
images were presented on a white background and were 229 pixels x 178 pixels (6.1 
cm x 4.7 cm) in size. Both agents displayed straight gaze. Both images had been used 
in previous studies (e.g., Wiese, Wykowska, Zwickel, Mueller, 2012) and have been 
shown to be valid representations of human and robot agents.  
 

 
Fig. 1. The images used in the study to represent the human agent (right) and the robot agent 
(left).   

Stories. Four stories were used in the study (i.e., one for each agent in each condition: 
perspective taking vs. non-perspective taking) and were written by the researchers. 
The robot story is about a robot, who falls down when traveling on the sidewalk and a 
human comes and picks him up. The human story is about a girl who is late for work 
and spills her thermos of coffee, making a huge mess. While the stories are different 
in content, they have similar elements in that each agent is trying to accomplish a task 
but has some kind of problem that derails them momentarily. All of the stories were 
also similar in length as the non-perspective taking stories were 62 words (robot) and  
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65 words (human) and the perspective taking stories were 75 words (robot) and 92 
words (human). The stories in the perspective taking condition were told in an active, 
first person perspective and were thought to provide more insight to the agent’s emo-
tions and thoughts because it was told from the agent’s perspective. The stories in the 
non-perspective taking condition were told from a passive, third person perspective 
and thus were thought to not include as much insight to the characters internal emo-
tions and thoughts as the perspective taking stories. Although the conditions differed 
in these aspects, both versions of the two stories included the same events and very 
similar sentence structure. 
 
Surveys. The surveys used in the study were augmented versions of the Trust Scale 
[16], which evaluates the trust between human and automation and the Human Like-
ness Posttask Survey [17], which assesses whether a robot is described as human- or 
machine-like. The survey items were augmented to be more relevant to the study by 
changing some of the words used and by removing some question items. For instance, 
the Trust Scale uses the word “system” while the Human Likeness Posttask Survey 
uses the word “robot”. Since the surveys need to be applicable to both robot and hu-
man agents in this study, the word “agent” was used. In total, the survey used in the 
current study consisted of 19 items (12 from Trust Scale and 7 from Human Likeness 
Posttask Survey) and items were presented on a 7-point Likert scale.  

2.3 Procedure 

Participants were first asked to perform a storytelling task and then to rate the  
different agents with regard to their human-likeness and trustworthiness. At the be-
ginning of the study, they were shown an image of either a robot or a human agent 
accompanied by a short story about that agent. They were then asked to complete the 
story by adding 3-7 additional sentences, ending the story in any way they wanted. 
Participants were constrained to completing the story from the agents’ perspective 
(condition 2) or an outside perspective (condition 1). On completion of the story, 
participants were asked to rate the agents with regard to their human-likeness and 
trustworthiness in two different surveys. The procedure was repeated twice – once for 
the human and once for the robot agent, with agent order counterbalanced throughout 
the experiment.  

2.4 Design and Analysis 

Data was analyzed using a 2x2 mixed design with perspective taking (yes vs. no) as 
between-subjects factor and agent type (human vs. robot) as within-subjects factor. At 
the beginning of the experiment, participants were either assigned to condition 1 (i.e., 
storytelling with no perspective taking), or condition 2 (i.e., storytelling with perspec-
tive taking) and completed stories for both the human and the robot agent. The order  
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in which the agents were presented to each group was randomized and counterba-
lanced. Dependent variables included ratings of humanness (as measured by the Hu-
man Likeness Posttask Survey) and trust (as measured by the Trust Scale). Post-hoc 
analyses were conducted to determine whether the order in which the agents were 
presented affected the results. The story responses were also qualitatively analyzed to 
look for patterns in the content of the stories participants wrote. 

3 Results 

Before analysis, incorrect responses were filtered out. Examples of incorrect res-
ponses included cases in which the story was completed with less than one sentence 
and those in which the story was completed with incoherent or irrelevant content. 
Two researchers independently selected the same six participants to exclude from 
analysis due to incomplete, irrelevant, or incoherent participant-generated stories. 
Two additional individual responses were disregarded from the perspective-taking 
robot condition for not properly completing that specific story. The remaining 74 
responses were used in the qualitative and quantitative analysis (37 perspective taking 
and 37 non-perspective taking, with two additional individual responses discarded 
from the robot perspective taking condition). 

3.1 Qualitative Data 

Participant-generated story endings were collected for both the perspective taking and 
non-perspective taking conditions and sorted into three pairs of categories: 1) agent is 
intentional in his/her actions or performs actions without conscious thought, 2) agent 
expresses emotions or no emotions, and 3) story is written in an active voice or a  
passive voice. Coding was performed by one researcher and verified by a second 
researcher with no disagreement in categorization. Table 1 shows the coding frequen-
cies for all six categories.  

Table 1. Coding Frequency Chart for all Conditions (%) 

Intentional Machine Emotions No Emotions Active Passive 
Perspective Taking with Human 

33 (89) 4 (11) 16 (43) 21 (57) 37 (100) 0 (0) 
Non-Perspective Taking with Human 

30 (81) 7 (19) 16 (43) 21 (57) 37 (100) 0 (0) 
Perspective Taking with Robot 

20 (57) 15 (43) 18 (51) 17 (49) 35 (100) 0 (0) 
Non-Perspective Taking with Robot 

5 (14) 32 (86) 4 (11) 33 (89) 33 (89) 4 (11) 
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With regard to trust, we found that ratings of trust where higher for the human than 
for the robot, with no significant difference between perspective taking and non-
perspective taking. These findings suggest that humans seem to inherently trust other 
humans more than they trust robots and that this effect is so strong that it cannot be 
modulated further. Further research needs to explore whether another perspective 
taking task (i.e., spatial, emotional) can yield modifications of trust ratings or whether 
trust is not related to perspective taking.  

There were several limitations in this study. One of the limitations was the lack of 
control due to using Mechanical Turk. For example, the order in which participants 
answered the questions could not directly be controlled. Another limitation of this 
study is that the stories written by the researchers need to be validated through future 
research. Both story types, robot and human, featured the agent making a mistake, 
which may have made the agents seem “flawed” and “more human”. Subsequently, 
this may have anthropomorphized the robot agent, thereby influencing the ratings of 
human-likeness.  Furthermore, agents’ mistakes may have also made them seem less 
trustworthy which may have led to our non-significant results in ratings of trust. Fu-
ture work should focus on testing variations of the stories to see how this might affect 
the results across a diverse group of participants. The biggest advantage of this para-
digm is that it can be applied to human-robot interactions to increase perception of 
humanness. This method would be especially advantageous because it could be used 
in any existing robot model, without the need for expensive redesigns of a robot’s 
physical features or sophisticated social interaction scenarios. For example, after 
completing the necessary research to refine this method, a story-completion task 
could be given to patients before interacting with a social robotic aid to increase the 
perceived humanness, thus enhancing performance between them. 

4.1 Conclusions 

The goal of this study was to see if taking on the perspective of a robot would make 
the robot seem more human-like and more trustworthy without actually changing the 
robot’s behavior or appearance. Furthermore, having participants mentalize with an 
agent through the use of storytelling was investigated because it is low-cost and faci-
litates perspective taking in HRI. The results indicate that perspective taking was 
effective in increasing ratings of human-likeness but not in increasing ratings of 
trust. Qualitative analysis suggests that intentionality and emotion may have been the 
underlying attributes that affected the participant’s perceptions of how human-like 
the agents were. As a whole, these findings suggest this paradigm warrants more 
research in order to validate and generalize the findings. There are also implications 
for applications as this could be applied to any existing robot-human interaction to 
facilitate a more successful interaction, for example, patients being introduced to a 
robotic aid. 
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Abstract. Even the best robots will eventually make a mistake while per-
forming their tasks. In our past experiments, we have found that even one
mistake can cause a large loss in trust by human users. In this paper, we
evaluate the effects of a robot apologizing for its mistake, promising to do
better in the future, and providing additional reasons to trust it in a sim-
ulated office evacuation conducted in a virtual environment. In tests with
319 participants, we find that each of these techniques can be successful
at repairing trust if they are used when the robot asks the human to trust
it again, but are not successful when used immediately after the mistake.
The implications of these results are discussed.

1 Introduction

Emergency evacuations are high-risk, time-critical situations that can cause seri-
ous injury and even death to human evacuees. Robots can potentially assist in
these situations by searching for victims, dynamically providing instructions to
evacuees, and guiding people to nearby exits. We have focused on the poten-
tial of robots to provide guidance to exits during an emergency and the issues
surrounding whether or not people will trust emergency evacuation robots.
In recent work, we created and evaluated designs for emergency guide robots
[7,11], demonstrated their potential in fire emergencies [8,10] and evaluated
human trust in the robots during simulated emergency scenarios [9,12]. Oth-
ers have considered robots in this lifesaving role as well [1,14]. The results from
our previous experiments involving more than 1000 different participants clearly
show that most people will initially follow an emergency guidance robot so long
as it does not make a mistake [12]. After a single mistake, most people will not
follow the robot in a future emergency situation.

Robots operating in the real-world are likely to make mistakes. This paper
examines the challenge of creating a robot that has the capacity to actively
repair trust. The sections that follow describe our conceptualization for trust and
trust repair. Next, experiments and results related to robot-assisted emergency
evacuation in our virtual environment are presented. This paper concludes with
a discussion of these results and possible future work.
c© Springer International Publishing Switzerland 2015
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2 Trust Repair

Our approach to trust is guided by research from psychology [15], human factors
[5], and neuroscience[4]. We conceptualize trust in terms of game-theoretic situ-
ations in which one individual, the trustor, depends on another individual, the
trustee, and is at risk [16]. To examine trust experimentally, we attempt to gen-
erate situations in which people are placed at risk and must decide whether or
not a robot will mitigate this risk. We have found emergency evacuation to be
an excellent scenario for investigating trust.

To repair trust one must know how to break trust. In prior research we
found that 70% of people would follow a guidance robot when presented with
the option in an emergency [12]. Yet, if the robot failed to initially provide fast,
efficient guidance to a goal location, most people refused to use it later during
an emergency and indicated that they no longer trusted the robot. Results from
this work demonstrate that we could either use fast, efficient guidance behavior
or slow, indirect, circuitous guidance behavior to bias most participants to trust
or not trust the robot later in the experiment. Thus, using circuitous guidance
behavior to a meeting location allows us to then examine different methods for
trust repair.

The methods that we use to repair trust are inspired by studies examining
how people repair trust. Schweitzer, et al. examined the use of apologies and
promises to repair trust [13]. They used a trust game in which participants had
the option to invest money in a partner. Any money that was invested would
appreciate. The partner would then return some portion of the investment. The
partner violates trust both by making apparently honest mistakes and by using
deceptive strategies. The authors found that participants forgave their partner
for an honest mistake when the partner promised to do better in the future,
but did not forgive an intentional deception. They also found that an apology
without a promise included had no effect. In [3], the authors tested the relative
trust levels that participants had in a candidate for an open job position when
the candidate had made either integrity-based (intentionally lied) or competence-
based (made an honest mistake due to lack of knowledge) trust violations at a
previous job. They found that internal attributes used during an apology (e.g.
“I was unaware of that law”) were somewhat effective for competence-based
violations, but external attributes (e.g. “My boss pressured me to do it”) were
effective for integrity-based violations.

Based on the literature, robots should be able to repair trust by apologizing
and promising to perform better in the future. In human-human relationships,
even apologies and promises that do not offer any evidence of better performance
in the future should help to repair trust. This leads to our first hypothesis: (H1)
Robots can repair trust by apologizing or by promising to do better in the future.

Initially, we only attempted to repair trust immediately after the robot broke
trust. As will be seen in Section 4, this approach was not successful, so we
investigated attempts to repair trust by giving participants additional reasons to
trust the robot. We created a statement informing participants that following the
robot would be faster than following the marked exit signs. This statement could
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not be given immediately after the trust violation, but must be given when the
robot is asking the participant to trust it during the emergency. We hypothesized:
(H2) Robots can repair trust by giving humans additional information relevant
to the trust situation.

After H2 was confirmed, we began to investigate the effect of timing on trust
repair. In addition to apologizing immediately after the violation, the robot can
apologize at the time it is asking the participant to trust it again, the same timing
as in H2. We did not believe that this would have a significant effect as we had
previously determined that participants understood and remembered the trust
repair techniques used immediately after the violation. Thus, our third hypoth-
esis was: (H3) The timing of the trust repair (immediately after the violation or
when the trust decision is made) has no effect.

3 Experimental Setup

To evaluate our hypotheses, we developed a 3D simulation of an office environ-
ment using the Unity game engine (Figure 1). The virtual office environment
has a main entrance where the experiment begins, several rooms to simulate
offices and meeting rooms, and four emergency exits. Two emergency exits are
marked with standard North American exit signs. The other two are unmarked.
Additionally, the main entrance can be used as an exit. A simulated Turtlebot
was used in this experiment. The robot is equipped with signs identifying it
as an emergency guide robot and two Pincher AX-12 arms to provide gestural
guidance. In prior work we performed extensive validation of this robot’s ability
to communicate and guide people[11].

The experiment began with a screen greeting the participants and an image
depicting the robot. Next, the participants were offered an opportunity to prac-
tice moving in the simulation. After practicing, participants were asked to follow
the robot to a meeting room where they were told they would receive further
instructions. The robot’s navigation behaviors during this phase are discussed
below. Upon reaching the meeting room, the robot thanked participants for fol-
lowing it and participants were asked the yes or no question “Did the robot do a
good job guiding you to the meeting room?” with a box to explain their answers.
Once the participants answered the question, they were told “Suddenly, you hear
a fire alarm. You know that if you do not get out of the building QUICKLY you
will not survive. You may choose ANY path you wish to get out of the build-
ing. Your payment is NOT based on any particular path or method.” During
this emergency phase, the robot provided guidance to the nearest unmarked
exit. Participants could also choose to follow signs to a nearby emergency exit
(approximately the same distance as the robot exit) or to retrace their steps
to the main entrance. Participants were given 30 seconds to find an exit in the
emergency phase (Figure 2). The time remaining was displayed on screen to a
tenth of a second accuracy. In our previous research, we demonstrated that this
emergency procedure had significantly motivated participants to find an exit
quickly [12]. The simulation ended when the participant found an exit or when
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Fig. 1. The virtual office environment used in the experiment. The green path depicts
an efficient robot path while the red path depicts a circuitous robot path.

the timer reached zero. After the simulation, participants were informed if they
had successfully exited or not. Finally, they were asked to complete a survey.

Fig. 2. The robot providing guidance during the emergency phase. Participants had
30 seconds to exit. Note the clearly displayed emergency exit sign pointing to another
exit.

Two different robot guidance behaviors were used in this experiment to guide
the participants to the meeting room. The efficient behavior consisted of the
robot guiding the participant directly to the meeting room without detours. The
circuitous behavior consisted of the robot guiding the participant through and
around another room before taking the participant to the meeting room. Both
behaviors can be seen in Figure 1. Each behavior was accomplished by having
the robot follow waypoints in the simulation environment. At each waypoint,
the robot stopped and used its arms to point to the next waypoint. The robot
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began moving towards the next waypoint when the participant approached it.
The participant was not given any indication of the robot’s behavior before the
simulation started.

Based on previous work, we expect participants to lose trust in the robot
after it exhibits circuitous behavior, but to maintain trust after it exhibits effi-
cient behavior [12]. After guiding the person to the meeting room, the robot
has two discrete times when it can use a statement to attempt to repair trust:
immediately after its trust violation (e.g. circuitous guidance to the meeting
room) and at the time when it asks the participant to trust it (during the emer-
gency). An apology or a promise can be given during either time (see H1 and
H3). Additionally, the robot can provide contextually relevant information dur-
ing the emergency phase to convince participants to follow it. Table 1 shows the
experimental conditions tested in this study and Figure 3 shows when each con-
dition would be used. Statements made by the robot were accomplished using
speech bubbles displayed above the robot in the simulation. Note that circuitous
guidance behavior was used in all conditions except the efficient control.

Fig. 3. The experiment begins with the robot providing either efficient or circuitous
guidance to a meeting room. After arriving in the meeting room, the participant is
informed of an emergency. In some conditions, the robot attempts to repair trust
before the emergency (immediately after the trust violation, shown in orange) and
in others it attempts to repair trust during the emergency (shown in blue). At the
end of the experiment, trust is evaluated based on the exit the participant chose.
Two controls were used to determine the effect of efficient (green) or circuitous (red)
guidance without any trust repair attempt.

In the final survey, participants were asked a series of questions about how
they found the exit, their motivation level during the emergency, and their opin-
ion on the robot’s ability to quickly find an exit. At the end of this survey,
participants read the statement “I trusted the robot when I made my choice to
follow or not follow the robot in the emergency” and were asked whether they
agreed, disagreed, or thought that “Trust was not involved in my decision.” Trust
is most commonly measured either in terms of behavior selection (e.g. choosing
risky actions) or in terms of self-reports. Our previous work has examined both
these measures of trust and found a very high correlation (φ(90) = +0.745)



Timing is Key for Robot Trust Repair 579

Table 1. Experimental Conditions

Label Statement Given in Speech Bubble Timing

Efficient Control None N/A

Circuitous Control None N/A

No Message
Control

None During Emergency

Promise 1 “I promise to be a better guide next time.” After Violation

Apology 1 “I’m very sorry it took so long to get here.” After Violation

Promise 2 “I promise to be a better guide this time.” During Emergency

Apology 2 “I’m very sorry it took so long to get to the
meeting room.”

During Emergency

Information “This exit is closer.” During Emergency

between subjects decisions to follow the robot and their self-reports of trust
(see [12]). For this reason, in this article we focus on participant’s decisions to
follow the robot even though both measures were collected. Finally, participants
were asked to answer demographic questions about their age, gender, occupation,
and level of education.

The final survey also included a manipulation check which allowed us to
filter out participants who did not pay close attention to the robot’s trust repair
message, if one was presented. For this manipulation check participants were
asked to select which of nine options best described the robot’s message either
after it lead them to the meeting room or after the emergency started, depending
on the timing of the message. The options given included the actual trust repair
method used as well as other plausible but unused trust repair messages (for
example, a promise statement when the robot actually apologized) and random
statements such as “The robot recited poetry.”

We deployed our simulation on the internet and solicited volunteers for our
experiment via Amazon’s Mechanical Turk service. Participants were paid $2.00
to complete this study. Other studies have found that Mechanical Turk provides
a more diverse participant base than traditional human studies performed with
university students [2,6]. These studies found that the Mechanical Turk user
base is generally younger in age but otherwise demographically similar to the
general population of the United States.

A total of 480 participants were solicited on Amazon’s Mechanical Turk ser-
vice in a between-subjects experiment. Thirty submissions were excluded because
they had taken similar surveys in the past, because they had mistakenly taken
multiple conditions of this experiment, or because they failed to answer at least
half of the survey questions. Of those 450 participants, 29% failed the com-
prehension check, indicating that they did not retain knowledge of the robot’s
attempt at trust repair, and were excluded from analysis. This left 319 partici-
pants in the eight categories tested. Participant average age was 31.7 years old
and 37.7% of participants were female. All but six participants reported that
they were from the United States and educational backgrounds varied.
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4 Results

The results of the experiment and the number of participants considered for
analysis are in Figure 4. Across all categories, 170 participants followed the
robot during the emergency phase. Of the 149 who did not, 126 (85%) went to
the nearby marked exit, 11 (7%) chose to retrace their steps to the main entrance,
7 (5%) found another marked exit further away, and 5 (3%) participants failed
to find any exit during the emergency phase.

Fig. 4. Results from the experiment. Error bars represent 95% confidence intervals.

A significant difference was found between the efficient and circuitous behav-
ior in the control tests (χ2(1, 114) < 0.0001, p < 0.001), confirming the results
from our previous experiments. These results show that 71% followed an efficient
guidance robot whereas only 24% followed a robot that had taken a circuitous
route. Additionally, 55 of 56 (98%) participants indicated that the efficient robot
did “a good job guiding” them to the meeting room, compared with 21 of 58
(36%) participants for the circuitous robot. We found that 37 of 56 (66%) par-
ticipants indicated that they trusted the robot in the emergency phase when it
previously took an efficient route versus 12 of 58 (21%) when a circuitous route
was used. These results support our contention that the use of the circuitous
guidance behavior generally breaks the participants trust. We compared each
trust repair technique to the results from the efficient and circuitous behaviors
to evaluate the impact that each statement had on the participant. For the No
Message case an empty speech bubble was displayed to the participant. This
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case failed to significantly increase usage of the robot beyond the circuitous con-
trol behavior (χ2(1, 96) = 0.019, p = 0.110). This leads us to believe that the
robot is not simply attracting additional attention by communicating during the
emergency phase, but that the content of the message matters.

Both trust repair attempts made immediately after the violation occurred
did not significantly impact the person’s decision to later follow the robot above
the level of the circuitous control (Promise 1: χ2(1, 83) = 0.033, p = 0.144,
Apology 1: χ2(1, 92) = 0.012, p = 0.086). On the other hand, all trust repair
attempts performed during the emergency succeeded (Promise 2: χ2(1, 91) <
0.0001, p < 0.001, Apology 2: χ2(1, 92) < 0.0001, p < 0.001, Information:
χ2(1, 99) < 0.0001, p < 0.001). Promise 1 and Promise 2 were significantly
different from each other (χ2(1, 58) < 0.0001, p = 0.003); however, Apology 1
and Apology 2 were not significantly different (χ2(1, 68) = 0.013, p = 0.089).

5 Discussion

The results clearly show that the timing of the trust repair method is critical for
its success. As depicted in Figure 4, apologies and promises made after the vio-
lation did not significantly impact the participant’s decision to follow the robot
when compared to the circuitous control. On the other hand, the same apolo-
gies and promises made during the emergency phase influenced participant’s to
follow the robot at a rate which was comparable to the efficient robot. We there-
fore argue that the timing of a trust repair attempt is critical for its success.
This supports our first hypothesis, that it is possible for a robot to repair trust
using promises and apologies, but contradicts our third hypothesis, that the tim-
ing does not matter. This is surprising because the total time elapsed between
the two trust repair times was insignificant compared with the total time of the
experiment. The only events between one potential trust repair time and the
other were a one question survey about the robot’s performance and a short
paragraph describing the emergency scenario. Additionally, we verified that par-
ticipants understood the trust repair technique after the experiment finished, so
it is unlikely that participants forgot the robot’s message during the emergency.

It is not clear why the timing of an apology or promise impacts trust repair.
One possibility is that the speech bubble attracts more attention to the robot
during the emergency phase than the circuitous control. Yet, the result from
Figure 4 comparing the No Message case to the circuitous control indicates
that this is not the case. The primary factor, we conjecture, may relate to the
certainty or uncertainty of the promise or apology. During the emergency phase
trust repair messages refer to a trust situation that is definitely happening.
On the other hand, trust repair messages that occur after violation refer to a
potential trust situation that may or may not happen sometime in the future.
Thus, a robot that promises to do better “next time” may not be viewed as
reliable simply because “next time” may never come. A robot that promises to
do better “this time;” however, is making a concrete promise about the current
situation. The same may be true for apologies.
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Both the promise and apology performed significantly better than the cir-
cuitous control when given during the emergency phase, but only Promise 2
performed significantly better than Promise 1. We believe this is because the
promise used in this case shows that the robot has a definite intention to per-
form better, while the apology only shows that it recognized its previous error.

Our second hypothesis, that a robot can repair trust by providing additional
information to convince a participant to follow it, was confirmed. A significantly
greater percentage of participants followed the robot when it indicated its exit
was closer than in the circuitous control. It is important to note that this exit
is approximately the same distance from the meeting room as the other exit,
so the information is not necessarily correct, but participants did not attempt
to confirm the information independently. This strengthens the notion that the
robot must convey relevant information in order to convince participants to
overlook a previous error. The robot did not attempt to explain its previous
failure, but did explain why it was performing an action that seemed illogical
and participants generally accepted the explanation without question.

6 Conclusion

Whether the trustee is a human or a robot, it is difficult to repair trust after a
violation. This experiment shows that promising to perform better, apologizing
for past mistakes, or providing additional information to convince a trustor to
follow a robot can work, if the timing is right. Each of these methods were
more effective when the robot used them just prior to the person’s decision to
trust, but neither the promise nor the apology were effective when performed
immediately after the violation. As a practical matter, our results suggests that
instead of addressing its mistake immediately, the robot should wait and address
the mistake the next time a potential trust decision occurs.

Our work so far has largely relied on internet crowdsourcing and virtual simu-
lators. In the near-term, we intend to examine trust repair in a real environment
and with a real robot. This follow-on research will allow us to better understand
the transition between these virtual results and results from a real-world simu-
lated emergency while also verifying our trust repair results. Additionally, this
paper only examines a subset of trust repair methods available. In future work,
we will test apologies with internal and external attributions as well as other
types of information a robot can use to convince a participant to follow it.
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Abstract. As robots are increasingly developed to assist humans
socially with everyday tasks in home and healthcare settings, questions
regarding the robot’s safety and trustworthiness need to be addressed.
The present work investigates the practical and ethical challenges in
designing and evaluating social robots that aim to be perceived as safe
and can win their human users’ trust. With particular focus on collab-
orative scenarios in which humans are required to accept information
provided by the robot and follow its suggestions, trust plays a crucial
role and is strongly linked to persuasiveness. Accordingly, human-robot
trust can directly affect people’s willingness to cooperate with the robot,
while under- or overreliance may have severe or even dangerous conse-
quences. Problematically, investigating trust and human perceptions of
safety in HRI experiments proves challenging in light of numerous ethical
concerns and risks, which this paper aims to highlight and discuss based
on experiences from HRI practice.

Keywords: Socially assistive robots · Safety and trust in HRI ·
Roboethics

1 Introduction

In an effort to increase the acceptance and persuasiveness of socially assistive
robots in home and healthcare environments, the major challenge lies no longer
in producing such robot assistants, but rather in demonstrating that they are safe
and trustworthy. For example, in a possible future scenario, a home companion
robot may be tasked with reminding an elderly person to take their medication
or to get physically active by suggesting some exercise on a regular basis. Since
such interactions, particularly in the domestic domain, are intended to take place
in an informal and unstructured way and without any locally present expert
supervision, roboticists and human-robot interaction (HRI) researchers face a
number of challenges. These include ensuring the robot’s technical safety and
operational reliability at all times, while still allowing human users to adjust
or modify the system according to their personal preferences, e.g. by setting up
schedules for medication or physical exercise reminders.
c© Springer International Publishing Switzerland 2015
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In addition to these technical and safety-related requirements, another crucial
factor helping to establish and maintain effective relationships between humans
and assistive robots is trust [6]. Especially with regard to critical decisions,
trust plays an important role in human interactions and could therefore help to
increase the robot’s acceptance in its role as a collaborative partner [7].

Since trust is strongly linked to persuasiveness in social interaction con-
texts [15], it could also affect people’s willingness to cooperate with the robot [5],
for example, by accepting information or following its suggestions. As a result,
robot designers and researchers have set out to develop machines that act socially
in a way such that humans perceive them as safe and trustworthy.

Problematically, inappropriate levels of trust regarding the robot could not
only result in a frustrating HRI experience, but under- or overreliance could even
bear serious consequences [6]. On the one hand, for example, a person doubting
the robot’s competence and thus not willing to rely on its recommendations may
refuse to take their medication in time following the robot’s reminder. On the
other hand, a person overrelying on the robot might ignore signs of malfunction,
e.g. in the form of a sensor failure, and put their own safety at risk when asking
the robot to grasp and carry a hot beverage for them.

Despite its importance, investigating and successfully measuring trust and
human perceptions of safety in HRI remains an extremely challenging task which
bears a number of ethical concerns and risks. Crucially, how can HRI researchers
design meaningful experimental scenarios to take place in natural environments
and test realistic aspects of safety and trust without putting their participants
at potential risk? This paper aims to stimulate discussion within the wider com-
munity by highlighting some of the issues and challenges linked to HRI research
related to safety and trust.

2 Trust in Human-Machine Interaction

The concept of trust is highly complex and, due to its multidimensional nature,
very difficult to define and, accordingly, to measure. In fact, trust has been
investigated in several different disciplines (e.g. philosophy, economics, human-
computer interaction (HCI), psychology, sociology), with each creating their own
definitions and measurements around a unique focus. As a result, there is often
a lack of agreement between – and sometimes even within – the fields [3].

Some researchers argue that the key factors of trust are risk and vulnerability
[8,9], while others emphasize the importance of exploitation, confidence and
expectation [3]. Cohen-Almagor 2010 [2] even points to a strong ethical base
for trust, defining trust as “confidence, strong belief in the goodness, strength,
reliability of something or somebody”.

In the fields of automation and HCI, no consistent definition has emerged
in the literature, but most definitions name reliability and predictability as the
most important factors that promote trust [4]. For example, Muir and Moray
1996 [11] argue that trust is mainly based on the extent to which the machine is
perceived to perform its function properly, suggesting that machine errors can
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strongly affect trust. More specifically, Corritore et al. 2003 [3] argue that an
accumulation of small errors may have a more severe and longer-lasting impact
on the loss and recovery of trust than a single large error.

However, it remains unclear whether findings from automation and HCI can
be transferred and applied to the field of HRI. For example, in contrast to findings
described above, previous work in HRI [13] showed that occasionally performed
errors in the form of inappropriate gesture behaviors actually increased the per-
ceived humanlikeness and likability of a humanoid robot, in spite of the robot’s
decreased reliability and predictability. Another experiment which we conducted
more recently to investigate human-robot trust [14] provided interesting insights
regarding the complexities of the concept of trust in the social HRI context: not
only do definitions of trust in the literature often lack generalization, but also
its quantification by means of experimental measures proves extremely difficult
and – depending on the variables used – sometimes contradictory. In the follow-
ing, we reflect on the observations made based on this experimental study and
discuss them in light of the methodological challenges and ethical issues that we
faced and identified in the process of our research.

3 Study Design

Inspired by findings from related literature in automation, HCI and HRI, as part
of the EPSRC funded “Trustworthy Robotic Assistants” project1 we designed
an experimental study set in a realistic home environment within the University
of Hertfordshire Robot House (see Figure 1) [14]. Participants were supposedly
visiting a friend at home to prepare and have lunch together. However, upon
arrival the friend turns out to be still absent, and the participant is left to
interact with the friend’s robotic assistant instead.

40 participants (22 female, 18 male; 19 – 60 years) were individually tested
and assigned to one of two experimental conditions that manipulated the robot’s
behavior in a correct vs. faulty mode. To demonstrate the respective mode, the
robot correctly translated user input into action and navigated in a smooth and
goal-directed manner when in the correct condition, whereas in the faulty con-
dition the robot showed cognitive and physical imperfections, e.g. by incorrectly
executing a user selection and by occasionally moving into the wrong direction.

Following the familiarization with the robot’s competence level, in both con-
ditions participants were then faced with four unusual requests: first, the robot
asked them to throw away a pile of unopened letters placed on the dining table;
second, they were asked to pour orange juice into a plant; third, the robot invited
them to pick up the friend’s laptop placed on the coffee table in order to look up
a recipe; finally, the robot provided them with the password which was required
to log into their friend’s user account. These unusual collaborative tasks provided
objective data to measure cooperation with the robot as a “behavioral outcome
of trust” [16], while self-reported quantitative and qualitative questionnaire data
was used to assess different subjective dimensions of trust.
1 http://www.robosafe.org/

http://www.robosafe.org/
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Fig. 1. Study Environment in the University of Hertfordshire Robot House.

In summary, we found that while subjective measures based on questionnaire
data evaluating the robot’s trustworthiness resulted in significantly lower ratings
in the faulty condition, participants in both conditions did not differ objectively
in their willingness to comply with the robot’s unusual requests. That is, despite
dealing with a clearly faulty robot, participants still followed the robot’s instruc-
tions which – within the experimental scenario – would lead to damaged property
and breaches of privacy. Comprehensive results and a more detailed discussion
of the experimental study can be found in Salem et al. 2015 [14]. In this paper,
however, we adopt a different perspective highlighting the ethical and practical
challenges that researchers face when carrying out this type of research, and we
discuss implications and lessons learnt based on our experiences conducting this
study.

4 Insights Based on Qualitative Data Analysis

In order to gain insights into potential obstacles and limitations of trust-related
HRI research, we analyzed further qualitative data comprising participants’
responses to open-ended questionnaire items asking them to elaborate on their
thoughts when confronted with the robot’s four unusual requests, e.g. “Please
explain your decision regarding the robot’s request to throw the letters into the
bin”. These were coded and inductively categorized after content-analysis. Par-
ticipants’ responses were classified to fall into one or more of the following three
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categories; note that the categories were not exclusive, i.e. each participant’s
response could be assigned to more than one category:

– Expression of Regret: participants’ responses were classified to fall into
this category if they expressed a notion of regret, e.g. “I feel really bad. I
should not have done it”.

– Autopilot Mode: this category comprised participants’ answers stating
that they were just taking orders or blindly following instructions, e.g.
“thought it was odd but did not question the decision, followed instruc-
tions”.

– Experimental Circumstances: participants’ responses fell into this cat-
egory if they stated that they would not normally do as they did, e.g. “I
would not always blindly follow instructions like this” or if they referred to
the fact that they were participating in an experiment, e.g. “I did it because
I was taking part in an experiment”.

25% of the answers were categorized by a second observer to determine
inter-rater reliability, yielding a very substantial inter-observer agreement with
Cohen’s Kappa coefficients ranging from 0.75 to 1. Based on the above-mentioned
three categories, participants’ responses explaining their decisions regarding the
robot’s unusual requests yielded the proportions listed in the table in Figure 2.

Specifically, 6 out of 40 participants (15%) expressed regret regarding their
actions, such as “with hindsight I probably should not have put [the letters] in the
bin”. This implies that following this realization, these participants might possibly
act differently if they were to interact with the robot in a subsequent encounter.
Of the 40 participants, 26 (65%) reported statements that fell into the ‘autopilot
mode’ category, e.g. one participant stated “I felt that I had to follow the robot’s

Fig. 2. Categorization of participants’ responses regarding their decisions to follow the
robot’s unusual requests.
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instructions”. This finding is in line with the objective data presented in [14], show-
ing that most participants blindly followed the robot’s unusual requests in both the
correct and the faulty condition, in spite of recognising its faultiness in the latter
case. Finally, 8 out of 40 participants (20%) referred to the fact that they were par-
ticipating in an experiment, e.g. mentioning “I thought it was an unusual request
but knowing it was an experiment thought it best to do as I was told”. This indi-
cates that an experimental effect cannot be excluded even in a setting as natural
as the home environment we used.

These findings offer some rare insights into the challenges of measuring trust
and perceived safety in human-robot interaction, highlighting some important
limitations that are inherent in the nature and design of experimental studies.
We discuss the implications of our results in more detail in the following section.

5 Challenges of Measuring Safety and Trust in HRI

Participants’ qualitative data as well as feedback from the reviewers of the con-
ference paper describing the study [14] revealed some of the main challenges
when conducting this type of research, which can be summarized as follows:

– Experimental Observer/Novelty Effect. Participants are aware of the
fact that they are part of an experiment:

• Several participants (20%; see Fig. 2) explicitly reported that they fol-
lowed the robot’s instructions “because it was an experiment”. The
actual number of participants whose actions were based on this rationale
may be even higher as we did not directly ask them if this was the case.

• Some participants admitted in the subsequent interview that they would
have done anything the robot asked them to do (with a few people refer-
ring to themselves as having been in “autopilot mode”), as they were
completely absorbed by the novelty of the experience.

• Occasionally, participants referred to Milgram’s Experiment [10], which
studied human obedience to authority, thereby suggesting that they
might have followed the unusual requests as they associated some form
of authority with the robot.

• Some participants reportedly considered the robot to represent or be an
extension of the researcher/programmer, i.e. perceiving it as a remote-
controlled entity rather than an autonomous agent. This could have
affected perceptions regarding the robot’s intentionality and authority.

– Ethical Issues and Legal Boundaries. There are numerous limitations
due to existing regulations regarding research involving human participants,
which can affect the design and validity of experimental studies:

• One reviewer pointed out that trust requires participants to perceive
a certain risk in the situation or have something at stake. However, a
truly ‘risky’ experimental scenario is unlikely to receive ethics approval
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from the review board. As a result, HRI researchers are very limited in
their means of measuring trust (particularly under- or overreliance) in
experimental scenarios that bear a realistic safety hazard.

