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We undertake a detailed study of the sets of multiplicity 
in a second countable locally compact group G and their 
operator versions. We establish a symbolic calculus for 
normal completely bounded maps from the space B(L2(G))
of bounded linear operators on L2(G) into the von Neumann 
algebra VN(G) of G and use it to show that a closed 
subset E ⊆ G is a set of multiplicity if and only if the 
set E∗ = {(s, t) ∈ G × G : ts−1 ∈ E} is a set of 
operator multiplicity. Analogous results are established for 
M1-sets and M0-sets. We show that the property of being 
a set of multiplicity is preserved under various operations, 
including taking direct products, and establish an Inverse 
Image Theorem for such sets. We characterise the sets of 
finite width that are also sets of operator multiplicity, and 
show that every compact operator supported on a set of finite 
width can be approximated by sums of rank one operators 
supported on the same set. We show that, if G satisfies 
a mild approximation condition, pointwise multiplication by 
a given measurable function ψ : G → C defines a closable 
multiplier on the reduced C∗-algebra C∗

r (G) of G if and only 
if Schur multiplication by the function N(ψ) : G × G → C, 
given by N(ψ)(s, t) = ψ(ts−1), is a closable operator when 
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viewed as a densely defined linear map on the space of 
compact operators on L2(G). Similar results are obtained for 
multipliers on VN(G).

© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

The connections between Harmonic Analysis and the Theory of Operator Algebras 
have a long and illustrious history. With his pivotal paper [2], W.B. Arveson opened up 
a new avenue in that direction by introducing the notion of operator synthesis. The re-
lation between operator synthesis and spectral synthesis for locally compact groups was 
explored in detail in [14,25,39,9,10], among others. In this connection, J. Froelich [14]
studied the question of when the operator algebra associated with a commutative sub-
space lattice contains a non-zero compact operator. For any compact abelian group G

and a closed subset E ⊆ G, he constructed a commutative subspace lattice LE, such 
that the corresponding operator algebra contains a non-zero compact operator if and 
only if E is a set of multiplicity in the sense of (commutative) Harmonic Analysis.

Recently, we observed in [34] a connection between sets of multiplicity and the closabil-
ity of linear transformations that are a natural unbounded analogue of Schur multipliers. 
Motivated originally by Schur multiplication of matrices, Schur multipliers have played 
an important role in a number of contexts in Operator Theory, see e.g. [18] and [30]. In 
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the context of Harmonic Analysis, they provide the basis for a useful characterisation of 
completely bounded multipliers of the Fourier algebra A(G) of a locally compact group G

introduced in [7]. Namely, a measurable function ψ : G → C is a completely bounded 
multiplier of A(G) precisely when the function N(ψ), given by N(ψ)(s, t) = ψ(ts−1), is a 
Schur multiplier on G ×G [6] (see also [19] and [38]). The functions ψ satisfying the latter 
condition are known as Herz–Schur multipliers. Any multiplier ψ on A(G) determines a 
bounded transformation on the corresponding reduced group C∗-algebra defined by the 
pointwise multiplication of L1(G) by ψ.

Unbounded transformations of Schur type, acting on group C∗-algebras, have been 
considered in the literature in connection with problems arising in Non-commutative 
Geometry (see [1] and the references therein). However, unbounded versions of transfor-
mations on group C∗-algebras corresponding to multipliers of Fourier algebras and their 
connection with (unbounded) operators of Schur type have not been explored until the 
present work.

These considerations gave the motivation for our present study of sets of multiplic-
ity in the general setting of locally compact groups and their connection with closable 
multipliers on group algebras.

Sets of multiplicity for the group of the circle initially arose in connection with 
the problem of uniqueness of trigonometric series and have been extensively studied 
(see [15]). In a general locally compact group G, sets of uniqueness (or, equivalently, of 
non-multiplicity) were introduced by M. Bożejko in [4] as those closed subsets E ⊆ G

which do not support non-zero elements of the reduced C∗-algebra C∗
r (G) of G.

An operator counterpart of sets of multiplicity was introduced in [34]. On the operator 
level, as well as on the level of locally compact groups, two classes of sets of multiplicity 
have been mostly examined: (operator) M -sets and (operator) M1-sets. Here we intro-
duce the class of operator M0-sets and show, in Section 4, that a closed subset E of 
a second countable locally compact group G is an M -set (resp. M1-set, M0-set) if and 
only if the set E∗ = {(s, t) : ts−1 ∈ E} ⊆ G × G is an operator M -set (resp. operator 
M1-set, operator M0-set). These results should be compared to the result established 
in [14,25,39] stating that E is a set of local spectral synthesis if and only if E∗ is a set 
of operator synthesis. They permit the use of operator theoretic methods in the study 
of concepts pertinent purely to Harmonic Analysis.

An important role in our approach plays the technique of pseudo-integral operators 
introduced in [2]. Some results on these operators, which are used in the sequel, are 
collected in Section 3 of the paper. En route, we give an affirmative answer of a question 
of J. Froelich [14] concerning the validity of a tensor product formula for masa-bimodules 
(see Theorem 3.8).

The main technical tool we develop and use is a symbolic calculus for weak* continuous 
completely bounded maps from the algebra B(L2(G)) of bounded operators on L2(G)
into the von Neumann algebra VN(G) of G (see Theorem 4.6). A significant role in our 
approach is played by a locally compact version of the uniform Roe algebra which was 
introduced for discrete groups in [32] and has been studied in various contexts.
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In Section 5, we show that the property of being a set of (operator) multiplicity is 
preserved under some natural operations. These include direct products and a certain 
type of generalised union. As a corollary of a more general operator algebraic statement, 
we recover M. Bożejko’s result [5,4] that every countable closed set in a non-discrete 
locally compact group is a set of uniqueness. We also establish an Inverse Image Theorem 
for sets of operator multiplicity (see Theorem 5.5).

In Section 6, we examine sets of finite width. This class of sets has played a funda-
mental role in the field since their introduction in [2] (see [9,10,35] and the references 
therein). We characterise the sets of finite width that are also sets of operator multiplic-
ity, and show that, in general, every compact operator supported on a set of finite width 
is the norm limit of sums of rank one operators supported on this set.

Sections 7 and 8 are devoted to the main applications of the previously described 
results. Namely, in Section 7, we establish a “closable” version of the aforementioned 
characterisation of completely bounded multipliers, showing that for groups G satisfying 
a certain approximation property (more general than weak amenability), ψ is a closable 
multiplier on C∗

r (G), in the sense that the pointwise multiplication of L1(G) by ψ is a 
closable map on C∗

r (G), if and only if N(ψ) is a closable multiplier in the sense of [34]. 
We present various examples of closable and non-closable multipliers.

In Section 8, we discuss similar multiplier maps on the group von Neumann algebra 
VN(G). We introduce the notion of a weak* closable operator, which is suitable for the 
setting of dual Banach spaces, such as VN(G). We show that a continuous function ψ is a 
weak* closable multiplier if and only if N(ψ) is a local Schur multiplier [34], which occurs 
precisely when ψ belongs locally to the Fourier algebra A(G). Weak** closable multipliers 
on C∗

r (G) [34] (see Section 2.1) are shown to form a proper subset of the class of weak* 
closable multipliers, which in turn form a proper subset of the class of closable multipliers.

Finally, in Section 2, we collect the necessary preliminary material and set notation 
for the subsequent sections.

2. Preliminaries

In this section, we collect some definitions and results that will be needed in the 
sequel.

2.1. Closable operators

Let X and Y be Banach spaces and T : D(T ) → Y be a linear operator, where the 
domain D(T ) of T is a dense linear subspace of X . The operator T is called closable if 
the closure GrT of its graph

GrT =
{
(x, Tx) : x ∈ D(T )

}
⊆ X ⊕ Y

is the graph of a linear operator. Equivalently, T is closable if (xk)k∈N ⊆ D(T ), y ∈ Y, 
‖xk‖ →k→∞ 0 and ‖T (xk) − y‖ →k→∞ 0 imply that y = 0. The operator T is called 
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weak** closable [34] if the weak* closure GrTw∗

of GrT in X ∗∗ ⊕ Y∗∗ is the graph of 
a linear operator. Equivalently, T is weak** closable if whenever (xj)j∈J ⊆ D(T ) is a 
net, y ∈ Y∗∗, xj

w∗−−→j∈J 0 and T (xj) w∗−−→j∈J y, we have that y = 0. We note that 
in [34] weak** closable operators were called weak* closable. We have chosen to alter 
our terminology since we feel that the term “weak* closable” is better suited for the 
notion introduced and studied in Section 8 of the present paper.