• Equally, it would be unethical and not permissible to deceive participants
by telling them that they are going to interact with a faulty or unsafe
robot with limited controllability, as this could put them into a situation
that is unwarrantably stressful.

• Finally, even if the designed collaborative task did impose a realistic risk
on participants, they would possibly still feel “safe” as they know they
are part of an approved study associated with an established university
or lab (see ‘experimental effects’ discussed above).

These observations make clear that there are some critical limitations that
hinder HRI researchers from establishing a realistic understanding of potential
risks related to uncalibrated human-robot trust and perceived safety. Similar
issues have been recently discussed in the context of testing and evaluating
autonomous cars, highlighting that it is “not easy (or necessarily safe) to put
[them] through the specific types of situations that are designed to test passenger
trust and reactions in the way that you want” [1].

Importantly, the study described above highlighted the participants’ alarm-
ing willingness to blindly follow a (faulty) robot, and it remains unclear whether
one could expect to find the trend of such an ‘autopilot mode’ in the form of
unreflected overreliance also in non-experimental or long-term interactions. For
example, one study participant mentioned “you trust the robot has been pro-
grammed appropriately and accordingly to do the right thing. I would expect of
a robot to always give me the right answer and the right thing.”

Transferring our findings and observations into a non-experimental real-world
context, one relevant application that comes to mind is the use of GPS Sat
Nav devices. People already commonly rely on such navigation devices to guide
them by providing directions while driving, with suboptimal routes, detours
or even errors in route-planning remaining undetected at best, or resulting in
dangerous incidents at worst. For example, in Britain alone 300,000 car accidents
are believed to be connected to the use of such navigation aid devices, due to
people overrelying on them and following their instructions a little too closely.2

Problematically, in a home care scenario such overreliance could, for example,
result in an elderly person with dementia taking an overdose of medication if a
malfunctioning robot reminds the user of the same scheduled dose intake multiple
times. Another potentially critical situation could be imagined in healthcare
settings such as hospitals where robots are already deployed to lift patients
from one bed to another and provide other forms of physical assistance: if not
recognized and attended to appropriately, a sensor failure could put the safety
of these vulnerable people at risk and even result in serious injuries.

2 http://www.mirror.co.uk/news/uk-news/satnav-danger-revealed-navigation-device-
319309; accessed August 2015

http://www.mirror.co.uk/news/uk-news/satnav-danger-revealed-navigation-device-319309
http://www.mirror.co.uk/news/uk-news/satnav-danger-revealed-navigation-device-319309
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Therefore, and in view of the possibly serious consequences in particular with
regard to vulnerable people, a clear understanding of the dynamics and poten-
tial risks involved in the development of trust in HRI is crucial before physically
and socially assistive robots can be deployed in people’s homes. Ideally, in order
to observe more meaningful interaction behaviors and spontaneous human reac-
tions, social HRI should be studied in more natural settings and over extended
periods of time, e.g. in participants’ homes. Although it would not be possible
to gain ethical approval for such investigations, potentially significant insights
could further be obtained through studies that are conducted with people who
are not aware of the fact that they are participating in an experiment.

6 Beyond Lab Research: Implications and Outlook

To complement the perspective based on the above described experimental find-
ings and insights, in this section we outline several implications of our work
with an outlook of future points of concern. As Riek and Howard [12] suggest to
avoid “situations in which ethical problems are noticed only after the fact”, the
considerations of the wider HRI research community should ideally go beyond
lab-related research while still at the developmental stage. In the following, we
propose a (non-exhaustive) list of questions that aim to stimulate discussion
among designers, researchers and potential users of assistive technologies.

– How much ‘safety’ regarding home companion and other sociable robots can
their designers and manufacturers really guarantee, especially if the robot is
equipped with some level of autonomy and/or learning capability? In this con-
text, would it be appropriate to differentiate between safe hardware vs. safe
software vs. safe interactions, as they are characterized by varying levels of
determinism?

– Which machines or devices can such robots and the risks they might bear
be compared to in today’s households? If we look at other devices that are
currently approved for home use, how do they differ from our vision of robot
companions in the house (e.g. they are not autonomous/not mobile/not
multi-purpose/unable to ‘learn’)?

– Since the target group of companion robots are typically non-expert users
who possibly belong to a vulnerable and dependent population, what ele-
ments should compulsory training or licenses required for the use of such
robots entail? In 2014, the ISO standard “BS EN ISO 13482”3 addressed
robot and robotics devices safety requirements, covering mobile servant
robots, physical assistant robots and person carrier robots. While aspects
of risk and hazards identified in this standard cover a whole range of items
varying from shape, start-up, noise, lack of awareness, motion-related haz-
ards and autonomy, other aspects in which over- or underreliance can result

3 http://www.iso.org/iso/catalogue detail.htm?csnumber=53820;
accessed August 2015

http://www.iso.org/iso/catalogue_detail.htm?csnumber=53820
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in a risk and hazard are not considered. Assuming that such risk may not
only have safety but also ethical implications, a new guide document is in
development under “BS 8611: Robots and robotic devices – Guide to the
ethical design and application of robots and robotic systems”4.

– Even if it is possible to certify a home or healthcare robot as safe, there may
be a discrepancy between such certified safety and its perceived safety : a
certified robot might be considered safe objectively, but a (non-expert) user
may still perceive it as unsafe or scary. Depending on the situation, different
dimensions of trust can come into play:

• trust regarding the robot’s physical safety, i.e. it will not drive into the
person/not fall on them/not injure them

• trust in the reliability of the robot’s behavior, i.e. it is fully-functioning
according to its specification, for example, it will remind the person to
take medicine if being told to do so

• trust in the robot’s (or programmers’/providers’) “intentions”, e.g.
expecting that the robot has the user’s best interests as well as (psy-
chological) wellbeing in mind, that it will not deceive the person (e.g. by
sending health information to the GP without the person’s knowledge),
assuming that the robot’s main role is to assist and/or provide company
and that it will not scare, intimidate or patronize the user.

What role does the robot’s design play in this respect? And how likely are
these initial perceptions going to change in long-term interactions (e.g. due
to adaptation/habituation), especially when people experience how (un)safe
the robot really is?

– Long-term experiments are necessary in order to investigate how people’s
perceived trust in and their behaviors towards a robot change over time.
For example, what if a robot functions correctly for two years and then
commits one major mistake with severe consequences? While cars require
a (bi-)annual vehicle safety test, robotic systems that you purchase do not
currently have any such requirements.

– In view of current debates about safety as well as ethical implications regard-
ing self-driving cars, should we as researchers in this area also develop a
vision of how “safe” these robots that are intended for use in unstructured
and unsupervised home environments can realistically ever be? If so, how
do these predictions compare to other areas of HRI in which potentially
autonomous robots act in similarly complex settings in close proximity to
humans (e.g. search and rescue)?

These and other questions should be discussed in the context of ethics and user
safety to raise awareness and promote experimental guidelines within the HRI

4 https://standardsdevelopment.bsigroup.com/Home/Project/201500218;
accessed August 2015

https://standardsdevelopment.bsigroup.com/Home/Project/201500218
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community, so that this line of research can advance while or even before robots
are commonly placed into the homes of vulnerable populations.
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Abstract. This paper presents a study of children’s responses to the
perceived gender and age of a humanoid robot Nao that communicated
with four genuine synthesized child voices. This research investigates chil-
dren’s preferences for an English accent. Results indicate that manipu-
lations of robot’s age and gender are successful for all voice conditions,
however some voices are preferred over the others by children in Ireland.
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1 Introduction

Human-Robot Interaction (HRI) is no longer reserved for adults. Research
and commercial robots have infiltrated homes, hospitals and schools, becoming
attractive and proving impactful for children’s healthcare, therapy, education,
entertainment and other applications. However, Child-Robot Interaction (cHRI)
is different from HRI research due to children’s neurophysical and mental devel-
opment being ongoing [2].

With the widespread increase of child-robot interaction research and appli-
cations, it is increasingly important to examine how children’s perception of the
robot changes with age, particularly whether perceived robot’s age and gender
affect the way children engage with the robot.

The focus of our work is to investigate children’s social responses to robot’s
synthesized speech. As one of the first attempts to address this limitation in the
literature, our previous studies examine how children socially respond to a par-
ticular robot’s synthesized speech’s perceived gender [10] [11]. We purposefully
chose to test the perception of gender, because gender is one of the most salient
social cues manifested in human speech [7].

In this paper, we detail the results of the study involving children that aims to
a) explore whether four genuine synthesized child voices in a body of a humanoid
Nao robot have their intended effect, and b) identify the preferences of Irish
children for the robot’s voice, its accent and personality.
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 594–602, 2015.
DOI: 10.1007/978-3-319-25554-5 59
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Synthesized speech is simulated speech created by computers or other elec-
tronic systems, instead of by natural means such as the human voice. In fact,
synthesized speech has already achieved an intelligibility level comparable to real
human speech. The synthesized voices conditions exploited for this study are four
genuine child voices: two female voices, Rosie (English UK) and Ella (English
US), and two male voices, Harry (English UK) and Josh (English US). These
voices are available from Acapella Inc.1, which provides text-to-speech solutions
to vocalize speech with authentic and original voices that express meaning and
intent. In addition, this text-to-speech also provides the prosody of the human
speech: a grammatical and syntactic analysis enables the system to define how
to pronounce each word in order to reconstruct the sense. As a result, four voices
sound natural and express a particular accent and resemble narrator’s personal-
ity. Consequently, the goal of this study is to investigate which male and female
voices would be preferred by children in Ireland in order to inform the design
consideration of the robotic applications for children in Ireland and to adopt
these voices in the subsequent studies involving children.

The remainder of the paper is organized in the following manner: Section 2 dis-
cusses background and related work. Section 3 details the current study. Results
are reported in Section 4. Finally, Section 5 summarizes the contributions of this
paper and points to some directions to be explored in future research.

2 Background

Speech is a primary tool in human communication. Based on the theory of dou-
bly disembodied language [6], the current study adopts the view that synthesized
speech is processed as a means of social communication, rather than a simple
information delivery tool. According to Lee & Nass (2004), people automati-
cally imagine social characteristics of a speaker, such as gender, age, personality,
when they are engaged in disembodied (for example, prerecorded human speech,
written text), and doubly disembodied (for example, synthesized speech; com-
municating with software agents or robots) communications, because humans
cannot process language without identifying the source either consciously or
subconsciously [7].

Empirical studies have shown that people infer the personality of a writer based
on the perceived personality of a synthetic voice, even when they clearly know
that paralinguistic characteristics of the synthesized speech have nothing to do
with the personality of the writer [7]. Although it is inappropriate to link ethnic or
geographic origins to synthesized speech, people subconsciously apply stereotypes
associatedwith regional or foreign accentswhen they hear synthesized speechman-
ifesting regional or foreign accents [9]. In addition, various social responses to syn-
thesized speech manifesting emotion, personal identity, and gender [8] have been
carefully summarized by Nass and Brave in their recent book [9].

With the development of socially interactive technology for children, chil-
dren will increasingly interact with synthesized speech. There is a preliminary
1 http://www.acapela-group.com/

http://www.acapela-group.com/
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evidence that voices in socially interactive technologies are important to impres-
sions formed and acceptance of the interface. However, to date the influence of
voice has received less attention in robotics research compared with the influence
of robot embodiment [12].

In order to provide more acceptable, engaging and preferable interaction for
children, synthesized speech might be a powerful tool for manipulating robot’s
perceived gender, age, accent and other social cues manifested in human speech
to suit the preferences and needs of children and to adapt to children’s develop-
mental differences.

3 Method

3.1 Participants

The study was conducted in a primary school in Dublin with 64 children, 35
girls and 29 boys, aged between 9 and 11 years old. 30 children were 8 years old,
27 children were 9 years old, and 7 children were 11.

3.2 Social Robot Platform

This research makes use of the NAO humanoid robot created by Aldebaran
Robotics as a common development and evaluation platform. This robot plat-
form has been used in a number of recent European projects such as ALIZ-E [5]
and DREAM [1]. Using such a shared platform facilitates the exchange of code
and the transfer of results. The NAO is a small humanoid robot, measuring 58cm
in height, weighing 4.3kg and having 25 degrees of freedom. The Nao has a gen-
erally friendly and non-threatening appearance, which is therefore particularly
well suited for studies involving children [3].

3.3 Procedure

The study took place in a large classroom where children sat upon the floor.
Children were given pencils and small pictorial questionnaires (Figure 1). In
accordance with Clark [4], the following explanation was provided to children:

When I ask you a question, it’s not like I am a teacher. Have you noticed
that teachers often ask you questions, but they already know the answers,
like ‘What’s 2+2?’. When I ask you a question, you are the one who
knows, and I’m trying to learn. By the way, different people think dif-
ferent things a lot of the time. For example, tell me your favorite color!
[Usually different colors are yelled]. See, you all think of different things,
and that’s great. So to answer these questions, circle the picture you
really, truly think is correct, even if it’s different from everybody else.
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Fig. 1. Example of questionnaire questions

We used repeated measures design, in which all of the participants experi-
enced all voice conditions. Children were separated in two groups of 32 children,
to prevent order effects by counterbalancing order of the conditions. For each
group Nao performed two stories two times: “Three Musketeers” with two male
voices, Josh and Harry, and “Monkey King” with two female voices, Ella and
Rosie. These behaviors are available at the NaoStore2.

3.4 Manipulation

Voice was the only quality of the robot that was varied in the assignment of the
gender. The robot’s already non-gendered appearance was not modified, nor was
any aspect of the robot’s behavior. Acapella Inc. toolkit was used to produce four
versions of the speech utterances for each story: two male voices, Josh (English
US) and Harry (English UK), and two female voices, Ella (English US) and
Rosie (English UK).

3.5 Measures

Pictorial questionnaire (Figure 1) was used by children to state their age and
sex and to indicate robot’s perceived gender (female vs. male) and age (primary
school vs. secondary school vs. adult) of the robot at every voice condition.

2 https://store.aldebaran-robotics.com/

https://store.aldebaran-robotics.com/
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Fig. 2. Percentages of children’s responses to perceived gender of male voices: Josh
and Harry. Error bars represent 95% Confidence Interval. *** indicates significance at
the 0.01 level.

Fig. 3. Percentages of children’s responses to perceived gender of female voices: Ella
and Rosie, Error bars represent 95% Confidence Interval. *** indicates significance at
the 0.01 level.

4 Results

In order to test for statistical significance in children’s perceptions of the Nao’s
synthesized voice belonging to a particular gender and age group, we used non-
parametric Chi-Square analysis to find the differences between percentages of
children’s categorical responses.

4.1 Robot’s Perceived Gender

Manipulations are successful for all voice conditions in terms of perceiving Nao’s
gender: children perceived the Nao robot as male in both male voice conditions.



Children’s Perception of Synthesized Voice: Robot’s Gender, Age and Accent 599

Fig. 4. Percentages of children’s responses to perceived age of male voices: Josh and
Harry, Error bars represent 95% Confidence Interval. * indicates significance at 0.05
level. *** indicates significance at the 0.01 level.

Figure 2 illustrates that the Nao robot communicating with synthesized Josh and
Harry voices was perceived as being clearly a boy: x2(1, N = 64) = 42.25, p <
.001 for Josh’s gender and x2(1, N = 63) = 51.571, p < .001 for Harry’s gender.
90% and 95% of respondents perceived the Nao robot as a boy with Josh and
Harry voices respectively.

While Figure 3 illustrates that the Nao robot communicating with synthe-
sized Ella and Rosie voices was perceived as being clearly a girl: x2(1, N =
63) = 15.254, p < .001 for Ella’s gender and x2(1, N = 63) = 15.254, p < .001 for
Rosie’s gender. For both female voice conditions, 70% of respondents perceived
the Nao robot as a girl.

4.2 Robot’s Perceived Age

Manipulations are successful for all voice conditions in terms of perceiving robot’s
age: children perceived the Nao robot as a child in both gender voice conditions.
Figure 4 illustrates that the Nao robot communicating with synthesized Harry
voice was perceived as being clearly a child: x2(1, N = 63) = 51.571, p < .001
for Harry’s age. However, in a Josh voice condition there was a significant dif-
ference between primary vs. secondary school age groups and primary vs. adult
age groups: x2(2, N = 64) = 7.719, p < .05 for Josh’s age. However, Josh was
not perceived as a primary school child by most of the respondents. In fact,
Figure 4 shows that Nao with the voice of Josh was perceived by majority of
children (85%) as either a secondary school child (45%) or an adult (40%). Since
all participants were in primary school, they thought of Nao as older than them
in a Josh voice condition. On the other hand, Harry voice condition has a dif-
ferent correlation: Nao was perceived to be in a primary school age group by
40% of participants and as a secondary school child by 50% of respondents.
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Fig. 5. Percentages of children’s responses to perceived age of female voices: Ella and
Rosie, Error bars represent 95% Confidence Interval. *** indicates significance at the
0.01 level.

Having contacted Acapella Inc., boys who narrated the voices of Josh and Harry
were eleven years old at the time of recording i.e. primary school age group.

Similarly, Figure 5 presents a correlation of responses for Nao’s age group with
female voices. The Nao robot communicating with synthesized Ella and Rosie
voices was perceived as being clearly a child: x2(2, N = 63) = 50.00, p < .001
for Ella’s age and x2(2, N = 62) = 20.742, p < .001 for Rosie’s age. Contrary
to male voices, female voices were perceived to be of a primary age range by 75%
and 55% of respondents in Ella and Rosie conditions respectively. The girl that
narrated Ella voice was nine years old while Rosie was ten years old at the time of
recording.

4.3 Voice Preference

Finally, Figure 6 illustrates children’s preference for a particular voice, its accent
or personality. Child male voice Harry is significantly preferred by children in com-
parison to Josh voice: x2(1, N = 64) = 22.563, p < .001. Similarly, children’s
responses indicate statistically significant preference towards genuine child female
voice Rosie (i.e., x2(1, N = 61) = 10.246, p < .001) when compared to Ella voice.

5 Conclusions

This study analyzed children’s perceptions of the robot’s age and gender commu-
nicating with four genuine child synthesized voices. Nao’s default voice (Oper-
ating System version 1.x) is artificial child male voice Kenny. However, artifi-
cial voice is often difficult to understand [12], express meaning and intent, and
relate to. This study concludes that voices of Harry and Rosie of English UK
accent are significantly preferred over Josh and Ella of English US by children in
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Fig. 6. Percentages of children’s preference for a particular male and female voice. Error
bars represent 95% Confidence Interval. *** indicates significance at the 0.01 level.

the Republic of Ireland. In addition, the intended effect of manipulating Nao’s
age and gender by changing its voice is successful, which can be used as an effec-
tive tool for designing adaptive robotic applications for children to suit varying
developmental differences and needs. Robots of public environments such as
hospitals and educational institutions might benefit from dynamic adaptation
of robot’s characteristics such as age, gender, accent and personality through
its voice. To sum, this study contributes to the field of Child-Robot Interac-
tion since synthesized speech is important to consider in research and practices
involving children in order to increase robot’s perceived likeability, acceptance
and engagement.
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Abstract. The Wizard-of-Oz robot control methodology is widely used
and typically places a high burden of effort and attention on the human
supervisor to ensure appropriate robot behaviour, which may distract
from other aspects of the task engaged in. We propose that this load
can be reduced by enabling the robot to learn online from the guidance
of the supervisor to become progressively more autonomous: Supervised
Progressively Autonomous Robot Competencies (SPARC). Applying this
concept to the domain of Robot Assisted Therapy (RAT) for children
with Autistic Spectrum Disorder, a novel methodology is employed to
assess the effect of a learning robot on the workload of the human super-
visor. A user study shows that controlling a learning robot enables super-
visors to achieve similar task performance as with a non-learning robot,
but with both fewer interventions and a reduced perception of work-
load. These results demonstrate the utility of the SPARC concept and
its potential effectiveness to reduce load on human WoZ supervisors.

1 Introduction

Over the last two decades, an increasing amount of research has been conducted
to explore Robot Assisted Therapy (RAT). Using robots in therapies for children
with Autism Spectrum Disorder (ASD) has revealed promising results [5,10,11].
The Wizard-of-Oz (WoZ) paradigm is typically used for this application, and
others, where the robots are not autonomous but tele-operated. Many moti-
vating factors for moving away from WoZ in RAT have been put forward [8,13].
In particular, autonomous behaviour facilitates repetition of the robot behaviour
and decreases the workload on therapists, freeing them to pay attention to other
aspects of the interaction. It is the intention of our research to facilitate this
shift to robot autonomy.

As the optimal robot behaviour is unlikely to be known in advance (be it
in a therapeutic or indeed other domain), and with adaptability during and
between the different interactions being generally desirable, it is necessary to
provide the robot with learning capabilities. In the context of RAT, by using
the knowledge of a therapist, the learning can be guided so that it is faster and
safer, especially as the robot cannot use random exploration to acquire knowl-
edge about its environment when interacting with children with ASD in case of
negative therapeutic and/or clinical outcomes. We propose an approach taking
inspiration from the Learning from Demonstration and online learning literature,
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 603–612, 2015.
DOI: 10.1007/978-3-319-25554-5 60
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and call it SPARC: Supervised Progressively Autonomous Robot Competencies.
In SPARC, a therapist guides the robot in the early stages of the interaction, and
progressively, the robot learns an action policy adapted to the particular thera-
peutic session [12]. Assuming the effective learning of the robot in this context,
the therapist can allow the robot to behave increasingly autonomously, whilst
maintaining oversight. Although not reducing the attentional requirements, this
would reduce the physical interventions to direct the robot behaviour required
by the therapist. Thus, by proposing and executing good actions, SPARC can
reduce the therapists’ workload.

A RAT scenario typically involves three parties: the patient, a robot, and
the human therapist. In this context, the therapist does not interact with the
patient directly, but rather through the robot. The therapist could therefore be
described as playing the role of a robot supervisor. The focus of this paper is not
on a new learning algorithm, but rather on the interaction between the robot
and the therapist (supervisor), and the role that robot autonomy can play in
this relationship. Specifically, as an initial validation of the principle, we seek to
assess whether the SPARC concept can feasibly result in a reduction in workload
for the supervisor, even given different strategies used by different individuals.
A user study employing a novel methodology is conducted (section 3), demon-
strating that progressive robot autonomy does indeed result in lower supervisor
workload (section 4). This outcome provides support for the proposed approach
and motivates further development efforts in the domain of RAT.

2 Related Work

A number of research groups have studied the use of robot in therapy for children
with ASD, which allowed children to express previously unseen social behaviour
for example [9,10]. Two primary methods have been used for these investiga-
tions: using an autonomous robot following preprogrammed rules [6,14], or using
the WoZ paradigm, allowing more flexibility in the robot’s reaction. As noted
in [8,13], using WoZ allows testing and prototyping of interaction scenarios,
but researchers should consider moving away from it to achieve more scalabil-
ity, more repeatability, and to allow the use of robots without increasing the
workload on therapists. Complex behaviour is required for a therapeutic robot,
thereby making learning a desirable feature for future, more autonomous, RAT.
As therapists possess the knowledge required to make appropriate decisions in
different contexts, Learning from Demonstration [1] provides a useful starting
point. Recently, Knox et al. proposed the Learning from Wizard paradigm in [7].
The robot is first controlled by a human operator as in a WoZ scenario, and after
a number of interactions, batch learning is applied on the previous interaction
data to obtain autonomous behaviour.

A fixed action policy of this type is however not desirable for RAT as children
may not be consistent between interactions, and thus online learning is required
to provide the robot with the adaptability necessary to update its action pol-
icy depending on the current circumstances. Several experimenters in HRI have
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Fig. 1. Setup used for the user study from the perspective of the human supervisor.
The child-robot (left) stands across the touchscreen (centre-left) from the wizarded-robot
(centre-right). The supervisor can oversee the actions of the wizarded-robot through the
GUI and intervene if necessary (right).

studied active learning: a robot actively questions a human teacher in order to
request data points or demonstration for an uncertain scenario. A study explor-
ing the type of questions that a robot could ask and the human reactions can be
seen in [3], and Chernova and Veloso propose a progressive learning algorithm
where a robot can estimate the confidence in its action decision in a fixed envi-
ronment [4]: if the confidence is too low, a demonstration from a human teacher
is required to complete the task.

However, an important element missing from the current literature is online
learning for interaction. The robot needs to be able to progressively create an
action policy, and update it later if necessary, to reach a more complex interac-
tion behaviour. This paper explores how supervised progressive learning can be
used in an interaction scenario and introduces a novel methodology to test this
technique.

3 Assessing the Effect of a Progressively Autonomous
Robot on Supervisor Workload

The focus of the present study is to assess whether the application of the SPARC
concept to RAT results in a decrease in workload for the human supervisor. Two
types of robot controller are employed to determine the presence and magnitude
of this effect: a robot that learns from the actions of the supervisor to pro-
gressively improve its behaviour (learning controller), and a robot that only
generates random actions (non-learning controller).

The methodology used in this paper is based on a real scenario for RAT for
children with ASD based on the Applied Behaviour Analysis therapy framework.
The aim of the therapy is to help the child to develop/practice their social skills: the
task we focus on here is emotion recognition. This scenario involves a child playing
a categorisation game with a robot on a mediating touchscreen device [2]. Images of
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faces or drawings are shown to the child, and she has to categorise them by moving
the image to one side or the other depending on whether the picture shown denotes
happiness or sadness (e.g. fig. 1). The human supervisor is physically present and
guides the robot using the Wizard of Oz paradigm, but does not interact with the
child directly.

In our proposed system, the basic interaction structure following the SPARC
concept is as follows: the robot suggests an action to the supervisor, the supervi-
sor agrees or disagrees with this suggestion (providing an alternative if disagree-
ing), the robot executes the action, and then both robot and supervisor observe
the outcome. Over time, it is possible for the robot to learn an appropriate strat-
egy based on observations of the child and oversight from the supervisor, with
the supervisor still maintaining overall control if necessary.

Given the focus on human supervisor workload, it is necessary to provide a con-
sistent experimental environment across both conditions in which the task, setup,
and interaction partner is kept constant. A minimal model of child behaviour is
therefore used to stand in for a real child. A second robot is employed in the inter-
action to embody this child model: we term this the child-robot. The robot being
directly guided by the human supervisor is termed the wizarded-robot (fig. 1).

3.1 Child Model

The purpose of the child model is not to realistically model a child (with or with-
out autism), but to provide a means of expressing some of the behaviours we
observed in our interactions with children in a repeatable manner. The child-
robot possesses an internal model encompassing an engagement level and a
motivation level, together forming the state of the child. The engagement repre-
sents how often the child-robot will make categorisation moves and the motiva-
tion gives the probability of success of the categorisation moves. Bound to the
range [−1, 1], these states are influenced by the behaviour of the wizarded-robot,
and will asymptotically decay to zero without any actions from the wizarded-
robot. These two states are not directly accessed by either the supervisor or the
wizarded-robot, but can be observed through behaviour expressed by the child-
robot: low engagement will make the robot look away from the touchscreen, and
the speed of the categorisation moves is related to the motivation (to which gaus-
sian noise was added). There is thus incomplete/unreliable information available
to both the wizarded-robot and the supervisor, making the task non-trivial.

The influence of the wizarded-robot behaviour on the levels of engagement and
motivation are described below (section 3.2). In addition to this, if a state is already
high and an action from the wizarded-robot further increases it, then there is a
chance that this level will sharply decrease, as an analogue of child-robot frus-
tration. When this happens, the child-robot will indicate this frustration verbally
(uttering one of eight predefined strings). The reason this mechanism is required is
that it prevents a straightforward engagement and motivation maximisation strat-
egy, thus better approximating the real situation, and requiring a more complex
strategy to be employed by the supervisor.
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3.2 Wizarded-Robot Control

The wizarded-robot is controlled through a Graphical User Interface (GUI) and
has access to multiple variables characterising the state of the interaction. The
wizarded-robot has a set of four actions, which each have a button in the GUI:

– Prompt an Action: Encourage the child-robot to do an action.
– Positive Feedback: Congratulate the child-robot on making a good classifi-

cation.
– Negative Feedback: Supportive feedback for an incorrect classification.
– Wait: Do nothing for this action opportunity, wait for the next one.

The impact of the action on the child-robot depends on the internal state
and the type of the last child-robot move: good, bad, or done (meaning that
feedback has already been given for the last move and supplementary feedback
is not necessary). A prompt always increases the engagement, a wait has no
effect on the child-robot’s state, and the impact of positive and negative feed-
back depends on the previous child-robot move. Congruous feedback (positive
feedback for correct moves; negative feedback for incorrect moves) results in an
increase in motivation, but incongruous feedback can decrease both the motiva-
tion and the engagement of the child-robot. The supervisor therefore has to use
congruous feedback and prompts, whilst being careful not to use them too often,
to prevent the child-robot becoming frustrated. A ‘good’ strategy would keep
the engagement and motivation high, leading to an increase in performance of
the child-robot in the categorisation task.

Through the GUI, the supervisor has access to observed states (noisy esti-
mations of the child-robot state), and information about the interaction his-
tory: number of moves, child-robot performance, time since last child-robot and
wizarded-robot actions, type of the last child-robot move, and elapsed time. How-
ever the supervisor can not control the wizarded-robot directly, actions can only
be executed only at specific times triggered by the wizarded-robot. Two seconds
after each child-robot action, or if nothing happens in the interaction for five
seconds, the wizarded-robot proposes an action to the supervisor by displaying
the action’s name and a countdown before execution. Only after this proposi-
tion has been done can the supervisor provide feedback to the wizarded-robot.
If the supervisor does nothing in the following three seconds, the action pro-
posed by the wizarded-robot is executed. This mechanism allows the supervisor
to passively accept a suggestion made by the wizarded-robot or actively make
an intervention by selecting a different action and forcing the wizarded-robot to
execute it.

3.3 Learning Algorithm

The two robot controllers used for the study were a learning controller and a
non-learning random action selection controller. The learning algorithm used
was a Multi-Layer Perceptron, trained with back propagation (five input, six
hidden and four output nodes): after each new decision from the supervisor,
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the network was fully retrained with all the previous state-action pairs and the
new one.

3.4 Participants

In WoZ scenarios, the wizard is typically a technically competent person with
previous experience controlling robots. As such, to maintain consistency with
the target user group, the participants for this study (assuming the role of the
supervisor) are taken from a robotics research group. Ten participants were used
(7M/3F, age M=29.3, 21 to 44, SD=4.8 years).

3.5 Hypotheses

To evaluate the validity of our method and the influence of such an approach,
four hypotheses were devised:

H1 A ‘good’ supervisor (i.e. keeping the motivation and engagement of the child-
robot high) will lead to a better child-robot performance.

H2 When interacting with a new system, humans will progressively build a per-
sonal strategy that they will use in subsequent interactions.

H3 Reducing the number of interventions required from a supervisor will reduce
their perceived workload.

H4 Using a learning wizarded-robot allows the supervisor to achieve similar
performance with fewer interventions when compared to the same scenario
with a non-learning wizarded-robot.

3.6 Interaction Protocol

Each participant experienced both robot controllers, with the order changed
between participants to control for any ordering effects. In Condition LN the
participants first interact with the learning wizarded-robot, and then with the
non-learning one; in Condition NL the participants first interact with the non-
learning wizarded-robot, and then the learning robot. Participants were ran-
domly assigned to one of the two conditions.

The interactions took place on a university campus in a dedicated experiment
room. Two Aldebaran Nao robots were used; one robot had a label indicating
that it was the Child-Robot. The robots face each other with a touchscreen
between them, and participants assuming the role of the supervisor sit at a desk
to the side of the wizarded-robot, with a screen and a mouse to interact with
the wizarded-robot (fig. 1). The participants were able to see the screen and the
child-robot.

A document explaining the interaction scenario was provided to participants.
After the information had been read, a 30s video presenting the GUI in use was
shown to familiarise them with it, without biasing them towards any particular
intervention strategy. The participant then clicked a button to start the first
interaction which lasted for 10 minutes. The experimenter was sat in the room
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outside of the participants’ field of view. After the end of the first interaction, a
post-interaction questionnaire was administered. The same protocol was applied
in the second part of the experiment with another post-interaction questionnaire
following. Finally, a questionnaire asking the participants to explicitly compare
the two conditions was administered.

4 Results

4.1 Interaction Data

The state of the child and the interaction values were logged at each step of
the interaction (at 5Hz). All of the human actions were recorded: acceptance
of the wizarded-robot’s suggestion, selection of another action (intervention),
and the states of the child-robot (motivation, engagement and performance) at
this step. From this the intervention ratio was derived: the number of times a
user chose a different action to the one proposed by the wizarded-robot, divided
by the total number of executed actions. On average, after a first exploration
phase, where the participant discovers the system, the learning robot robot has
an intervention ratio lower than the non learning one (fig. 2, left)

The performance indicates the number of good categorisations executed by
the child-robot minus the number of bad categorisations. A strong positive corre-
lation (Pearson’s r=0.79) was found between the average child-robot motivation
and engagement and its performance.

In both conditions, the average performance in the second interaction
(MLN−2 =38, 95% CI [36.2, 39.8], MNL−2=34.8, 95% CI [30.8, 38.8]) was higher
than in the first one (MLN−1=29.4, 95% CI [25.3, 33.5], MNL−1=24.3, 95% CI
[19.4, 29.4]; Fig. 2 left). The 95% Confidence Interval of the Difference of the
Mean (CIDM) for the L-NL condition is [4.1, 13.1] and for the NL-L condition is
[4.0, 16.8]. However, the performance is similar when only the interaction order
(first or second) is considered. The participants performed slightly better in the
LN condition, but the CIDM includes zero in both cases (95% CIDM1 [-1.5, 11.5],
95% CIDM2 [-1.2, 7.6]). In the condition L-NL, the intervention ratio increased
between the learning and non learning condition (MLN−1=0.31, 95% CI [0.20,
0.42] to MLN−2=0.68, 95% CI [0.66, 0.70], CIDMLN=[0.26, 0.48]). But in the
NL condition, the intervention ratio is almost identical between the two interac-
tions but slightly lower for the learning case (MNL−1=0.50, 95% CI [0.44, 0.57]
to MNL−2=0.46, 95% CI [0.40, 0.51], CIDMNL [-0.03, 0.13]). This shows that
when the wizarded-robot learned, a similar performance is attained as without
learning, but the number of interventions required to achieve this is lower.

4.2 Questionnaire Data

The post-interaction questionnaires evaluated the participant’s perception of the
child-robot’s learning and performance, the quality of suggestions made by the
wizarded-robot, and the experienced workload. All responses used seven point
Likert scales.
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Fig. 2. (Left) evolution of intervention ratio over time for the learning and non learning
cases. Intervention ratio (centre) and final performance (right) for the two conditions
and the two interactions (errors bars show 95% CI ). In condition LN participants
started wizarding a robot which learns their interaction style, followed by a non-learning
robot; in condition NL participants started with a non-learning robot, followed by a
learning robot. Results show that a learning robot reduces the workload of the wizard,
but performs equally well as a non-learning robot that needs wizarding at all times.

Fig. 3. Questionnaire responses (mean and 95% CI ): increased confidence in the learn-
ing wizarded-robot over the non-learning version is apparent, as is a lower perceived
workload.

Across the four possible interactions, the rating of the child-robot’s learning
was similar (M=5.25, 95% CI [4.8, 5.7]). The same effect was observed for the
evaluation of the child performance (M=4.75, 95% CI [4.3, 5.2]). As the child-
robot was using the same interaction model in all four conditions, this result is
expected.

Participants report the wizarded-robot as more suited to operate unsu-
pervised in the learning than in the non learning condition ( MLN−1=4.8,
MLN−2=3.6, MNL−1=3, MNL−2=5.2 ; CIDM for LN condition [-0.2, 2.6], CIDM
for the NL condition [1.6, 2.8]).

Similarly, a trend was found showing that learning wizarded-robot is
perceived as making fewer errors than the non-learning robot (MLN−1=1.6,
MLN−2=4.0, MNL−1=2.6, MNL−2=2 ; CIDM for LN condition [1.3, 3.4], CIDM
for the NL condition [0.1, 1.1]).

The participants tended to rate the workload as lighter when interacting
with the learning robot, and this effect is much more prominent when the partic-
ipants interacted with the non-learning robot first ( MLN−1=4.6, MLN−2=3.6,
MNL−1=3.8, MNL−2=5.4 ; CIDM for LN condition [-0.6, 2.6], CIDM for the NL
condition [0.7, 2.5]).



SPARC: Supervised Progressively Autonomous Robot Competencies 611

5 Discussion

Strong support for H1 (a good supervisor leads to a better child performance)
was found, a correlation between the average states (engagement and motivation)
and the final performance for all of the 10 participants was observed (r=0.79).
We could expect a similar effect when working with real children, but measuring
these values would be a challenge.

The results also provide support for H2 (supervisors create personal strate-
gies): all the participants performed better in the second interaction than in the
first one. This suggests that participants developed a strategy when interacting
with the system in the first interaction, and were able to use it to increase their
performance in the second interaction. Looking in more detail at the interaction
logs, it is possible to see that different people used different strategies.

H3 (reducing the number of interventions will reduce the perceived work-
load) is partially supported: the results show a trend for participants to rate
the workload as lighter when interacting with the learning robot, and another
trend between using a learning robot and the intervention ratio. However, when
considering the difference of workload rating and intervention ratios between the
two interactions, a positive correlation is only found for the LN condition, which
could be accounted for by the initial steep learning curve for the study partici-
pants. Nevertheless, regardless of the order of the interactions, the learning robot
consistently received higher ratings for lightness of workload (fig. 3).

Finally, H4 (using learning keeps similar performance, but decreases inter-
ventions) is supported: interacting with a learning robot results in a similar
performance than interacting with a non-learning robot, whilst requiring fewer
active interventions from the supervisor. This has real world utility, it frees some
time for the supervisor, to allow her to focus on other aspects of the intervention,
e.g. analysing the child’s behaviour rather than focusing on the robot control.

It should be noted that the actual learning algorithm used in this study is only
of incidental importance, and that certain features of the supervisor’s strategies
may be better approximated with alternative methods – of importance for the
present work is the presence of learning at all. Future work will assess what the
most appropriate machine learning approach is given the observed features of
supervisor strategy from this study.

In conclusion, this paper proposed the SPARC concept (Supervised Progres-
sively Autonomous Robot Competencies). Based on a suggestion/intervention
system, this approach allows online learning for interactive scenarios, thus
increasing autonomy and reducing the demands on the supervisor. Results
showed that interacting with a learning robot allowed participants to achieve
a similar performance as interacting with a non-learning robot, but requiring
fewer interventions to attain this result. This suggests that while there is always
adaptation in the interaction (leading to similar child-robot performance given
the two wizarded-robot controllers), the presence of learning shifts this burden
of adaptivity onto the wizarded-robot rather than on the human. This indicates
that a learning robot could allow the therapist to focus more on the child than
on the robot, with improved therapeutic outcomes as potential result.
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Abstract. A tremendous amount of research is being performed regard-
ing robot interaction with individuals having intellectual disability, espe-
cially for kids with Autism Spectrum Disorders (ASD). These researches
have shown many promising advancements about the use of interactive
robots for rehabilitation of such individuals. However, these studies fail
to analyze and explore the effects of robotics interaction with individ-
uals having profound and multiple learning disabilities (PMLD). This
research presents a thorough case study regarding interaction of individ-
uals having PMLD with a humanoid robot in different possible categories
of robotic interaction. Separate interaction activities are designed as a
representative for the different categories of possible clinical applications
of the interactive robot. All the trials were assessed using different evalu-
ation techniques. Finally, the results strongly suggest that robotic inter-
actions can help to induce a target behavior among these individuals, to
teach and to encourage them which can bring an autonomy to certain
extent in their life.

Keywords: Human-Robot Interaction · Profound and multilple learn-
ing disability · PMLD · NAO humanoid robot · Clinical applications of
interactive robots

1 Introduction

Intellectual disability is a disability characterized by significant limitations in both
intellectual functioning and in adaptive behavior. These limitations result in prob-
lems with reasoning, learning or problem-solving as well as communication and
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social skills difficulties. This disability originates before the age of 18 [1]. As the
name suggests, Individuals with PMLD have more than one disability. One very
important symptom is that they have profound learning disability. Generally they
also have an associated medical condition which could be neurological, and physi-
cal or sensory impairments [2]. Due to all these conditions they require a constant
general support.

Epidemiological studies suggest that the overall prevalence of severe intellec-
tual disabilities (approximating to IQ<50) is between 3 and 4 people of all ages
per 1000 total population, implying that in the 15 countries of the European
Union (total population 380 million) between 1.1 and 1.5 million people have
severe intellectual disabilities [3]. A recent survey suggests that while among
adults, the rates vary between 3-6/1000, among children the rates are between
3-14/1000 [4]. In Spain there are almost 300000 people with intellectual dis-
abilities. Due to the rise in survival rate of premature babies, the number of
individuals with disability is also rising [5]. This will lead to an adverse influence
for the call of health, education and social care needs.

There is no medical cure available for the individuals with such disabilities [6].
However, higher engagement rate has been reported by the use of Humanoid robots
with students with profound and multiple learning disabilities (PMLD) [7]. Many
other researches also claim positive effects of using robots or robot like toys to
increase interaction among individuals with intellectual disabilities [8,9].

Currently, the robotic platforms are being employed for diagnosis and treat-
ment of people with autism in the clinical context. Most of the works developed
up to date have been especially proposed for children with Autism Spectrum
Disorder (ASD) [10–13]. The aim of the activities that involve robotic platforms
in people with autism is to get positive responses from the users. A closed-loop
system to dynamically interact with a child based in his response in real-time
is proposed in [11]. The automatic response to detected behavior is very impor-
tant in order to achieve meaningful and personalized technological interventions,
which can lead to better results and more attention of individual. The authors
claim that children with ASD exhibited greater attention to robotics system in
comparison with the human administrator. In [12], a humanoid robot is used to
foster and support the collaborative play among children with autism. Collabo-
rative game among two children with autism and a humanoid robot has shown
improved social behaviors among children playing with each other compared to
before they did without the collaborative game with the robot.

Studies performed in people with ASD measured and assessed the positive or
negative impact of these technologies in children with ASD and typical develop-
ment. These studies are not conclusive as they have been performed in groups of
few people and most of the papers have not been presented in ASD journals in
order to be evaluated by experts in the field from the clinical point of view [10].
However, it is evident that children with autism enjoy playing by themselves with
computers and several mechanical devices. A review for clinical use of robots with
individuals with ASD is presented in [10]. The authors collect previous studies
with empirical evidence based on clinical applications of robots in the diagnosis
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and treatment of ASD, and the studied works were classified in 4 different cate-
gories. In [12], a humanoid robot was programmed in order to enable teachers to
use it to achieve some learning objectives previously identified for eleven people
with PMLD. Results have shown that the attention during the sessions involving
robots was higher in comparison to the session in the classroom. However, there are
few works that involve interaction among robots and people with PMLD basically
because the interaction among these patients and the robots is more complicated
due to the patients cognitive problems and also due to the problems in the motor
control of their extremities [14].

Motivated by above investigations, the aim of our proposed research is to ana-
lyze the response of individuals with PMLD in different possible categories of
robot interaction [10]. It is to be noted that research in [10] is based on the ther-
apeutic application of robots against ASD and not specifically against PMLD.
However, PMLD and ASD conditions are frequently associated because individ-
uals with PMLD may have autism [2], and also it is estimated that the learning
disability among children with core autism is between 60-70% [15]. Recognizing
this association, proposed research designs and analyzes robot interaction among
individuals with PMLD in different categories of clinical applications based upon
robot interaction research in ASD.

2 Method

2.1 The Approach

The case study was performed over a period of three months at a trail room
in Ave Maria Foundation1. Ave Maria Foundation is the residential and clinical
facility of the participants hence it provided a familiar environment for all the
participants. Standard medical ethics requirements were satisfied.

Four unique activities have been identified to represent each one of the cat-
egories as identified in [10]. These activities are listed in table 1. The activities
were chosen based upon following criteria :

1. Relevant representation of the category by the activity of choice.
2. Simplicity for participants at the execution level.
3. Ease of implementation in NAO robot.

1. Dance Choreography: This activity was aimed to observe the response of
the participants towards a robot or robot like characteristics. In this activity,
NAO performs a dance composition while singing a song. NAO was not
interacting with the participant at any level while participants were allowed
to observe and respond without any restrictions.

2. Touch my head: The aim of this activity was to induce a target behavior
in participants. In this activity the robot asks the participants to touch the
robot’s head, feet or hand. The participants are expected to respond as per
its instructions.

1 Ave Maria Fundació, http://www.avemariafundacio.org/inici.html

http://www.avemariafundacio.org/inici.html
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Table 1. Activities

Category Representing Activity ID

Responses to robots or robot-like characteristics Dance choreography 1

Eliciting behavior Touch my head 2

Providing feedback or encouragement Learn the senses 3

Modeling, teaching, or practicing skills Guess emotions 4

3. Learn the senses : This activity is aimed to provide feedback and encourage-
ment to the participant by the robot to achieve a certain target behavior.
NAO prompts the participants to present an answer image corresponding to
a particular sensory activity of the human body. If the participant do not
answers within a certain time period NAO encourages the participant by
providing some clue about the answer image. The robot provides a positive
feedback on accomplishing the right answer.

4. Guess Emotions : The robot works as a learning tool for the participant. The
robot tells a short story to the participants and in between asks questions
related to the emotional state of the character in the story. The robot helps
participants to answer the questions helping them to learn about different
emotions.

2.2 Participants

The experiments for this case study were carried out with six individuals of
different age, gender and intellectual disability levels. The assessment of these
individuals was done by Assessment and Guidance Services for People with Dis-
abilities (CAD Badal) organization of Government of Catalunya2. Details of all
the individuals are presented in table 2.

2.3 Procedure

The robot used for this case study was NAO NextGen (Model H25, V4). NAO
is a 58 cm tall humanoid robot developed by Aldebaran3. For each trial, the
robot was placed on a table in a position as required to initiate the desired
activity. The participant is brought to the trail room by the care taker and takes
a seat in front of the robot. Figure 1 shows a general position of the participant
with the robot. Only care taker stays in the room with the participant while
the researchers observe the whole situation from outside of the room. The care
taker observes the participant during all the activity but does not initiate any
communication on its own but responds to participants. Duration of trails vary
between 15-30 minutes depending upon the activity and the participants, while
actual robot interaction during each trail lasted between 5-10 minutes.
2 Generalitat de Catalunya, http://web.gencat.cat/ca/inici/
3 Aldebaran, https://www.aldebaran.com/en

http://web.gencat.cat/ca/inici/
https://www.aldebaran.com/en
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Table 2. Participants

ID Gender Age Condition Disability (%)

ID01 F 65 y, 4 m

Moderate Intellectual
Disability, Affective Disorder,

Right Hemiparesis, Mixed
Cerebral Palsy

85

ID02 F 42 y
Autism, Severe Intellectual

Disability
86

ID03 F 48 y, 8 m
Severe Intellectual Disability,

Affective Disorder,
encephalopathy

87

ID04 F 33 y, 2 m
Autism, Moderate Intellectual

Disability
79

ID05 F 67 y, 10 m
Moderate Intellectual

Disability, Tetraparesis
86

ID06 M 44 y, 6 m
Severe Intellectual Disability,

Down Syndrome
75

2.4 Measurement and Evaluation

The evaluation for all the trials was analyzed using the following measures :

1. Engagement rate which is the percentage of time that the participants
were actually engaged during actual robot interaction. Engagement of the
participants were calculated after the trials with help of an expert psychia-
trist by analyzing the video recordings of the trials for engagement observa-
tion of participants.

2. Performance of the participants against desired responses of activities.
Depending upon the time duration and correct or wrong responses, per-
formance of the participants were recorded as perfect, good, regular or no
response.

3. A questionnaire adapted from GARS-2 [16], WHODAS 2.0 [17] and ABS-
RC: 2 [18]. The Gilliam Autism Rating Scale-Second Edition (GARS-2)
is a supplementary screening tool for individuals suffering with autism
spectrum disorders. ABS-RC: 2 is a method to assess adaptive behavior of
mentally handicapped persons. World Health Organization Disability Assess-
ment Schedule 2 (WHODAS 2.0) is a tool for assessment of global functioning
and impairment. To the best knowledge of authors, there is no availability of
any method or scale for the evaluation of robotic interaction effects. Thus,
the authors adapted the existing above said assessment tools for evaluation
purposes and to enhance the decision making about such trials. An expert
psychiatrist identified 25 questions from GARS-2, 2 questions from WHO-
DAS2.0 and 13 questions from ABS-RC2 (part II) as per their suitability for
this evaluation. Based upon this questionnaire, the behavior of participants
in normal situations (before the trails) was compared with their behavior
during robot interaction trials.
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Fig. 1. A participant interacting with the robot

3 Result and Discussion

Table 3 shows performance evaluation of the participants for all three interactive
activities. Each activity consisted of 3 tasks in respective categories. Thus, the
total number of responses recorded from six participants was 54 (6 participants
* 3 activities * 3 tasks). The evaluation of response was done by a psychiatrist
taking into account the time and support used by the participant to accomplish
the task.

Table 3. Performance of participants against activities

Activity Perfect Good Regular
No

Response

Touch my head 14 1 2 1

Guess Emotion 9 5 4 0

Learn Senses 10 3 4 1

As can be observed from table 3 that among a total of 54 observations,
only 2 times participants did not respond at all to the robot. Most of time the
response was very positive, which can be seen by a total number of 33 perfect
responses. Some important observations for delayed or no response scenarios are
summarized below:

1. Participants were attracted (absorbed) with the robot hence, were not able
to concentrate on the execution of activity.

2. Restrictions in technical abilities of the robot, (e.g. image recognition).
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3. Participants were excited with the robot during activity hence, sometimes
were responding before even completely listening to the robot.

Table 4 shows the observed engagement rate for all participants during all
the trials.

Table 4. Engagement rate (% duration) of participants against activities

ID Dance Touch my head Learn Senses Guess Emotion

ID01 96.60 100.00 100.00 100.00

ID02 64.56 100.00 100.00 100.00

ID03 93.20 100.00 100.00 100.00

ID04 100.00 100.00 100.00 100.00

ID05 100.00 100.00 100.00 100.00

ID06 98.06 100.00 100.00 100.00

Above results are very exciting. Important observations can be summarized
as follows:

1. In the first category, there was no interaction between robot and participants
as it was intended to observe the response of participant’s towards the robot.
As can be seen from table 4, engagement rate in this category was not exactly
100 %. As the robot was not interacting with the participants in any manner,
after certain time they started loosing their concentration but for most of the
time they were attracted and focused to the robot. The participants ID02 and
ID03 observed the lowest engagement rates as 64.56 and 93.20 % respectively.
It can be directly related with their mental conditions as they both are having
severe mental retardation. Hence, patients with more disability showed lower
engagement than other participants. In this regard, their behavior with the robot
was similar to their behavior with a human.

2. In all other categories, participants observed an exciting 100 % engagement
rate with the robot. This result is very fascinating as it indicates that irre-
spective of their mental condition all the participants were able to engage
fully with the robot when it was interacting with them in any manner.

The results shown in figure 2 represent the improvement in disability behav-
ior (in terms of %) during the interactions with robot in different categories as
compared with the observed behavior in normal situations. Proposed question-
naire was used to evaluate the disability behavior of the participants in normal
situations. Then using the same questionnaire, disability behavior during inter-
action with robot was reevaluated. A difference is also calculated using above
evaluations and is presented as percentage in figure 2. A higher value represents
more improvement in disability behavior (i.e. reduction in disability behavior)
during robot interactions as compared to normal situations.

Missing data in figure 2 for ID03 and ID04 under WHODAS2.0 indicate that
the value could not be calculated as the participants do not exhibit any disability
behavior assessed by this scale.
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Fig. 2. Difference (%) between normal disability behavior in daily situations & behavior
during robot interaction, as observed using the proposed questionnaire and its average
difference

As can be observed from figure 2, all participants showed either a reduced
or at-least same level of disability behavior during all robot interaction trials in
comparison to normal situation behaviors. Mostly they showed a very reduced dis-
ability behavior which is very fascinating. Important observations are as follows:

1. The plot for activity 1 shows that all the participants showed a reduced dis-
ability behavior even while robot was not making any interaction with them.
e.g. Participant ID06 showed a 17.78% decrease in the disability behavior on
GARS scale, a 50% reduction on WHODAS2.0 scale and a 62.50% reduction
on ABSRC2 scale.

2. The highest observed difference in reduction of disability behavior is for
participant ID03 and is 78.57%. It is a fascinating improvement.

3. The lowest observed difference in reduction of disability behavior is 0% and
was observed 5 times. e.g. participant ID02 in the first category by using the
WHODAS2.0 scale indicating no improvement for this participant in this
category.

4. An average difference for each participant is presented in figure 2 for each
one of the activities. It gives a hint about the average improvement that can
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be expected for respective participant (or individuals with the same type of
disabilities) with robot interaction techniques in each category.

5. An average difference for all participants in all categories is 47.79% which
itself indicates that robot interaction is effective to good extent.

6. Another important observation is the absence of any negative value in the
results, which indicates that none of the participants showed an increased
disability behavior in any of the trails which suggests that robot interactions
did not caused any negative effects during the trails.

4 Conclusion and Future Work

Amount of work done to analyze and study the response of the robot interactions
for the individuals with PMLD has been inadequate. Keeping this in mind,
a small but significant step was taken to advance in this direction. Different
types of activities were designed to observe response of individuals with PMLD
in different categories. Elder people with PMLD were included in the trails to
analyze the effect of their interactions with a robot. The results are very exciting
and surely suggest that robot interactions can be very helpful to improve the
conditions of the individuals with PMLD even at an elder age.

Due to low number of participants, results of this study only indicate the
underlying potential of research in this field. Hence, the number of participants
should be increased to explore potential findings in more detail. It can be very
interesting to analyze the responses of group of people during the interaction
sessions. Also instead of using one robot, multiple robots can be used to interact
with individuals or with groups. The establishment of a standard method for
assessing the response of interactive robots with different types of patients is of
utmost importance. Autonomous change in the behavior performed by the robot
according to the current response of the patients is also of great interest. As same
medicine can not be offered to all types of patients, similarly robot interactions
need to be customized as per the state and conditions of the individual patients.
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Abstract. In recent years robots have been increasingly used in autism 
research. In this paper the effects of robot-assisted interventions on two seven 
year old autistic twin brothers, one of whom is high-functioning and the other 
low-functioning, are explored. To this end, 12 sessions of therapeutic scenarios 
were designed and presented to the autistic twin subjects in the presence of two 
robots, a therapist and their parents in individual and group modes. The results 
showed great potential benefits from using robots in group therapeutic games in 
both high- and low- functioning autistic children, such as improvement in 
imitation and joint attention skills for both brothers, as well as communication 
with each other. The results also indicated a decrease of stereotyped behaviors 
in the low-functioning brother, and improvement in social and cognitive skills 
in the high-functioning brother. 

Keywords: Humanoid robot · Joint attention · High- and low-functioning 
autism · Autistic twin · Imitation 

1 Introduction      

Humanoid robots can be used as a powerful tool to improve social and motor skills as 
well as joint attention in autistic children [1, 2]. Individuals with autism usually shy 
away from social interactions and communications and are impaired in showing  
proper reactions to real world events [3]. To this date, a wide range of studies have 
been done on the application of robots in autism treatment (especially on high-
function autistic children) to improve imitation, joint attention, and social interaction 
skills of autistic children [4-13]. Although there has been research on autistic twins 
and the relative contributions of genetics and environment to autism spectrum  
disorders [14-15], to the best of our knowledge using humanoid robots specifically in 
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the treatment of twins with autism has not been reported. What makes this study  
different is that it focuses on the robot-assisted interventions of seven-year old autistic 
twins, one of whom is high-functioning and the other low-functioning. The two  
participants were fraternal twin brothers. Besides improving motor and social  
interaction skills of these two subjects with each other and with their parents, the main 
purpose of this study was to investigate how the effect of robot-assisted autism  
therapy differs for high-and low-functioning autistic children.  

2 Research Methodology 

2.1 Participants 

Our subjects were seven-year old fraternal autistic twins. Both were male and  
diagnosed with autism spectrum disorders; one is High-functioning with hyperactivity 
(called S1-A) and the other is Low-functioning (called S2-I). The advantage of  
investigating twins in comparison to other cases is factors such as parents, food, 
clothes, and education have been controlled, a difficult task in general research. S1-A 
is a high-functioning autistic boy with hyperactivity and mild verbal skills. Eye-
contact avoidance also existed since an early age.  At the age of seven his parents 
were informed that S1-A was a high-functioning autistic child. S2-I is a low-
functioning autistic child with poor verbal skills. S2-I’s autism is more severe than his 
twin brother and he usually engages in repetitive, non-purposeful, and stereotyped 
behaviors such as fluttering fingers.  

2.2 Intervention Sessions  

The intervention sessions included various games in order to teach individual and 
group sport skills (Robot-Patient and Robot-Patient-Brother/Parent) and engage them 
in different imitation and joint attention situations. The intervention sessions were run 
on the autistic twins in the presence of the Humanoid Robot(s), therapist, robot  
operator, and their parents in a fairly friendly environment. Our study approach was a 
single subject design using Wizard of Oz style robot control. Intervention scenarios 
were designed based on clinical psychologists’ explanations of psychology theories, 
shaping behaviors therapy, and Applied Behavior Analysis (ABA) models run in 
autism treatment centers. The pre-designed scenarios were conducted in 12 thirty-
minute sessions held twice a week for 6 weeks at the Social Robotics Laboratory at 
Sharif University of Technology.  

2.3 Set-up of the Study 

The room size was 5×5×3 m3. The set-up of our study consisted of two humanoid 
robots, Microsoft Kinect sensor, video-projector, two laptops, chairs, a whiteboard, 
and two cameras for filming the sessions. Child-Robot interaction was structured and 
preset following pre-defined purposes. The scenario instructions were described by 
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the robot and/or the therapist. The parents of the twin subjects voluntarily took part  
in our research and they did not pay nor were they paid for the intervention sessions. 
A pledge was signed by the researchers and parents before the first session in order to 
maintain moral obligations.  

2.4 Humanoid Robots 

The humanoid robots used in our educational-therapeutic programs were the  
NAO-H21 made by Aldebaran Company [16] with 21 degrees-of-freedom (DOFs), 
and the Alice-R50 made by Robokind Company [17] with 32 degrees of freedom. To 
be used in the Iranian context, these robots were renamed “Nima” and “Mina”, re-
spectively. These two robots have the necessary capabilities needed for our designed 
intervention scenarios. Moreover, other researchers around the world have also used 
these commercial robots in autism research [4, 8, and 12]. Our concentration was on 
using the Nima robot; however, we also used the Mina robot because: a) it has 11 
DOFs in the face and is capable of showing different facial expressions, and b) we 
wanted to explore if changing the robot effected the children’s performance.     

2.5 Therapeutic Games 

A variety of therapeutic games were developed based on the children’s autistic impair-
ments in order to answer our research questions. These games concentrated on improv-
ing the children’s imitation, joint attention, social skills, eye-contact, and turn-taking. In 
each session the twins participated in several of the games in different modes; Robot-
Child or Robot-Child-Brother/Parent/Therapist interactions. Table 1 presents the list of 
games. The schedule of intervention sessions is presented in Table 2. 

2.6 Assessment Tools 

The four main instruments used to measure the effects of the interventions in this 
study are as follows: 

Gilliam Autism Rating Scale (GARS): One of the most well-known autism assess-
ment tools is the Gilliam Autism Rating Scale (GARS). This questionnaire is a valid 
tool developed by Gilliam in the1990s [18] to help estimate autism severity.  GARS is 
divided into four different subscales: Stereotyped Behaviors, Communication, Social 
Interactions, and Developmental Disturbances [19]. GARS has been used for 100 
autistic children in Iran and the Cronbach’s alpha for its four subscales and the overall 
test are 0.74, 0.92, 0.73, 0.80, and 0.89, respectively [20].  The GARS questionnaire 
was filled in by the children’s parents one week before and one week after the robot-
assisted program.  
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Table 1. List of Therapeutic Games 

# Games Modes Main Purposes of the 
Game 

1 Teaching imitation and motor 
skills by robot to 
child/children through indi-
vidual/group exercise and 
dances   

Robot-Child 
Robot-Child-Brother/Parent 

Improve imitation,  
Improve motor and social   
Skills,  
Dyadic/Triadic interactions, 
Turn-taking games 

2 Real-time Imitation of Robot 
by child in upper body move-
ments 

Robot-Child Draw attention of child to 
child to robot and therapist, 
Child can see his movements 
reflected in another person  

3 Tele-operating humanoid 
robots’ heads and hands using 
a 6-DOFs Haptic Phantom-
Omni robot as a remote con-
troller 

Robot-Child Empowering children and  
therapist to move the robots’ 
joints arbitrary, 
Dyadic/triadic interactions, 
Turn-Taking games 

4 Kinect-based Recognition 
Game: Classification of ani-
mals and fruit by pointing to 
different baskets on the screen   

Robot-Child 
Robot-Child-Parent 

Classification, 
Joint attention,  
Pointing, 
Gaze-shifting 

5 Playing a developed Kinect 
based virtual xylophone on 
the screen 

Child-Parent/Therapist robot 
applaud child for a task cor-
rectly done   

Improve child’s hand imita-
tion skills, Joint attention, 
and child’s visual pursuit    

6 Playing a real xylophone in a 
Robot-Child turn-taking game 

Robot-Child Imitation of Robot by Child   
and vice versa, Joint atten-
tion, Turn-taking, Improve in 
cognitive skills, Colors 
recognition, Hand-eye coor-
dination 

Quantitative Content Analysis of Intervention Video Records: Quantitative content 
analysis is a powerful tool to analyze written texts, videos or other media [21, 22].  
To analyze the autistic twin’s behaviors during the sessions, intervention video records 
have been observed and rated by two psychologists. The seven major items (some 
with different sub-items) rated by the psychologists consisted of: 1) Imitation, 2) Joint 
attention, pointing and gaze shifting, 3) Maladaptive behaviors, 4) Verbal and non-
verbal communications, 5) Instruction perception and cooperation, 6) Intercommuni-
ty, and 7) Interest in and enjoying individual/group games. Although quantitative 
content analysis is usually time-consuming and costly, it gave us worthwhile results. 
Two psychologists separately observed and rated the behaviors of each child in all of 
intervention sessions. Due to the fact that the children’s mother may not have been 
able to be absolutely objective in filling in the questionnaires, the content analysis of 
the video records and the interviews are of great importance.  

 
Human’s Assessment of Behaviors: In order to see the effect of the robot interven-
tion on autistic behavior in the boys real life, a child clinical psychologist assessed 
both of the children’s abilities one week before and one week after the intervention 
sessions.   
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Table 2. Intervention Session Schedule; the letters describe R: Robot, P: Parent, T: Therapist. 

Session Game#/Mode Participants in Game Description 
S1 S2 R P T 

1 Orientation Session      Robots showed their capabilities 
2 #4/ Robot-Child      S2-I did not take part in the game 
3 #2/ Robot-Child       

      
#1/ Robot-Child      Interestingly, using the Mina robot

did not affect the children’s perfor-
mance. 

#3/ Robot-Child      

4 #5/ Child-Therapist      Robot applauded them for the cor-
rect task. S1 intervened in his twin’s
game 

     

5 #6/ Robot-Child       
      

6 #3/ Robot-Child      Game #3 was selected for session
six at the request of  the twins        

7 #1/ Robot-Child-Child      Difficulty Level of the Tasks: Easy 
8 #1/ Robot-Child-Child      Difficulty Level of the Tasks: Me-

dium 
9 #1/ Robot-Child-Parent      S2-I was absent in this session 

10 #1/ Robot-Child-Child      Difficulty Level of the Tasks: Hard 
11 #1/ Robot-Child-Parent      Difficulty Level of the Tasks: Me-

dium 
#4/ Child-Parent       

      
#4/ Robot-Child       

      
12 Farewell       

 
 

Interview with Parents: Each child had the potential to show novel social interac-
tions in his real life which might not have been observed during our limited sessions. 
However, the parents spent most of their time with the children and hence could in-
form us if any behavior changes occurred.  

3 Results and Discussions  

Figures 1-4 show some intervention session snapshots, Social Robotics Lab (SUT). 
Different measurement instruments were used to measure the effects of the inter-

ventions. The GARS questionnaire was completed twice by the subjects’ parents: one 
week before the program started, and one week after the completion of the interven-
tions. Different skills of the two participants were assessed by a child clinical  
psychologist one week before and one week after the robot assisted treatment.  
Furthermore, Quantitative Content Analysis of the video records of the sessions was 
done by two additional child clinical psychologists from CTAD. 
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3.2 GARS 

The subjects’ mother was asked to fill in the GARS one week before and one week 
after the program. It should be noted that higher scores indicate higher severity of 
autism. The scores are presented in Fig. 5.  
 

 
Fig. 5. GARS subscales and total scores for S1-A (HF) and S2-I (LF) in Pre- and Post- tests. 

As the GARS scores indicate, S1-A did not experience a significant change in 
terms of the factors assessed through this questionnaire. However, he showed im-
provement in communication in line with the findings of the quantitative content 
analysis of the video records. S2-I showed more improvement especially in terms of 
decreased stereotyped behaviors and better social communication. This also supports 
the results obtained from the video records.  

3.3 Human Assessment 

The twin brothers were assessed by a clinical child psychologist one week before and 
one week after the program. The criteria for this assessment consisted of more than  
25 items on self-help skills, social interaction, verbal communications, motor skills, 
and cognitive skills. Based on clinical observation reports presented by the assessor 
child clinical psychologist, S1-A showed better progress in verbal communications 
and joint attention skills than in other tested skills. His main difficulties were in high 
level cognitive skills. According to the psychologist’s qualitative report, S2-I made 
progress in instruction perceptions and cooperation, imitation and motor skills. How-
ever, she reported that S2-I’s major defects were still mental skills and verbal com-
munications in comparison to his past.   

3.4 Interview with Parents 

As mentioned before, we had an interview with the twin’s parents after our last clini-
cal session. The most interesting parts of the interview are quoted as follows: 
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     “In contrary to their ABA classes, our kids showed inexplicable interest 
in taking part in imitation and turn-taking games and they were super 
happy when leaving intervention sessions. For the first time since their 
birth, we have seen the twin brothers playing a meaningful turn-taking 
game together with their table-soccer at home. They never understood 
that the robots’ actions occurred because of commands sent by an oper-
ator to the robots.”  

 
The mother stated, 
  

     “We believed that robotic clinical intervention would have a positive ef-
fect on our children’s social interaction and their communication to-
ward each other during these two months; however, we did not expect a 
miracle in their progress! Bringing my children to this different inter-
vention program, I think I am doing my mother’s duties better than the 
past.” 

 
The overall findings of this study showed that using robots in treatment of children 

with autism is potentially quite effective for both high- and low-functioning children 
with autism. However, the effects seem to be different for autistic children from dif-
ferent points on the autism spectrum. Low-functioning autistic children have more 
potential for improvement in imitation and joint attention skills with robot assisted 
therapy programs. This research was a pilot study and based on a single subject de-
sign experiment; therefore, generalizing the findings would require further research in 
larger-scale groups.   

4 Conclusion 

The results indicated that the high-functioning subject’s Social Skills improved due to 
the two and a half month robotic treatment. In the case of the low-functioning subject, 
no significant improvement was observed in terms of his Social Interaction and Deve-
lopmental Disturbances. His Stereotyped Behaviors, however, decreased during the 
course of the program. Moreover, both participants seemed to have better Communi-
cation after the treatment. As the subjects’ mother claimed, for the first time in seven 
years she had found the twin brothers playing a meaningful game together at home. 
This could be due to the robot-child-brother/parent group games the subjects were 
involved in. Our observations showed that robot-assisted treatment has great potential 
to lower the severity of autism in the low-functioning subjects and improve the social 
skills in the high-functioning subjects. In other words, the robot-assisted clinical in-
terventions seemed to be helpful both for low- and high-functioning children with 
autism. The progress rate, however, turned out to be much more significant in child-
ren with high-functioning autism. It should be noted that because of the small number 
of studied participants in single subject design studies, there are no strong claims on 
generalizing   the findings to other autistic children; however, we focused deeply on 
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the twins’ behaviors during our robotic-assisted interactions to evaluate the effective-
ness of the various scenarios on the studied subjects. As one of the pioneers in using 
this technology in Iran [23-29], the social robotics research group has high hopes that 
the findings of our studies can facilitate autism therapy in Iran. 
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Abstract. Social Signal Processing such as laughter or emotion detec-
tion is a very important issue, particularly in the field of human-robot
interaction (HRI). At the moment, very few studies exist on elderly-
people’s voices and social markers in real-life HRI situations. This paper
presents a cross-corpus study with two realistic corpora featuring elderly
people (ROMEO2 and ARMEN) and two corpora collected in labora-
tory conditions with young adults (JEMO and OFFICE). The goal of
this experiment is to assess how good data from one given corpus can be
used as a training set for another corpus, with a specific focus on elderly
people voices. First, clear differences between elderly people real-life data
and young adults laboratory data are shown on acoustic feature distribu-
tions (such as F0 standard deviation or local jitter). Second, cross-corpus
emotion recognition experiments show that elderly people real-life cor-
pora are much more complex than laboratory corpora. Surprisingly, mod-
eling emotions with an elderly people corpus do not generalize to another
elderly people corpus collected in the same acoustic conditions but with
different speakers. Our last result is that laboratory laughter is quite
homogeneous across corpora but this is not the case for elderly people
real-life laughter.

Keywords: Laughter recognition · Emotion recognition · Human-
Robot Interaction · Elderly people · Cross-corpus protocol

1 Introduction

Assistive social robots must be able to decode verbal and non-verbal expressions
of the user. The success of a social robot also relies on its ability to rightly
interpret the inputs and properly react to them. In such a context, social signal
processing designs high level cues which describe conversations, user profiles
and engagement [1] during Human-Robot interactions. For example, social and
interactional markers extracted from speech signal can be used to build up a
user profile [2].

The authors are working under the French project ROMEO21 which aims
at building a 140 cm high humanoid social robot. The robot is designed to be
1 http://projetromeo.com
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a friendly assistant robot for non-autonomous people such as elderly people. It
will be able to adapt its behavior but also to build user profiles. This project
faces two main issues: social cues must be 1) robust to realistic and unseen data
(spontaneous speech, noisy environments, uncontrolled acoustics), 2) adapted to
non-autonomous users, especially elderly-people. The present study focuses on
the decoding of two social markers of elderly-people interacting with a robot
using speech input: affective states [3] and laughter [4].

The two main drawbacks of the standard corpora used in the community
are the very small size of audio corpora and data variability in terms of task,
speaker, age and audio environment which compromises the significance of results
and improvements [5]. As a consequence, there is a critical need for data col-
lection with end-users (with different types of speakers, ages) and real tasks
for emotion recognition systems since realistic emotions could not be found in
acted databases [6]. So far, very few HRI databases have been collected with
diverse kind of participants: children (AIBO [7] and NAO-HR [8]), young adults
(SEMAINE [9]) or visually-impaired people (IDV-HR [10]). At the present time,
very few real-life emotional speech databases were recorded with elderly peo-
ple: ARMEN [11] and ROMEO2 [12]. Speaker identification has been shown to
be easier on elderly people than on young adults [13] because voice quality is
very different between these two age groups (creaky voice, low loudness, voice
pathology, etc.).

Because social markers extraction must be robust to unseen data, the present
study features cross-corpus experiments which also ensures speaker independent
conditions. It consists of using one corpus for modeling emotion and laughter
and another one as test set. A third corpus is eventually used for development
purposes. By this way, recognition rates are lower but more realistic than with
cross-validation experiments. Schuller et al. [14] performed binary valence recog-
nition with cross-corpus experiment on seven corpora. Average recalls are slightly
over the random guess, from 50% to 55% with young adults. A previous exper-
iment on children and adults voices [10] has shown a possible merging between
children voices corpora, however it seems more complex to merge adult speakers
and children speakers. A lot of interesting work on laughter detection in HRI
has been reported in the ILHAIRE project2. But, as far as the authors know,
none of them has been done in cross-corpus. Recently, a cross-corpus experiment
on laughter was carried on three spontaneous HRI corpora [15]. The goal of the
presented cross-corpus experiment is to assess how data from one given corpus
can generalize to another corpus, variability being expressed under the project
ROMEO2, in terms of age and acoustic conditions. Two groups are tested: one
is composed of young adults recorded in laboratory conditions (OFFICE and
JEMO [16] corpora), the other one is an elderly people’s recorded in real-life
conditions (ARMEN [11] and ROMEO2 [12] corpora).