The domain of the adjoint operator of T is the subspace

D
(
T ∗) =

{
g ∈ Y∗ : ∃f ∈ X ∗ such that g(Tx) = f(x) for all x ∈ D(T )

}
and the adjoint of T is the operator T ∗ : D(T ∗) → X ∗ defined by letting T ∗(g) = f , 
where f is the functional associated with g in the definition of D(T ∗).

In the following proposition, which was stated in [34], the equivalence (iii) ⇔ (iv) is 
well-known (see, for example, [22, Chapter III, Section 5]), while the other implications 
can be proved easily.

Proposition 2.1. Let X and Y be Banach spaces, D(T ) ⊆ X , T : D(T ) → Y be a densely 
defined linear operator and set D = D(T ∗). Consider the following conditions:

(i) T is weak** closable;
(ii) D‖·‖ = Y∗;
(iii) Dw∗

= Y∗;
(iv) T is closable.

Then (i) ⇔ (ii) ⇒ (iii) ⇔ (iv).

2.2. Locally compact groups

If H, H1 and H2 are Hilbert spaces, we denote by B(H1, H2) the space of all bounded 
linear operators from H1 to H2, and set B(H) = B(H, H). Let G be a locally compact 
group. Left Haar measure on G will be denoted by mG or m and integration with respect 
to mG along the variable s will be denoted by ds. We denote by Lp(G), p = 1, 2, ∞, the 
corresponding Lebesgue spaces associated with mG. For a function ξ : G → C, we set as 
customary ξ̌(s) = ξ(s−1), s ∈ G. Let λ : G → B(L2(G)) be the left regular representation 
of G, that is, λsf(t) = f(s−1t), f ∈ L2(G), s, t ∈ G, and M(G) be the measure algebra
of G, consisting by definition of all bounded complex Borel measures on G. We denote the 
variation of θ ∈ M(G) by |θ| and let ‖θ‖ = |θ|(G). The support of a measure θ ∈ M(G)
is the (closed) subset

supp θ =
(⋃{

U ⊆ G : U open, |θ|(U) = 0
})c

;

it is the smallest closed subset E of G with the property that if U ⊆ Ec is a Borel 
set then θ(U) = 0. For a closed set E ⊆ G, let M(E) be the set of all measures θ in 
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M(G) with supp θ ⊆ E. If θ ∈ M(G) then the operator λ(θ) of convolution by θ is given 
by λ(θ)(f)(t) =

´
G
f(s−1t)dθ(s); the map λ : M(G) → B(L2(G)) is a representation 

of M(G) of L2(G). Since L1(G) is a Banach subalgebra of M(G), the restriction of λ
to L1(G) is a representation of L1(G); we have

λ(f)g(t) = f ∗ g(t) =
ˆ

f(s)g
(
s−1t

)
ds, f ∈ L1(G), g ∈ L2(G), t ∈ G.

The Fourier algebra A(G) of G [12] is the algebra of coefficients of λ, that is, the algebra 
of functions of the form s → (λsξ, η), for ξ, η ∈ L2(G). The Fourier–Stieltjes algebra
B(G) of G [12] is, on the other hand, the algebra of coefficients of all continuous unitary 
representations of G acting on some Hilbert space, that is, the algebra of all functions 
of the form s → (π(s)ξ, η), where π : G → B(H) is a continuous unitary representation, 
and ξ, η ∈ H. We denote by C∗

r (G) the reduced C∗-algebra of G, that is, the closure of 
λ(L1(G)) in the operator norm. We let VN(G) = C∗

r (G)
w∗

be the von Neumann algebra
of G, and C∗(G) be the full C∗-algebra of G. It is known [12] that A(G) is a semisimple, 
regular, commutative Banach algebra with spectrum G, which can be identified with the 
predual VN(G)∗ of VN(G) via the pairing 〈u, T 〉 = (Tξ, η), where u ∈ A(G) is given by 
u(s) = (λsξ, η). If T ∈ VN(G) and u ∈ A(G), the operator u · T ∈ VN(G) is given by 
the relations 〈u · T, v〉 = 〈T, uv〉, v ∈ A(G). The map (u, T ) �→ u · T turns VN(G) into a 
Banach A(G)-module.

Let

MA(G) =
{
v : G → C : vu ∈ A(G), for all u ∈ A(G)

}
be the multiplier algebra of A(G). For each v ∈ MA(G), the map u �→ vu on A(G) is 
bounded; its norm will be denoted by ‖v‖MA(G). As usual, let M cbA(G) be the subalgebra 
of MA(G) consisting of those v for which the map u �→ vu on A(G) is completely 
bounded [7]. We refer the reader to [27] and [31] for the basic of Operator Space Theory 
and completely bounded maps.

We denote by C0(G) the space of all continuous functions on G vanishing at infinity. 
The dual of C0(G) can be canonically identified with M(G); the duality between the 
two spaces will be denoted by 〈·,·〉. Note that A(G) ⊆ C0(G) and that the adjoint of this 
inclusion gives rise to the inclusion λ(M(G)) ⊆ VN(G). We refer the reader to [12] for 
more details about the notions discussed above.

If J ⊆ A(G) is an ideal, let

null J =
{
s ∈ G : u(s) = 0 for all u ∈ J

}
.

On the other hand, for a closed set E ⊆ G, let

I(E) =
{
f ∈ A(G) : f(s) = 0, s ∈ E

}
,

J0(E) =
{
f ∈ A(G) : f has compact support disjoint from E

}
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and J(E) = J0(E). We have that nullJ(E) = null I(E) = E and that if J ⊆ A(G)
is a closed ideal with null J = E, then J(E) ⊆ J ⊆ I(E). The support supp(T ) of an 
operator T ∈ VN(G) is given by

supp(T ) =
{
t ∈ G : u · T �= 0 whenever u ∈ A(G) and u(t) �= 0

}
.

It is known (see [12]) that the annihilator J(E)⊥ of J(E) in VN(G) coincides with the 
space of all operators T ∈ VN(G) with supp(T ) ⊆ E.

2.3. Masa-bimodules

We fix, throughout the paper, standard measure spaces (X, μ) and (Y, ν); this means 
that μ and ν are Radon measures with respect to some complete metrisable separable 
locally compact topologies (henceforth called admissible topologies) on X and Y , re-
spectively. A subset of X × Y will be called a rectangle if it is of the form α× β, where 
α ⊆ X and β ⊆ Y are measurable. We equip X × Y with the σ-algebra generated by 
all rectangles and denote by μ × ν the product measure. A subset E ⊆ X × Y is called 
marginally null if E ⊆ (X0 × Y ) ∪ (X × Y0), where μ(X0) = ν(Y0) = 0. We call two 
subsets E, F ⊆ X × Y marginally equivalent (and write E � F ) if their symmetric 
difference is marginally null.

A subset E of X × Y is called ω-open if it is marginally equivalent to the union of 
a countable set of rectangles. The complements of ω-open sets are called ω-closed. It is 
clear that the class of all ω-open (resp. ω-closed) sets is closed under countable unions 
(resp. intersections) and finite intersections (resp. unions). Let B(X × Y ) be the space 
of all measurable complex valued functions defined on the measure space (X×Y, μ × ν). 
We say that two functions ϕ, ψ ∈ B(X × Y ) are equivalent, and write ϕ ∼ ψ, if the set 
D = {(x, y) ∈ X×Y : ψ(x, y) �= ϕ(x, y)} is null with respect to μ × ν. If D is marginally 
null then we say that ϕ and ψ coincide marginally almost everywhere or that they are 
marginally equivalent, and write ϕ � ψ.

The following lemma was proved in [11].

Lemma 2.2. Suppose that compact admissible topologies can be chosen on X and Y and 
that μ and ν are finite. Let E ⊆

⋃∞
n=1 γn where E is ω-closed and γn is ω-open, n ∈ N. 

Then for each ε > 0 there are subsets Xε ⊆ X, Yε ⊆ Y such that μ(X \ Xε) < ε, 
ν(Y \ Yε) < ε and E ∩ (Xε × Yε) is contained in the union of finitely many of the 
subsets γn, n ∈ N.