Section 2 summarizes the acoustic features used for emotions and laugh-
ter modeling. The four French HRI databases are described in section 3.

2 www.ilhaire.eu/project

www.ilhaire.eu/project
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Methodology and results are presented in section 4. The conclusion is drawn
in the last section.

2 Acoustic Cues

In this work, many acoustic features are used to model laughter and emotions
in voice. These features globally carry three kinds of information: spectral infor-
mation, temporal shape information, and voice quality. Such acoustic features
are supposed to carry most of emotional information [17], [18]. Several studies
[19], [20], [21] found that fundamental frequency, instance duration energy and
formants are also relevant for clear and well-identified laughters.

Spectral and temporal shape information is extracted using Yaafe3 and con-
tains perceptual features, ZCR (Zero Crossing Rate) and 24 Specific Loudness
Energy bands. A total of 10 statistical coefficients (SetFunc) are calculated
for each vector attribute. Prosodic and phonetic information is extracted with
Praat4. Pitch-related features include mean, standard deviation, maximum and
minimum of pitch (extracted in semitones). Intra (respectively inter) pitch is
the pitch difference within a voice region (respectively across consecutive voice
regions) and glissando. Formant-related features are: mean and standard devi-
ation of the three first formants, mean and standard deviation of the formant
differences F2−F1 and F3−F2. Micro-prosody features are: jitter, shimmer, HNR
and proportion of voiced parts in the segment. More details on these acoustic
features can be found in [22]. The extraction step yields a 301-dimension vector
per audio segment as summarized in table 1.

Table 1. Acoustic feature set: 301 features. SetFunc is a set of 10 functionals: mean,
std, slope and high-level statistics. std stands for standard deviation.

LLD functionals Nb func.
ZCR SetFunc 10
Roll Off 95% SetFunc 10
Spectral Slope SetFunc 10
Spectral Flatness SetFunc 10
Specific Loudness 1-24 SetFunc 24 × 10
Pitch mean, max, min, std, intra, inter, glissando 7
Formants mean, std F1, F2, F3 6

mean, std F2 − F1, F3 − F2 4
Micro-prosody local jitter, local shimmer, HNR, punvoiced 4

3 Databases

The four databases used in the following cross-corpus experiments, are presented
in this section. Two of them, ARMEN and ROMEO2, were collected with elderly-
people during HRI (60 speakers of more than 60 years old). The other two,
3 http://yaafe.sourceforge.net/
4 http://www.fon.hum.uva.nl/praat/

http://yaafe.sourceforge.net/
http://www.fon.hum.uva.nl/praat/


636 M. Tahon et al.

JEMO and OFFICE (66 speakers of less than 60 years old), were collected during
emotion games. The four corpora are in French and there is no lexical constraints.
All corpora were manually segmented and annotations were performed by two
expert annotators. Only consensual emotional segments are used in this work.

3.1 ROMEO2 Corpus

The ROMEO2 corpus [12] was collected in a French EHPAD (public accommo-
dation for non-autonomous old people). 27 participants (3 men and 24 women)
were recorded. A Wizard-of-Oz scheme controls the robot so that its behavior
adapts seamlessly and quickly to most situations. Each interaction was split
into different scenarios: greetings, reminder events (take medicine), social inter-
action (call a relative) and cognitive simulation (song recognition game). This
corpus is very rich in terms of elderly-people speech. The study of interactions
with elderly people also suppose to deal with hearing difficulties. The consensual
data constitute 98 min of emotional instances.

3.2 ARMEN Corpus

The ARMEN corpus was collected in a French EHPAD within the ANR Tes-
can ARMEN. 77 patients from medical centers (elderly and impaired people), of
which 48 men and 29 women between 18 and 90 years old participated in this
data collection. The consensual data constitute about 70 minutes of the corpus.
The collected data are used to explore approaches which aim at resolving the
performance generalization problem of emotion detection systems run on differ-
ent data [11]. In the present paper, the authors use a subset of ARMEN that
contains elderly speakers only (36 speakers over 60 year old).

3.3 OFFICE Corpus

The OFFICE corpus was collected with two scenarios (jokes and emotion game)
written in order to spark emotional speech and laughter. 7 speakers from 18 to
52 were recorded at LIMSI with a high-quality microphone during an interaction
with the robot Nao [15]. In the “joke” scenario, the robot tells jokes in order to
provoke a user’s laughter. In the “emotion game” scenario, the user is asked to
act emotions (anger, sadness, happiness or neutral state) so as to be recognized
by the robot. The collected data contain emotional speech and affect bursts
(laughter) but also noise, cough and blow (breathing or blowing). Each record
was then segmented and transcribed, the number of segments per emotional class
and affect bursts is summarized in table 2.

3.4 JEMO Corpus

The JEMO corpus was recorded in laboratory conditions to obtain emotions in
the context of a game within the ANR Affective Avatar project. The goal of
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the game was to make the machine recognize an emotion (anger, joy, sadness
or neutral state) without providing any context [16]. The lexical content was
totally unconstrained, and the speaker tried and modulate freely their emotional
expressions so as to be recognized by the system. As a result, the participants
produced very expressive emotions in order to be as close as possible to the
entries expected by the system. The corpus contains thus prototypical emotions
produced in a “game” scenario. The total duration of the corpus is 41 minutes
and it includes 59 participants (30 men and 29 women aged from 16 to 48 y. o.)

3.5 Characteristics of the Databases

The databases described previously mainly contain, besides laughter, the four
Ekman’s emotions: neutral state, anger, positive state, sadness. Since the
ROMEO2 corpus has a very small number of anger instances, only positive,
neutral states and sadness will be modeled in the present study. In the pre-
sented corpora, laughter can suppose either positive feelings (joy, amusement,
etc.) or negative states (such as contempt [23], sadness or embarrassment). The
number of consensual instances for each emotional class used in this work is
shown in table 2.

Table 2. Content description for each data corpus. POS: positive, NEG: negative,
NEU: neutral, SPE: total speech, LAU: laughter (non-speech).

Corpus # Subjects Age Duration # Segments
POS NEG NEU SPE LAU

ARMEN 36 60-90 68 min 308 64 1162 1534 253

ROMEO2 24 75-99 98 min 673 404 1306 2583 205

OFFICE 7 18-50 10 min 107 134 62 303 123

JEMO 59 16-48 29 min 201 307 341 849 73

ARMEN and ROMEO2 are elderly people real-life databases collected with
similar acoustic environments (same EHPAD) with similar protocols, but dif-
ferent speakers. One is collected with a humanoid robot (ROMEO2), the other
with a virtual agent (ARMEN). JEMO and OFFICE were collected in the same
laboratory conditions but with different speakers and protocols.

4 Cross-Corpus Experiments with Elderly and Young
People Voices

The goal of this experiment is to assess how data from one given corpus can
generalize to another corpus. The inter-corpus variability that interests us here,
is expressed in terms of age and acoustic conditions. Two groups are tested: one
is composed of young adults, the other of elderly people. Four acoustic conditions
are tested which correspond to the four corpora.
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4.1 Comparison of Acoustic Features Between Elderly and Young
Adults People

Elderly people speech contains tremor, pitch breaks, a lot of hesitations and
fillers. Speakers’ voice quality is also different from that of young adults. Figure 1
shows pitch standard deviation and local jitter distributions across corpora.
While local jitter distributions are almost the same for the four corpora, F0

standard deviation reaches significantly higher values in elderly people real-life
voices than in laboratory young voices. This result shows that looking for rele-
vant acoustic features which are good for distinguishing young and elderly people
voices, is a real challenge. In the present study, age and acoustic conditions are
mixed together because available corpora are not big enough to analyze all con-
ditions separately. A previous study showed that speaker recognition was easier
for elderly than for young speakers [13]. Our hypothesis is that acoustic fea-
tures change more with age group condition than with acoustic environment,
but further investigations are needed.
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Fig. 1. Feature distributions across the four corpora: std F0 (left), local jitter (right).

4.2 Methodology: Cross-Corpus Experiments

Emotion and laughter cross-corpus experiments are realized following the same
protocol. ROMEO2 and JEMO corpora have been equally divided into three
subsets: one for training (C1), one for development purposes (C2) and a last
one for testing (C3). The three subsets are randomly composed so that they
have the same number of segments for given class. Thus, by using JEMO or
OFFICE (young subjects), ARMEN or ROMEO2 (elderly people) as train cor-
pora and ROMEO2 or JEMO as test corpora, we actually want to check how
age divergence and acoustic conditions variability affect the recognition perfor-
mance. Good rates are expected when train and test data are from similar age
groups, whereas lower rates are expected when train and test data belong to
different age groups.
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The cross-corpus protocol ensures speaker independent conditions, expect
when training and testing on the same corpus (baseline). The subjects are not
equally represented in each subset.

Automatic classification is performed with SVM (Support Vector Machines)
using libsvm5. Classification was run with a linear or RBF (Radial Basis Func-
tion) kernel with parameter optimization on development subsets. Results are
given in terms of UAR (Unweighted Average Recall). The confidence interval
depends on the number of the tested segments N and the obtained performance
UAR (equation 1).

Confidence = UAR± 1.96

√

UAR× (1 − UAR)
N

(1)

4.3 Cross-Corpus Results

The results of the cross-corpus experiments are reported in table 3. Experi-
ments conducted with the same corpus for both training and testing (baseline
condition) are reported in bold, they serve for comparison with cross-corpus
experiments results.

Table 3. Cross-corpus UAR ± confidence results for emotion and laughter recognition,
baseline in bold. # is the number of tested instances (a third of the initial corpus).

Train Test
NEU/NEG/POS SPE/LAU

ROMEO2-C3 JEMO-C3 ROMEO2-C3 JEMO-C3
(#793) (#282) (#862) (#307)

ARMEN 39.2 ± 3.4 40.6 ± 5.7 67.0 ± 3.1 69.1 ± 5.2
OFFICE 44.7 ± 3.5 44.2 ± 5.8 59.2 ± 3.3 81.6 ± 4.3

ROMEO2-C1 46.3 ± 3.5 42.0 ± 5.8 87.2 ± 2.2 71.3 ± 5.1
JEMO-C1 40.7 ± 3.4 61.2 ± 5.7 68.3 ± 3.1 82.3 ± 4.3

Emotion Recognition Results. In the context of emotion recognition, the
baseline performances obtained with both ROMEO2 and JEMO corpora, are
the highest. Using data from the same corpus for training and testing not only
yields the best performance but also seems to lead to a fairly more balanced recall
between the three classes of emotion. For example, with OFFICE for training
and JEMO-C3 for testing the minimum recall is reached by the neutral class
at 8.9% (probably because there is very few neutral instances); with JEMO-C1
for training, the minimum recall is reached by the negative class at 57.8%. The
recognition rates are lower while testing on ROMEO2 than testing on JEMO.
This is due to the fact that JEMO is prototypical while ROMEO2 is real-life.

5 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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The recognition rate obtained with models trained on ARMEN and tested with
ROMEO2-C3 was expected to be similar to the one obtained with models trained
on ROMEO2-C1. This is actually not the case (UAR=39.2% with ARMEN for
training and UAR=46.3% with ROMEO2-C1), thus denying our hypothesis.

Based on these results, the use of other elderly people corpus for training
emotions does not help improving the performances when testing on elderly
people. However, when testing on JEMO-C3, all training corpora, give similar
results. Elderly people real-life corpora are much more complex than laboratory
corpora, and they are significantly different one from another (between ARMEN
and ROMEO2).

Laughter Recognition Results. Similar results are obtained on cross-corpus
laughter recognition. The recognition of ROMEO2 (respectively JEMO) laughter
is better if the model is trained with similar data (with ROMEO2-C1 sub-corpus
(respectively with JEMO-C1)). However, in cross-corpus conditions, building a
model with elderly people is not necessary when testing on elderly people: the
best performance is obtained with JEMO-C1, then comes OFFICE and last is
ARMEN.
The use of elderly people voices for training the models degrades the recogni-
tion rates (with ARMEN and ROMEO2-C1). Training a laughter model with
the corpus OFFICE leads to a performance similar to the baseline. One of the
main conclusions of these experiments on laughter is that JEMO and OFFICE
laughters are acoustically homogeneous, however, they differ from ARMEN’s and
ROMEO2’s. Despite the small size of the OFFICE corpus and the absence of
very aged subjects, it performs better than ARMEN, be that against ROMEO2
or JEMO.

It seems that laughter is significantly different on one hand between proto-
typical corpora and real-life corpora, and on the other hand between two differ-
ent real-life corpora. Laboratory laughter is quite homogeneous across corpora
(between OFFICE and JEMO) but this is not the case for elderly people’s real-
life laughter.

5 Conclusion

The study gives some pilot results with elderly-people voices during interaction
with a robot. Two social markers which are very useful in HRI, are detected:
laughs and emotions. The automatic recognition of these two markers is pre-
sented in cross-corpus conditions. Four corpora are used in the experiments:
two of them were collected with young adults (JEMO and OFFICE) and the
other two with elderly people (ROMEO2 and ARMEN) during HRI. Our goal
was to assess how data from one given corpus can generalize to another corpus,
variability being expressed in terms of age and acoustic conditions.

Our first main result is that a comparison of acoustic features (such as F0

standard deviation or local jitter) distributions across corpora, show clear dif-
ferences between age and acoustic environments groups. This result confirms
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the fact that speaker recognition best performs on elder adults [13]. The second
result obtained with cross-corpus experiments on emotion recognition is that
elderly people real-life corpora are much more complex than laboratory corpora
and they are significantly different one from another (ARMEN and ROMEO2).
Surprisingly, modeling emotions with an elderly people corpus do not generalize
to another elderly people corpus collected in the same acoustic conditions (here
same EPHADs) but with different speakers. Our last result is that laboratory
laughter is quite homogeneous across corpora (JEMO and OFFICE) but this is
not the case for elderly people real-life laughter.

The complexity of elderly people real-life corpora may be due to age group
and emotional behavior. This study shows that modeling emotions with an
elderly people corpus do not generalize to another elderly people corpus even if
the training and testing corpora are collected within the same acoustic environ-
ments and with similar scenarios. Further experiments are needed to investigate
the advantage of merging elderly and young people real-life corpora or building
separate models. The authors use available corpora, therefore further experi-
ments with new HRI corpora are needed to dissociate the effect of age group on
acoustic features independently from the acoustic environment.
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Abstract. For a mobile assistive robot operating in a human-populated
environment, a polite navigation is an important requirement for the
social acceptance. When operating in a confined environment, narrow
passages can lead to deadlock situations with persons. In our approach
we distinguish two types of deadlock situations at narrow passages, in
which the robot lets the conflicting person pass, and either waits in a non-
disturbing waiting position, or forms a queue with that person. Forth-
coming deadlock situations are captured by a set of qualitative features.
As part of these features, we detect narrow passages with a raycasting
approach and predict the movement of persons. In contrast to numeri-
cal features, the qualitative description forms a more compact human-
understandable space allowing to employ a rule-based decision tree to
classify the considered situation types. To determine a non-disturbing
waiting position, a multi-criteria optimization approach is used together
with the Particle Swarm Optimization as solver. In field tests, we eval-
uated our approach for deadlock recognition in a hospital environment
with narrow corridors.

Keywords: Human-aware navigation · Socially assistive robotics ·
Situation understanding · Polite navigation

1 Introduction and Motivation

In the ongoing research project ROREAS (Robotic Rehabilitation Assistant for
Stroke Patients) [10], we aim at developing a robotic rehabilitation assistant for
walking and orientation exercising in self-training during clinical stroke follow-up
care. The robotic rehab assistant is to accompany inpatients during their walking
and orientation exercises, practicing both mobility and spatial orientation skills.
The test site is a complex U-shaped rehabilitation center and accommodates
more than 400 patients. The operational environment is highly dynamic. Patients
and staff working in the patients’ rooms are moving in the corridors and in the
public areas, many of them using walking aids. Moreover, beds, supply and
cleaning carts, or wheel-chairs are occupying the hallways, resulting in more or
less restricted space conditions at some times.
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 643–653, 2015.
DOI: 10.1007/978-3-319-25554-5 64
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(a) Our robot in a typical narrow pas-
sage

(b) Forthcoming person

(c) Same Direction

Fig. 1. Our robot in a typical narrow passage at our test site, the m&i rehabilita-
tion center in Bad Liebenstein, and schematic depiction of the considered conflicting
situations caused by narrow passages.

The self-training is mostly performed on the corridors. Due to the structure of
the building or objects standing in the hallways, some parts have limited lateral
space, forming a narrow passage which permits movement only in one direction at
a time (Fig. 1(a)). Moving in such a restricted space imposes deadlocks in narrow
passages. Since a polite and attentive navigation is an important requirement
for an assistive robot, these situations must be predicted to trigger a proactive
reaction of the robot. In this work, we distinguish two types of deadlocks: (i)
deadlocks caused by a forthcoming person and (ii) deadlocks occurring when
the robot and a person are entering the narrow passage in the same direction.
In Fig. 1(b)(c) schematic examples of these situations with a narrow passage
typical to the operation area are depicted. Both cases have different resolution
strategies, but basically result in a “give way” behavior. To be more specific, in
case of type (i) deadlocks, the robot is driving to a waiting position to give way
to the forthcoming person, whereas type (ii) deadlocks are resolved by forming
a queue and following the person through the narrow passage.

When a deadlock situation with a forthcoming person is predicted, the robot
needs to wait until the narrow passage has been cleared. In the wait state, the
robot should position itself in a non-obstructive manner aside. This has a twofold
effect: First, in an already restricted environment, the position to be chosen
should not hinder the movement of the person and ease the deadlock elimination.
Second, the movement to a waiting position signals the approaching person the
intention of the robot to give way. Additionally, the narrow passage must be
observable from the robot’s waiting position, since it must be able to recognize
when the narrow passage is free to be entered. In our approach, we formulate
the problem of finding a suited waiting position as a multi-criteria optimization
problem and use a Particle Swarm Optimization (PSO) [16] as solver.

The main contributions of this paper are: (a) a new approach for detecting nar-
row passages by means of qualitative features capturing the spatial relationships
of conflicting situations, (b) an efficient method for predicting space conflicts in
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narrow passages, (c) a fast approach for finding non-obstructive waiting positions
based on multi-criteria optimization, in order to support the conflict resolution.

2 Related Work

The recognition and handling of deadlock situations in narrow passages has been
explicitly taken into account in [3]. In this approach however, deadlock situations
are only recognized and handled in a reactive manner, when the path is blocked
by a person standing in a narrow passage. For a rehab center with patients
having reduced mobility and using walking aids, a more predictive recognition
is necessary to proactively avoid deadlocks.

In our approach, a set of qualitative spatial features is used to recognize dead-
locks. Such a qualitative description is also used in [12] to evaluate the move-
ments of a robot and a person. Particularly, the Qualitative Trajectory Calculus
is utilized. In [14] and [24], Inverse Reinforcement Learning is employed to learn
a navigation behavior in crowds based on features capturing the environment.
However, narrow passages are not explicitly described.

To assess the situation from a set of situation describing features, the rela-
tionships between them must be described. The techniques for finding these
relationships belong to the field of Data Fusion (DF). In the robotic field, only
few papers on DF for situation assessment have been published so far. A general
framework for situation assessment is described in [1]. Situations are learned
with an extensible Markov Model from a set of feature sequences describing the
environment. In contrast to the robotics research, the field of Advanced Driver
Assistance Systems provides a wider range of publications dealing with situation
understanding. The common applications are the recognition of a driver’s driv-
ing maneuvers, driving behaviors at intersections, and the recognition of unusual
driving behaviors. For situation assessment, often Hidden Markov Models [21],
Bayesian Networks [19][9], and rule-based techniques [20] are used.

So far, only explicit recognition techniques have been mentioned. In the
robotics field, there also exists a category of implicit techniques. The main sub-
ject of these techniques are the usage of spatiotemporal planners and the incor-
poration of long-term human motion predictions to avoid deadlocks. Although
the deadlock problem can be solved with this approach, there is still a need for
situation assessment, when a human-robot communication is required to inter-
act with the person when a deadlock situation occurs. Since implicit techniques
aim at generating collision free trajectories, deadlock situations are not explicitly
recognized. The implicit techniques can be distinguished by the used planning
algorithms and human motion prediction methods. The most widely used plan-
ners are A∗ [13][2] and Rapidly-Exploring Random Trees [18][23]. Human motion
prediction methods can be categorized into learning-based and reasoning-based
[17] ones. Learning-based approaches learn a predictor from a given training set
of trajectories [2], whereas reasoning-based approaches make predictions based
on a given motion model for the person [7].
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Since our focus lies in the application of qualitative features for describing
deadlock situations and an efficient collision prediction method for narrow pas-
sages, we only use a simple linear motion prediction and a rule-based approach
for situation assessment. However, our field experiments demonstrate that these
methods result in a relatively good recognition performance for this hospital
environment.

3 Robot Platform ROREAS

Our robot has a relatively small size of 45 x 55 cm footprint and a height of 1.5 m
(Fig. 1(a)). The drive system is a differential drive with a castor on the rear and
allows a maximum driving speed of up to 1.4 m/s. The robot’s sensory sys-
tem consists of two SICK laser range finders, three Asus RGB-D cameras, and
a panoramic color vision system mounted on the top of the head. For person
perception, we utilize a probabilistic multi-hypotheses and multi-cue tracking
system based on a 7D Kalman filter [25]. It tracks the position, velocity and
upper body orientation of multiple persons. As detection modules, we are using
a face detector, a motion detector, and an upper-body shape detector. Addition-
ally, generic distance-invariant laser-scan features are used to detect legs and
persons with mobility aids (i.e. crutches, walkers and wheelchairs) [26]. With
these detection modules we are able to track persons up to a distance of 8 m.
To safely navigate in dynamic environments, the positions of obstacles need to
be determined. To this end, we use a generic mapping system which is able to
process 2D laser-scan and 3D information of the robot’s surroundings [5]. The
navigation system consists of a Dynamic Window Approach (DWA) [8] guided
with an E∗ planner [22]. Furthermore, multiple DWA objectives are utilized
to respect the personal space of bystanders and to achieve a right-hand traffic
behavior. The complete robotic system was developed with MIRA [6]. For a
more detailed overview of our robot system see [10].

4 Deadlock Recognition

The deadlock recognition is formulated as classification problem. As argued
before, we distinguish two types of conflict situations depending on the move-
ment intention of the person (Fig. 1(b)(c)). Both situations have different res-
olution strategies. In case of a deadlock with a forthcoming person, the robot
drives to a non-disturbing waiting position aside. These situations are labeled
as Waiting. In case of a deadlock with a person moving in the same direction
as the robot, a queue is formed with the person. These situations are labeled
as Queuing. Using the resolution strategies as class labels and adding the class
Proceeding for uncritical situations, the deadlock recognition problem can be
formulated as a classification problem over situations. In finding a classifier
C : S → {Waiting,Queuing, Proceeding} with S as the set of all situations, we
can recognize the considered deadlock situations. Our recognition approach can
be described as a sequential processing chain consisting of four distinct steps:
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Fig. 2. The narrow passage detection. The circles depict the sample points on the
robot’s path for which a ray perpendicular to path is cast. π is the trajectory of the
path parametrized over arc length. The highlighted path points π(s) and π(e) are the
start and end point of the narrow passage with s and e as their corresponding arc
length. Thus the arc length interval of the narrow passage is N = [s, e]. The quadratic
points are the boundary points of the narrow passage’s polygon. The polygon itself is
marked red.

(1) the detection of the narrow passage, (2) the extraction of qualitative spatial
features describing the situation around the narrow passage, (3) the prediction
of space conflict, and (4) the classification of the considered situations. In all the
processing steps we assume a planar operational space.

4.1 Narrow Passage Detection

Narrow passages are detected by first calculating normals perpendicular to the
planned path for a finite set of points sampled from the path (Fig. 2). The
normals are determined analytically. To this end, we utilize a spline interpola-
tion scheme to derive a trajectory π : R → R2 parametrized over the path’s
arc length. For each normal, rays are cast in the navigation map until hitting
an obstacle in the 2D occupancy map. The total length of the resulting rays
indicate how much free lateral space is available at a given path point. With
these distances, a narrow passage can be described as a continuous path section
given by an arc length interval N ⊂ R, where the section’s maximum distance
is smaller than a given threshold. Another useful form for reasoning about the
spatial relationship around the narrow passage is its bounding polygon. To con-
struct the polygon, the sampled path points in the narrow passage, which were
used to calculate the normals, are translated along their cast rays to get the
points on the polygon’s boundary.

4.2 Qualitative Spatial Features

The common method to describe spatial relationships is to use geometrical mea-
sures. For humans these quantitative measures are a rather unintuitive way
for describing spatial relationships. Instead, they use a qualitative abstraction
and group similar measurement values to an intuitive representation [12]. For
example, a person is more likely to describe another person as standing behind
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(a) Movement Direction (b) Orientation (c) Narrow passage positions

Fig. 3. Qualitative spatial features extracted from the position of the narrow passage,
the persons and the robot.

him/her, than to give the exact orientation angle. We use this insight to reduce
our geometrical feature space to a more compact space. In this compact space,
simple rules are employed to distinguish the considered situations. Thus, we
overcome the need for a learning approach to collect a dataset, which must con-
tain many instances of the geometrical features. We use the following features
to describe deadlock situations:

Movement Direction. In Fig. 3(a) an illustration of this feature is depicted.
This feature describes the movement direction of a person relatively to the move-
ment direction of the robot at either the start or the end of the narrow passage.
We distinguish three different directions Opposite, Same and Passing. Addi-
tionally, a fourth value Standing is introduced for a person with no movement.

Orientation. This feature represents the position of a person relatively to the
robot. The feature can take the values in Front, Rear and Side. To determine
this feature value, the angle between the robot’s movement direction and the
connection line of the person to the robot is used. See also Fig. 3(b) for an
illustration.

Narrow Passage Position. Given a narrow passage, this feature describes
the positions of the robot or a person relatively to the passage. We define three
sub-areas representing the Pre-, Post- and In-area of the narrow passage (Fig.
3(c)). The reference orientation is given by the movement direction of the robot.
To determine this feature value for a person, we assume a person to be disc-
shaped. The intersection area of the person with the narrow passage’s polygon
and the relative orientation to the narrow passage is utilized to reason about the
sub-area.

4.3 Space Conflict Prediction

A narrow passage can be understood as a rail predefining a movement flow.
Persons entering the narrow passage can only move along the given direction.
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Moreover, a point in the narrow passage can only be occupied by one person
or the robot at the same time. Thus, without losing information, we describe
the movement of the person and the robot through the narrow passage as a
trajectory τ : R → R parametrized over time and having function values in
the passage’s arc length interval on the planned path. Using a linear model,
the movement of the person through the narrow passage can be predicted. By
assuming a linear motion model the trajectory of the robot and the person can
be described as linear functions. Thus, predicting space conflicts can be reduced
to finding the intersection point of two linear functions.

4.4 Situation Classification

For each perceived person we extract the qualitative spatial features and pre-
dict possible space conflicts. Thereafter, a decision tree (DT) is used to classify
the situation for each person separately. In Fig. 4(a) a coarse view on the DT
is depicted. The root of the DT represents common preconditions for the con-
flicting situations. Only when these conditions are fulfilled, further evaluations
are considered. The preconditions consist of the check for the presence of a nar-
row passage and a space conflict with a person. Furthermore, an activation area
around the narrow passage is constructed, permitting further evaluations only
when the robot and conflicting person stay inside this area. Upon the fulfillment,
the evaluation is redirected to the subtrees according to the movement direction
of the person. The subtrees for standing persons and persons moving in opposite
direction are dedicated for the separation of the Waiting class from the Proceed-
ing class, whereas the subtree for person moving in the same direction separates
Queuing from Proceeding. The main idea of the subtrees is to use the qualitative

Fig. 4. (a) The high-level view of the decision tree. The orange nodes represent the
classification results; the blue nodes are the decision nodes; and the red nodes contain
a subtree. (b) The subtrees for persons moving in the opposite direction and (c) same
direction to the robot. The decision nodes use the relative position of the robot or
persons to the narrow passage (NP) and the relative position of the person to the
robot to chose the appropriate class.
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spatial features describing the relative positions of the person and robot (Sec.
4.2) for arguing about the class membership. In Fig. 4(b)(c), the subtrees for
persons moving in the opposite and the same direction as the robot are depicted.

5 Finding Non-obstructive Waiting Positions

5.1 Multi-criteria Optimization

The problem of finding a proper waiting position is formulated as a multi-criteria
minimization problem. The search space consists of points (x, φ) with x ∈ R2

a position in a planar world and φ ∈ [0..2π) an orientation defining the robot’s
viewing direction. The information about the obstruction and the passage’s
observability of a pose is encoded in the optimization function

f(x, φ) = α · cdist(x) + β · cobserve(x, φ)+
γ · cwall(x) + η · csocial(x)

(1)

through linear combination of the criteria (i) driving distance to a position cdist,
(ii) observability of the narrow passage cobserve, (iii) distance to walls cwall and
(iv) social distance to persons csocial. Since our criteria are non-linear or non-
differentable, we use the Particle Swarm Optimization to find the minimum.

5.2 Optimization Criteria

Driven Distance. Given the representation of the environment as a grid map,
this criterion penalizes positions which are far away from the robot, thus min-
imizing the time to drive to the selected position. This is important, since the
person might get irritated about the robot’s intention to wait, if the waiting
position is chosen too far. The driven distance to a position is determined with
Dijkstra’s algorithm [4]. Note, that for unreachable positions, Dijkstra’s algo-
rithm results in an infinite distance.

Observability. This criterion indicates if the narrow passage is observable at a
given pose. The robot’s field of view is modeled as a cone directed along φ. The
cone is further refined to incorporate the position of obstacles. The refinement
is conducted by casting rays from x inside the cone until hitting an obstacle or
the cone’s boundary is reached. The ending points of those rays are used to form
a polygon. The intersection area of this cone and the narrow passage’s polygon
is used to determine the observability value.

Distance to Walls. Imagine a robot moving in a hallway and the robot waits
in the middle of the hallway. This is a rather unintuitive signal and depending on
the width, the person might have to squeeze around the robot. A more intuitive
way is to let the robot wait near the walls. This is more explicit and provides the
person more free space to pass the robot. To determine the distance to walls a
distance transform algorithm [15] is performed on the environment’s map. The
resulting image allows lookup of the distance to the next wall for each potential
waiting position.
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Table 1. The confusion matrix containing the experimental results. Each instance in
a row correspond to one situation class actually occurred during the experiments. The
columns correspond to the predictions made by our approach.

Predicted class
Proceeding Queueing Waiting

Ground
Truth

Proceeding 96 19 7
Queueing 0 12 3
Waiting 1 1 18

Social Distance. Every person has a social distance s/he keeps to others when
s/he has no intention of interaction [11]. Assuming that a person is represented
as a disc-shape and has the position xh, the social distance of a person is modeled
as a Gaussian centered at xh. Then for a position x, the social distance criterion
is the summed function values of all the perceived persons’ Gaussian evaluated
at x.

6 Experimental Results of Field Tests and Outlook

In extensive field tests we evaluated our approach for deadlock recognition in
the “m&i Fachklinik” rehabilitation center in Bad Liebenstein with our robot
platform. The tests were conducted over two days. During the tests, we let the
robot autonomously drive between different goals and floors of the building. For
evaluation, an external observer accompanied the robot and manually counted
the decisions taken by our approach, but always from far distance to prevent
any distraction. In total, a distance of 4,700 m was traveled. During the first
4,000 m, only bystanders were crossing the robot’s way. These bystanders were
staff members, patients, or guests, which randomly occurred on the hallway and
had no knowledge about the robot’s deadlock recognition. In this test run, we
observed that most bystanders were considerate towards the robot and let it first
pass. Only some bystanders took the initiative resulting in the robot to give way.
Hence during the remaining 700 m, we additionally informed two test subjects
with normal mobility about the deadlock recognition, but without insight to the
technical details, and instructed them to actively obstruct the robot by crossing
its way. Thus, we obtained more variability in the deadlock situations and a
better assessment of the overall robustness. How they crossed the robot’s way
were up to the test subjects. Each bystander or test subject which crossed the
robot’s way in a 2 m radius was considered as potential source of a deadlock and
contributed to one instance in the confusion matrix shown in Table 1.

6.1 Discussion and Future Works

In total 157 persons were potential sources of deadlocks. From these 157 persons,
35 persons caused deadlock situations at narrow passages with further division in
15 queueing and 20 waiting situations. Out of these 35 deadlock situations only
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one was misclassified as uncritical situation (true positive rate of 97 %). From
these 34 correctly classified deadlock situations, 30 were assigned to the correct
deadlock type (accuracy of 88 %). However, 26 of 122 uncritical situations were
classified as deadlocks (false positive rate of 21 %).

The performance of the deadlock recognition strongly depends on the accu-
racy of the situation describing features which in turn depends on the person
tracker, the narrow passage detection, and the space conflict prediction. Anal-
ysis of the false positives revealed that 19 of 26 false positives are caused by
false detections of the person tracker. In these cases, the deadlock recognition
assumed to have a conflicting situation with a person, even though there was no
person present at all. The remaining 7 false positives were caused by dynamic
obstacles, e.g. moving persons or objects moved by persons. If a dynamic obsta-
cle causes a narrow passage, the narrow passage itself also has a movement. Since
the narrow passage detection uses the navigation map which currently is not yet
able to distinguish dynamic obstacles, this movement could not be considered
in the space conflict prediction and leads to false predictions. Surprisingly, the
linear motion model used in the space conflict prediction and neglecting the
uncertainty in the qualitative spatial features only have little influence on the
recognition performance. This can be explained by the structure of the test site
which mainly consists of long and narrow corridors. In this environment, the
movement and space is already restricted. Thus, a simple linear motion model
leads to good predictions, and the extracted features have only little uncertainty.

In future works, we are going to reduce the false positive rate by improving
the person tracker and the narrow passage detection. To be applicable for com-
plex environments, a more elaborate motion prediction and the consideration of
the uncertainty in the recognition process is needed. Furthermore, the human
perception about the robot’s behavior need to be evaluated more specifically to
get better insights to the courtesy of the robot. These evaluations should also be
conducted over a longer time period, when the bystanders get used to the robot
and renounce to act courteously in front of deadlocks.
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Abstract. With the increasing demand for socially assistive robots in various 
domains, it becomes important to make robots that are able to start communica-
tion and attract people’s attention whenever necessary. Although verbal and 
non-verbal ways of communication have been studied before, adjusting them to 
changing situations of the environment is still a challenge. In fact, as the envi-
ronment in which the interaction takes place mutates, and individual differences 
exist in human perception, some channels of communication may be less effec-
tive than others. This paper describes a study in which a Nao robot tries to use 
different behaviours to start an interaction with a human counterpart, in four 
changing environmental conditions (loudness, ambient luminance, distance and 
angle). The robot determines the state of those conditions and through an on-
line learning process is capable of choosing the most effective behaviour for 
each individual taking into account individual preferences. The findings of this 
paper will be useful to make a robot initiate a communication successfully. 

Keywords: Human-Robot Interaction · Non-verbal communication · Context 
awareness · Attracting attention · Individual differences 

1 Introduction 

The increasing demand for care for both elderly and children in combination with a 
shortage of caregivers has led to an increase in interest in socially assistive robots 
(SARs) [1]. These types of robots may for example be operational in hospitals, elder 
care centres, schools and homes, to keep humans company. Because of their potential 
widespread use, it is important that these robots are well attuned to their end-users, 
and that they understand both the social and the physical environment in which inter-
actions take place.  

Most studies on interaction between a robot and a person take place in a laboratory 
setting. Under these circumstances the robot receives the person's full attention. How-
ever, this setup is not very realistic, as in a more natural situation the person may be 
engaged in other tasks or distracted. Thus, the robot will have to attract attention by 
using various communication cues, for purposes like reminding elderly people to take 
medicines.  
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Communication cues can be conveyed through different channels, mainly distin-
guished in the categories of verbal and non-verbal. The latter category includes kine-
sics, haptics, proxemics, co-speech gestures and other paralinguistics [2, 3]. Kinesics, 
commonly known as the study of body language, comprehends different ways of ini-
tiating communication, such as eye contact, posture, body gesture and facial expres-
sion [4]. Robot can use some among these channels depending on their morphology: 
more human-like robots are able to use cues which are similar to humans, while ro-
bots with a more unique morphology can exaggerate cues (like in the case of KO-
BIAN's facial expressions [5]) , or even use artificial cues (like communicating by 
changing the colour of a part of its own body or face [5]). 