For Hilbert spaces H1 and H2, we denote by K(H1, H2) (resp. C1(H1, H2), C2(H1, H2)) 
the space of compact (resp. nuclear, Hilbert–Schmidt) operators in B(H1, H2). We often 
write K = K(H1, H2). Throughout the paper, we let H1 = L2(X, μ) and H2 = L2(Y, ν). 
The operator norm of T ∈ B(H1, H2) is denoted by ‖T‖. The space C1(H2, H1) (resp. 
B(H1, H2)) can be naturally identified with the Banach space dual of K(H1, H2) (resp. 
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C1(H2, H1)), the duality being given by the map (T, S) �→ 〈T, S〉 def= tr(TS). Here trA
denotes the trace of a nuclear operator A.

The space L2(Y ×X) will be identified with C2(H1, H2) via the map sending an ele-
ment k ∈ L2(Y ×X) to the integral operator Tk given by Tkξ(y) =

´
X
k(y, x)ξ(x)dμ(x), 

ξ ∈ H1, y ∈ Y . In a similar fashion, C1(H2, H1) will be identified with the space Γ (X, Y )
of all (marginal equivalence classes of) functions h : X × Y → C which admit a repre-
sentation

h(x, y) =
∞∑
i=1

fi(x)gi(y),

where fi ∈ H1, gi ∈ H2, i ∈ N, 
∑∞

i=1‖fi‖2
2 < ∞ and 

∑∞
i=1‖gi‖2

2 < ∞. Equivalently, 
Γ (X, Y ) can be defined as the projective tensor product H1 ⊗̂H2; we write ‖h‖Γ for the 
projective norm of h ∈ Γ (X, Y ). The duality between B(H1, H2) and Γ (X, Y ) is given 
by

〈T, f ⊗ g〉 = (Tf, ḡ),

for T ∈ B(H1, H2), f ∈ L2(X, μ) and g ∈ L2(Y, ν).
If f ∈ L∞(X, μ), let Mf ∈ B(H1) be the operator on H1 of multiplication by f . 

The collection {Mf : f ∈ L∞(X, μ)} is a maximal abelian selfadjoint algebra (for short, 
masa) on H1. If α ⊆ X is measurable, we write P (α) = Mχα

for the multiplication 
by the characteristic function of the set α. The same notation will be used for H2. 
A subspace W ⊆ B(H1, H2) will be called a masa-bimodule if MψTMϕ ∈ W for all 
T ∈ W, ϕ ∈ L∞(X, μ) and ψ ∈ L∞(Y, ν).

We say that an ω-closed subset κ ⊆ X × Y supports an operator T ∈ B(H1, H2) (or 
that T is supported on κ) if P (β)TP (α) = 0 whenever (α × β) ∩ κ � ∅. For any subset 
M ⊆ B(H1, H2), there exists a smallest (up to marginal equivalence) ω-closed set suppM
which supports every operator T ∈ M [11]. By [2] and [35], for any ω-closed set κ there 
exists a smallest (resp. largest) weak* closed masa-bimodule Mmin(κ) (resp. Mmax(κ)) 
with support κ, in the sense that if M ⊆ B(H1, H2) is a weak* closed masa-bimodule 
with suppM = κ then Mmin(κ) ⊆ M ⊆ Mmax(κ).

Let

Φ(κ) =
{
h ∈ Γ (X,Y ) : hχκ � 0

}
and

Ψ(κ) =
{
h ∈ Γ (X,Y ) : h vanishes on an ω-open nbhd of κ

}‖·‖Γ

.

By [35, Theorems 4.3, 4.4], Mmin(κ) = Φ(κ)⊥ and Mmax(κ) = Ψ(κ)⊥.
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2.4. Schur multipliers

If ϕ is a function defined on a measure space (Z, θ), and E is a space of measurable 
functions on Z, we write ϕ ∈θ E when there exists a function ψ ∈ E such that ϕ and ψ
differ on a θ-null set. Let

JE
ϕ =

{
h ∈ E : ϕh ∈θ E

}
.

For ϕ ∈ B(X × Y ), the function ϕ̂ : Y ×X → C is given by ϕ̂(y, x) = ϕ(x, y), x ∈ X, 
y ∈ Y . We set D(Sϕ) = J

L2(Y×X)
ϕ̂ . Identifying L2(Y ×X) with C2(H1, H2) ⊆ K(H1, H2), 

define Sϕ : D(Sϕ) → K(H1, H2) to be the mapping given by Sϕ(Tk) = Tϕ̂k. We say 
that ϕ ∈ B(X × Y ) is a closable multiplier (resp. weak** closable multiplier) [34] if 
the map Sϕ is closable (resp. weak** closable) when viewed as a densely defined linear 
operator on K(H1, H2). If Sϕ is moreover bounded in the operator norm, ϕ is called 
a Schur multiplier. If ϕ is a Schur multiplier then the mapping Sϕ extends by continuity 
to a (bounded) mapping on K(H1, H2). After taking its second dual, one obtains a 
bounded weak* continuous linear transformation on B(H1, H2) which will also be denoted 
by Sϕ. We set ‖ϕ‖S = ‖Sϕ‖. The map Sϕ is automatically completely bounded and its 
completely bounded norm is still equal to ‖ϕ‖S (the reader is referred to [27] and [31]
for the basics of Operator Space Theory, which will be used throughout the paper). 
By a result of V.V. Peller [29] (see also [21] and [38]), a function ϕ ∈ B(X × Y ) is 
a Schur multiplier if and only if there exist sequences (ak)k∈N ⊆ L∞(X, μ) and (bk)k∈N ⊆
L∞(Y, ν) with ess supx∈X

∑∞
k=1|ak(x)|2 < ∞ and ess supy∈Y

∑∞
k=1|bk(y)|2 < ∞ such 

that

ϕ(x, y) =
∞∑
k=1

ak(x)bk(y), a.e. (x, y) ∈ X × Y.

In this case, Sϕ(T ) =
∑∞

k=1 MbkTMak
, T ∈ B(H1, H2).

Let S(X, Y ) be the set of all Schur multipliers (we will also write S(X × Y ) in the 
place of S(X, Y ) if there is no risk of confusion). By [29],

S(X,Y ) =
{
ϕ ∈ L∞(X × Y ) : ϕh ∈μ×ν Γ (X,Y ), ∀h ∈ Γ (X,Y )

}
.

If ϕ ∈ S(X, Y ), let mϕ : Γ (X, Y ) → Γ (X, Y ) be the mapping given by mϕ(h) = ϕh, 
h ∈ Γ (X, Y ); then the adjoint of mϕ coincides with Sϕ.

Let G be a locally compact group. The map P : Γ (G, G) → A(G) given by

P (f ⊗ g)(t) = 〈λt, f ⊗ g〉 = (λtf, ḡ) =
ˆ

G

f
(
t−1s

)
g(s)ds = g ∗ f̌(t) (1)

is a contractive surjection. The next lemma will be used repeatedly.
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Lemma 2.3. If h ∈ Γ (G, G) then

P (h)(t) =
ˆ

G

h
(
t−1s, s

)
ds, t ∈ G. (2)

Proof. Identity (2) is a direct consequence of (1) if h is a finite sum of elementary tensors. 
Let h =

∑∞
i=1 fi⊗gi ∈ Γ (G, G), where 

∑∞
i=1‖fi‖2

2 < ∞ and 
∑∞

i=1‖gi‖2
2 < ∞, and let hn

be the nth partial sum of this series. By the continuity of P , ‖P (hn) −P (h)‖ → 0 in A(G); 
since ‖ · ‖∞ is dominated by the norm of A(G), we conclude that P (hn)(t) → P (h)(t)
for every t ∈ G.

By [35, Lemma 2.1], there exists a subsequence (hnk
)k∈N of (hn)n∈N such that hnk

→ h

marginally almost everywhere. It follows that, for every t ∈ G, one has hnk
(t−1s, s) →

h(t−1s, s) for almost all s ∈ G. By [25, (4.3)], the function s →
∑∞

i=1|fi(t−1s)||gi(s)|
is integrable, and hence an application of the Lebesgue Dominated Convergence Theo-
rem shows that 

´
G
hnk

(t−1s, s)ds →k→∞
´
G
h(t−1s, s)ds, for every t ∈ G. The proof is 

complete. �
For a function f : G → C, let N(f) : G ×G → C be the function given by

N(f)(s, t) = f
(
ts−1), s, t ∈ G. (3)

Note that in [25] and [39], the map N ′ given by N ′(f)(s, t) = f(st−1) was used instead 
of N , but the results established in these papers remain valid with the current definition 
as well. It follows from [6] (see also [19] and [38]) that N maps M cbA(G) isometrically 
into S(G, G). Note that, if G is compact, then Γ (G, G) contains the constant functions 
and hence S(G, G) ⊆ Γ (G, G); thus, in this case N maps A(G) into Γ (G, G).