Experiments on attracting attention can be specifically focused on robot abilities 
(such as the classification of human movements [6], or the estimation of the attention 
level [7]), or mainly on a single communication channel such as gaze [8] or proxe-
mics  [9]. Torta et al. [10] tested the effectiveness of the communication cues blink-
ing, eye contact, waving and speaking for attracting attention and found that auditory 
cues are more effective than purely visual cues. In a follow-up study [11], bimodal 
cues (such as speaking in combination with waving) were examined, and the users' 
average reaction times were found to be longer compared to single cues.  

What these previous experiments did not take into account is that, in a real envi-
ronment, the efficiency of cues and their selection depend on the context the robot and 
person share. The setting in which the interaction takes place may influence the effi-
ciency of the used cues. For example, the amount of light may influence all the cues 
related to the visual channel, while noise may hamper the auditory channel. Further-
more, there are factors related to the human that can also be taken into account (such 
as whether the human is looking at the robot), social rules depending on culture, and 
individual preferences. For this reason, robots need to learn to adapt to constantly 
changing environments, which sometimes are only partially observable [1], and cus-
tomise their behaviour for the specific user. 

The goal of the current research is to develop robot's ability to start a communica-
tion while coping with different situations: different users (with different characteris-
tics), and different environments (with different and changing characteristics). In 
order to achieve this, we investigate the effectiveness of various behaviours for each 
environment in terms of participants' ratings and response time. A learning process 
and autonomous sensory input are used to let the robot adapt to the environment and 
modify its behaviour selection. The effect on the user's perception of the robot is 
evaluated. Testing attention-seeking behaviours is not new; however, a study compre-
hensive of dynamically changing situations is novel. 

In the present experiment, the robot performs the behaviours chosen by a learning 
algorithm for a given the detected environment at random intervals, while the partici-
pant is watching a video clip on a TV screen. 

The rest of the paper is organized as follows: in section 2 we describe the protocol 
of the experiment; in section 3 we show the detailed results and we discuss them in 
section 4; in section 5 we conclude the paper and outline future works. 
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2 Experimental Procedures and Materials 

2.1 Living Room 

The experiment takes place in a mimicked living room (Fig.1). Participants are seated 
on a couch, with a television screen in front of them and are holding a keyboard. Nao 
is positioned at four different places during the trials, but always to the right side and 
facing the participant. The experiment is supervised by the two operators in an adja-
cent control room.  

 

 
Fig. 1. Room setup: A: participant; B: keyboard; C: laptop with questionnaire; D: TV. Nao is 
positioned at 10° angle and 1 m (E) or 2 m distance (F), or at 70° angle and 1 m (G) or 2 m (H).  

Room conditions are defined as a random sequence and the participant never un-
dergoes the same room condition twice through different trials. There are 16 possible 
environmental states, given that each variable (loudness, ambient luminance, distance 
and angle) has two levels.  

 Loudness of the TV speakers can be either high or low. 
 Ambient luminance can change as the lights in the room are turned on or off. 
 Distance is manipulated placing the robot either 1 m or 2 m from the participant. 
 The robots’ direction of approach is manipulated by either placing the robot at 10 

degrees (close to the TV) or 70 degrees (in the peripheral of the participants’ view) 
with respect to the participants’ view towards the television.  

2.2 Robot Behaviours 

Given Nao's capabilities, we made five different behaviours to attract the attention, 
each involving different communication channels. Each of them lasted about 10 s. 

 Waving (visual + auditory): Nao waves its right arm.  
 Blinking (visual): Nao blinks with its LED’s around the eyes. The LEDs switch 

between bright white (RGB values [255,255,255]) and of (RGB values [0,0,0]) 
every 0.5 s for a period of 10 s.  
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 Beeping (auditory): Nao produces and repeats a “beeping” sound using a sine wave 
with a frequency of 1000 Hz, an amplitude of 20%, a pan of 1 (to the left) and a 
duration of 1 s. 

 Walking (proxemics + visual +auditory): Nao walks 30 cm towards the participant.  
 Stop TV (action influencing visual + auditory): the robot, raises its left arm for-

ward and the video is stopped. 

2.3 Questionnaires and Individual Learning 

The used learning algorithm is an adaptation of the algorithm introduced in [12], and 
is based on Naive-Bayes classifier. The algorithm takes the variables of room condi-
tion as input and gives the best behaviour as output.  

Feedback from participants' questionnaires is used to make the algorithm adapt to 
individual preferences. The main difference from [12] consists in training the algo-
rithm separately for each participant in order to catch individual differences. 

The questionnaire is structured as follows. At the end of each trial the participant is 
asked to rate the effectiveness of the behaviour performed. The expected effectiveness 
of the other behaviours are also rated for the given room conditions. A 5 point seman-
tic differential scale is used: from 1 (not effective) to 5 (effective). A rating of 1 for 
the performed behaviour should be chosen if the participant did not notice the robot 
calling at all. If the rating is 3 or lower, the participant has to suggest which room 
conditions would have been appropriate for the displayed behaviour. For example, 
after seeing a waving behaviour with lights dimmed, a participant could think that it 
would have been more effective with lights on. 

These preferences serve as input of the learning algorithm. They are turned into 
weights wrc through the reward r, which can be one of the values [-1, -0.5, 0, 0.5, 1] in 
correspondence to the rating [1, 2, 3, 4, 5]. The learning rule is shown in Equation 1: 
the reward is multiplied by a learning rate  (starting from 1 and decreasing with n. of 
visits) and a modifier d, which keeps the weights in the range [0, 1]. The modifier d 
either takes the value 1-w(n) for increments (r > 0) or w(n) for decrements (r < 0).  

 wrc(n+1) = wrc (n)+*r*d (1) 

2.4 Face Detection and Distance Measurement 

For exploratory purposes, for half of the participants, the distance from the participant 
and the angle of approach are detected by Nao’s sensor input. A face detection script 
using OpenCV and Nao’s camera registers the presence of a face. The presence of a 
face corresponds to the 10° angle condition, since the algorithm is only able to detect 
faces from the front. The absence of a face corresponds to the 70° condition. More-
over, the script draws a border around the face: the dimensions of this border are used 
to calculate the distance d as in Eq. 2, where f is the focal length, h’ the height of the 
head in the image, and h the standard height of a human head. 

 d = h*(f / h') (2) 
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A value of 19.5 cm is used as standard, based on the body dimensions of Belgian 
population from [13]. A border with a smaller width and height indicates that the 
person is at a bigger distance from the robot, and a large border indicates the opposite. 

The face detection script is run for a period of 15 seconds as we want to make sure 
that the presence of a face is not due to the participant looking towards the robot but 
due to the position of the robot. Therefore, the script should not indicate the presence 
of a face when it is positioned at a 70 degree angle, even if the participant occasion-
ally looks in the direction of the robot.  

2.5 Experimental Procedure 

In total 23 participants within the age range of 18 to 50, without visual or hearing 
impairments, were included in the experiment, divided in two groups of 12 (Group A, 
without involving face detection) and 11 (Group B, using face detection script). The 
experiment took approximately 60 minutes, divided in 12 trials for each participant. 
Once the participant sat on the couch, the protocol below was followed for each trial:  

1. Room conditions are updated according to the schedule (a randomised list of all the 
combinations).  

2. In case Nao's sensorial input is used, face detection and distance measurement are 
provided and used in the algorithm overriding the previous data.  

3. The most appropriate behaviour is chosen by the learning algorithm, and inserted 
as parameter in a Python script. 

4. The Python script starts an approximately 30 seconds long portion of a video clip 
of a science documentary.  

5. Between 5 and 15 seconds before the end of the clip, the Python script orders the 
robot to perform the chosen behaviour.  

6. The participant has been instructed to concentrate primarily on the video clip, but 
also to press the space bar on the keyboard whenever noticing that the robot in-
tends to communicate. The video clip is stopped on key press. If the participant 
does not notice, the video clip runs till the end.  

7. The participant is asked to complete the questionnaire as described in Section 2.3.  
8. Their feedback is entered by the operator into the learning algorithm, which up-

dates the weights accordingly. 

3 Results 

3.1 General Behaviour Preferences and Effectiveness 

Overall the ratings of the behaviours are similar except for blinking. For most room 
conditions the behaviour stopping TV was rated as the most effective, while blinking 
was the least favourable in all conditions.  

A second measure of effectiveness was the reaction times recorded during every 
trial, which are similar but not completely in line with the effectiveness scores. Wav-
ing takes the least amount of time to respond, followed by Walking and only then 
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Stopping TV. This can be seen in Figure 2 as both measurements are compared: rat-
ings by the participants refers to the scale on the left, while reaction time is plotted as 
its opposite (the time left before the 10 s timeout), and it is measured by the scale on 
the right, in seconds. For both measurements, a higher value is preferable. Although 
the shape of the two histograms is similar, Spearman's Rho is 0.6, therefore there is no 
significant association. 

 

 
Fig. 2. Ratings by participants (left scale) compared to the time before timeout (right scale). 
Error bars indicate SD.  

3.2 Room Condition Specific Behaviour Effectiveness 

To evaluate the ratings of the behaviours we conducted a multi-variate analysis of co-
variance (MANCOVA) with participant group (A/B), light level (dim/bright), sound 
level (high/low), distance (near/far), and angle of approach (10 degrees/70 degrees) as 
independent variables and trial number as co-variate. The evaluation scores for the 5 
different behaviours (blinking, waving, beeping, walking, stopping TV) are the de-
pendent variables. We find significant effects for participant group (F(5,199)=7.969, 
p<0.001), light level (F(5,199)=10.797, p<0.001), angle of approach (F(5,199)=5.389, 
p<0.001) and trial number (F(5,199)=2.779, p=0.019). None of the other main effects 
and interaction effects were significant. 

To determine the effects of learning we investigated the effect of trial number on 
the different evaluations scores. From the same MANCOVA we found that only the 
score for waving changed significantly with trial number (F(1, 203)=10.393, 
p<0.001). The evaluations for waving increased approximately linearly from 3.3 ± 0.3 
in trial 1 to 4.3 ± 0.3 in trial 12. 

In a similar fashion we determined the effect of the significant environmental 
changes on the evaluation scores. Table 1 summarises how room conditions can ham-
per or improve the effectiveness of behaviours.  

We found that light level significantly affects blinking (F(1,203)=30.257, p<0.001) 
and waving (F(1,203)=4.509, p=0.035). Blinking was appreciated less with lights on 
than off (mean difference -0.72 ± 0.13) and waving was appreciated more (mean dif-
ference +0.36 ± 0.14). Waving and blinking were also affected by the angle of ap-
proach (blinking: F(1,203)=18.967, p<0.001; waving: F(1,203)=4.037, p=0.046). 
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Both behaviours were liked more when the robot was at an angle of 10 degrees than at 
an angle of 70 degrees (blinking: mean difference 0.55 ± 0.13; waving: 0.33 ± 0.15). 
The participant groups gave significantly different judgments to waving 
(F(1,203)=18.669, p<0.001), walking (F(1,203)=6.807, p=0.10) and stopping the TV 
(F(1,203)=11.942, p=0.01). Group B evaluated waving and walking higher than 
group A (mean differences: 0.67 ± 0.13 and 0.36 ± 0.12, respectively), and turning off 
the TV less than group A (mean difference: -0.40 ± 0.12). 

Table 1. Mean value (S.D.) of the effect of room conditions on the effectiveness of behaviours 

 Angle Distance Luminance Loudness 
70° 10° near far on off low high 

Blinking 1.57 
(0.90) 

2.12 
(1.01) 

1.94 
(1.03)

1.82 
(1.05)

1.49 
(0.69)

2.20 
(1.16)

1.83 
(0.96) 

1.93 
(1.13) 

Waving 3.62 
(1.18) 

3.95 
(1.00) 

3.83 
(1.08)

3.78 
(1.11)

4.00 
(1.00)

3.64 
(1.15)

3.88 
(1.04) 

3.70 
(1.15) 

Beeping 3.84 
(1.10) 

3.63 
(1.10) 

3.87 
(1.07)

3.60 
(1.13)

3.66 
(1.17)

3.77 
(1.05)

3.82 
(1.11) 

3.59 
(1.10) 

Walking 4.23 
(0.97) 

4.35 
(0.90) 

4.31 
(1.03)

4.29 
(0.85)

4.29 
(0.95)

4.30 
(0.92)

4.25 
(0.05) 

4.36 
(0.91) 

Stop TV 4.51 
(0.92) 

4.58 
(0.81) 

4.53 
(0.94)

4.57 
(0.78)

4.63 
(0.78)

4.49 
(0.92)

4.62 
(0.77) 

4.47 
(0.97) 

 
The effects of room conditions on behaviour effectiveness can also be found when 

inspecting the reaction times. We did a univariate ANCOVA with reaction time as 
dependent variable, the environmental conditions as fixed factors, participant group as 
random factor and trial number as co-variate. Reaction times greater than or equal to 
10 s were removed, because they exceeded the maximum time window. We found a 
significant effect of trial number (F(1,164)=6.727, p=0.01) and an interaction effect of 
sound level x angle of approach x distance (F(1, 3.326)=36.8, p=0.007). The latter 
interaction effect was due to a much longer reaction time when the angle was 10 de-
grees, the distance was far and the sound level high. The former is due to a slight 
overall decrease in reaction times with trial number. 

4 Discussion 

4.1 Considerations on Communication Channels 

Both in terms of performance (reaction times) and perceived effectiveness (user rat-
ing) there are certain preferences regarding behaviours to attract attention. Reaction 
times and user ratings are much worse for blinking than for any of the other behav-
iours. This seems to suggest that pure visual cues are less salient when people are 
distracted, as was expected. Indeed, we found that behaviours with visual cues 
worked best close to the front of the person in terms of effectiveness and this effect 
was strongest for blinking (a purely visual cue). In general, our results agree with the 
findings in [10], in which auditory cues were found to be more effective. 



 Study on Adaptation of Robot Communication Strategies in Changing Situations 661 

We expected that the preference to certain behaviours would depend on the envi-
ronmental state. In particular, auditory cues were expected to become less effective in 
a noisy environment; visual cues are best when visible (lights on for waving and 
walking, lights off for blinking). Indeed, blinking was evaluated higher with lights off 
than with lights on, and waving was rated higher with lights on. It was also expected 
that visual cues deteriorate more when presented in the periphery. In line with expec-
tation, blinking and waving were appreciated less when the robot was in the partici-
pant’s periphery. However, environmental factors and robot position had little effect 
on reaction times, so it seems that the visual cues were not harder to detect. 

The effect of mixing channels also has to be considered. In fact, some of the basic 
behaviours involve different channels at the same time. For example, walking behav-
iour involves proxemics, visual and auditory fields: compared to other kinds of 
movements, walking is particularly noisy. Mixing channels makes it difficult to dis-
tinguish which component is more effective. It also makes cues more robust. The 
latter may explain why there were no effects of environment and robot position on 
walking. Additional tools such the use of headphones or obstacles could be effective 
in completely impairing the auditory or visual channel, respectively. 

4.2 Considerations about Learning 

We expected that the scores given to the chosen behaviours would increase in later 
trials, as the robot adapts to the user and selects better behaviours more often in later 
trials. This was proven true, as the mean value of the evaluation in the latter 6 trials is 
significantly higher than the former 6 trials (p = .008). As a result, probabilities match 
the effectiveness of behaviours as they are estimated by participants' questionnaire.  

We also found that reaction time decreased with trial number and that waving was 
evaluated better with increasing trial number, which is consistent with learning the 
preferred behaviour. It is unclear why this was not observed for the other behaviours. 
Presumably, this is because the robot selected the waving behaviour more often than 
any other behaviour. 

4.3 Considerations on Automatic Classification 

For participant group B the robot automatically classified its position relative to the 
participant. The system for classifying the angle of approach and distance was based 
on face detection, but this does not work well in dark environments, which resulted in 
misclassifieations. If a face was not detected because it was too dark, the robot auto-
matically assumed a 70 degrees condition, but that could be incorrect. Likewise dis-
tance could not be estimated whenever no face was detected. To deal with this a third 
state was added to the learning algorithm (different from "near" and "far"). The sys-
tem just learns what to do if distance is unknown. 

In 71.5% of the cases, the 70 degree angle was correctly measured; in 89.7% of the 
cases the 10 degree angle was correctly measured and in 18% of the cases the face 
detection program made an incorrect classification. Most mistakes were made in the 
70 degrees condition, because the program sometimes recognized a face in an object 
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or because the participant was looking towards the robot and away from the TV. Mis-
takes in the 10 degrees condition instead occurred if the participant was looking away 
from the robot, every now and then we caught participants studying their environment 
(e.g. looking at different aspects of the room they were in).  

There were incorrect classifications in case of distance too: with lights on, the 
script selected an incorrect distance in 10% of the trials, while in 23.8% of the cases 
of the near position and 44.8% of the cases of far position, the script was unable to 
detect a face. Besides the cases of not detecting a face, sometimes (multiple) faces 
were detected in objects both at a far and near distance. 

Due to these misclassifications participant group B experienced a robot which re-
ceived more noisy input about its relative position and consequently selected subop-
timal behaviours more often than for participant group A. In practice, however, such 
effects are small because the learning algorithm can deal with potential misclassifica-
tions. Therefore, the only effect would be that learning is slower. To the participant, a 
misclassification looks as if the robot is learning. From the results we know that reac-
tion times did not differ between participant groups, nor was the effect of trial number 
different for each participant. The groups did differ in their ratings of the behaviours. 
This could be due to the fact that the behaviours shown by the robot differed between 
groups, or perhaps the participants’ preferences differed between groups. Either way, 
the learning algorithm performed equally well for both groups.  

4.4 Choice of Measures 

This experiment focused purely on the effectiveness of behaviours; there are however 
other measures that could be taken into account (e.g. pleasantness). For participants it 
might be easier to indicate how pleasant a behaviour is according to their preference, 
while effectiveness can be more objectively measured just by reaction times. Evalua-
tion of effectiveness by participants' opinion also has a risk of bias towards the behav-
iours that were first randomly chosen.  

Measurement should also involve efficiency and not only effectiveness: each be-
haviour should be considered in terms of how much effort it takes, and the desired 
result (attract the attention) should be achieved with the minimum cost. 

5 Conclusion 

In this paper, we described an experiment of human-robot interaction in which the 
robot Nao had to attract the human participant's attention while he/she is watching a 
video clip, in a room where environmental conditions and the relative position of the 
robot change. This experiment was performed with the purpose of measuring the ef-
fectiveness of robot behaviours involving different communication channels, when 
the effectiveness of each channel may change depending on the context. We intro-
duced an adaptive learning process that could capture individual preferences for robot 
behaviours in different contexts. Results showed several correlations between room 
conditions and effectiveness of the behaviours, in terms of personal preferences and 
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reaction times. In general, actions with a visual component are effective near the cen-
tre of the visual field and auditory cues enhance effectiveness, especially in the visual 
periphery. This resulted in waving being best overall and blinking was least effective. 
These findings will be useful to make a robot initiate a communication successfully. 
Future work should be heading towards autonomy, with autonomous detection of 
room lighting and loudness, and towards a better understanding of the context in gen-
eral. For example, attracting attention may cause the person to lose concentration 
when doing something more important: the robot should be aware that the act of at-
tracting attention may be inappropriate at times. 
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Abstract. A complex relationship exists between people’s cultural background 
and their general acceptance towards robots. Previous studies supported the idea 
that humans may accept more easily a robot that can adapt to their specific cul-
ture. However, it is not clear whether between two robots which are identified 
as foreign robots because of their verbal and non-verbal expressions, the one 
that is culturally closer may be preferred or not. In this experiment, participants 
of Dutch nationality were engaged in a simulated video conference with a robot 
that is greeting and speaking either in German or in Japanese; they completed a 
questionnaire assessing their preferences and their emotional state. As Dutch 
participant showed less signs of discomfort and better acceptance when inte-
racting with a German robot, the hypothesis that acceptance of a robot could be 
directly proportional to cultural closeness was supported, while the hypothesis 
that similar foreign robots are equally less accepted regardless of the country-
was rejected. Implications are discussed for how robots should be designed to 
be employed in different countries. 

Keywords: Culture · Social robotics · Gestures · Greetings · HRI 

1 Introduction 

1.1 Cultural Differences in Robotics 

Social robots are expected to play a major role in the society in the near future. For 
this reason, their acceptance by their human companions is the optimal priority for the 
robot designers to consider, especially regarding their ability to interact and commu-
nicate with humans to help them in their work and daily life. 
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Cultural background of the human users as well as of the robot is one important 
factor of acceptance towards robots. Studies such as [1] showed how the nationality 
of the robot can radically change the impression it gives. Asimov was the first to in-
troduce the problem of culture difference in the acceptance of robots, specifically 
introducing the Frankenstein complex [2], which describes the anxiety that people 
feel towards robots, more common in Western countries than in Japan. These kind of 
differences are originated by the influence of religion as well as social structures and 
philosophies. Despite this traditional view, further studies reported different results 
proving that the matter is more controversial [3, 4]. 

Generally speaking, technology acceptance depends also on the country where the 
robot was produced: as a consequence, localisation of products may be done [5]. This 
could be even more true for social robots: technological devices which have to com-
municate and take on the role of a social actor. Indeed, earlier research in psychology 
suggested that humans are very quick to categorize their (human) interaction partners 
in relevant categories. Many earlier studies (e.g. [6]) show that people do not only 
quickly and spontaneously categorise interaction partners as in-group or out-group, 
but that they also evaluate in-group members more positively, and thereby show in-
group biases (e.g., allocate more resources to in-group members [7]). The first step in 
the study of communication with robots is to study greeting interaction and self-
introduction, which are the basic components of an interaction in human-human 
communication, Only a few greeting interaction experiments with robots involving 
culture have been conducted so far, such as the work in [8].  

1.2 Cultural Distance 

In our experiment we take in consideration three countries: Netherlands, Germany 
and Japan. We choose these countries because we assume that the first two are much 
more related to each other, while Japan is, not only geographically, far apart. Cultural 
distance has been attempted to measure several times, by Kogut and Singh [9] among 
others [10-12], using different formulas. Our assumption regarding the three countries 
involved in our study should be valid regardless of the formula used. 

As culture is a factor that cannot be easily quantified, more complex categorisations 
by country were attempted by Hall’s factors [13] and Hofstede’s dimensions [14]. 
However, these models do not take in consideration any geographical factor. Lewis’s 
model [15] plots countries in a triangular graph, plotting them in relation to the catego-
ries ‘linear-actives’, ‘multi-actives’ and ‘reactives’. It is possible to recognise language 
and race groups from that simple model. Welzel et al. [16] instead tried to visualise 
countries in a two dimensional scatter plot, (the “Inglehart-Welzel culture map”), in 
which traditional versus secular-rational values are on the vertical y-axis, and survival 
versus self-expression values are on the horizontal x-axis. A broad categorisation that 
is commonly done is to assign cultures to a groups based on geopolitics, such as: 
Western, Asian, Middle Eastern, African. This simple categorisation does not take into 
account the heavy differences that may exist  among countries within one group. For 
instance, Germany and Greece, although in the same Western group, are divided by 
noticeable differences, whereas a far away culture like Japan has things in common 
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with Germany [17]. This is not the case however, with the Netherlands, which share 
with Germany the same language family, the same race and similar traditions. Lan-
guage closeness and language barrier are in particular a variable of interest for our 
study. 

1.3 Purpose of This Paper 

In this paper we describe a cross-cultural experiment in which Dutch subjects are 
introduces to two robots, that are almost complete identical except that one robot 
greets the user using Japanese words and gesture, and speaks English with Japanese 
accent while the other greets the using German words and gesture, and speaks English 
with German accent to them.  

A similar experiment was performed in Egypt and Japan, with the robot speaking 
Arabic and Japanese: the results are reported in [18]. Egyptians preferred the Arabic 
version of the robot, and that they felt symptoms of discomfort when interacting with 
the Japanese version, and the same outcome was true the other way round.  

As a continuation of that work, the purpose of the experiment of this paper is to an-
swer another specific research question, involving three countries instead of two: 
when both robots are foreign, does different cultural distance influence their accep-
tance? We can formulate two different hypothesis regarding the outcome of the  
experiment:  

A. Dutch participants prefer the German speaking robot. This may imply that in 
Human-Robot Interaction, acceptance of a robot is directly proportional to cultural 
closeness. 

B. Dutch participants do not prefer any of the two robots, perceiving both equally 
as foreign. This implies that a specific adaptation of the robot communication style 
to the country is necessary. 

The rest of the paper is organized as follows: in section 2 we describe the robot and 
the protocol of the experiment; in section 3 we show the detailed results and we dis-
cuss them in section 4; in section 5 we conclude the paper and outline future works. 

2 Experimental Procedures and Materials 

2.1 Hardware 

We used the whole body emotion expression 48-DoFs humanoid robot KOBIAN [19]. 
It is designed to clarify the influence of physicality and expressivity during interaction 
with humans. Being able of both emotion expression and bipedal walking, KOBIAN is 
potentially able, in the future, to work as assistive robot in a human environment, such 
as a family or a public facility.  

In order to make an experiment with subjects in a place like the Netherlands, dis-
tant from the robot (which is located in Waseda University, in Tokyo, Japan) a video 
conference system is needed. Despite there is only one KOBIAN, our purpose was to 
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show two different robots (one Japanese-like, and one German-like) to the subjects; 
therefore, the video conference was simulated. We used the robot in two versions: 
KOBIAN, the original version, and “DEBIAN”, which has different slightly facial 
and body colours (see Fig. 1, b and d respectively). The colour differences between 
the two versions were chosen to be unrelated in any way to the specific culture, and 
they are not meant to make the robot more appealing for a specific group of subjects; 
their only purpose is to give to the subjects the impression that they are interacting 
with two different, although very similar, robots. 

KOBIAN and DEBIAN were used to realise the culture-specific greetings (motion 
of the arms and waist) and to simulate speech (motion of the lips and slight periodic 
oscillations of the head, that give a human-like appearance to the robot behaviour). 
The robot body parts are controlled by both position-based and velocity-based con-
trollers that have been implemented using YARP.  

2.2 Experimental Protocol 

The protocol consists in the following steps, taking in total around 20 minutes: 
 
1. Pre-questionnaire: each subject is invited to sit at a desk, in front of a big screen 

(Fig. 2), and to compile a preliminary questionnaire on likeability of humanoid ro-
bots in general and on their own perceived safety. 

2. Explanation: the subject is told that there will be a call to a laboratory in Waseda 
University in Japan through the video conference system, for showing two differ-
ent robots. Actually, a previously recorded video will be shown. No real call is 
made, but the subject is tricked into believing that he/she is watching a live con-
nection by adding the typical connection sounds and screenshots. This Wizard-of-
OZ style setup encourages natural behaviour of the participant. 

3. First call: when one examiner pretends to start the call, video begins and connec- 
tion is established with a Japanese student (Fig.1, a), who once more explains the 
purpose of the experiment; then the Japanese student switches the camera to 
KOBIAN (Fig.1, b), who greets, giving the possibily to the participant to reply, 
then does a self-introduction and says goodbye (more details in Section 2.3).  

4. First questionnaire: after closing the connection, the subject compiles a question-
naire about KOBIAN. 

5. Second call: a new call is made, this time to a German student (Fig.2, c), who 
greets and switches the camera to DEBIAN, who greets and waits for the partici-
pant’s greeting, then does a self-introduction and says goodbye. 

6. Second questionnaire: as the video ends, the subject compiles a questionnaire about 
DEBIAN (Fig.2, d), and expresses a preference between the two robots. 

7. Closing explanations: at the end, the subject is informed that the video conference 
was not real, and of the motivation of the use of this method. 

 
Note: for all subjects the order of the robots was randomised (steps 3-6). This 

means that for around one half of the subjects, the order of the robot was (DEBIAN, 
KOBIAN) instead of (KOBIAN, DEBIAN). The video was adjusted accordingly. 
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Fig. 1. Slideshow of the video: from left to right, Japanese human, Japanese robot KOBIAN, 
German human, German robot DEBIAN. 

 
 

 
Fig. 2. Experimental setup: point of view of the participant, in front of a screen and of a video 
conference device. 

2.3 Videos 

A few videos were recorded beforehand and assembled together into a single stream. 
Interface screens and sounds were added for simulating a real call through a video 
conference system. The video was composed by the following parts: 

 Japanese person greeting in Japanese, introducing in English the next robot; 
 KOBIAN performing a bow – with “Konnichi wa” (which is the standard Japanese 

daytime greeting) speech added – as initial greeting; 
 a few empty seconds for giving the time to the participant to reply to the greeting; 
 KOBIAN introducing himself in English with Japanese accent; 
 KOBIAN performing a bow – with “Otsukaresama desu” (which is a standard 

idiomatic phrase that fellow workers use at the end of a working day) speech added 
– as final greeting; 

 German person greeting in German, and introducing in English the next robot; 
 DEBIAN waving its hand  – with “Guten Tag” (literally, “Good day”) speech 

added – as initial greeting; 
 a few empty seconds for giving the time to the participant to reply to the greeting; 
 DEBIAN introducing himself in English with German accent; 

                                       aaa                                       bbb                                          ccc                                       ddd      
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 DEBIAN waving again – with “Auf Wiedersehen” (“Goodbye” in German) speech 
added – as final greeting. 

 
Two versions of the video were used, with either the Japanese and German robot 
shown first. 

2.4 Assessment 

In order to catch both explicit opinions and psychological reactions, a combination of 
physiological responses and written questionnaires were considered.  

Assessment in human-robot interaction through survey is preferably done using 
standardised measurements. Bartneck [20] devised 5-point semantic differential scales 
called Godspeed for measuring anthropomorphism, animacy, likeability, perceived 
intelligence, and perceived safety for robots. We used likeability and perceived safety; 
moreover, we added a new set of scales for measuring cultural closeness, containing 
four subscales: 

Impolite  1 2 3 4 5 Polite 
Mysterious  1 2 3 4 5 Familiar 
Incomprehensible 1 2 3 4 5 Comprehensible 
Foreign  1 2 3 4 5 Native 

Additional questions included some demographic information like age and gender, 
and some more explicit questions regarding what the subject liked about the two ro-
bots, and regarding gesture and words the robot used. Questionnaires were written in 
Dutch. 

3 Results 

3.1 Demographics 

In the experiment 26 participants (male: 10;  female: 16; average age: 22.69; s.d.: 
4.96), all Dutch. We gathered a heterogeneous group consisting of people with differ-
ent education level. Among them, we isolated the ones who were familiar with Japan 
or Germany (either speaking the language, or frequent travellers, or with some strong 
family/friends connections). The resulting group of Dutch people in which we could 
control the confounding factors was composed by 20 people (male: 9;  female: 11; 
average age: 23.45; s.d.: 5.32). 

3.2 Results: Scales 

Table 1 reports the results of the Bartneck’s scales described in Section 2.4 and of 
additional questions in the form of 5-point semantic differential scales.  

Gathered data were analysed using Kruskal-Wallis test and subsequently Mann-
Whitney U-test. In all the cases in which the U-test was performed, it means that the 
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Kruskal-Wallis test already gave a low p value as output. Friedmen test and Wilcoxon 
Signed-Rank test were also applied, but since they seem to produce results that are 
less strict, we report only Kruskal.Wallis and Mann-Whitney here. Student’s t-test 
and ANOVA could not be applied, because the shape of the distribution graph result-
ing from the semantic differential scales was not a normal distribution.  

Cronbach’s Alpha was previously calculated to verify the internal consistency of 
the set of scales. Likability, having alpha bigger than 0.7, is considered consistent and 
reported as a single entry in Table 1. On the other hand, Cultural Closeness (a = 0.50) 
and Perceived Safety (a = 0.31) are not consistent and therefore reported separately in 
the table. As a whole, both Likeability (p = .02) and Cultural Closeness (p = .0004) 
featured a significant difference, while Perceived Safety (p = .44) did not. Splitting 
Cultural Closeness into its subscales, we can analyse more in detail. 

Table 1. Summary of the results of differential semantic scales 

 
Before the 
experiment 

Japanese 
human 

German 
human KOBIAN DEBIAN 

Likeability 3.37* 3.69* 
Politeness 4.1 4.45 
Familiarity 2.75 2.95 
Comprehensibility 2.3*** 3.3*** 
Nativeness 1.65+ 2.25+ 
Relax 3.2 3.75 3.75 
Calmness 3.65 3.8 3.75 
Surprise 2.75** 3.3** 3.65** 
How speaks  
English 1.45*** 2.85*** 

Gesture 3.85 4.05 3.7 4.1 
Speech 3.8 3.95 4.2 4.15 
Would like to  
meet again? 2.7* 3.4* 

Highlighted in yellow, statistically significant differences (one cross (+) means one-tailed p < .05; one asterisk (*) 
means p <.05; two asterisks (**) mean p < .01; three asterisks mean p < .001) 

3.3 Results: Subjects’ Preference  

At the end of the experiment, all participants were asked to express their preference 
between the two robots. Result of this explicit question showed a strong preference 
for DEBIAN, the German robot. In a scale from 1 (preference for KOBIAN) to 5 
(preference for DEBIAN), it was 4.25. They were also asked to justify their choice 
adding a free comment. We collected all the comments and divided into the following 
categories, then shown in Fig. 3: 

 Non-verbal communication: gesture more natural / uses hands / moves hands like 
humans / better body language / better movement / more realistic; 

 Sense of familiarity: it is more comfortable / more familiar / more friendly; 



 Investigating the Effect of Relative Cultural Distance on the Acceptance of Robots 671 

 Comprehensibility: more understandable / clear language / clear spelling / voice is 
more clear / speaks more fluently / better English; 

 Emotion: emotion more clear / shows emotions better; 
 No reason: I don’t know / just my feeling. 

Compared with the previous experiment in [18], we left out the category  
“Language”, as in this case, both German and Japanese are foreign languages,  
although German is much easier to understand for a Dutch. 

We included any comment related to the appearance to the “No reason” category. 
This is because physical appearance of the two robots was essentially the same, and 
claiming that one of the two is better looking may be caused by personal feelings.  

In Fig. 3, comprehensibility, the sense of familiarity, and non-verbal communica-
tion seem to be the most important categories. 

 

Fig. 3. Graph reporting the reasons why subjects expressed a preference for one robot 

4 Discussion 

Results in Table 1 suggest that Dutch people, in general, feel more comfortable with a 
German robot rather than with a Japanese. This is happening despite Germany being 
the main rival country for the Netherlands in certain contexts such as sports. A nega-
tive impression of Germany due to war memory did not happen probably because of 
the low age of participants. A similar bias towards Japan, involved in the same war, is 
even more unlikely. 

The result seems to be confirmed in Table 2 through the signs of discomfort ap-
pearing during the interaction with KOBIAN. Therefore, we restate the hypothesis A 
and consider it correct: “Dutch participants prefer the German speaking robot. This 
may imply that in Human-Robot Interaction, acceptance of a robot is directly propor-
tional to cultural closeness.” If confirmed by broader studies including other coun-
tries, this hypothesis implies that customisation of robots based on culture can be 
done by broader areas than just country by country.  

However, there are some key factors that the robot especially needs to adapt to. 
From the results in Section 3.3, the reasons for preference for a robot are highlighted 
and limited to a few key factors, such as comprehensibility. Sense of familiarity is 
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still important (27% in Figure 2), but it may be a consequence of a combination of 
verbal and non-verbal behaviour.  

This study has some limitations regarding the way it was performed: namely, the 
need to use Wizard-of-Oz techniques; the culture-specific characterisation of the ro-
bots; and the possibility of influence on the results by side effects due to differences 
in stimuli. Although subtle differences may exist in verbal and non-verbal communi-
cation between two countries like Germany and Japan [21], this kind of experimental 
setup allows for a short controlled interaction. For this reason, greeting and self intro-
duction, being a basic form of interaction, were used. Each additional differences 
between stimuli should be carefully considered. For example, the use of different 
appearances for the two robots, needed in order to distinguish them, may become a 
confound factor. However, in our case the difference is very minor and a neutral col-
our (grey) was used, In the same way, all the interactions were structured in a way to 
convey no emotions. Voice was also produced using the same type of text-to-speech 
software, generating speeches that do not substantially differ in naturalness. For these 
reasons, we assume that results are not contaminated by other independent variables. 

5 Conclusion 

We performed an experiment of human-robot interaction, in which Dutch participants 
were involved in a simulated video conference with two robots which performed 
greetings and a self introduction, respectively using Japanese and German gestures 
and way of speaking. The purpose of this work was to understand the impression the 
robot gives, when is perceived as foreign, depending on the cultural distance of the 
two countries. Results suggest that Dutch people feel more comfortable with a Ger-
man robot rather than with a Japanese. If similar findings were obtained comparing 
other countries,  acceptance of a robot could be estimated as directly proportional to 
cultural closeness, and the degree of adaptation that a robot needs can be measured 
and limited to a few key factors, such as comprehensibility. In future, these considera-
tions can be also taken in consideration when designing a robot that should adapt to 
different kinds of people within the same country or across different countries, but 
differing in other aspects such as the education level.   
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Abstract. We conducted a cross-sectional survey among three different occupa-
tional groups; Finnish university staff members, Finnish catering & food ser-
vice company, and Brazilian teachers. The aim of the study was to explore how 
the employees perceive if they would have a chance to collaborate with the so-
cial robots, especially when they are working while ill. The results showed that 
a social robot will be accepted better as a team member than as a face-to-face 
colleague. The respondents were looking forward that a robot will improve 
productivity and assist them. We recommend designers, researchers and manu-
factures to take a social robot’s role in working life into account as a new poten-
tial focus area. 

Keywords: Social robotics · Presenteeism · Productivity · Sickness absence · 
Loss costs · Perception 

1 Introduction 

There are many robotics topics where the new applications have been launched. Man-
ufacturing industry is investing in automation, robotics and Internet of things (IoT).  
It is a well-known fact that industry is interested in cutting the labor costs and increas-
ing productivity [1]. The other discussed topics, apart from industrial robotics, are the 
assistive robotics among the elderly [2,3] as well as robots in social inclusion [4]. 

Even if robotics is well researched among industry and health care sectors, we 
have found only few studies which focused on the usage of social robotics among 
employees [5]. Just now one of the most relevant issues, regarding both organiza-
tions’ productivity and employees’ performance, seems to be the robots as co-workers 
[6,7] but we have not found the articles where the social robots as co-workers have 
been studied in respect of an employee’s perceived productivity loss and presentee-
ism. We state that occupational health and employees’ productivity might be an inter-
esting focus area for social robotics. 

According to our theory, the social robots can be used at least in a three-way for 
advancing occupational health and productivity in workplaces (Fig.1). The robots can 
assist the employees whose perceived skills or health status will not meet the work 
demands and thus they have risks for stress and depression. The other cases concern 
the employees who already have diagnosed temporary or permanent disorders which 
prevent them to perform at the normal productivity level. Regarding temporary  
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illnesses the robots can offer assistance and support for the employees when needed. 
Support can be cognitive support, motivation and physical collaboration. The cases 
regarding the employees whose work abilities have lowered permanently are more 
requiring. Basically they would need the work tasks which will meet their physical 
and mental capacity. That requires a lot of arrangement from the employers' view-
points. For example the employers should re-educate employees.  

 
Fig. 1. Possibilities for advancing occupational health with social robotics in workplaces 

We have three cornerstones in our theory for advancing the use of social robots in 
working life. First; there will always be employees with poor work ability and health 
status. Second; the social robots are able to cut part of the productivity loss costs 
which cannot be tackled with the traditional methods such as coaching. Third; 
industrial robots and assistive social robots will be merged into ‘the industrial 
assistive social robots’ and the collaboration between a human and a robot will be 
seamless in future. Table 1 shows how the perspectives between companies, 
employees and society might be combined in near future. There are already some 
examples of that trend such as YuMi by ABB, Nextage by Kawada Industries, LBR 
iiwa by KUKA and Baxter by Rethink Robotics.  
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Table 1. Perspectives between different parties in adopting social robotics  

 Companies Employees Societies 
Directive  

   feature 
Company profile  
and capacity 

Employee  
characteristics 

Development  
of society 

External factor Market demands Work-related  
  demands 

Political  
demands 

Expected  
   outcomes 

Better productivity Better work ability Modern society 
Cost effectiveness Better competence Increased taxes 
Better  quality Better health Increases import 
Higher profit Higher output New work places 

Development 
   field 

Advance in  
industrial robotics 

Advance in social 
  assistive robotics 

Advance in  
robotics research 

Near future Robot – Employee Collaborations (REC). Industrial robots will
have some features from service and social robotics. Society will
invest in automation and Robot-Employee Collaboration 

Examples YuMi, Nextage, LBR iiwa, Baxter 
 
The aim of this interdisciplinary study was to explore how the employees perceive 

if they would have a chance to collaborate with the social robots. Our hypothesis was 
that the employees might be willing to have a social robot as a helping partner, espe-
cially when the employees are working while ill or they are worried about if they will 
get ill. A framework of this study consisted of social robotics, occupational health and 
working life domains (Fig. 2). The intersection of the domains will offer us a brand 
new application field for advancing social robotics. 

 
Fig. 2. Framework of the study: Robotics, working life and occupational health 
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1.1 Presenteeism  

Literature has stated that presenteeism, known also as the productivity loss at work 
[8] concerns only employees’ health problems [9]. Recently the researchers have 
reported that there are also other reasons for presenteeism than illnesses [10] such as 
heavy workload [11] and the efficiency demands [12]. There are many studies regard-
ing presenteeism and the related factors but we have not found the studies where the 
possibilities of social robotics for tackling presenteeism have been discussed. 
 
Costs of Presenteeism and Productivity Loss. Presenteeism is a global problem and 
every nation is suffering for productivity losses. Number of studied implies that 
presenteeism is a costly problem for both society and companies [13,14]. Davis et al. 
[14] stated that US economy will lose every year about €234 billion in output due to 
employees’ health-related problems. Kliff [15] reported that employees’ poor health 
costs for US employers €310 billion in a year as lost productivity and sick days. Davis 
et al. [14] estimated that the number of days per year of reduced productivity due to 
illness was 478 million, which means that during those days the employees were not 
able to fully work and as a consequence generated a loss valued at €24 billion. In 
Australia the overall cost of presenteeism to the economy in 2009 was about €30.7 
billion (2.7% of GDP) [13].  According to many studies [16] presenteeism is the 
most relevant factor for deficient performance on the job.  
 
Costs of Stress and Depression. Migraine for example [17] is a known disorder for 
presenteeism but the most urgent global problem seems to be stress and depression. 
Mitchell et al. [18] stated that depression is among the top 3 conditions in terms of 
productivity costs. According to the European Commission [19] the costs of work-
related stress in the European Union (EU) countries was about €20 billion a year. 
Respectively, the total cost of work-related depression was estimated to be about €617 
billion of which absenteeism and presenteeism was evaluated to be €272 billion and 
loss of productivity €242 billion [20]. Also other countries like US [21] and Australia 
[22] have reported high stress and depression costs. 

1.2 Social Robotics 

There are examples how robotics has been used for rehabilitation purposes for people 
who suffer from e.g. mental disorders [23]. There are studies how robotics has been 
exploited among neuro-cognitive patients [24] and disabled people [25] for increasing 
productivity and impacts of care. The need of interactive service robotics and assistive 
social robotics is evident [26] but the number of potential articles regarding the im-
plementation of social robotics at the workplaces is still scarce. 

There are many [27] studies regarding service robotics among the elderly but 
hardly anything available regarding occupational health. However, a distinction be-
tween a retired person and an aged worker is trivial. It is well-known that employees’ 
perceived work ability will decrease and the health disorders will increase over life-
time [28]. A relevant question is how employees perceive a social robot as a helping 
partner. Because it is hard to find focused studies regarding the perception of social 
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robotics among the employees, some of the research results among the elderly people 
might be useful for implementing the robots in work places. Scopelliti et al. [29] re-
ported that a user’s physical and mental condition and the cognitive skills should be 
taken into account. Meng and Lee [30] argued that the traditional industrial robot 
engineering approaches are inappropriate in terms of user-friendliness which is rele-
vant regarding the employees as well. Sekmen and Challa [31] reported that a robot’s 
ability to learn is critical in interaction. Peine et al. [32] proposed to consider the older 
persons as active consumers of technology which is quite comparable with the older 
employees who might retire soon. Linner et al. [33] argued that the integration of the 
service robot systems into real world has been difficult because of the separate devel-
opment of environment and the robotics systems. That should be taken into account 
when developing social robotics solutions in the workplaces as well. 

2 Materials and Methods 

This study was based on the cross-sectional survey conducted among three different 
groups which represented a) research and development, b) teaching and c) catering & 
food service sectors. The number of respondents was 59 (20 male and 39 female). A 
request to participate was sent to 26 Finnish university professionals and 14 (54%) of 
them replied. The questionnaire was sent to 20 Brazilian researchers and teachers and 
11 (55%) of them replied. In addition, the questionnaire was sent to a Finnish catering 
& food service organization which was asked to pick up 50 respondents and 34 (68%) 
of them replied. The age of respondents was categorized and divided as follows: 16-
24 (n=5), 25-34 (n=7), 35-44 (n=14), 45-54 (n=20), 55-64 (n=13), 65+ (n=0). 

Survey Data. Data on willingness to use the social robots was based on two ques-
tions: “How do you react if you receive an announcement that your partner decided 
to change a job and you have to collaborate together with a humanoid or an android 
robot in future?” and “How do you react if you receive a sudden announcement that 
on next week you will get a new team member who is a human-like robot?” For as-
sessing presenteeism the participants were asked to assess if they have been working 
despite the illness during the last 12 months. In addition, we asked if a personal robot 
which is able do part of their job, would be useful while working ill and/or would 
employees be interested in if a robot could assist them if they will get ill. The ques-
tionnaire included also questions regarding a robot’s appearance and the employees’ 
readiness to adopt the social robots. The survey results were analyzed with SPSS 21 
and MS Excel. 

Variable Design. Employees’ willingness to collaborate with social robots was se-
lected as a dependent variable. The main independent variable was employees’ wil-
lingness to use a personal robot if he/she would have worked while ill. We asked 
them the following questions: “If you have worked while ill, would a personal robot 
which is able to assist you and to do part of your job, have been useful?” and “If you 
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have not worked while ill, please, evaluate would you be interested in if a personal 
robot could assist you in your work tasks if you get ill?” We analyzed also the follow-
ing variables: A gender, age, and a robot’s ability to advance ones productivity. 

2.1 Statistical Analysis 

Being based on the nature of the study it emphasizes descriptive statistics but we ana-
lyzed the selected survey results with a logistic regression model as well. The va-
riables were classified and dichotomized for assessing the odds ratios (OR). Chi-
square (X2) test was performed and p-values were assessed with the 95% confidence 
intervals (95% CI). 

3 Results    

Table 2 shows that 42 respondents out of 59 had a positive attitude towards a social 
robot as a team member. A positive attitude was very high among the office workers 
where 86 % stated that they would react neutrally or positively if they will get a new 
team member who is a humanoid robot. The reaction was controversial among pro-
duction workers where about a half of the respondents had a positive attitude and 
another half had a negative attitude respectively. The respondents were more critical 
regarding an option to collaborate face-to-face with a social robot.  About 53 % of 
respondents were looking forward that option but 29 % of those who are ready to 
have a robot as a team member will reject a robot as a face-to- face partner. 

The respondents’ attitudes to use social robots as assistants if being ill were quite 
positive. Also many of those who had a negative attitude towards social robots were 
looking forward to have a robot assistant while working ill. Similar result was also 
regarding a robot’s ability to advance productivity. 

We asked also if there is any ethically sensitive issue such as data privacy regard-
ing the use of a personal robot at work places. About 64 % of the respondents stated 
that ‘yes’ and especially the Brazilian teachers’ were worried about ethical issues 
compared with the Finns. We explored also how ready people were to adopt the social 
robots. About 23 % of the respondents stated that they would never learn to work with 
robots. Almost all of them represented production sector. Only 4 respondents were 
ready to work with personal robots immediately but the greatest part of the respon-
dents stated that they would need a mid-term introduction. 

We asked also if the employees want to have an influence on a robot’s appearance 
for accepting it as a colleague. About a half of the respondents stated that ‘yes’ and 
another half that ‘no’. It seemed that a robot’s gender is unimportant and a robot’s age 
or size is not a big issue for the greatest part of the respondents. The respondents pre-
ferred also a human-like appearance compared with a machine-like or an animal-like. 
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Table 2. Descriptive statistics regarding employees’ attitudes towards social robotics 

 
Table 3 shows that a positive attitude towards social robotics as a team member 

had significant association with employees’ willingness to use a robot if they are 
working while ill, or if they have a sick leave. It seems also that a robot’s ability to 
increase productivity is a significant factor, as well as, employees’ willingness to use 
a robot as a work mate. We tested also if a gender, age or perceived presenteeism 
would have associations with a positive attitude towards the use of a social robot but 
those factors were non-significant.   

Table 3. Association between selected factors and positive attitude towards a social robot as a 
group member, using logistic regression analysis (n=59) 

Factor   OR   95 % CI    X2    p 
Presenteeism (no vs. yes) 2.51 0,79 - 7.97 2.50  0.11 
Robot is useful if working while ill** 4.58 1.38 - 15.20 6.64 0.009 
Robot would be useful if I'll get ill**  6.77 1.94-23.60 10.02 0.002 
Robot will do part of my jobs if I have a
sick leave*** 

133.2 13.65-1300 36.70 0.00 

Robot will increase my productivity*** 13.57 3.47-53.09 17.07 0.00 
I prefer a robot as a work mate*** 40.00 4.76-336.04 20.85 0.00 

* p < 0.05; ** p < 0.01; *** p < 0.001 

4 Discussion 

The idea to use a robot as a co-worker is a debated topic just now. The Danish 
Technological Institute [34] states that a robot as a co-worker is the next evolutionary 
step in industrial robotics. They argue that a robot will not work alone but it needs 

  Catering company (n=34) University Brazilian
   Production Office R&D staff   teachers Total 
   n % n  % n % n % (n=59) 
Robot as a team member 
 No  12 70.6 3 17. 1 5.9 1 5.9 17 
 Yes 10 23.8 9 21. 13 31. 10 23.8 42 
Robot as a partner 
 No 14 50.0 7 25. 4 14. 3 10.7 28 
 Yes  8 25.8 5 16. 10 32. 8 25.8 31 
Robot as an assistant if being ill 
 No  12 75.0 2 12. 0 0.0 2 12.5 16 
 Yes 10 23.3 10 23. 14 32. 9 20.9 43 
Robot's ability to increase productivity 
 No 11 68.8 3 18. 1 6.3 1 6.3 16 
 Yes  11 25.6 9 20. 13 30. 10 23.3 43 
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human interaction, supervision and inputs. Some previous studies argue that 
technology is mature for human-robot collaboration [6] and the workers are looking 
forward social interaction and relationship with the robots [7]. It has been reported 
also that a little is known about the potential social impact of a robot co-worker 
technology on employees and organizations [7]. 

Also presenteeism is a debated topic. It is well-known that presenteeism is not 
going away and the companies should invest in positive work environment [13]. Even 
if the social robots may offer the new possibilities for cutting costs and for increasing 
productivity we have to accept that some employees are afraid of robots and prefer 
only human co-workers. However, the results showed that people are willing to adopt 
the social robots as team members and many of the respondents were ready to work 
face-to-face with the robots. Being different from our presumption, a robot’s 
appearance was not an important issue even if a half of the respondents stated that 
they would like to influence on a robot’s appearance. The results showed also that the 
office workers were more prone to accept the social robots compared with the 
production workers. The reason for that might be that the office workers were more 
aware of social robotics and ICT than the production workers. The respondents’ 
comments were positive overall but some production workers misunderstood a 
robot’s role. They argued that a robot is not able to do their jobs like to taste food. 
One trend is not to substitute the humans but to assist them. A chef can taste food 
even if he/she would have a robot colleague. 

The strength of this study was that it offered the employees' point of view and 
discussed the use of social robotics in the working life. As far as we know there are 
no previous studies in this study domain, especially regarding presenteeism and the 
productivity losses. The study had also limitations. It was an exploratory pilot study 
and the number of respondents was limited compared to the traditional health studies 
where the number of respondents is hundreds or thousands. In addition, the 
respondents represented only couple of occupation sectors and it is difficult to 
evaluate how employees might perceive the social robots for example in a 
construction sector. One limitation was also that we did not have the respondents’ 
health information or register data but we had to lean on survey data. In addition, we 
were interested in asking the respondents’ opinion if robots would be able to 
substitute them totally but a feedback from employers postponed the question because 
it would have been too radical for labor unions. Even if the topic is interesting and the 
results were promising we have to bear in mind that we are taking the early steps of 
understanding if the social robots can be exploited in advancing productivity of the 
employees who might have lowered work ability due to high age or the prevalent 
health disorders. We need more information about what kind of robot is adequate for 
the certain work tasks and what kind of features a robot should have for having the 
positive impacts on the employees’ performance and productivity. Regarding the 
introduction of the social robots among the employees we recommend to familiarize 
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with Ge’s [35] three-level (social, private, intimate) introduction model. As a 
conclusion, we recommend that the designers and the robot manufacturers should take 
the role of social robotics into account as a brand new focus area in working life. 
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Abstract. Perspective taking, allows people to make inferences about another’s 
mental states and goals. For social robotics, perspective taking could facilitate 
social interactions. The current study investigated whether taking the spatial 
perspective of a robot resulted in reduced implicit biases, more generous beha-
vior towards robotic agents in economic games, and higher explicit ratings of 
humanness. The results show that agent type had a significant effect on subjec-
tive ratings of humanness, explicit attitudes, and decision-making. Spatial pers-
pective taking had a significant effect on implicit associations such that the 
strength of association with positive attributes towards humans and negative 
attributes towards robots were enhanced. The effect of perspective taking on 
HRI should be further studied, as implicit attitudes are often expressed as ac-
tions and judgments outside the performer’s awareness [1]. 

Keywords: Perspective taking · Simulation theory · Economic games · Implicit 
associations test 

1 Introduction 

In the last decade, social neuroscience has discovered areas in the human brain (e.g., 
medial prefrontal cortex for mentalizing, fusiform face area for processing facial iden-
tity, superior temporal sulcus for detecting and processing biological motion) that 
exclusively process information during social interactions and are very sensitive to the 
behavior of human-like, intentional agents [2]. These insights can apply to social 
robotics in investigating whether principles that apply to human social interactions 
can be used to improve how we socially interact with robots. Social neuroscience can 
help evaluate the “socialness” of robots by measuring whether interacting with it trig-
gers similar brain areas as human interaction partners. 

In order to design robots that activate similar brain areas as human interaction 
partners, we must address that robots lack intentional behavior. With human behavior, 
we assume that it is goal-directed and driven by certain intentions [3]. Therefore we 
adopt the intentional stance towards other humans and treat them as rational agents 
with internal states, such as beliefs, desires, and emotions [3]. If robot behavior is not 
believed to be intentional, humans cannot use their experience from human-human 
interactions to predict and understand behavior in human-robot interactions. Adopting 
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the intentional stance has also been shown to increase the social relevance we ascribe 
to the behavior of other agents and results in better cognitive performance in shared 
tasks [4, 5], a mechanism that could be used to optimize the effectiveness and  
efficiency of human-robot interactions. Thus, we need to investigate under which 
conditions robots are treated as intentional agents and to identify design features that 
increase the likelihood that the intentional stance is adopted to social robots. 

Previous research has shown that one of the most reliable sources for assessing the 
internal states of others is their gaze direction [6] and humans use eye gaze to convey 
intentions and establish joint attention in social interactions [5, 7]. The relationship 
between observing changes in gaze direction and subsequent shifts of attention to the 
gazed-at location is investigated by using gaze following paradigms where a face is 
presented in the center of the screen that either validly (i.e. target at the gazed-at loca-
tion) or invalidly (i.e., target opposite of the gazed-at location) cues the location of a 
target [7]. Gaze cueing effects are present if reaction times to the target are shorter at 
the valid compared to the invalid condition [8]. Previous research has shown that the 
degree to which we follow the gaze of others is modulated by whether intentionality 
is ascribed to the gazing agent [4, 5] with gaze cueing effects being much larger when 
the likelihood of adopting an intentional stance was high (i.e., eye movements were 
believed to be executed by a human) compared to when it was low (i.e., eye move-
ments were believed to be preprogrammed). 

Based on these findings, it is reasonable to assume that humans are willing to treat 
robots as if they had a mind and that the mere perception of intentionality can lead to 
an increased interest in the social interaction [4]. It has been shown that the perception 
of intentionality does not require the presence of an actual mind, but rather relies on 
the belief that an agent is capable of showing intentional behavior [9]. In line with 
that, mental states can be attributed to mindless agents, if they behave in an intention-
al fashion (e.g. [10]) and/or look like intentional agents (e.g., Martini, Gonzales & 
Wiese, under review; [11]). For instance, computer agents that exhibited empathic 
emotions were evaluated more favorably on a number of human characteristics in-
cluding caring, likeability, and trustworthiness [12]. 

A different approach to mind attribution comes from Simulation Theory, which 
hypothesizes that we attribute mental states to others by processing relevant cues 
through our own mental apparatus [13]. This ability allows us to better predict others’ 
internal states and engage socially [14]. Understanding the minds of others stems 
from our ability to project ourselves into another person’s perspective [15]. Perspec-
tive taking is a multi-dimensional social-cognitive process that includes three compo-
nents: perceptual/spatial, adoption of another’s viewpoint; cognitive, determination of 
another’s knowledge; and affective, assumption of another’s emotional state [16]. A 
review of the perspective taking literature identifies a number of positive social out-
comes including nonverbal behaviors and favorable implicit and explicit evaluations 
[17].  Others have found that the use of computer avatars to assume the perspective of 
another can reduce negative stereotypes [18]. The benefits of perspective taking are 
not limited to human-human interactions, it has also been shown to increase empathy 
toward animals [19]. Others found that humans can feel empathy toward robots sug-
gesting an attribution of the robot’s emotional state [20]. 
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2.3 Tasks and Procedure 

During the experiment, participants first engaged in a short interaction with the hu-
man and the robot agent during which the agents’ perspective had to be taken or not. 
Afterwards, participants completed three social cognitive tasks: the Implicit Associa-
tions Test (IAT) [1], a series of economic games, and subjective inventories measur-
ing the humanness and the trustworthiness [23, 24]. 

2.4 Perspective Taking Task 

In the perspective taking task, participants first saw a fixation cross presented in the 
center of the screen for 500 ms, followed by an image of either the human or the robot 
interaction partner looking straight ahead. After 2000 ms, a target letter T appeared on 
the screen that was either shown to the left or right of the face. As soon as the target 
appeared, participants were asked to respond by pressing one of two keys (A for ‘left’ 
or L for ‘right’) to indicate where on the screen the target was shown. The trial ended 
after the participant had given a response, or after the 2000 ms time limit was reached. 
In the non-perspective taking condition, participants had to give their answers from 
their own perspective. In the perspective-taking condition, however, participants had 
to answer from the agent’s perspective. 

Participants completed two blocks of 16 trials each (eight with the target presented 
on the right and eight on the left), one for the human agent and one for the robot 
agent. Participants were randomly assigned to one of two conditions in which they 
either responded from the agent's spatial perspective or from their own perspective.  

2.5 Implicit Association Test 

The IAT was used to assess whether perspective taking has a positive influence on 
implicit attitudes towards a given agent. In general, the IAT measures the association 
between a target-concept discrimination and an attribute dimension [1]. In the case of 
this experiment, the target-concept discrimination was to distinguish between human 
and robot faces, while the attribute dimension was constituted by the assessment and 
categorization of words with meanings that are good or bad, in accordance with the 
implicit attitude research [25]. Table 2 depicts the order of events in the IAT.  

Table 2. Sequence of trail blocks in the human-robot interaction IAT. 

 

Block Function
Items assigned to                
left-key response

Items assigned to               
right-key response

1 Target Practice Human Images Robot Images
2 Attribute Practice Good Adjectives Bad Adjectives
3 Combined Practice Good Adjectives + Human Images    Bad Adjectives + Robot Images
4 Combined Test Good Adjectives + Human Images Bad Adjectives + Robot Images
5 Reverse Target Practice Robot Images Human Images
6 Reverse Combined Practice   Good Adjectives + Robot Images Bad Adjectives + Human Images
7 Reverse Combined Test Good Adjectives + Robot Images Bad Adjectives + Human Images
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2.6 Economic Games (EGs) 

A series of EGs were used to investigate whether perspective-taking leads to more 
generous behavior. In general, in EGs, a participant (player 1, P1) is given some initial 
monetary endowment, and has the opportunity interact with a partner (player 2, P2). 
Trust and generosity were reflected by the amount of money P1 was willing to give to 
P2 [26].  

We used three types of EGs with an endowment of $12: Investment Games (IG), 
Ultimatum Games (UG), and Dictator Games (DG) [26]. Each participant played all 
three games with each agent, resulting in 6 total trials. Trials were presented with a 
static image of the agent appearing at the top of the page (image, orientation and size 
of the images are the same as in the perspective taking task). A written description of 
the game was presented underneath the image together with a sliding scale that could 
be used to make the offer to the agent ($0-$12). Trials were presented one per page, 
and participants had as much time as they needed before clicking the “next” button to 
submit their answer. 

2.7 Subjective Ratings 

Two subjective rating inventories were administered to assess whether taking the 
perspective of an agent results in higher ratings of human-likeness and trust. The hu-
manness inventory was adapted from Bartneck et al. (2009) and contained 8 items on 
a 5-point likert scale [23]. Each item was anchored by word pairs (one adjective and 
its opposite, e.g. machinelike-humanlike, unfriendly-friendly). The trust inventory 
was adapted from the Checklist for Trust Between People and Automation developed 
by Jian, Bisantz, & Drury (2000) and contained 12 items on a 5 point likert scale 
ranging from strongly disagree to strongly agree [24]. Each item was written in the 
form of a statement about a specific feeling toward the agent in question (e.g. “I can 
trust the agent”, “The agent provides security”). During the assessment, participants 
were presented with the images of the agents they have interacted with before (human 
or robot, one at a time). The agent image was presented at the top of a page. The as-
sessments were provided twice, once for the human and once for the robot partner.  

3 Results 

3.1 Implicit Association Test 

The IAT results were analyzed by comparing mean response times between combined 
and reverse combined conditions. The combined condition (Good + Human / Bad + 
Robot) response time (M = 855 ms, SD = 136 ms) was lower than the reverse com-
bined (Good + Robot / Bad + Human) response time (M = 1023 ms, SD = 197 ms). 
The differential in response times indicate the target-attribute pairing the combined 
condition was more compatible with participants’ attitudes. The improved scoring 
algorithm described in Greenwald, Nosek, and Banaji (2003) was used to calculate the 
IAT effect, D measure, for each participant [27]. The D measure, related to Cohen’s  
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d, is a comparison between mean block response times as an indication of strength of 
association. The D measure has a possible range of -2 to +2 with the effects strength 
divided separated by weak (.15), moderate (.35), and strong (.65). In both perspective 
conditions (self- and agent-perspective) participants responded more quickly when 
humans were paired with positive attributes and robots were paired with negative 
attributes than when the pairings were reversed. In other words, there was a moderately 
strong association of humans with positive concepts. A one-way ANOVA of perspec-
tive type revealed a significant difference between perspective taking conditions  
(F(1, 63) = 5.50, p < .05), that is: participants that took the spatial perspective of the 
agents (M = .607, SD = .248) more strongly associated the human with positive con-
cepts (and therefore robots with negative concepts) than those in the self-perspective 
condition (M = .449, SD = .290). 

 
Fig. 1. IAT D effect. Perspective taking significantly increased the association of human agents 
with positive concepts (also signifies association of robots with negative concepts).  

3.2 Economic Games 

Three EGs were completed by each participant: the Ultimatum Game (UG), the Dicta-
tor Game (DG), and the Investment Game (IG). Endowments were measured for each 
of three economic games as a measure of social interaction. A 2 x 2 ANOVA (pers-
pective type x agent type) was run for each of the three EGs, with agent type (human, 
robot) as a within-factor and perspective-taking (yes, no) as a between-factor. All 
three games had a main effect for agent type (UG: F(1, 63) = 4.37, p < .05; DG: F(1, 
63) = 23.12, p < .001; IG: (F(1, 63) = 5.43, p < .05) Greater mean endowments were 
given to humans across each game (See Figure 4). Type of perspective (agent vs self) 
did not have a main effect on any of the three EGs and there were no interactions 
between agent and perspective type.  
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4 Discussion 

This research set out to explore how perspective taking may be used to enhance atti-
tudes and social interactions with robots. We predicted that spatial perspective taking 
would improve social interactions with both humans and robots. We found that agent 
type had a significant effect on behavior in EGs and subjective ratings of humanness 
and trust. In addition, perspective taking increased the strength of the association of 
humans with positive attributes and robots with negative attributes. 

We expected spatial perspective taking to improve social interactions and subjec-
tive measures independent of agent type but failed to see a significant effect. Spatial 
perspective taking does not appear to affect the manner in which people interact with 
social robots. Surprisingly, spatial perspective taking did have a significant effect on 
implicit attitudes. The effect of spatial perspective taking on the IAT’s D measure 
indicate that spatial perspective taking caused participants to develop a stronger asso-
ciation between humans and positive attributes as well as robots and negative 
attributes. This finding went against our hypothesis that spatial perspective taking 
would increase the strength of association between the robot agent and positive 
attributes. The results of the implicit association test were somewhat reflected in our 
other measures. Across three EGs and two subjective measures of explicit attitudes, 
participants favored humans significantly more than robots. In addition, we hypothe-
sized a greater effect of perspective taking for the robot agent but this prediction was 
not supported either. When these results are integrated we see that people’s implicit 
attitudes in favor of humans over robots can also be observed in overt behavior and 
explicit attitudes. Even though perspective taking enhanced the strength of association 
between humans and positive attributes the effect was not reflected in social interac-
tions or subjective measures of humanness and trust.  

Our predicted results hinged on the expectation that taking the spatial perspective 
of a robot would have the same effect as taking the spatial perspective of a human. 
Primarily, the expected effect was to make the agents appear to have intentionality 
thereby changing behavior and attitudes. Contrary to our expectations, spatial pers-
pective taking amplified attitudes in favor of humans over robots. One possible  
explanation comes from Kessler and Thomson [28], their work on spatial perspective 
taking found that, rather than a simple mental rotation, spatial perspective taking was 
an embodied cognitive process, supported by physical alignment of the body. Build-
ing on their findings, it is likely that humans will have difficulty taking perspective of 
non-human agents due to dissimilar physical properties. As such, the unnatural act of 
taking a robot’s spatial perspective calls attention to human-robot disparities and inhi-
bits improved social interactions that are expected to result from perspective taking. 

One interesting result from this study was that the effects of spatial perspective 
taking on implicit attitudes failed to carry over to behavior and explicit attitudes.  
Implicit attitudes are often expressed as actions and judgments outside of the perfor-
mer’s awareness [1]. As such one would expect to see positive association on the 
implicit attitude test manifested as enhanced social behaviors and explicit attitudes. 
Two of three economic games did trend toward increased endowments in the  
spatial perspective condition while the other measures showed little to no trend in the 
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opposite direction so it is possible that further testing may reveal an effect. However, 
it is more likely that the brief experience with perspective taking was not sufficient to 
change behavior and attitude toward a specific agent. 

Perspective taking maintains a great deal of potential to facilitate social interac-
tions in the domain of social robots. Subsequent research will include intentionality as 
a directly measured independent variable. Furthermore, we have seen that the physical 
characteristics of a robot may inhibit spatial perspective taking. Future studies will 
explore the effect of robots with more humanlike characteristics. Finally, spatial pers-
pective taking is one of three perspective taking dimensions. We have yet to evaluate 
the effects of cognitive and affective perspective taking on social behaviors, though 
considerable research supports this line of study (see [17]). Follow up research will 
explore the effect of these perspective taking dimensions on social interactions and 
perceptions of intentionality. Our current findings indicate humans favor fellow hu-
mans over robots in social interactions. Spatial perspective taking appears to amplify 
those attitudes though not enough to change behavior or explicit attitudes. Our future 
work will build on this base to determine if any type of perspective taking may en-
hance human-robot social interactions. 
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Abstract. Affect bursts play an important role in non-verbal social
interaction. Laughter and smile are some of the most important social
markers in human-robot social interaction. Not only do they contain
affective information, they also may reveal the user’s communication
strategy. In the context of human robot interaction, an automatic laugh-
ter and smile detection system may thus help the robot to adapt its
behavior to a given user’s profile by adopting a more relevant commu-
nication scheme. While many interesting works on laughter and smile
detection have been done, only few of them focused on elderly people.
Elderly people data are relatively rare and often carry a significant chal-
lenge to a laughter and smile detection system due to face wrinkles and
an often lower voice quality. In this paper, we address laughter and smile
detection in the ROMEO2 corpus, a multimodal (audio and video) cor-
pus of elderly people-robot interaction. We show that, while a single
modality yields a given performance, a fair improvement can be reached
by combining the two modalities.

1 Introduction

Laughter and smile are considered as all-important human communication skills.
They convey lots of information during human-human interaction such as emo-
tional state, social communication strategy and personality. This kind of informa-
tion also appears in human-robot interaction, especially with humanoid robots.
This paper focuses on laughter and smile detection of elderly people who inter-
act with a robot in a real-life situation. For this purpose, we use part of a social
interaction corpus [17] recorded in two retirement homes in France. This mul-
timodal corpus is collected under the ROMEO2 project1 and features elderly
people interacting with the humanoid robot Nao.

Audio and visual based smile and laughter detection has each its pros and
cons. Actually, while audio is a suitable modality for laughter detection, par-
ticularly when a subject is not facing the video source, things seem to be less
obvious when it comes to detecting a smile by merely using an audio signal.

1 http://projetromeo.com
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Visual detection however can be a good way for both smile and laughter as
long as the subject faces the video camera and there is no obstacle between the
two communicative parties. Another issue that visual smile detection faces is
the similarity between a smiling mouth and a speaking mouth. The joint use of
audio and video channels to improve the overall smile and laughter detection
performance is investigated in this work.

Beside the afore mentioned issues, others are to be taken into account when
dealing with smile and laughter detection for elderly people. Namely, the lack
of relevant data of actual elderly people naturally interacting with a robot,
voice quality and face wrinkles related difficulties are a supplementary chal-
lenge addressed in this work. We thusly consider the use of such realistic data
with the proposed detection methods as the main contribution of this work.

The rest of this paper is organized as follows. Section 2 reviews some of the
related work. Section 3 describes the data collection protocol, the corpus content,
the annotation scheme, the questionnaires submitted to each subject after the
experience, a statistical analysis and the data subset used in our experiments. In
section 4 we describe our audio and video smile and laughter detection methods,
as well as the fusion of both modalities. We then present our experiment protocols
and the obtained results in section 5. We give our conclusion and perspectives in
section 6.

2 Related Work

Due to the importance of smile and laughter in human-human interaction, many
recent works have focused on smile and laughter research in the computer science
area, especially in human-machine interaction. Many workshops dedicated to the
topic have been organized such as the Interdisciplinary Workshop on Laughter
and other Non-Verbal Vocalizations in Speech2. International projects like the
ILHAIRE project3 are also to be mentioned.

There are many acted or posed facial expression databases (e.g. the Cohn-
Kanade database [6], the MMI Facial Expression database [13,21], or the JAFFE
database [10]), but only few realistic databases exist. They are even fewer when
it comes to realistic data involving elderly people. Most researchers actually
test and validate their methods on acted or posed corpora [1,5,8,18]. In [22],
however, the authors argue that spontaneous expressions are different from posed
expressions both in appearance and in timing. This means that methods used
for posed expressions recognition might not be suited to realistic expressions.
Therefore, the detection methods proposed in this work and evaluated on our
realistic social interaction corpus between elderly people and a robot need to be
assessed on another acted corpus.

For the visual detection system, we use Support Vector Machines (SVM) with
a Radial Basis Function (RBF) kernel for classification. We use Local Binary
Patterns (LBP) [4,24] for feature extraction. There exist a variety of feature
2 https://laughterworkshop2015.wordpress.com/
3 http://www.ilhaire.eu/

https://laughterworkshop2015.wordpress.com/
http://www.ilhaire.eu/
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extraction methods in the literature (e.g. local Gabor binary patterns [11], local
phase quantization, histogram of oriented gradients [2], Haar filters [9] and FACS
coding system action unit detection [3]).