3. Arveson measures and pseudo-integral operators

3.1. Measures

Let σ be a complex measure of finite total variation, defined on the product 
σ-algebra F of X × Y . We let |σ| denote the variation of σ; thus, for a subset E ∈ F , 
the quantity |σ|(E) equals the total variation of σ on the set E. We let |σ|X be the 
X-marginal measure of |σ|, that is, the measure on X given by |σ|X(α) = |σ|(α × Y ). 
We define |σ|Y similarly by setting |σ|Y (β) = |σ|(X×β). A complex measure σ on F will 
be called an Arveson measure if σ has finite total variation and there exists a constant 
c > 0 such that

|σ|X ≤ cμ and |σ|Y ≤ cν. (4)

We denote by A(X, Y ) the set of all Arveson measures on X × Y and let ‖σ‖A be the 
smallest constant c which satisfies the inequalities (4). We note that if σ ∈ A(X, Y ) then 
|σ| ∈ A(X, Y ) as well.
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It was shown in [34], that given a family E of ω-open sets, there exists a minimal (with 
respect to inclusion up to a marginally null set) ω-open set E which marginally contains 
every element from E . The set E is called the ω-union of E and denoted by 

⋃
ω E .

Recall that (X, μ) and (Y, ν) are standard measure spaces and let σ be an Arveson 
measure on Y ×X. Denote by suppσ the ω-closed subset of Y ×X defined by

(suppσ)c =
⋃
ω

{
R ⊆ Y ×X : R is a rectangle such that

σ
(
R′) = 0 for each rectangle R′ ⊆ R

}
.

Proposition 3.1. Let σ ∈ A(Y, X).

(i) The set suppσ is the smallest (up to marginal equivalence) ω-closed subset E of 
Y ×X such that σ(R) = 0 for every rectangle R ⊆ Ec.

(ii) If E ⊆ Y ×X is an ω-closed set then suppσ ⊆ E if and only if |σ|(Ec) = 0.

Proof. (i) Let R be the set of all rectangles R ⊆ Y × X such that σ(R′) = 0 for 
every rectangle R′ contained in R. By [34, Lemma 2.1], (suppσ)c �

⋃∞
i=1 Ri for some 

family {Ri}i∈N ⊆ R. Let R ⊆ (suppσ)c be a rectangle. We will show that σ(R) = 0; 
without loss of generality, we may assume that the measures μ and ν are finite. By 
Lemma 2.2, for every n ∈ N there exist measurable subsets Xn ⊆ X and Yn ⊆ Y such 
that μ(X \ Xn) < 1/n, ν(Y \ Yn) < 1/n and R ∩ (Yn × Xn) is contained in the union 
of a finite subfamily of {Ri}i∈N. It follows that σ(R ∩ (Yn ×Xn)) = 0 for every n and, 
since 

⋃∞
n=1 Xn and 

⋃∞
n=1 Yn have full measure, σ(R) = 0.

Suppose that E is an ω-closed set with the property that σ(R) = 0 for every rectangle 
R ⊆ Ec. By the definition of suppσ, the set Ec is marginally contained in (suppσ)c, 
and hence suppσ ⊆ E up to marginal equivalence.

(ii) Suppose that Ec � Ω =
⋃∞

i=1 Ri, where Ri ⊆ Y × X is a rectangle, i ∈ N. 
Assume, without loss of generality, that Ri∩Rj = ∅ if i �= j. Fix i ∈ N. By (i), if R ⊆ Ri

is a rectangle, then σ(R) = 0. Since the product σ-algebra on Ri is generated by the 
rectangles contained in Ri, it follows that σ(F ) = 0 for every measurable (with respect 
to the product σ-algebra) subset F ⊆ Ri. Thus, if F ⊆ Ω is an arbitrary measurable 
subset then σ(F ∩Ri) = 0 for each i; therefore, σ(F ) = 0.

Now suppose that F ⊆ Ec is a measurable subset. Then F ⊆ F ′ ∪ F ′′ as a disjoint 
union, where F ′ ⊆ Ω and F ′′ is marginally null. By the previous paragraph, σ(F ′) = 0, 
while, since σ is an Arveson measure, σ(F ′′) = 0. It follows that σ(F ) = 0. Thus, 
|σ|(Ec) = 0.

Conversely, if |σ|(Ec) = 0 then σ(R) = 0 for every measurable rectangle contained 
in Ec. By (i), suppσ ⊆ E. �

For an ω-closed set F ⊆ Y × X, we denote by A(F ) the set of all measures σ in 
A(Y, X) such that suppσ ⊆ F .
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3.2. Operators

The importance of Arveson measures is explained by the fact that they define special 
operators called pseudointegral in [2], where they were introduced. This class of operators 
will be essential for our considerations.

The first part of the following result was established in [2, Theorem 1.5.1]; we include 
its full proof for completeness.

Theorem 3.2. Let σ ∈ A(Y, X). There exists a unique operator Tσ : H1 → H2 such that

(Tσf, g) =
ˆ

Y×X

f(x)g(y)dσ(y, x), f ∈ H1, g ∈ H2.

Moreover, ‖Tσ‖ ≤ ‖σ‖A and, for a given ω-closed subset κ ⊆ X × Y , the operator Tσ is 
supported on κ if and only if suppσ ⊆ κ̂

def= {(y, x) : (x, y) ∈ κ}. If h ∈ Γ (X, Y ) and 
σ ∈ A(Y, X) then 〈Tσ, h〉 =

´
Y×X

ĥdσ.

Proof. Fix σ ∈ A(Y, X) and consider the sesqui-linear form φ : H1 ×H2 → C given by

φ(f, g) =
ˆ

Y×X

f(x)g(y)dσ(y, x).

Note that φ is well-defined:∣∣∣∣ ˆ

Y×X

f(x)g(y)dσ(y, x)
∣∣∣∣2 ≤

( ˆ

Y×X

∣∣f(x)
∣∣∣∣g(y)∣∣d|σ|(y, x)

)2

≤
ˆ

Y×X

∣∣f(x)
∣∣2d|σ|(y, x)

ˆ

Y×X

∣∣g(y)∣∣2d|σ|(y, x)

=
ˆ

X

∣∣f(x)
∣∣2d|σ|X(x)

ˆ

Y

∣∣g(y)∣∣2d|σ|Y (y) ≤ ‖σ‖2
A‖f‖2

2‖g‖2
2.

By the Riesz Representation Theorem, there exists a unique operator Tσ : H1 → H2
such that (Tσf, g) = φ(f, g); moreover, ‖Tσ‖ ≤ ‖σ‖A.

Let κ ⊆ X × Y and suppose that suppσ ⊆ κ̂. Let α ⊆ X and β ⊆ Y be measurable 
subsets with (α × β) ∩ κ � ∅. By deleting null sets from α and β we may assume that, 
in fact, (α × β) ∩ κ = ∅. If f ∈ H1 (resp. g ∈ H2) is supported on α (resp. β) then, by 
Proposition 3.1,

(Tσf, g) =
ˆ

(β×α)∩κ̂

f(x)g(y)dσ(y, x) = 0;

thus, Tσ is supported on κ.
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Conversely, suppose that Tσ is supported on κ and let β × α ⊆ Y ×X be a rectangle 
of finite measure, marginally disjoint from κ̂. Then

σ(β × α) = (Tσχα, χβ) = 0,

and Proposition 3.1 implies that suppσ ⊆ κ̂, up to a marginally null set.
Finally, suppose that h ∈ Γ (X, Y ) and σ ∈ A(Y, X). Write h =

∑∞
i=1 fi ⊗ gi, where 

(fi)i∈N ⊆ H1 and (gi)i∈N ⊆ H2 are sequences of functions with 
∑∞

i=1‖fi‖2
2 < ∞

and 
∑∞

i=1‖gi‖2
2 < ∞. The estimate in the first paragraph of the proof shows that ´

Y×X

∑∞
i=1|fi(x)||gi(y)|d|σ|(y, x) < ∞.