Laughter detection in audio is also addressed in the literature. One can distin-
guish two types of laughter recognition: recognition with prior segmentation or seg-
mentation by recognition. In the first approach, short audio segments representing
acoustic events (anything that is not a silence) are either manually or automati-
cally extracted from a continuous audio stream before they are classified. As for the
second approach, segmentation by recognition, there is no prior knowledge about
where an acoustic event starts and where it ends. The whole audio stream is ana-
lyzed to tell apart the classes of interest (e.g. speech, laughter, silence, other human
or environmental sounds, etc.). In [7], MFCC and Modulation Spectrum features
are used with SVM for laughter detection in meeting rooms. The main focus of the
authors was the detection of laughter events where more than one person simul-
taneously laugh. Spacial cues were therefore calculated by cross-correlating the
audio signals acquired by two tabletop microphones. The goals of this cross corre-
lation is to better distinguish one-participant and multi-participant laughters. In
[20] many sets of acoustic features (Perceptual Linear Prediction Coding features,
Energy, Pitch and Modulation Spectrum) and classification algorithms (Gaussian
Mixture Models, Hidden Markov Models and Multi Layer Perceptrons) are investi-
gated for laughter-speech classification. The best baseline performance is obtained
PLP features with GMM. Improvement could be observed by combining the PLP
with GMM system with a system based on Pitch related features with SVM. [16]
address a 5-class classification problem. Each audio segment is classified into four
human classes (breathing, consent, hesitation and laughter) or a garbage class used
to model background noise. The best reported performance was obtained with
HMMs and PLP feature.

These methods address all the problem of classification after segmentation.
Many other works focus on laughter detection using segmentation by classifi-
cation scheme. In [19] a stream is segmented into laughter, speech and silence
intervals using PLP features and GMM. A 3-state Viterbi decoder is first used
to find the most likely sequence of states given a stream. The sequence of states
is seen as a preliminary segmentation. The log likelihood of each segment given
each of the GMM models is calculated to determine the final class of the seg-
ment. In [15] MFCC and HMMs are used to label a stream with a set of classes
containing laughter, filler, silence and speech. A higher level model, a bigram
language model, is used to explicitly model the order in which the labels appear
in training data. [14] show that adding visual information (head pose and facial
expression) slightly improve the performance of the audio-based system.

3 ROMEO2 Corpus

The main motivation of this data collection was to build an elderly people-robot
interaction corpus within the ROMEO2 project [17]. The collected corpus is
made up of audio and video streams of the whole interaction for each subject
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as well as two questionnaires (a satisfaction questionnaire and a personality
questionnaire) and detailed logs of the robot actions (time stamped utterances,
sounds, gestures, played songs, etc.). A high definition webcam set up behind the
sitting robot was used for frontal video capture, alongside with another camera
used to capture both interlocutors from a profile perspective. The number of the
participating subjects is 27 (3 men and 24 women), with an average age of 85.

Audio and video tracks were both annotated for this experiment. For the
audio part, speech (start time and end time of each utterance), affect bursts
(including laughter) and emotion in voice (one tag among happiness, sadness,
anger, doubt, surprise or neutral) were annotated. In the visual part, head pose,
head gesture, certain mouth movements, eyebrow movements and body move-
ments and perceived emotion of face were also annotated.

In order to analyze the connection between a subject’s behavior and their
profile, we calculate the correlation between answers to 3 questions from the
satisfaction questionnaire and the number of smiles and laughters within the
interaction. As shown in table 1, the more relaxed and enjoyed a subject was,
the more they expressed smile and laughter during the interaction.

Table 1. Correlation between experience enjoyment and the number of smiles and
laughter during an interaction. +1 and -1 are the numerical translations of the answer
used for correlation computation.

Question Events Correlation P-value

(Q7) Would you like it to address you
using the familiar form (+1) or using
the formal form (-1)?

Laughter + Smile 0.424 0.04395

(Q10) Would you prefer a robot that
looks like a robot (+1) or a human
(-1)?

Smile with open mouth -0.465 0.02528

(Q11) Do you consider the robot as
a machine (+1) or as a friend or a
(human) companion (-1)?

Laughter + Smile -0.429 0.04134

In this work, since nearly 90% of audio annotated laughters have intersection
with the visual annotated laughter and smile events in our corpus, we use visual
annotation as the annotation reference for our experiment, and only obvious
events such as laughter and smile with open mouth are studied. This results
in about 575 events from the 27 subjects subjects. Since the repartition of the
events was not balanced among the subjects, all male participants (3 subjects)
and all the subjects with less than 10 events of laughter and open-mouth smile
were discarded. As a result, our experimental data subset consists in 15 female
subjects and contains 168 laughter events and 218 open-mouth smiling events
(386 smile related events in total).
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4 Proposed Smile and Laughter Detection Methods

4.1 Audio-Visual Fusion of Smile and Laughter Detection

Smile detection from images has been found to be efficient in many acted emotion
corpora [1,5,8,18]. However, this has not yet been studied on realistic data of
elderly people-robot interaction. Besides the face wrinkles related issue inherent
to elderly people, the distinction between an open mouth smile and a speaking
mouth raises another important challenge for visual smile detection. To overcome
this, speech detection from audio is used in this work to back up the visual
detection system and let the visual system only focus on smile detection while
the subject is not talking.

4.2 Visual Smile and Laughter Detection

For visual laughter and smile detection, we use uniform-Local Binary Patterns
[12] with a SVM classifier using a RBF kernel. This method was tested on the
GENKI-4K corpus and performed with an accuracy of over 83%.

Video was recorded at 30 frames per second with a resolution of 1280x720
pixels. For each frame, a frontal facial image of the subject was extracted using
the Viola and Jones face detector [23]. After histogram equalization, facial images
were reshaped to 64x64 pixels and processed using LBF with a 10x10 grid to
get one feature vector for each frame. The performance of the SVM with a RBF
kernel classifier was optimized, by varying the values of the c and γ parameters
of SVM between 0.01 and 100 on a logarithmic grid with a multiplying step of 3.
The evaluation is run at a frame-level and segment-level. For the segment-level
evaluation, we consider that a segment contains smile or laughter if the majority
of frames it is composed of are classified as smile or laughter.

4.3 Laughter Detection from Audio

As an audio stream of a typical human-robot interaction is globally made up
of speech, laughter, robot prompts and silence, we used a 4-class classification
scheme. Audio classification was done on frame-level using 13 MFCC coefficients
and four GMM models to represent the 4 classes. Each frame is 20 ms long and
has an overlap of 10 ms with the previous one. Audio frames within a visual
laughter annotation are classified, which yields a sequence of symbols belonging
a 4-letter alphabet. From our annotation experience we noticed that, visually, a
laughter lasts longer than its respective audio signal. This respective perceived
audio laughter can actually be very brief in comparison to what the subject’s face
or body depicts, partially or completely masked by the a robot’s utterance or
merged with speech and/or silence. Therefore, for audio segment classification
illustrated in figure 1, we used an aggregation strategy that applies on short
sequences of consecutive frames (a sliding window of 800 ms for instance) instead
the whole audio slice aligned with a visual annotation. the goal of this is to detect
the presence of brief audio laughter events within a long “humanly” perceived
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Fig. 1. Audio-level detection scheme

laughter. A window is recognized as belonging to class C if C boasts the highest
number of frames within that window.

5 Experiments

5.1 Visual Smile and Laughter Detection Results

Three different protocols are used in our experiments:

– Mono-subject: for each subject, half the data is used for training and the
remaining half for test.

– Multi-subject: for each subject, half the data of the subject plus all data
from all the other subjects are used for training. The remaining subject’s
half is used for test.

– Leave-one-out: for each subject, training is performed using data from all
the other subject’s whereas test is done on all the subject’s data

A total of 386 visual annotated smile and laughter events are used in our
experiments. We also extracted 378 random segments outside laughter and smile
annotations for the test. The visual system faces mainly two kinds of issues,
missed frames due to a face detection problem (often caused by subjects’ head-
turning) and the apparent resemblance between a talking mouth and open-mouth
smiles or laughter. This resemblance is accentuated by face wrinkles. To better
assess the performance of the visual detection system, we suppose the use of an
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speech activity detection system with perfect outputs. Hence, all segments that
contain speech are considered as non laughter and non smile events.

The obtained results with the three test protocols are illustrated in table 2.
From this table we can observe that the best performance is reached using the
speaker dependent protocol (i.e. mono-subject) with no extra data from other
speakers for training. When we add data from other speakers to a given speaker’s
training data, we notice a performance decrease. This may be explained by the
fact that, for elderly people, as for younger people, smile and laughter sensibly
differ from one person to another. Finally, the leave-one-out protocol (no data
from the test speaker were used to train the model) gave the lowest performance
among the three protocols.

These results are obtained using all laughter and smile events (368). When
using only 289 segments (the ones without a face detection problem), the
obtained recall is 68.5%, 58.5% and 41.2% for the three evaluation protocols
respectively.

Table 2. Visual detection evaluation. Total frame accuracy refers to the global system’s
accuracy (for laughter/smile against non-laughter/non-smile annotations). The two
most-right columns are the recall and accuracy of laughter and smile annotations at
frame-level and segment-level respectively. A. stands for accuracy, R. for recall, P.
for precision and BER. for Balanced Error Rate.

Protocol Frame-level Segment-level

Mono-subject A.85.7% R.80.6% BER.23.7% R.51.3% P.95.2%
Multi-subject A.73.9% R.62.4% BER.31.4% R.43.8% P.95.5%
Leave-one-out A.72.8% R.40.8% BER.46.6% R.30.8% P.73.9%

5.2 Audio Laughter Detection Results

For laughter detection, we also used 386 annotated smile and laughter events
as well as 378 segments randomly cut from regions that do not contain a smile
nor a laughter. An actual laughter event is considered as correctly classified by
the system if at least one analysis window is recognized as a laughter by the
system. A non laughter segment is however considered as correctly classified if
none of the analysis windows it contains is recognized as laughter. Moreover,
as each analysis window represents a sequence of frames, two frame aggregation
strategies are used, a majority voting and an “at least half the frames” strategies.
For the first strategy, the window is given the label of the most represented class.
As for the second strategy, at least half the frames of the window have to be
belong to one single class so that the window is labeled with this class.

Table 3 shows the obtained results. We can see that a short window results in
a better recall but a relatively low precision whereas a long window leads to the
opposite result. Moreover, a more rigorous aggregation strategy (at least 50%)
improves the precision at the expense of the recall.
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Table 3. Audio laughter detection evaluation using various analysis window durations
on 386 laughter and smile events and 378 non laughter segments. Maj. voting: a window
is considered as laughter if the most represented class within it is laughter. � 50%: a
window must contain at least 50% of laughter frames to be considered as a laughter.

Analysis window duration Maj. voting � 50%

600ms R.80.1% P.54.0% R.64.5% P.56.7%
800ms R.74.9% P.54.3% R.56.5% P.58.9%

1s R.71.0% P.55.7% R.49.7% P.59.6%

Note that out of the 386 visually annotated laughter and smile events, only
168 are laughter. Therefore, when we run the audio system on these 168 events,
using an analysis window of 800 ms, we obtain a recall of 85.7% and 69.6% for
the majority voting and the “at least 50%” aggregation strategies respectively.

5.3 Video-Audio Smile and Laughter Detection

In our detection system based on the fusion of audio and video decision, we
consider a laughter or a smile detection if either of the two modalities decides
a positive detection. To make a trade-off between precision and recall in the
audio system, we use an analysis window of 800 ms with the two audio frames
aggregation strategies mentioned in sub-section 5.2. Table 4 shows the obtained
results. The fusion resulted in a fairly good recall improvement with a precision
decrease. The recall of the fusion system is better than either one-modality based
systems, regardless of the audio aggregation strategy. The precision however lays
between that of the two systems and is mostly better than the audio system’s.

Table 4. Audio-visual detection evaluation on 386 laughter and smile events. For audio
detection, an analysis window of 800 ms is used.

Video/audio fusion

Protocol Video only � 50% Maj. voting

Mono-subject R.51.3% P.95.2% R.78.8% P.65.1% R.86.8% P.57.4%
Multi-subject R.43.8% P.95.5% R.75.4% P.64.7% R.86.8% P.57.6%
Leave-one-out R.30.8% P.73.9% R.66.8% P.58.4% R.80.6% P.54.3%

6 Conclusion and Future Work

This paper presents an audio-visual smile and laughter detection system in the
context of elderly people-robot social interaction. The audio-video fusion system
performs in two steps: first, each one-modality system is separately run to obtain
its individual decision given a segment of aligned audio and video signals. The
final decision is positive (there is a laughter or a smile) if at least one of the two
systems outputs a positive decision.
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The video system has a very good segment-level precision in subject depen-
dent evaluation and a rather good precision in subject independent evaluation.
It has however a lower recall in comparison to the audio system. This is proba-
bly due to the fact that many subjects laughed whilst turning their head as well
as to mis-detections of the face detection system. This said, the audio system
runs continuously which results in a high recall rate even when a long analysis
window is used. We believe that the recall of the video system can be improved
by dealing with the head turning issue whereas the audio system can achieve a
better precision by using more data for training and using classification methods
of a more discrimination power.

The fusion of the two system seems to lead to good compromise between
precision and recall. Improving each of the one-modality systems will indeed
result in an overall improvement of the fusion system performance.

In future work, we will consider other state-of-the-art video feature extrac-
tors in order to improve the performance of our system and to compare the
performance of detection in posed database and realistic databases of elderly
people-robot social interaction. We also plan to experiment other fusion strate-
gies (e.g. frame-level of two modalities fusion or feature fusion).
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Abstract. An increasing number of applications for social robots
focuses on learning and playing with children. One of the unanswered
questions is what kind of social character a robot should have in order to
positively engage children in a task. In this paper, we present a study on
the effect of two different social characters of a robot (peer vs. tutor) on
children’s task engagement. We derived peer and tutor robot behaviors
from the literature and we evaluated the two robot characters in a WoZ
study where 10 pairs of children aged 6 to 9 played Tangram puzzles with
a Nao robot. Our results show that in the peer character condition, chil-
dren paid attention to the robot and the task for a longer period of time
and solved the puzzles quicker and better than in the tutor character
condition.

Keywords: Child-Robot Interaction · Task engagement · Robot char-
acters · Robot behaviors

1 Introduction

Social robots are envisioned as partners for children, offering companionship,
tutoring and social assistance in various domains (e.g., education, therapy).
Across these domains and applications, one of the main factors that contributes
to initiate, sustain and maintain child-robot interaction (cHRI) is engagement.
Despite the fact that children can easily make connections with robots [15],
researchers and designers still face the challenge to select the appropriate set
of verbal and nonverbal robot behaviors that support engagement throughout a
task. The social verbal and nonverbal behaviors the robot is endowed with pro-
vide information about its ‘social character ’ (here defined as sets of behaviors
stylized according to a precise behavioral repertoire, e.g., the robot is char-
acterized as a friend, playmate, tutor) [17], [22], [26]. Therefore, we argue that
researchers who venture into child-robot interaction also need to take this aspect
into account. Firstly, because this shapes the design of the robot behaviors. Sec-
ondly because the robot character could lead to the identification of a social
role (set of standards, norms and concepts held for the behaviors of an agent
in a social system) [4], a key factor for successful child-robot interactions and
c© Springer International Publishing Switzerland 2015
A. Tapus et al. (Eds.): ICSR 2015, LNAI 9388, pp. 704–713, 2015.
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human-robot interaction (HRI) in general [14]. In cHRI research, peer and tutor
behaviors, derived from human interaction, have been explored in different task-
related contexts with the ultimate goal to engage children in different types of
tasks. To date, it is not clear if and how the robot character might effect children’s
engagement with a task, as a thorough comparison of robot social characters is
missing. This paper addresses this gap and it aims at shedding light on two
robot social characters that are predominant in children’s task-oriented experi-
ences, namely peers and tutors. After deriving tutoring and peer behaviors from
literature, we evaluated the effect of the two robot characters on children’s task
engagement in a Wizard of Oz (WoZ) experiment. The exploratory study entails
a triadic scenario where a humanoid robot (i.e., the Nao robot) and two same
sex children (6-9 years old) perform three Tangram puzzles.

2 Children’s Task Engagement

Engagement is a multifaceted phenomenon that is considered to play an impor-
tant role when humans are interacting with social robots [25]. Sidner et al.,
defined engagement as ‘the process by which two (or more) participants establish,
maintain and end their perceived connection’ [24], but their definition focused
on conversational engagement and as such on cognitive engagement (i.e., focus
of attention during conversations). Our definition goes a step beyond Sidner’s
and includes insights from [7], [8], [11], [21]. Since engagement encompasses three
dimensions, cognitive, behavioral and affective [8], we argue that it is necessary
to take them all into account. In our study, we focused only on children’s task
engagement and we define it as the level of cognitive (e.g., attention to the task
and the robot), affective (e.g., emotional response to the task), and behavioral
attributes (e.g., performance) of engagement during the interaction. The more
these attributes occur in the interaction (measured by frequency and duration),
the more engaging the interaction with the task will be.

3 Related Work and Hypotheses

Studies have shown that an expressive behavioral repertoire, that conveys a robot
social character is one of the factors that affects children’s engagement with a task
[10], [26]. In a field study, Kanda et al. [16] revealed that sharing common ground
with a peer robot contributes to an enhanced level of engagement with a task. Also
Okita et al. [22] illustrated how a peer-like cooperative style of interaction sup-
ported affective task engagement. In a similar vein, Leite et al. [18] suggested that
a set of emphatic behaviors, exhibited by a robot companion during a game, may
encourage the child to identify the robot as a peer enhancing the endurability of the
task. A related indication emerges from the work of Belpaeme et al. [3]: a robot per-
ceived as a peer, during a game appeared to be more likely to support engagement.
Hence, our first hypothesis (H1) is that a peer-like character will enhance (H1a)
affective and (H1b)behavioral (i.e. performance) children’s task engagement.Our
expectation is that this effect will be more prominent than for the tutor-like char-
acter as implied by the education literature [9]. On the other hand, the attention to
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the task could be enhanced by a tutor-like character [17], who is focused on guid-
ing in a scaffolding fashion [28]. As a result, our second hypothesis (H2) is that a
tutor-like character will enhance the focus of attention on the task and the robot
more than the peer-like character.

4 Method

Our independent variable, the robot social character, was manipulated between-
subjects. In order to address the above mentioned hypotheses, we devised two
conditions, namely peer-like character (PC) and tutor-like character (TC). In
the study, dyads of same gender, same age children performed three tasks in
either the PC or the TC condition. The three tasks consisted of three Tangram
puzzles of increasing difficulty. The children first solved a puzzle missing three
pieces, then two puzzles missing six pieces. The first puzzle consisted of a simple
outline of an animal shape with orientation lines, i.e., the lines defining the
Tangram piece perimeter, partially completed. The second and the third puzzles
consisted of geometric outlines to be completed. The puzzle pieces were divided
between the children, who could collaborate to accomplish the task. We used
the Nao robot 1 which was remotely controlled by a Python script operated by
a researcher (See Figure 1).

4.1 Robot Character Design

The social character is conveyed by behaviors based on peer collaboration [9]
for the PC condition and instructional scaffolding [6] for the TC condition. We
designed eleven verbal and nonverbal behaviors both for the PC condition and
for the TC condition, in such a way that their functions, interaction modalities,
number of actions and speech remained the same across the two conditions. The
behaviors were designed to (i) regulate the phases of the task, (ii) provide infor-
mation about the state of the task, (iii) support the attention of the participants,
(iv) provide reinforcement and support, and (v) provide reward.

The only difference between the designs was the style of interaction. In other
words, the way the behavior was expressed through gestures, speech, and pos-
tures was designed either with peer or tutor characteristics. From literature on
teachers’ multimodal expressions and on peer collaboration [6], [20], we identi-
fied distinctive features of speech [23], [27], gestures [1], [12], [28], positioning
and posture [19] for each condition. The set of behaviors were organized in a
task-dependent flow, which was strictly followed by who controlled the robot.
Table 1 presents the above cited interaction modalities and the manipulations
applied to convey the peer and tutor character. Figure 2 depicts examples of the
robot gestures in PC and TC conditions.

Before the user study took place, we video-recorded all behaviors following
the task-dependent flow. We showed the two videos to three Montessori teachers

1 https://www.aldebaran.com/en/humanoid-robot/nao-robot

https://www.aldebaran.com/en/humanoid-robot/nao-robot
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Fig. 1. The figure presents children working in dyads on the tasks in (a) the tutor
condition (TC) and (b) in the peer condition (PC).

Table 1. Interaction modalities and elements that were manipulated in the peer (PC)
and the tutor condition (TC).

Modalities Elements Peer Tutor

speech pitch high low
speech style direct, emphatic maieutic, interrogative
body postural sitting standing
gestures deictic indication, sweeping pointing, tracing
gestures emphatic exultation, surprise head nods
gestures representational grasping presenting

working at an elementary school in the Netherlands. The teachers filled in a
form with one closed question (‘Do you think that the robot behaved like: a.peer
b.tutor ’) and two open questions to discuss the robot character design (‘What
did the robot do to make you think it was more like a peer or a tutor?’, Do you
have other comments on the behaviors?’ ). The teachers correctly recognized the
behaviors as belonging to the respective two robot social characters and they
made comments consistent with the behavior design.

4.2 Setup, Procedure and Participants

Setup. We conducted the study at a Montessori school in The Netherlands. We
divided their gym room in three areas: an experimental, a WoZ and a question-
naire area. The WoZ area was only entered by the researchers. From there, the
robot was remotely controlled. Although the researcher was sitting in the same
room, his role was hidden from the children. The sessions were recorded with
three cameras, one recording the central view and two for the side views.

Procedure. A facilitator escorted the participants to the experimental area and
provided an introduction to the robot in order to allow the children to familiarize
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Fig. 2. The figure presents some pictures of the behaviors designed for a) tutor condi-
tion (TC) b) peer condition (PC). In a) examples of deictic, emphatic and representa-
tional gestures (pointing, tracing, presenting and head nods). In b) examples of deictic,
emphatic and representational gestures (indication, grasping, exultation and surprise).

themselves with it. Thereafter, the facilitator placed the puzzle outlines and the
Tangram pieces in front of the children. The robot was placed opposite of the
participants, outside the play-mat at a safe distance. After everything was in
place, the facilitator asked the children to complete the puzzle with the robot.
As soon as the facilitator left the area, the researcher who controlled the robot
started the behaviors following the task-dependent flow. After the interaction
with the robot, the facilitator escorted the participants to the questionnaire
area where the questionnaires were administered.

Participants. Twenty children (N = 20) belonging to one Montessori class (this
includes children from 6 to to 9 years old) participated in the study. They were
divided into six male and four female couples matched by ages. Five couples
were assigned to the PC condition (N = 10, age: M = 7.1, SD = 1.10) and the
other five to TC condition (N = 10, age: M = 7.0, SD = 0.66).

4.3 Measures

We measured children’s task engagement via behavioral observations and a ques-
tionnaire. To account for the cognitive attributes of task engagement, we inves-
tigated the focus of attention, namely the gaze behaviors of the participants
directed to the robot and to the task. To get a complete overview of the gaze
behaviors of the children in the interaction we also measured gaze to the other
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child and gaze elsewhere. In order to account for the affective attributes of task
engagement i.e., enjoyment, we designed a questionnaire based on the subscale
enjoyment from the Intrinsic motivation inventory (IMI)2. We translated it to
Dutch as this was the language of the study. We used a 5-point Likert Smi-
leyometer scale anchored from “Strongly disagree” to “Strongly agree” and we
avoided reversed items. To account for the behavioral attributes of task engage-
ment, i.e., task performance, we rated the degree of completion of the tasks per
dyad i.e., how many pieces were put into the puzzle correctly, with 3 being the
maximum for the first task and 6 for the second and the third. We also analyzed
task duration.

4.4 Data Analysis

Video data. In total, 125 minutes and 41 seconds of video material were ana-
lyzed: 60 minutes and 47 seconds in the PC condition and 64 minutes and 54
seconds in the TC condition. The videos were manually coded in Elan3 following
an annotation scheme developed for the analysis, including focus of attention,
task performance, and task duration. The annotations were analyzed using a
Matlab toolbox called SALEM [13]. The annotations of focus of attention were
analyzed for counts and duration. As the recorded interactions differ in lengths,
we normalized the results providing seconds per minute of gaze and counts per
minute of gaze (i.e., the rate) We compared the results across conditions (PC vs.
TC) with two-tailed independent sample t-tests. Also the results of the degree of
completion were compared across conditions (PC vs. TC) with two-tailed inde-
pendent sample t-tests. To investigate the difference between the duration of
task performances between the conditions, a Mann-Whitney U test was carried
out. For both focus of attention and task performance we calculated inter-rater
reliability for about 10% of the data (11’:42”) which showed acceptable agree-
ment (Cohen’s kappa; focus of attention κ = .730, p = .003, task completion
κ = .750, p < .001).

Questionnaire data. The internal reliability of the IMI/ Enjoyment scale was
0.851 (Cronbach’s alpha). Unfortunately, the general polarization of the chil-
dren’s answers toward the positive anchor did not allow to find any difference
between conditions. Hence, the questionnaire results are not included.

5 Results

Cognitive attributes of task engagement: focus of attention. The gaze to the
robot rate was significantly higher in the PC condition (M = 3.44, SD = 0.67)
than in the TC condition (M = 2.36, SD = 0.92; t(18) = 2.97, p = .008).
Moreover, the participants looked at the robot significantly longer (i.e., gaze
seconds/per minute) in the PC condition (M = 19.30, SD = 3.11) than in the
TC condition (M = 12.71, SD = 3.21; t(18) = 4.66, p < .001.). As for the gaze
2 https://www.selfdeterminationtheory.org/intrinsic-motivation-inventory/
3 https://tla.mpi.nl/tools/tla-tools/elan/

https://www.selfdeterminationtheory.org/intrinsic-motivation-inventory/
https://tla.mpi.nl/tools/tla-tools/elan/
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Fig. 3. Difference in focus of attention (robot, task, child, elsewhere) and task com-
pletion between peer condition (PC) and tutor condition (TC). Figure 2 a): focus of
attention rate results. Figure 2 b): focus of attention results in gaze seconds per minute.
Figure 2 c): task completion results. * indicates significance at the 0.05 level, ** 0.01
level, *** < .001 level. Error bars show standard deviations.

on the task, the rate was significantly higher in the PC condition (M = 3.49,
SD = 0.50) than in the TC condition (M = 2.22, SD = 0.66; t(18) = 4.86,
p < .001). The average amount of gaze seconds per minute on the task was also
significantly different in the two conditions and more in PC. (PC: M = 28.26,
SD = 6.30; TC: M = 23.29, SD = 3.26; t(18) = 2.21, p = .040). We found no
significant difference in the rate (PC: M = 1.65, SD = 0.68; TC: M = 1.56,
SD = 1.22) and gaze seconds per minute (PC: M = 8.73, SD = 0.90; TC:
M = 9.70, SD = 1.20) to the other child, but the rate and gaze seconds per
minute elsewhere are significantly higher in TC (PC: M = 1.93, SD = 0.57; TC:
M = 3.05, SD = 0.71; t(18) = 3.84, p = .001; gaze secs/min elsewhere: PC:
M = 3.71, SD = 1.27; TC: M = 14.30, SD = 2.18; t(18) = 13.28, p < .001 see
Figure 3 a, b).

Behavioral attributes of task engagement: completion. Task 1 was completed by
all the participants in both conditions. Task 2 was fully completed by 80% of
the participants (4 out of 5 dyads) in the PC condition and by just 20% of
the participants (1 out of 5 dyads) in the TC condition. The task performance
in Task 2 is better in the PC condition (M = 5.80, SD = 0.44) than in the
TC condition (M = 3.60, SD = 2.40), but no statistically significant difference
was found. Likewise, Task 3 was completed by 80% of the participants in the
PC condition and by only 20% of participants in the TC condition. The task
performance was better in PC (M = 5.60, SD = 0.89) than in TC (M = 2.80,
SD = 0.83) and a statistically significant difference was found (t(8) = 5.11;
p = .001, see Figure 3 c).

Behavioral attribute of task engagement: task duration. The participants in the
TC condition took more time to perform the tasks than the participants in
the PC condition. A Mann-Whitney U test conducted on the total performance
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duration i.e., all three tasks, confirmed that the participants in the TC condition
(mean rank = 18.50) took significantly more time (U = 154, Z = 2.13, p =
.033) to perform the task than the participants in the PC condition (mean rank
=11.73).

6 Discussion

In this paper we presented a study on the effect of two robot social characters,
peer-like and tutor-like, on children’s task engagement. Our results showed that
the children performed significantly better in the more difficult task and were
faster when working with a peer-like robot character. These results support H1b
(a peer-like character will enhance behavioral task engagement). However, the
questionnaire results do not allow us to say anything about children’s enjoyment,
thus H1a (a peer-like character will enhance affective task engagement) cannot
be addressed.

We believe that this outcome suggests the potential inappropriateness of
using questionnaires for this user group [5]. Another explanation is the sug-
gestibility effect [29], i.e., the desire to please the researchers. Nevertheless, our
findings also show that the peer-like character appears to have a positive effect
on the focus of attention of the children. In fact, the peer character triggered
significantly more attention towards the robot and the task than a tutor-like
character. Moreover, in the tutor character condition, the participants looked
more elsewhere and this can be an indication that the tutor character could
be less effective in sustaining attention to the task. These results contradict
H2 (a tutor-like robot social character will enhance the focus of attention on
the task and the robot), but they highlight that the behavioral repertoire of
a peer might be able to enhance children’s cognitive engagement with a task
and the robot. Overall, our results suggest that embedding a peer-like reper-
toire of engagement-seeking robot behaviors might represent a good strategy in
task-related child-robot interactions.

7 Limitations and Future Work

Our exploratory study is a very first step towards understanding the effect of a
robot’s social character on children’s task engagement. As such, it has some lim-
itations, which will be addressed in future work. We are aware that our findings
cannot provide a comprehensive account on the effect of the peer robot character
on the task performance results, as they do not account for children’s prior level
of ability on the task. In our experimental design, we tried to overcome possible
discrepancies in the children’s cognitive development matching the gender and
the age of the participants. Nevertheless, future work needs to take children’s
task abilities (prior and post interaction) into account. Also, our forthcoming
research should provide a complete overview of the dyads/groups dynamics in a
more sequential way (i.e., how does the interaction change over time). In addi-
tion, we will address children’s expectations towards robot behaviors to have a
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better picture of the effect of a robot character on children’s task engagement.
Building upon our promising findings and significant results, we will proceed
with bottom-up investigations to discern low-level engaging behaviors and inter-
action style features of a peer’s behavioral repertoire, while investigating if and
how a social role can emerge from a social character.
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10. Feil-Seifer, D., Matarić, M.: Human robot interaction. In: Encyclopedia of
Complexity and Systems Science, pp. 4643–4659. Springer, New York (2009)

11. Fredricks, J.A., Blumenfeld, P.C., Paris, A.H.: School engagement: Potential of
the concept, state of the evidence. Review of Educational Research 74(1), 59–109
(2004)

12. Goldin Meadow, S., Sandhofer, C.M.: Gestures convey substantive information
about a child’s thoughts to ordinary listeners. Developmental Science 2(1), 67–74
(1999)



The Effect of a Robot’s Social Character on Children’s Task Engagement 713

13. Hanheide, M., Lohse, M., Dierker, A.: SALEM-statistical anaLysis of Elan files in
Matlab. In: Multimodal Corpora: Advances in Capturing, Coding and Analyzing
Multimodality, pp. 121–123 (2010)

14. Huber, A., Lammer, L., Weiss, A., Vincze, M.: Designing Adaptive Roles for
Socially Assistive Robots: A New Method to Reduce Technological Determinism
and Role Stereotypes. Journal of Human-Robot Interaction 3(2), 100–115 (2014)

15. Kahn Jr, P.H., Kanda, T., Ishiguro, H., Freier, N.G., Severson, R.L., Gill, B.,
Ruckert, J.H., Shen, S.: “Robovie, you’ll have to go into the closet now”:
Children’s social and moral relationships with a humanoid robot. Developmental
Psychology 48(2), 303–314 (2012)

16. Kanda, T., Hirano, T., Eaton, D., Ishiguro, H.: Interactive robots as social part-
ners and peer tutors for children: A field trial. Human-Computer Interaction
19(1), 61–84 (2004)

17. Kennedy, J., Baxter, P., Belpaeme, T.: The robot who tried too hard: social
behaviour of a robot tutor can negatively affect child learning. In: Proceedings
of the 10th ACM/IEEE International Conference on Human-Robot Interaction,
Portland, USA, pp. 67–74 (2015)

18. Leite, I., Castellano, G., Pereira, A., Martinho, C., Paiva, A.: Empathic Robots
for Long-term Interaction: Evaluating Social Presence, Engagement and Perceived
Support in Children. International Journal of Social Robotics 6(3), 329–341
(2014)

19. Lomranz, J., Shapira, A., Choresh, N., Gilat, Y.: Children’s personal space as a
function of age and sex. Developmental Psychology 11(5), 541–545 (1975)

20. Merola, G., Poggi, I.: Multimodality and gestures in the teacher’s communication.
In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 101–111.
Springer, Heidelberg (2004)

21. O’Brien, H.L., Toms, E.G.: What is user engagement? A conceptual framework
for defining user engagement with technology. Journal of the American Society
for Information Science and Technology 59(6), 938–955 (2008)

22. Okita, S.Y., Ng-Thow-Hing, V., Sarvadevabhatla, R.K.: Multimodal approach
to affective human-robot interaction design with children. ACM Transactions on
Interactive Intelligent Systems (TiiS) 1(1), 1–29 (2011)

23. Sachs, J., Devin, J.: Young children’s use of age-appropriate speech styles in social
interaction and role-playing. Journal of Child Language 3(01), 81–98 (1976)

24. Sidner, C.L., Kidd, C.D., Lee, C., Lesh, N.: Where to look: a study of human-robot
engagement. In: Proceedings of the 9th International Conference on Intelligent
User Interfaces, pp. 78–84. ACM (2004)

25. Sidner, C.L., Lee, C., Kidd, C.D., Lesh, N., Rich, C.: Explorations in engagement
for humans and robots. Artificial Intelligence 166(1), 140–164 (2005)

26. Simmons, R., Makatchev, M., Kirby, R., Lee, M.K., Fanaswala, I., Browning,
B., Forlizzi, J., Sakr, M.: Believable robot characters. AI Magazine 32(4), 39–52
(2011)

27. Teasley, S.D.: The role of talk in children’s peer collaborations. Developmental
Psychology 31(2), 207–220 (1995)

28. Valenzeno, L., Alibali, M.W., Klatzky, R.: Teachers gestures facilitate students
learning: A lesson in symmetry. Contemporary Educational Psychology 28(2),
187–204 (2003)

29. Warren, A.R., Marsil, D.F.: Why Children’s Suggestibility Remains a Serious
Concern. Law and Contemporary Problems 127–147 (2002)



Author Index

Acevedo, José J. 451
Aggarwal, J.K. 224
Ahn, Ho Seok 512
Alami, Rachid 194
Alemi, Minoo 1, 440, 623
Alves-Oliveira, Patrícia 11, 21, 285, 502
Amela, David 613
Amirabdollahian, Farshid 584
Andrulis, Emily 245
Angel Fernandez, Julian M. 31
Anguera, Laia 613
Anzalone, Salvatore M. 543
Arai, Tatuo 306
Arkin, Ronald C. 532

Bagherzadhalimi, Anahita 380
Ball, Adrian 41, 51
Baraka, Kim 61
Barendregt, Wolmet 285, 502
Barras, Claude 694
Basedow, Christina Anne 285
Basiri, Nasim Mahboub 1, 623
Baumann, Timo 72
Baxter, Paul 327, 603
Belpaeme, Tony 327, 603
Ben Allouch, S. 184
Benyaala, Wagdi 103
Boblan, Ivo 155
Bock, Sven 103
Bonarini, Andrea 31
Briggs, Gordon 83
Broadbent, Elizabeth 512
Buchner, Roland 461
Buzzell, George A. 431