Let hn =
∑n

i=1 fi ⊗ gi; by the Lebesgue Dominated Convergence Theorem, ´
Y×X

ĥndσ →n→∞
´
Y×X

ĥdσ. Thus,

〈Tσ, h〉 = lim
n→∞

〈Tσ, hn〉 = lim
n→∞

n∑
i=1

〈Tσ, fi ⊗ gi〉

= lim
n→∞

ˆ

Y×X

n∑
i=1

fi(x)gi(y)dσ(y, x) =
ˆ

Y×X

h(x, y)dσ(y, x). �

We recall some facts from [35] that will be needed subsequently. If κ ⊆ X × Y is 
ω-closed, a κ-pair is an element

(P,Q) ∈
(
B
(
�2
)
⊗̄ L∞(X,μ)

)
×
(
B
(
�2
)
⊗̄ L∞(Y, ν)

)
such that, after the identification of P and Q with operator-valued weakly measurable 
functions, defined on X and Y , respectively, P and Q take values that are projections 
and P (x)Q(y) = 0 marginally almost everywhere on κ. A κ-pair is called simple if P
and Q take finitely many values. The following was established in [35].

Theorem 3.3. Let κ ⊆ X × Y be an ω-closed set. Then

Mmin(κ) =
{
T ∈ B(H1, H2) : Q(I ⊗ T )P = 0, ∀κ-pair (P,Q)

}
and

Mmax(κ) =
{
T ∈ B(H1, H2) : Q(I ⊗ T )P = 0, ∀simple κ-pair (P,Q)

}
.

A version of the next lemma for Mmin(κ) was proved in [36, Proposition 5.3].

Lemma 3.4. If κ ⊆ X × Y is an ω-closed set then

Mmax(κ) =
{
T ∈ B(H1, H2) : Sϕ(T ) = 0, for all ϕ ∈ S(X,Y ),

vanishing on an ω-open neighbourhood of κ
}
.
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Proof. Suppose that T ∈ B(H1, H2) belongs to the set on the right hand side of the above 
equality. If κ ∩ (α×β) � ∅ then χα×β ∈ S(X, Y ) vanishes on the ω-open neighbourhood 
(α× β)c of κ and hence Mχβ

TMχα
= Sχα×β

(T ) = 0; thus, T ∈ Mmax(κ).
Conversely, suppose that T ∈ Mmax(κ) and let ϕ ∈ S(X, Y ) vanish on an ω-open 

neighbourhood of κ. If h ∈ Γ (X, Y ) then ϕh ∈ Γ (X, Y ) and vanishes on an ω-open 
neighbourhood of κ. By [35], 〈

Sϕ(T ), h
〉

= 〈T, ϕh〉 = 0,

showing that Sϕ(T ) = 0. �
Now we obtain two technical results; apart of applications to the mainstream of the 

paper they have additional applications which we believe are interesting on their own 
right. Namely, we will show that a tensor product formula holds for the minimal masa-
bimodules, answering in this way affirmatively a question posed by J. Froelich in [14]. 
Simultaneously, we show that the minimal masa-bimodule Mmin(κ) associated with an 
ω-closed set κ is the closure of all pseudo-integral operators with symbols supported on κ; 
this provides an alternative, “synthetic” description of Mmin(κ) in measure-theoretic 
terms, similar to the topological one given originally by Arveson in [2].

Let (X, μ) and (Y, ν) are standard measure spaces. Recall that F denotes the product 
σ-algebra on Y ×X.

Lemma 3.5. If σ ∈ A(Y, X) and E ∈ F then the measure σE given by σE(F ) = σ(E∩F ), 
F ∈ F , belongs to A(Y, X).

Proof. Let σ ∈ A(Y, X) and E ∈ F . If α ⊆ X is measurable then, denoting by 
.⋃

the 
union of a family of pairwise disjoint measurable sets, we have

|σE |X(α) = |σE |(Y × α) = sup
{

k∑
i=1

∣∣σE(Fi)
∣∣ :

k.⋃
i=1

Fi = Y × α

}

= sup
{

k∑
i=1

∣∣σ(E ∩ Fi)
∣∣ :

k.⋃
i=1

Fi = Y × α

}

≤ sup
{

k∑
i=1

|σ|(E ∩ Fi) :
k.⋃

i=1
Fi = Y × α

}

≤ sup
{

k∑
i=1

|σ|(Fi) :
k.⋃

i=1
Fi = Y × α

}
= |σ|(Y × α)

= |σ|X(α).

One shows similarly that |σE |Y ≤ |σ|Y ; it now follows that σE ∈ A(Y, X). �
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Theorem 3.6. Let κ ⊆ X × Y be an ω-closed set. Then

Mmin(κ) =
{
Tσ : σ ∈ A(Y,X), suppσ ⊆ κ̂

}w∗

.

Proof. Let M0(κ) denote the right hand side of the identity. We first show that M0(κ) is 
a weak* closed masa-bimodule. Since Tσ + Tν = Tσ+ν , we have that M0(κ) is a (weak*) 
closed subspace of B(H1, H2). It is moreover easy to check that if ϕ ∈ L∞(X, μ) and 
ψ ∈ L∞(Y, ν) then MψTσMϕ = Tσ′ , where σ′ ∈ A(Y, X) is given by

σ′(E) =
ˆ

Y×X

ψ(y)ϕ(x)dσ(y, x).

If σ is supported on κ̂ then clearly so is σ′; hence, M0(κ) is a masa-bimodule.
We next claim that suppM0(κ) = κ. Suppose that α×β is a rectangle of finite measure 

such that P (β)TσP (α) = 0 for all σ ∈ A(Y, X) with suppσ ⊆ κ̂. Let τ ∈ A(X, Y ) be 
arbitrary, and τκ̂ be the measure defined as in Lemma 3.5. Then supp τκ̂ ⊆ κ̂ and hence

τ
(
(β × α) ∩ κ̂

)
= τκ̂

(
(β × α) ∩ κ̂

)
=
(
P (β)Tτκ̂P (α)χα, χβ

)
= 0.

By Arveson’s Null Set Theorem [2, Theorem 1.4.3], (β × α) ∩ κ̂ � ∅. It follows that κ is 
contained in the support of M0(κ); on the other hand, by Theorem 3.2, suppM0(κ) ⊆ κ, 
up to a marginally null set. It follows that κ � suppM0(κ).

Thus Mmin(κ) ⊆ M0(κ). To show the converse inclusion, it suffices, by [35, Theo-
rem 4.4], to show that if a function h ∈ Γ (X, Y ) vanishes on κ then 〈Tσ, h〉 = 0 for each 
σ ∈ A(Y, X) supported by κ̂. But this follows from the equality 〈Tσ, h〉 =

´
Y×X

ĥdσ (see 
Theorem 3.2). �
Corollary 3.7. Let κ ⊆ X ×X be an ω-closed set such that Mmax(κ) is a unital algebra. 
Then Mmin(κ) is a (unital) algebra.

Proof. It was shown in [2] that the set of all pseudo-integral operators is an algebra. 
Since Mmax(κ) is an algebra, the set M0(κ) of all pseudo-integral operators in Mmax(κ)
is also an algebra. Hence its weak* closure M0(κ)

w∗

is also an algebra. By Theorems 3.2
and 3.6, Mmin(κ) = M0(κ)

w∗

and the proof is complete. �
The next theorem establishes a tensor product formula for the minimal masa-

bimodules. Let (Xi, μi) and (Yi, νi) be standard measure spaces, i = 1, 2, and consider 
the flip

ρ : (X1 × Y1) × (X2 × Y2) → (X1 ×X2) × (Y1 × Y2)

given by

ρ
(
(x1, y1), (x2, y2)

)
=
(
(x1, x2), (y1, y2)

)
.
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Below, for two weak* closed subspaces U and V of operators, we denote by U ⊗̄ V the 
weak* closed subspace generated by the elementary tensors A ⊗ B where A ∈ U and 
B ∈ V.

Theorem 3.8. Let (Xi, μi) and (Yi, νi) be standard measure spaces and κi ⊆ Xi × Yi be 
ω-closed sets, i = 1, 2. Then

Mmin(κ1) ⊗̄Mmin(κ2) = Mmin
(
ρ(κ1 × κ2)

)
. (5)

Proof. We first note that, by [26],

supp
(
Mmin(κ1) ⊗̄Mmin(κ2)

)
� ρ(κ1 × κ2). (6)

By the minimality property of Mmin(ρ(κ1 × κ2)) we have that

Mmin
(
ρ(κ1 × κ2)

)
⊆ Mmin(κ1) ⊗̄Mmin(κ2).

To see the reverse inclusion, it is enough prove that if m ∈ A(Y1, X1) and n ∈
A(Y2, X2) then Tm ⊗ Tn = Tσ for some measure σ ∈ A(Y1 × Y2, X1 × X2). Indeed, 
by (6), suppTσ ⊆ ρ(κ1 × κ2) and hence Theorem 3.2 implies that suppσ ⊆ ̂ρ(κ1 × κ2). 
By Theorem 3.6, Tσ ∈ Mmin(ρ(κ1 × κ2)).

Let

σ(E) =
ˆ

Y2×X2

ˆ

Y1×X1

χE(y, x)dm(y1, x1)dn(y2, x2)

for every measurable E ⊆ (Y1 × Y2) × (X1 × X2). If βi ⊆ Yi, i = 1, 2, are measurable 
then

|σ|
(
(β1 × β2) × (X1 ×X2)

)
≤

ˆ

Y2×X2

ˆ

Y1×X1

χ(β1×β2)×(X1×X2)(y, x)d|m|(y1, x1)d|n|(y2, x2)

= |m|(β1 ×X1)|n|(β2 ×X2)

≤ ‖m‖A‖n‖Aν1(β1)ν2(β2)

= ‖m‖A‖n‖A(ν1 × ν2)(β1 × β2).

It now easily follows that |σ|(F×(X1×X2)) ≤ ‖m‖A‖n‖A(ν1×ν2)(F ), for any element F
in the product σ-algebra on Y1 × Y2. Similar arguments show that |σ|((Y1 × Y2) ×E) ≤
‖m‖A‖n‖A(μ1 × μ2)(E), for every measurable E ⊆ X1 × X2. Hence σ is an Arveson 
measure and Tσ is a bounded operator from L2(X1 ×X2) to L2(Y1 × Y2).
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If fi ∈ L2(Xi, μi), gi ∈ L2(Yi, νi), i = 1, 2, we have

(
(Tm ⊗ Tn)f1 ⊗ f2, g1 ⊗ g2

)
=

ˆ

Y2×X2

ˆ

Y1×X1

f1(x1)f2(x2)g1(y1)g2(y2)dm(y1, x1)dn(y2, x2)

=
ˆ

(Y1×Y2)×(X1×X2)

(f1 ⊗ f2)(x)(g1 ⊗ g2)(y)dσ(y, x),

and hence Tm ⊗ Tn = Tσ, proving the statement. �
4. Sets of multiplicity and their operator versions

In this section, we study sets of multiplicity and their operator versions, and examine 
the relations between them.

4.1. Sets of multiplicity in arbitrary locally compact groups

Let us recall the classical notion of a set of multiplicity, where G = T is the group 
of the circle; in this case, A(T) = {

∑
n∈Z

cne
int :

∑
n∈Z

|cn| < ∞} � �1(Z). The space 
of pseudo-measures PM (T) = A(T)∗ can be identified with �∞(Z) via Fourier transform 
F �→ (F̂ (n))n∈Z, and the space of pseudo-functions PF(T) = {F ∈ PM (T) : F̂ (n) → 0,
as n → ∞} is ∗-isomorphic to C∗(T) = C∗

r (T). Note that there is a canonical embedding 
M(T) ⊆ PM (T) arising from the inclusion A(T) ⊆ C(T).

If E is a closed subset of T, let PM (E) denote the space of all pseudo-measures 
supported on E, M(E) the space of measures μ ∈ M(G) with suppμ ⊆ E, and N(E)
the weak* closure of M(E). For an ideal J ⊆ A(G), let J⊥ denote the annihilator of J
in PM (T); then PM (E) = J(E)⊥ and N(E) = I(E)⊥ (see, e.g., [15]).

A closed set E ⊆ T is called an M -set if PM (E) ∩ PF(T) �= {0}, an M1-set if 
N(E) ∩ PF(T) �= {0}, and an M0-set if M(E) ∩ PF(T) �= {0}. The closed sets that are 
not M -sets are called sets of uniqueness.

A definition of sets of multiplicity for locally compact abelian groups was proposed by 
I. Piatetski-Shapiro (see [16, p. 190]). In [4], M. Bożejko introduced sets of uniqueness 
in general locally compact groups. Here we extend his definition to include versions of 
M1-sets and of M0-sets.

Definition 4.1. A closed subset E ⊆ G will be called

(i) an M -set if J(E)⊥ ∩ C∗
r (G) �= {0};

(ii) an M1-set if I(E)⊥ ∩ C∗
r (G) �= {0};

(iii) an M0-set if λ(M(E)) ∩ C∗
r (G) �= {0}.
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The set E will be called a U -set (resp. a U1-set, a U0-set) if it is not an M -set (resp. 
an M1-set, an M0-set).

Remark 4.2. (i) Since λ(M(E)) ⊆ I(E)⊥ ⊆ J(E)⊥, every M0-set is an M1-set, and every 
M1-set is an M -set. It is known that these three classes of sets are distinct, see [15].

(ii) If G is amenable then C∗
r (G) is ∗-isomorphic to C∗(G) and it is a direct conse-

quence of the definition that a closed set E ⊆ G is an M -set (resp. an M1-set) if and 
only if J(E) (resp. I(E)) is not weak* dense in B(G).

(iii) Measures μ ∈ M(G) satisfying the condition λ(μ) ∈ C∗
r (G) were studied in [3]

where the author characterised them in terms of their values on certain Borel subsets 
of G. If G is compact or abelian then this class of measures coincides with the Rajchman 
measures on G, that is, the measures whose Fourier–Stieltjes coefficients vanish at infinity 
(see [3]).

We point out an easy source of examples of sets of multiplicity:

Remark 4.3. Every closed subset of positive Haar measure in a locally compact second 
countable group is an M0-set.

Proof. Let E ⊆ G be a measurable subset of positive Haar measure and E0 ⊆ E be a 
compact set of positive Haar measure; then m(E0) < ∞. Let θ be the measure given by 
dθ(x) = χE0(x)dm(x). Clearly, supp θ ⊆ E and 0 �= λ(θ) = λ(χE0) ∈ C∗

r (G). �
4.2. Sets of operator multiplicity

For an ω-closed set F ⊆ Y × X, we denote by A(F ) the set of all measures σ in 
A(Y, X) such that suppσ ⊆ F .

Operator versions of M -sets and M1-sets were introduced by the authors in [34] in 
connection with the study of closable multipliers. We recall the relevant definition now, 
introducing the additional notion of an M0-set.

Definition 4.4. Let (X, μ) and (Y, ν) be standard measure spaces. An ω-closed set κ ⊆
X × Y is called

(i) an operator M -set if K(H1, H2) ∩Mmax(κ) �= {0};
(ii) an operator M1-set if K(H1, H2) ∩Mmin(κ) �= {0};
(iii) an operator M0-set if there exists a non-zero measure σ ∈ A(κ̂) such that Tσ ∈

K(H1, H2).

We call κ an operator U -set (resp. an operator U1-set, an operator U0-set) if it is not 
an operator M -set (resp. an operator M1-set, an operator M0-set).
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(Operator) M -sets will be referred to as sets of (operator) multiplicity, while (operator) 
U -sets – as sets of (operator) uniqueness. It will follow from Theorem 3.6 that if σ ∈ A(κ̂)
then Tσ ∈ Mmin(κ). Therefore, every operator M0-set is an operator M1-set, while every 
operator M1-set is trivially an operator M -set.

Remark. Recall that μ ∈ M(G) is called a Rajchman measure if λ(μ) ∈ C∗
r (G). The 

compact operators of the form Tσ, where σ ∈ A(Y, X), can be thought of as an operator 
version of these measures.