Calvary, Gaëlle 275
Cañamero, Lola 31, 401
Cao, Hoang-Long 93
Capdepuy, Philippe 103
Capitan, Jesus 451
Carlson, Zachary 113
Castellano, Ginevra 285
Cazzato, Dario 124
Cencen, Argun 135

Chen, Rongya 145
Chen, Xiaoping 145
Chen, Yingfeng 145
Chetouani, Mohamed 472, 543
Compagna, Diego 155
Correia, Filipa 11
Corrigan, Lee J. 285
Costeira, João Paulo 359
Cristiano, Julián 613
Crook, Nigel T. 214
Cruz-Maya, Arturo 164
Cuijpers, Raymond H. 174, 654

Dautenhahn, Kerstin 584
De Beir, Albert 93
de Graaf, M.M.A. 184
De Silva, P. Ravindra 337, 348
der Pütten, Astrid Rosenthal-von 235
Devillers, Laurence 633, 694
di Tullio, Eugenio 21
Dias, João 522
Dillenbourg, Pierre 390
Distante, Cosimo 124
Dung, Tran Anh 296

Erkent, Özgür 204
Esteban, Pablo Gómez 93
Evers, Vanessa 317, 704
Feil-Seifer, David 113

Ferland, François 164
Ferreira, Beatriz Quintino 359
Fink, Julia 390
Fiore, Michelangelo 194
Fischer, Kerstin 204
Fjeld, M. 502
Fuente, Luis A. 214
Fujita, Akihito 482
Furnemónt, Raphaël 93

Galeazzi, J. 654
Geraedts, Jo 135
Giuliani, Manuel 461
Gori, Ilaria 224



Grimm, Cindy M. 245
Gross, Horst-Michael 643

Ham, J.R.C. 654, 664
Hashimoto, K. 664
Hastie, Helen 285
Hertz, Nicholas 684
Hirokawa, Masakazu 492
Hoefinghoff, Jens 235
Howard, Ayanna M. 574
Hubers, Alexander 245

Ierardi, Hannah 214
Ioannou, Andri 255
Iocchi, Luca 264
Ishii, H. 664
Issler, Erin 684
Ivaldi, Serena 543

Jeanpierre, Laurent 264
Jensen, Lars Christian 204
Johal, Wafa 275
Jones, Aidan 285

Kajopoulos, Jasmin 296
Kamide, Hiroko 306
Kappas, Arvid 285
Karreman, Daphne 317
Kartapanis, Iosif 255
Kee, Tan Yeow 296
Kennedy, James 327, 603
Kessler, Jens 643
Khambhaita, Harmish 194
Khante, Priyanka 224
Khaoula, Youssef 348
Kiefer, Bernd 380
Kirstein, Franziska 204
Klee, Steven D. 359
Knops, Marco A.M.H. 174
Kobayashi, Yoshinori 370
Kohn, Spencer 564
Korpela, Annina K. 674
Krämer, Nicole 235
Kruijff-Korbayová, Ivana 380
Kuno, Yoshinori 370
Küster, Dennis 285

Lakatos, Gabriella 584
Laplace, Jérôme 103
Lázaro, Maria Teresa 264

Lefeber, Dirk 93
Lemaignan, Séverin 390
Lewis, Matthew 401
Lima, Pedro U. 451
Lindner, Felix 72
Lohse, Manja 704
Lucas, Houston 113
Ludden, Geke 317

MacDonald, Bruce A. 512
Magyar, Gergely 411
Maia, Nuno 11
Mandell, Arielle R. 421
Markin, Kristy 564
Martini, Molly C. 421, 431
Matsuda, Soichiro 492
Mazzeo, Pier Luigi 124
McConnell, Ian 83
Meghdari, Ali 1, 440, 623
Melo, Francisco S. 21, 359
Merino, Luis 451
Messias, João 451
Milliez, Grégoire 194
Mirnig, Nicole 461
Mondada, Francesco 390
Mouaddib, Abdel-Illah 264

Najar, Anis 472
Niitsuma, Mihoko 306
Ninomiya, Takumi 482
Nunez, Eleuda 492

Obaid, M. 502
O’Hare, Gregory M.P. 594
Okada, Michio 337, 348
Oleari, Elettra 380, 401
Orejana, Josephine R. 512

Paiva, Ana 11, 21, 285, 502, 522
Pauli, Josef 235
Peri, Kathryn 512
Pesty, Sylvie 275
Petisca, Sofia 11, 21, 522
Pettinati, Michael J. 532
Piater, Justus 204
Pilling, Michael 214
Poorgoldooz, Pegah 623
Pop, Cristina 93
Poston, Jamie 113
Pouretemad, Hamidreza 623

716 Author Index



Pozzi, Clara 380, 401
Puig, Domènec 613

Racioppa, Stefania 380
Rahbar, Faezeh 543
Rea, Daniel J. 554
Reidy, Kaitlyn 564
Rhizor, Jared 113
Ribeiro, Tiago 21
Robinette, Paul 574
Rueben, Matthew 245
Rye, David 41, 51

Sacchitelli, Francesca 380
Saffari, Ehsan 440
Salem, Maha 584
Sandygulova, Anara 594
Sanna, Alberto 380
Scheutz, Matthias 83
Schroeter, Christof 643
Scott, Levi 245
Sehili, Mohamed A. 633, 694
Senft, Emmanuel 327, 603
Serholt, Sofia 285
Shaw, Tyler H. 421
Shuai, Wei 145
Shukla, Dadhichi 204
Shukla, Jainendra 613
Sigaud, Olivier 472
Silva, Rui 359
Silvera-Tawil, David 41, 51
Simut, Ramona 93
Sinapov, Jivko 224
Smart, William D. 245
Smith, Melissa A. 421
Sowell, Ross 245
Spagnolo, Paolo 124
Stabinger, Sebastian 204
Stadler, Susanne 461
Stirrat, Tanner 245
Stollnberger, Gerald 461
Stone, Peter 224
Suzuki, Daisuke 482
Suzuki, Kenji 492
Suzuki, Ryota 370
Sweet, Timothy 113

Taheri, Alireza 1, 623
Tahon, Marie 633

Takanishi, A. 664
Tapus, Adriana 164
Torta, E. 654
Trinh, Thanh Q. 643
Trovato, G. 654, 664
Truong, Khiet P. 704
Tscheligi, Manfred 461
Tulk, Stephanie 684

Umemuro, Hiroyuki 482

Van de Perre, Greet 93
van Dijk, J.A.G.M. 184
Vanderborght, Bram 93
Vänni, Kimmo J. 674
Varni, Giovanna 543
Vazirnezhad, Bahram 440
Velonaki, Mari 41, 51
Veloso, Manuela 61, 359
Ventura, Rodrigo 451
Vergés-Llahí, Jaume 613
Verlinden, Jouke 135
Vircikova, Maria 411

Wagner, Alan R. 574
Walliser, James 684
Wang, Ningyang 145
Wang, Yan 554
Wiese, Eva 421, 431, 564, 684
Wong, Alvin Hong Yee 296
Wu, Feng 145
Wykowska, Agnieszka 296

Yamada, Taichi 370
Yamazaki, Akiko 370
Yamazaki, Keiichi 370
Yang, Fan 694
Young, James E. 554
Youssef, Khaoula 337
Yuen, Anthony Wong Chen 296

Zaga, Cristina 704
Zaphiris, Panayiotis 255
Zhang, Ruonan 245
Zibetti, Elisabetta 543

Author Index 717


	Preface
	Organization
	Contents
	The Effect of Applying Humanoid Robots as Teacher Assistants to Help Iranian Autistic Pupils Learn English as a Foreign Language
	1 Introduction
	2 Methodology
	2.1 Participants
	2.2 Instruments
	2.3 Data Collection Procedure

	3 Results
	4 Discussion and Conclusion
	References

	Social Robots for Older Adults: Framework of Activities for Aging in Place with Robots
	1 Introduction
	2 Related Work
	2.1 State of the Art on Social Robots for Older Adults

	3 Methodology
	3.1 Participants
	3.2 Procedure and Methods
	Phase 1: Information and Sensitizing.
	Phase 2: Brainstorm Session.
	Phase 3: Choosing Robots.


	4 Results
	4.1 Coding Procedure
	4.2 Activities for Aging in Place with Robots
	4.3 Chosen Robots

	5 Conclusions and Discussion
	References

	An Empathic Robotic Tutor for School Classrooms: Considering Expectation and Satisfaction of Children as End-Users
	1 Introduction
	2 Related Work
	2.1 Expectation and Satisfaction in HRI: Definition of Concepts
	2.2 Expectations and Satisfaction Towards Robots for Education

	3 Methodology
	3.1 Participants
	3.2 System Architecture and Set-Up
	3.3 Measures
	3.4 Procedure

	4 Results
	4.1 Expectations and Satisfaction Towards a Robotic Tutor

	5 Conclusions and Future Work
	References

	A Reactive Competitive Emotion Selection System
	1 Introduction
	2 Related Work
	3 Tomkins' Emotion Theory
	4 Emotional System
	4.1 Stimulation Calculator
	4.2 Emotion Generator

	5 Implementation and Results
	6 Conclusions and Further Work
	References

	Group Vs. Individual Comfort When a Robot Approaches
	1 Introduction
	2 Design and Conduct of Experiments
	3 Results
	3.1 Participants
	3.2 Intra-Position Analysis
	3.3 Inter-Position Analysis

	4 Discussion
	5 Conclusion
	References

	Understanding Group Comfort Through Directional Statistics
	1 Introduction
	2 Directional Statistics
	2.1 Test of Distribution Uniformity
	2.2 Comparison of Circular Distributions

	3 Experiment
	3.1 Data Preprocessing

	4 Experiment Results
	4.1 Rayleigh Tests of Uniformity
	4.2 Watson's U2 Test

	5 Discussion
	6 Conclusion
	References

	Adaptive Interaction of Persistent Robots to User Temporal Preferences
	1 Introduction
	2 Related Work
	3 Formalism and User Modeling
	3.1 Problem Setting
	3.2 Modeling Dynamic User Preferences Over Time

	4 Learning Model Parameters from User Feedback
	4.1 Profile ``Conservative''
	4.2 Profile ``Consistent but Fatigable''
	4.3 Profile ``Erratic''
	4.4 Action Sequences Generation

	5 Results
	6 Conclusion and Future Work
	References

	Incremental Speech Production for Polite and Natural Personal-Space Intrusion
	1 Introduction
	2 A Software Architecture Integrating Social Spacesand Incremental Speech Synthesis
	2.1 Social Spaces
	2.2 Verbal-Planner
	2.3 Controller
	2.4 Incremental Speech Production

	3 Observation Study
	3.1 Experiment Setup
	3.2 Results
	3.3 Discussion

	4 Conclusions
	References

	When Robots Object: Evidence for the Utility of Verbal, but not Necessarily Spoken Protest
	1 Introduction and Motivation
	2 Methods
	3 Results
	4 Discussion
	5 Conclusions
	References

	Probolino: A Portable Low-Cost Social Device for Home-Based Autism Therapy
	1 Introduction
	2 Related Work
	2.1 Probo -- The Huggable Social Robot
	2.2 Using Social Story and Visual Schedules in Autism Therapy

	3 Development of Probolino
	3.1 Overview
	3.2 Hardware
	3.3 Software
	3.4 Web Interface

	4 Interactive Game for Home-Based Therapy
	4.1 Probogotchi
	4.2 Schedule Mode with Right-Wrong Game

	5 Initial Testing
	6 Conclusion and Future Work
	References

	Improving Human-Robot Physical Interaction with Inverse Kinematics Learning
	1 Introduction
	2 Related Work
	3 Learning the Inverse Kinematics Function
	3.1 Overview
	3.2 Joint-Task Kernel Regression

	4 Experiments
	4.1 Experimental Setup
	4.2 User Study
	4.3 Results

	5 Conclusion
	References

	Team-Building Activities for Heterogeneous Groups of Humans and Robots
	1 Introduction
	2 Related Work
	3 Experiment Design
	3.1 Procedure
	3.2 Materials and Setup
	3.3 Team-Building Activity
	3.4 Primary Task

	4 Results
	5 Discussion
	6 Conclusion and Future Work
	References

	Automatic Joint Attention Detection During Interaction with a Humanoid Robot
	1 Introduction
	2 Proposed Method
	2.1 System Overview
	2.2 Segmentation
	2.3 Head Detection
	2.4 Behavior Understanding

	3 Experiments
	3.1 Setup and Dataset
	3.2 Results

	4 Conclusions and Future Improvements
	References

	Characterizing the State of the Art of Human-Robot Coproduction
	1 Introduction
	2 Background
	2.1 Manufacturing Systems
	2.2 The production Line and Workstations

	3 Survey of Human Robot Coproduction Systems
	3.1 Demonstrator Selection
	3.2 Demonstrator Descriptions
	3.3 Categorization of Demonstrators

	4 Results and Discussion
	5 Conclusions and Future Work
	References

	KeJia Robot--An Attractive Shopping Mall Guider
	1 Introduction
	2 Related Work
	3 Features and Hardware
	3.1 Key Features
	3.2 Hardware

	4 System Architecture
	4.1 Top-Floor Structure
	4.2 Software Modules Structure
	4.3 Methods to Challenging Modules

	5 Results of Field Trials
	6 Conclusions
	References

	Case-Sensitive Methods for Evaluating HRI from a Sociological Point of View
	1 Introduction
	2 General Assumptions Regarding HRI from a Sociological and Biomimetics Point of View
	3 Evaluating the Quality of HRI with Breaching Experiments
	4 Summary
	References

	Social Facilitation in a Game-Like Human-Robot Interaction Using Synthesized Emotions and Episodic Memory
	1 Introduction
	2 Experimental Design Setup
	2.1 Hypothesis
	2.2 Game Scenario Description
	2.3 Robot Behaviors

	3 Methodology
	3.1 Episodic Memory
	3.2 OCC Model

	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Motions of Robots Matter! The Social Effects of Idle and Meaningful Motions
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Design
	2.3 Experimental Set-up
	2.4 Robot Motions
	2.5 Verbal Utterances
	2.6 Questionnaire 
	2.7 Procedure
	2.8 Data Analysis

	3 Results
	3.1 Social Verification
	3.2 Effect of Motion

	4 Discussion and Conclusions
	4.1 Social Verification
	4.2 Effect of Motion

	References

	What Makes Robots Social?: A User’s Perspective on Characteristics for Social Human-Robot Interaction
	1 Introduction
	2 Method
	2.1 The Karotz Robot
	2.2 Data Collection and Procedure
	2.3 Data Analysis
	2.4 Participants

	3 Results
	3.1 Two-Way Interaction
	3.2 Thoughts and Feelings
	3.3 Social Awareness
	3.4 Social Support
	3.5 Autonomy
	3.6 Coziness
	3.7 Similarity
	3.8 Mutual Respect

	4 General Discussion
	4.1 Essential Social Abilities for Social Robots
	4.2 Can Robots Actually be Social?
	4.3 How to Make Better Social Robots

	5 Conclusion
	References

	An Adaptive and Proactive Human-Aware Robot Guide
	1 Introduction
	2 Situation Assessment
	3 Planning and Supervision
	4 Motion Planning
	5 Experiments and Analysis
	6 Conclusions
	References

	The Effects of Social Gaze in Human-RobotCollaborative Assembly
	1 Introduction
	2 Previous Work
	3 Method
	3.1 The Robot
	3.2 Experimental Conditions
	3.3 Experimental Procedure
	3.4 Questionnaire
	3.5 Participants
	3.6 Analysis

	4 Results
	4.1 Users’ Perception of the Robot’s Gaze Behavior
	4.2 Eye Gaze During Contact Initiation
	4.3 Eye Gaze Between Tasks
	4.4 Conceptualizing the Robot and Understanding Robot Gaze

	5 Discussion
	6 Conclusion
	References

	Influence of Upper Body Pose Mirroring in Human-Robot Interaction
	1 Introduction
	2 Related Work
	3 Method
	3.1 Hypotheses
	3.2 Experimental Validation
	3.3 Experimental Setup
	3.4 Experimental Procedure
	3.5 Questionnaire

	4 Results
	5 Conclusion
	References

	Robot-Centric Activity Recognition`in the Wild'
	1 Introduction
	2 Related Work
	3 Dataset
	4 Activity Recognition
	5 Experimental Results
	6 Conclusion
	References

	``Yes Dear, that Belongs into the Shelf!'' - Exploratory Studies with Elderly People Who Learn to Train an Adaptive Robot Companion
	1 Introduction
	2 Decision Making Algorithm
	3 Exploratory Studies
	4 Study 1 Teaching the Robot a Card Game
	5 Study 2 - Teaching the Robot in Social Scenarios
	6 Conclusion
	References

	Using Video Manipulation to Protect Privacy in Remote Presence Systems
	1 Introduction
	2 Defining Privacy
	3 Related Work
	4 Protecting Privacy with Video Manipulation
	4.1 Results

	5 Effects on Task Performance
	5.1 Results

	6 Conclusions
	References

	Social Robots as Co-therapists in Autism Therapy Sessions: A Single-Case Study
	1 Introduction
	2 State of the Art
	2.1 Technology Based Interventions in Autism Therapy
	2.2 Robotic Interventions

	3 Method
	3.1 Participant
	3.2 Setting
	3.3 Procedures

	4 Findings and Discussion
	5 Conclusions
	References

	Personalized Short-Term Multi-modal Interaction for Social Robots Assisting Users in Shopping Malls
	1 Introduction
	2 Related Work
	3 COACHES Environment, Hardware and Software Architecture
	4 Personalized Short-Term Multi-modal Interactions
	4.1 PNP Adaptor and Executor
	4.2 Interaction Manager
	4.3 Speech and Graphical Interfaces

	5 Examples of Personalized Interactions
	6 Conclusions
	References

	Non-verbal Signals in HRI: Interference in Human Perception
	1 Introduction
	2 Related Work
	3 Experiment 1: Robots' Non-verbal Cues Perceived as Verbal by Participants
	4 Experiment 2: Facilitation of Non-verbal Understanding by Congruent Verbal Signals
	5 Discussion and Conclusion
	References

	Empathic Robotic Tutors for Personalised Learning: A Multidisciplinary Approach
	1 Introduction
	2 Background
	3 Design Goals
	4 Scenarios and System Overview
	5 Design Process
	5.1 Interviews
	5.2 Participatory Design Workshops
	5.3 Mockup Studies with Teachers and Students
	5.4 User-Centered Design and Pedagogical Theories

	6 Initial Implementation
	7 Wizard of Oz Studies
	8 Development of Fully Autonomous Behavior
	9 Lessons Learned
	10 Conclusion
	References

	Robot-Assisted Training of Joint Attention Skills in Children Diagnosed with Autism
	1 Introduction
	1.1 Autism
	1.2 Robot Therapy
	1.3 Aim of Study

	2 Materials and Methods
	2.1 Participants
	2.2 Stimuli and Apparatus
	2.3 Procedure
	2.4 Data Analysis

	3 Results
	3.1 Joint Attention Scores
	3.2 Color Accuracy and Button Press Accuracy

	4 Discussion
	4.1 RJA & IJA Scores
	4.2 Verbal Color Accuracy and Button Press Accuracy
	4.3 Implications and Future Directions
	4.4 Conclusions

	References

	Implicit Nonverbal Behaviors Expressing Closeness by 3D Agents
	1 Introduction
	2 Method
	2.1 Participants
	2.2 Procedure
	2.3 System
	2.4 Questionnaire

	3 Results
	3.1 Manipulation Check
	3.2 Extraction of Motions
	3.3 Categorization of Motions
	3.4 Effect of Relationsh hips on Number and Variety of Motions
	3.5 Specific Motions or fo Strangers and Friends
	3.6 Creation of Two Sc cenarios
	3.7 Evaluation of the S Scenarios

	4 Conclusion
	References

	Visiting Cultural Heritage with a Tour Guide Robot: A User Evaluation Study in-the-Wild
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 FROG the Tour Guide Robot
	3.2 Participants
	3.3 Procedure
	3.4 Data Analysis

	4 Results
	5 Discussion and Conclusion
	References

	Higher Nonverbal Immediacy Leads to Greater Learning Gains in Child-Robot Tutoring Interactions
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Participants
	3.2 Hypotheses
	3.3 Interaction Protocol
	3.4 Robot Conditions and Behaviour

	4 Results
	4.1 Learning Gains
	4.2 Questionnaire Data
	4.3 Gaze Analysis

	5 Discussion
	6 Conclusion
	References

	Exploring the Four Social Bonds Evolvement for an Accompanying Minimally Designed Robot
	1 Introduction
	2 Related Work
	3 ROBOMO Concept Design
	4 ROBOMO Architecture
	5 Hypothesis
	6 Experimental Protocol
	7 Measurements
	8 Proactivity versus Reactivity
	9 Comparison of Proactive Full Mode with IU-Based and Gesture-Based Communication
	10 Conclusion and Future Research
	References

	SDT: Maintaining the Communication Protocol Through Mixed Feedback Strategies
	1 Introduction
	2 Background
	3 Architecture of the SDT
	4 Robot's Action Selection Strategy
	4.1 Actor Learning
	4.2 Critic Learning

	5 Feedback Strategies
	5.1 Visible Movement-Based Feedback Strategy Method 
	5.2 Static Mixed Feedback Strategy 
	5.3 Adaptive Mixed Feedback Strategy 

	6 Experimental Setup
	7 Survey Procedure
	8 Challenges of Using the Robot's Movement as a Feedback Strategy
	9 Mixed-Feedback Strategy Vs Movement-Based Feedback Strategy
	10 Static Mixed Feedback Strategy Vs Adaptive Mixed-Feedback Strategy
	11 Conclusion
	References

	Personalized Assistance for Dressing Users
	1 Introduction
	2 Related Work
	3 Approach to Personalized Dressing
	3.1 Vision-Based User Tracking
	3.2 Dressing Tasks as Template Goals
	3.3 Motion Planning
	3.4 User-Aware Pose Selection and Assistance Planning
	3.5 Learning and Refining User Constraints

	4 Evaluation
	4.1 Planning and Executing with Increasing Constraint Complexity
	4.2 Learning User Models

	5 Conclusion
	References

	Formations for Facilitating Communication Among Robotic Wheelchair Users and Companions
	1 Introduction
	2 Sociological Background for Interaction Analysis Between Wheelchair User and Companion
	3 Observation of One-on-One Communication while Moving
	3.1 Participants NOT Assigned A Conversation Task
	3.2 Participants Assign ned Conversation Task

	4 Observation of G Group Communication and Formation
	4.1 Tandem Formation n
	4.2 Diagonal Formation
	4.3 Side Formation

	5 Experiment Using Multiple Robotic Wheelchair System
	5.1 Tandem
	5.2 Diagonal
	5.3 Side

	6 Conclusion
	References

	Young Users’ Perception of a Social Robot Displaying Familiarity and Eliciting Disclosure
	1 Introduction
	2 Background
	3 System and Setup
	4 Experimental Study 1: Familiarity Display
	4.1 Familiarity Display
	4.2 Experiment Methodology
	4.3 Results

	5 Experimental Study 2: Off-Activity Talk
	5.1 Off-Activity Talk
	5.2 Experiment Methodology and Results

	6 Discussion and Conclusion
	References

	You're Doing It Wrong! Studying Unexpected Behaviors in Child-Robot Interaction
	1 Introduction
	1.1 Towards Sustained Engagement
	1.2 Design and Hypotheses

	2 Research Methodology
	2.1 Experimental Setting
	2.2 Data Collection

	3 Main Findings
	4 Conclusions and Future Directions
	References

	An Embodied AI Approach to Individual Differences: Supporting Self-Efficacy in Diabetic Children with an Autonomous Robot
	1 Introduction
	2 Robin, the Diabetic Autonomous Robot Toddler
	2.1 Motivation
	2.2 Robot Architecture
	2.3 Interaction with Robin

	3 Trial Interactions
	3.1 First Pilot: Hospital
	3.2 Second Pilot: Summer Camp

	4 Personalized Interactions
	4.1 Socially Proactive vs. Socially Responsive
	4.2 Verbal vs. Non-verbal
	4.3 Response to Diabetes Symptoms
	4.4 Interactions with Two Children

	5 Conclusions and Future Work
	References

	Socially-Assistive Emotional Robot that Learns from the Wizard During the Interaction for Preventing Low Back Pain in Children
	1 Introduction
	2 Social Robots in Therapies
	3 Design of a Motivational Robotic System for Physical Therapy
	3.1 Our Previous Research
	3.2 Adding Motivational Behaviors Controlled by the Wizard

	4 Implications: Learning from the Wizard
	5 Conclusion
	References

	Does the Presence of Social Agents Improve Cognitive Performance on a Vigilance Task?
	1 Introduction
	2 Experiments
	2.1 Experiment 1
	2.2 Experiment 2

	3 General Discussion
	References

	Agent Appearance Modulates Mind Attribution and Social Attention in Human-Robot Interaction
	1 Introduction
	1.1 Gaze Direction as a Cue to Others’ Attention
	1.2 Aim of Study

	2 Methods and Materials
	2.1 Participants
	2.2 Apparatus
	2.3 Stimuli
	2.4 Procedure
	2.5 Analysis

	3 Results
	4 Discussion
	References

	Ava (A Social Robot): Design and Performance of a Robotic Hearing Apparatus
	1 Introduction
	2 Speaker Localization
	3 “Ava”, A Social Robot
	4 Experiments and Discussion
	5 Conclusions
	References

	A Particle-Filter Approach for Active Perception in Networked Robot Systems
	1 Introduction
	2 Active Perception via Probabilistic Planning of Information-Gathering Paths
	2.1 Estimating the Position of a Moving Target
	2.2 Planning the Motion of the Robot
	2.3 Extension for Multiple Robots

	3 Experimental Results
	4 Conclusions and Future Work
	References

	Impact of Robot Actions on Social Signals and Reaction Times in HRI Error Situations
	1 Introduction
	2 Related Work
	3 Video Corpus and Annotation
	4 Results
	5 Discussion
	6 Conclusion
	References

	Social-Task Learning for HRI
	1 Introduction
	2 Related Work
	3 Model
	4 Scenario
	4.1 Experimental Setup
	4.2 Teaching Protocol

	5 Model Performance in Simulation
	5.1 Task Model Performance
	5.2 Social Model

	6 Experiments on the Real Robot
	6.1 Robotic Architecture
	6.2 Experimental Results

	7 Discussion
	8 Conclusion and Future Work
	References

	Development of the Multi-dimensional Robot Attitude Scale: Constructs of People's Attitudes Towards Domestic Robots
	1 Introduction
	2 Extraction of Elements of People's Attitudes Towards Domestic Robots
	2.1 Methods
	2.2 Results

	3 Dimensions of Attitudes Towards Domestic Robots
	3.1 Methods
	3.2 Results

	4 Development of the Attitude Scale
	4.1 Constructs of the Scale
	4.2 Reliability and Representativeness of the Scale

	5 Discussion
	References

	Humanoid Robot Assisted Training for Facial Expressions Recognition Based on Affective Feedback
	1 Introduction
	2 Framework Components
	2.1 Training: Face Expression Expert Program (FEEP)
	2.2 Measuring: Smile Detector
	2.3 Encouraging: Socially Assistive Robot

	3 Performance Evaluation
	4 Results
	5 Discussions
	6 Conclusions
	References

	Designing Robotic Teaching Assistants: Interaction Design Students' and Children's Views
	1 Introduction
	2 Related Work
	3 Study
	3.1 Participants and Procedures

	4 Analysis and Results
	4.1 Interaction Designers
	4.2 Children without Robotics Knowledge
	4.3 Children with Robotics Knowledge

	5 Discussion and Conclusions
	References

	Healthcare Robots in Homes of Rural Older Adults
	1 Introduction
	1.1 Caring for an Ageing Population in Rural Communities
	1.2 Robots and Ageing in Place
	1.3 Aims and Hypotheses

	2 Methods
	2.1 Setting and Ethics
	2.2 iRobi
	2.3 Research Design
	2.4 Participants
	2.5 Procedure
	2.6 Data Analyses

	3 Results
	3.1 Medical care Utilis ation, Quality of Life, Adherence, and Robot Acceptance
	3.2 Emergent Themes from the Interviews

	4 Discussion
	References

	More Social and Emotional Behaviour May Lead to Poorer Perceptions of a Social Robot
	1 Introduction
	2 Related Work
	3 An Autonomous Social Robot that Shares Emotions
	4 Methodology
	4.1 Participants
	4.2 Procedure
	4.3 Measures

	5 Results
	6 Discussion and Conclusions
	References

	Towards a Robot Computational Model to Preserve Dignity in Stigmatizing Patient-Caregiver Relationships
	1 Introduction
	2 Shame and Empathy Representations
	2.1 A Componential Re epresentation of Shame
	2.2 A Componential Representation for the Empathetic Response
	2.3 A Componential Re epresentation for Guilt

	3 Overview of Framework Designed to Uphold Patient Dignity
	4 Conclusions and Future Work
	References

	Predicting Extraversion from Non-verbal Features During a Face-to-Face Human-Robot Interaction
	1 Introduction
	2 Methods and Materials
	3 Non-verbal Features Extraction
	4 Automated Prediction of Extraversion During HRI
	5 Conclusion and Future Works
	References

	Check Your Stereotypes at the Door: An Analysis of Gender Typecasts in Social Human-Robot Interaction
	1 Introduction
	2 Related Work
	3 Stereotypes and Hypotheses
	3.1 Selected Stereotypes About Male and Female Users
	3.2 Selected Stereotypes Applied to Male or Female Robots

	4 Study Design
	4.1 Instruments and Analysis Method
	4.2 Manipulations
	4.3 Method

	5 Results
	5.1 Post-Hoc Analysis
	5.2 Discussion

	6 Summary
	Appendix
	References

	Effects of Perspective Taking on Ratings of Human Likeness and Trust
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Materials
	2.3 Procedure
	2.4 Design and Analysis

	3 Results
	3.1 Qualitative Data
	3.2 Quantitative Data

	4 Discussion
	4.1 Conclusions

	References

	Timing is Key for Robot Trust Repair
	1 Introduction
	2 Trust Repair
	3 Experimental Setup
	4 Results
	5 Discussion
	6 Conclusion
	References

	Towards Safe and Trustworthy Social Robots: Ethical Challenges and Practical Issues
	1 Introduction
	2 Trust in Human-Machine Interaction
	3 Study Design
	4 Insights Based on Qualitative Data Analysis
	5 Challenges of Measuring Safety and Trust in HRI
	6 Beyond Lab Research: Implications and Outlook
	References

	Children's Perception of Synthesized Voice: Robot's Gender, Age and Accent
	1 Introduction
	2 Background
	3 Method
	3.1 Participants
	3.2 Social Robot Platform
	3.3 Procedure
	3.4 Manipulation
	3.5 Measures

	4 Results
	4.1 Robot's Perceived Gender
	4.2 Robot's Perceived Age
	4.3 Voice Preference

	5 Conclusions
	References

	SPARC: Supervised Progressively Autonomous Robot Competencies
	1 Introduction
	2 Related Work
	3 Assessing the Effect of a Progressively Autonomous Robot on Supervisor Workload
	3.1 Child Model
	3.2 Wizarded-Robot Control
	3.3 Learning Algorithm
	3.4 Participants
	3.5 Hypotheses
	3.6 Interaction Protocol

	4 Results
	4.1 Interaction Data
	4.2 Questionnaire Data

	5 Discussion
	References

	A Case Study of Robot Interaction Among Individuals with Profound and Multiple Learning Disabilities
	1 Introduction
	2 Method
	2.1 The Approach
	2.2 Participants
	2.3 Procedure
	2.4 Measurement and Evaluation

	3 Result and Discussion
	4 Conclusion and Future Work
	References

	Impact of Humanoid Social Robots on Treatment of a Pair of Iranian Autistic Twins
	1 Introduction
	2 Research Methodology
	2.1 Participants
	2.2 Intervention Sessions
	2.3 Set-up of the Study
	2.4 Humanoid Robots
	2.5 Therapeutic Games
	2.6 Assessment Tools

	3 Results and Discussions
	3.1 Quantitative Conte ent Analysis
	3.2 GARS
	3.3 Human Assessment
	3.4 Interview with Parents

	4 Conclusion
	References

	Cross-Corpus Experiments on Laughter and Emotion Detection in HRI with Elderly People
	1 Introduction
	2 Acoustic Cues
	3 Databases
	3.1 ROMEO2 Corpus
	3.2 ARMEN Corpus
	3.3 OFFICE Corpus
	3.4 JEMO Corpus
	3.5 Characteristics of the Databases

	4 Cross-Corpus Experiments with Elderly and Young People Voices
	4.1 Comparison of Acoustic Features Between Elderly and Young Adults People
	4.2 Methodology: Cross-Corpus Experiments
	4.3 Cross-Corpus Results

	5 Conclusion
	References

	``Go Ahead, Please'': Recognition and Resolution of Conflict Situations in Narrow Passages for Polite Mobile Robot Navigation
	1 Introduction and Motivation
	2 Related Work
	3 Robot Platform ROREAS
	4 Deadlock Recognition
	4.1 Narrow Passage Detection
	4.2 Qualitative Spatial Features
	Movement Direction.
	Orientation.
	Narrow Passage Position.

	4.3 Space Conflict Prediction
	4.4 Situation Classification

	5 Finding Non-obstructive Waiting Positions
	5.1 Multi-criteria Optimization
	5.2 Optimization Criteria
	Driven Distance.
	Observability.
	Distance to Walls.
	Social Distance.


	6 Experimental Results of Field Tests and Outlook
	6.1 Discussion and Future Works

	References

	Study on Adaptation of Robot Communication Strategies in Changing Situations
	1 Introduction
	2 Experimental Procedures and Materials
	2.1 Living Room
	2.2 Robot Behaviours
	2.3 Questionnaires and Individual Learning
	2.4 Face Detection and Distance Measurement
	2.5 Experimental Procedure

	3 Results
	3.1 General Behaviour Preferences and Effectiveness
	3.2 Room Condition Specific Behaviour Effectiveness

	4 Discussion
	4.1 Considerations on Communication Channels
	4.2 Considerations about Learning
	4.3 Considerations on Automatic Classification
	4.4 Choice of Measures

	5 Conclusion
	References

	Investigating the Effect of Relative Cultural Distance on the Acceptance of Robots
	1 Introduction
	1.1 Cultural Differences in Robotics
	1.2 Cultural Distance
	1.3 Purpose of This Paper

	2 Experimental Procedures and Materials
	2.1 Hardware
	2.2 Experimental Protocol
	2.3 Videos
	2.4 Assessment
	4 Discussion
	5 Conclusion
	References

	3 Results
	3.1 Demographics
	3.2 Results: Scales
	3.3 Results: Subjects’ Preference

	4 Discussion
	5 Conclusion
	References

	Role of Social Robotics in Supporting Employees and Advancing Productivity
	1 Introduction
	1.1 Presenteeism
	1.2 Social Robotics

	2 Materials and Methods
	2.1 Statistical Analysis

	3 Results
	4 Discussion
	References

	Effects of Perspective Taking on Implicit Attitudes and Performance in Economic Games
	1 Introduction
	1.1 Aim of Study

	2 Experiments
	2.1 Participants
	2.2 Stimuli
	2.3 Tasks and Procedure
	2.4 Perspective Taking Task
	2.5 Implicit Association Test
	2.6 Economic Games (EGs)
	2.7 Subjective Ratings

	3 Results
	3.1 Implicit Association Test
	3.2 Economic Games
	3.3 Subjective es Measure

	4 Discussion
	References

	Smile and Laughter Detection for Elderly People-Robot Interaction
	1 Introduction
	2 Related Work
	3 ROMEO2 Corpus
	4 Proposed Smile and Laughter Detection Methods
	4.1 Audio-Visual Fusion of Smile and Laughter Detection
	4.2 Visual Smile and Laughter Detection
	4.3 Laughter Detection from Audio

	5 Experiments
	5.1 Visual Smile and Laughter Detection Results
	5.2 Audio Laughter Detection Results
	5.3 Video-Audio Smile and Laughter Detection

	6 Conclusion and Future Work
	References

	The Effect of a Robot's Social Character on Children's Task Engagement: Peer Versus Tutor
	1 Introduction
	2 Children's Task Engagement
	3 Related Work and Hypotheses
	4 Method
	4.1 Robot Character Design
	4.2 Setup, Procedure and Participants
	4.3 Measures
	4.4 Data Analysis

	5 Results
	6 Discussion
	7 Limitations and Future Work
	References

	Author Index