4.3. A symbolic calculus

Aiming at applications to multiplicity sets we establish here a kind of symbolic calculus 
for completely bounded maps from B(L2(G)) to VN(G) (Theorem 4.6). We first recall 
the Stone–von Neumann Theorem in a suitable for our needs form. Let D = {Ma : a ∈
L∞(G)} and D0 = {Ma : a ∈ C0(G)}. For each s ∈ G, let αs : C0(G) → C0(G) be given 
by αsf(t) = f(s−1t). The map s �→ αs is a homomorphism from G into the automorphism 
group of C0(G), and thus gives rise to the (C∗-algebraic) crossed product C0(G) �α G. 
Denoting for a moment by π : C0(G) → B(L2(G)) the representation given by π(g) = Mg, 
we have that the pair (π, λ) (where λ is the left regular representation of G on L2(G)) is 
a covariant representation of the dynamical system (C0(G), G, α). Thus, (π, λ) gives rise 
to a representation π×λ of C0(G) �αG on L2(G). By the Stone–von Neumann Theorem
(see [41, Theorem 4.23]), this representation is faithful and its image coincides with the 
algebra K of all compact operators on L2(G). In particular, we claim that

K =
[
AT : A ∈ D0, T ∈ C∗

r (G)
]‖·‖

=
[
ATB : A,B ∈ D0, T ∈ C∗

r (G)
]‖·‖

(7)

(here, and in the sequel, [E ] denotes the linear span of E). To see that (7) holds, note 
that if f ∈ L1(G), T = λ(f) and A, B ∈ D0, then

AT =
ˆ

G

f(t)Aλtdt ∈ (π × λ)
(
C0(G) �α G

)
= K,

and thus ATB ∈ K as well. Conversely, it is easy to observe (see, e.g., [28]) that the 
operators of the form 

∑k
i=1

´
Ei

Aiλsds, where Ei ⊆ G are measurable sets of finite 
measure and Ai ∈ D0, i = 1, . . . , k, form a dense subset of (π×λ)(C0(G) �αG); however, ´
Ei

Aiλsds = Aiλ(χEi
), and the first equality in (7) is established. To complete the proof 

of the second equality, let (Bi)∞i=1 ⊆ D0 be a sequence strongly converging to the identity 
operator on L2(G), and note that if A ∈ D0 and T ∈ C∗

r (G), then AT = limi ATBi in 
norm, by the compactness of AT .

In the sequel, we will use the norm closed D-bimodule generated by C∗
r (G)

A =
[
ATB : A,B ∈ D, T ∈ C∗

r (G)
]‖·‖

(8)
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and the smallest norm closed subspace of B(L2(G)) containing C∗
r (G) and invariant 

under Schur multipliers

R =
[
Sϕ(T ) : T ∈ C∗

r (G), ϕ ∈ S(G,G)
]‖·‖

. (9)

By (7),

K ⊆ A ⊆ R. (10)

Remark 4.5. (i) Let G be discrete. Then A = R. Indeed, in this case C∗
r (G) is generated 

as a closed linear space by the unitaries λs, s ∈ G, which are normalisers of the multipli-
cation masa D. However, if ϕ ∈ S(G, G) then Sϕ(λs) = Mfλs ∈ A for some f ∈ L∞(G)
(see, e.g., [21, Proposition 14]). It follows that A is invariant under Schur multiplication, 
and hence R = A. Note that, in the case G is infinite, K is strictly contained in A since 
λs is a unitary operator in C∗

r (G) which is not compact.
In [32], given a discrete group G, J. Roe introduced what is now known as the uniform 

Roe algebra UC∗
r (G) which equals, by definition, to the uniform closure in B(�2(G)) of 

the space of all matrices indexed by G × G with uniformly bounded entries supported 
on sets of the form {(s, t) ∈ G ×G : ts−1 ∈ E}, where E is finite. We note that UC∗

r (G)
coincides in this case with R. Indeed, the unitary generators λs are represented by 
matrices (indexed by G ×G) whose sth diagonal has all entries equal to 1, and all other 
diagonals are zero. Multiplying by an operator of the form Ma, where a ∈ �∞(G), we see 
that all matrices which, on a given diagonal, have a sequence from �∞(G), are in A = R; 
thus, UC∗

r (G) ⊆ R. Conversely, since C∗
r (G) is generated as a norm closed subspace by 

the operators of the form λs, we have that A ⊆ UC∗
r (G), and hence UC∗

r (G) = R.
The previous paragraph shows that the space R can be thought of as a locally compact 

version of the uniform Roe algebra.
(ii) If G is compact then K = A = R. Indeed, in this case C∗

r (G) ⊆ K and since the 
compact operators are invariant under Schur multipliers, we have that R ⊆ K, and the 
equalities follow from (10).

In view of Remark 4.5, it is natural to ask whether A = R for every locally compact 
group G; we do not know whether this equality always holds.

If G is compact then N(A(G)) ⊆ Γ (G, G) and hence the formula

〈
E(T ), u

〉
=
〈
T,N(u)

〉
, T ∈ B

(
L2(G)

)
, u ∈ A(G),

defines a canonical expectation E from B(L2(G)) onto VN(G). This is the motivation 
behind the next theorem, where we exhibit a symbolic calculus for completely bounded 
maps from B(L2(G)) into VN(G) (that are not necessarily projections). Let us denote 
by CBw∗(B(L2(G)), VN(G)) the space of weak* continuous completely bounded maps 
from B(L2(G)) into VN(G). It has a natural structure of a right Banach module over 
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S(G, G), the action being given by Φ · ϕ = Φ ◦ Sϕ. Note that Γ (G, G) is also a right 
Banach module over S(G, G) under the action ψ · ϕ = ψϕ.

Theorem 4.6. For every ϕ ∈ Γ (G, G) and every T ∈ B(L2(G)), there exists a unique 
operator Eϕ(T ) ∈ VN(G) such that〈

Eϕ(T ), u
〉

=
〈
T, ϕN(u)

〉
, u ∈ A(G).

The transformation ϕ → Eϕ is a contractive S(G, G)-module map from Γ (G, G) into 
CBw∗(B(L2(G)), VN(G)). Moreover, if ϕ ∈ Γ (G, G) then Eϕ(λs) = P (ϕ)(s)λs, s ∈ G, 
and Eϕ(T ) ∈ C∗

r (G), for all T ∈ R.

Proof. Fix ϕ ∈ Γ (G, G) and consider the mapping eϕ : A(G) → Γ (G, G) given by 
eϕ(u) = ϕN(u), u ∈ A(G). The mapping N : A(G) → S(G, G) is completely isometric 
(see, e.g., [38]). On the other hand, the mapping ψ → ϕψ from S(G, G) into Γ (G, G)
is completely bounded with completely bounded norm not exceeding ‖ϕ‖Γ . Indeed, let 
ψi,j ∈ S(G, G), i, j = 1, . . . , n; then, denoting by Fϕ the functional on B(L2(G)) given 
by Fϕ(T ) = 〈ϕ, T 〉, we have∥∥(ϕψi,j)i,j

∥∥
Mn(Γ (G,G)) =

∥∥(ϕψi,j)i,j
∥∥
CB(B(L2(G)),Mn(C))

= sup
‖(Tp,q)p,q‖≤1

∥∥(〈ϕψi,j , Tp,q〉
)
(i,p),(j,q)

∥∥
= sup

‖(Tp,q)p,q‖≤1

∥∥(〈ϕ, Sψi,j
(Tp,q)

〉)
(i,p),(j,q)

∥∥
≤ sup

‖(Tp,q)p,q‖≤1
‖Fϕ‖

∥∥(Sψi,j
(Tp,q)

)
(i,p),(j,q)

∥∥
≤ ‖ϕ‖Γ

∥∥(Sψi,j
)i,j
∥∥

cb

= ‖ϕ‖Γ
∥∥(ψi,j)i,j

∥∥
Mn(S(G,G)).

Thus, eϕ is completely bounded and ‖eϕ‖cb ≤ ‖ϕ‖Γ . It follows that the map Eϕ = e∗ϕ
is a normal completely bounded map from B(L2(G)) into VN(G) and ‖Eϕ‖cb ≤ ‖ϕ‖Γ . 
The identity 〈

Eϕ(T ), u
〉

=
〈
T, ϕN(u)

〉
, u ∈ A(G), T ∈ B

(
L2(G)

)
,

holds by the definition of Eϕ.
It is obvious that the map E : ϕ → Eϕ is linear and, by the previous paragraph, it is 

contractive. Moreover, if ϕ ∈ Γ (G, G), ψ ∈ S(G, G) and u ∈ A(G), then〈
Eϕψ(T ), u

〉
=
〈
T, ψϕN(u)

〉
=
〈
Sψ(T ), ϕN(u)

〉
=
〈
(Eϕ ◦ Sψ)(T ), u

〉
,

which shows that E is an S(G, G)-module map.
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Using (2), for every u ∈ A(G) we have〈
Eϕ(λs), u

〉
=
〈
λs, ϕN(u)

〉
= P

(
N(u)ϕ

)
(s)

= u(s)P (ϕ)(s) =
〈
P (ϕ)(s)λs, u

〉
,

which shows that Eϕ(λs) = P (ϕ)(s)λs.
Now suppose that f ∈ L1(G) and let a, b ∈ L2(G). Then

SN(u)
(
λ(f)

)
= λ(uf), u ∈ A(G). (11)

Indeed, write N(u) =
∑∞

i=1 fi ⊗ gi, where ‖
∑∞

i=1|fi|2‖∞ ≤ C < ∞ and ‖
∑∞

i=1|gi|2‖∞ ≤
C < ∞. Then

(
SN(u)

(
λ(f)

)
a, b
)

=
∞∑
i=1

¨
gi(t)f(s)fi

(
s−1t

)
a
(
s−1t

)
b(t)dsdt.

Applying Fubini’s arguments we obtain

(
SN(u)

(
λ(f)

)
a, b
)

=
¨ ∞∑

i=1
gi(t)f(s)fi

(
s−1t

)
a
(
s−1t

)
b(t)dsdt

=
¨

f(s)N(u)
(
s−1t, t

)
a
(
s−1t

)
b(t)dtds

=
¨

u(s)f(s)a
(
s−1t

)
b(t)dtds =

(
λ(uf)a, b

)
.

Thus, (11) is established.
The mapping u �→ N(u) from A(G) into S(G, G) is an isometry (see, e.g., [38]); 

hence ‖SN(u)(λ(f))‖ ≤ ‖N(u)‖S‖λ(f)‖ = ‖u‖A(G)‖λ(f)‖ and therefore the mapping 
u �→ λ(uf), A(G) → C∗

r (G), is continuous. We also have〈
Ea⊗b

(
λ(f)

)
, u
〉

=
〈
λ(f), (a⊗ b)N(u)

〉
=
(
SN(u)

(
λ(f)

)
a, b
)

=
(
λ(uf)a, b

)
=
¨

u(s)f(s)a
(
s−1t

)
b(t)dsdt

=
ˆ

u(s)f(s)
(ˆ

a
(
s−1t

)
b(t)dt

)
ds =

ˆ
u(s)f(s)(b ∗ ǎ)(s)ds.

Using (1), we conclude that

〈
Ea⊗b

(
λ(f)

)
, u
〉

=
ˆ

u(s)f(s)P (a⊗ b)(s)ds.

Note that, since P (a ⊗ b) ∈ A(G), the function P (a ⊗ b)f belongs to L1(G) and hence〈
Eϕ

(
λ(f)

)
, u
〉

=
〈
λ
(
P (ϕ)f

)
, u
〉

(12)
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for ϕ = a ⊗ b. By linearity, (12) holds whenever ϕ is a finite sum of elementary tensors. 
By the continuity of the transformations ϕ → Eϕ, ϕ → P (ϕ) and g → λ(gf) (the last 
one mapping A(G) into C∗

r (G)), we conclude that (12) holds for all ϕ ∈ Γ (G, G).
Relation (12) implies that Eϕ(λ(f)) = λ(P (ϕ)f) ∈ C∗

r (G), for all f ∈ L1(G) and all 
ϕ ∈ Γ (G, G). Since Eϕ is norm continuous and λ(L1(G)) is dense in C∗

r (G), we have 
that Eϕ(C∗

r (G)) ⊆ C∗
r (G). If ψ ∈ S(G, G) and T ∈ C∗

r (G) then

Eϕ

(
Sψ(T )

)
= Eϕψ(T ) ∈ C∗

r (G).

It follows that Eϕ(R) ⊆ C∗
r (G), for every ϕ ∈ Γ (G, G). �

We will assume, for the rest of the paper, that G is second countable. The following 
lemma will be needed in the proof of Theorem 4.9.

Lemma 4.7. Suppose that T ∈ B(L2(G)) is non-zero. Then there exist a, b ∈ L2(G) such 
that Ea⊗b(T ) �= 0.

Proof. Let T ∈ B(L2(G)) be a non-zero operator, and suppose, by way of contradiction, 
that Ea⊗b(T ) = 0 for all a, b ∈ L2(G). We may assume that T = MχK

TMχK
for some 

compact set K ⊆ G. By Theorem 4.6, Eϕ(T ) = 0 for every ϕ ∈ Γ (G, G). Since〈
Eϕ(T ), u

〉
=
〈
T, ϕN(u)

〉
=
〈
SN(u)(T ), ϕ

〉
, u ∈ A(G), ϕ ∈ Γ (G,G),

we have that SN(u)(T ) = 0 for every u ∈ A(G). Let

W = span
{
N(u)ψ : ψ ∈ Γ (G,G), u ∈ A(G)

}
.

Then W ⊆ Γ (G, G) is a subspace, invariant under S(G), and T ∈ W⊥. Denoting by 
null(W) the complement of the ω-union [34] of the family {h−1(C \ {0}) : h ∈ W}, we 
have null(W) � ∅. In fact, since G is second countable and locally compact, there exists 
an increasing sequence of compact sets {Kn} such that 

⋃∞
n=1 Kn = G. For each n ∈ N, 

choose a function un ∈ A(G) that takes the value 1 on Kn. Then, up to a marginally 
null set,

null(W) ⊆
∞⋂

n,m=1
null

(
N(un)χKm

× χKm

)
⊆

∞⋂
n,m=1

(
K∗

n ∩ (Km ×Km)
)c

=
∞⋂

n=1

((
Kc

n

)∗ ∪ ( ∞⋃
m=1

Km ×Km

)c)
=

∞⋂
n=1

(
Kc

n

)∗
=
(( ∞⋃

n=1
Kn

)c)∗
= ∅.

By [35, Corollary 4.3], W is dense in Γ (G, G) and hence T = 0, a contradiction. �
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If E ⊆ G, we let

E∗ =
{
(s, t) ∈ G×G : ts−1 ∈ E

}
.

If E is closed then E∗ is closed and hence, if G is second countable, it is ω-closed.

4.4. Multiplicity versus operator multiplicity

In the case of compact abelian groups, a connection between M -sets (resp. M1-sets) 
and operator M -sets (resp. operator M1-sets) was established in [14] (resp. [34]). Our 
aim now is to extend these results to arbitrary locally compact groups; a corresponding 
statement for M0-sets will be proved in the next subsection. We will need the following 
lemma.

Lemma 4.8. Let E ⊆ G be a closed set and T ∈ VN(G). If suppT ⊆ E then T is 
supported on E∗.

Proof. Let K and L be compact sets such that (K×L) ∩E∗ = ∅. Then (LK−1) ∩E = ∅. 
As the mapping (s, t) ∈ G × G �→ ts−1 ∈ G is continuous, the set LK−1 is compact. If 
now f and g ∈ L2(G) are such that fχK = 0 and gχL = 0 then the function u ∈ A(G)
given by u(s) = (λs(f), g), s ∈ G, has support in LK−1 and hence u ∈ J(E). Therefore 
(Tf, g) = 〈T, u〉 = 0. This implies that PLTPK = 0. By the regularity of the Haar 
measure, PLTPK = 0 whenever K and L are Borels sets with (K × L) ∩E∗ = ∅. Hence 
T is supported on E∗. �
Theorem 4.9. Let G be a locally compact second countable group and let E ⊆ G be a 
closed subset.

(a) The following are equivalent:
(i) E is an M -set;
(ii) E∗ is an operator M -set;
(iii) A ∩Mmax(E∗) �= {0};
(iv) R ∩Mmax(E∗) �= {0}.

(b) The following are equivalent:
(i′) E is an M1-set;
(ii′) E∗ is an operator M1-set;
(iii′) A ∩Mmin(E∗) �= {0};
(iv′) R ∩Mmin(E∗) �= {0}.

Proof. (a) (i) ⇒ (ii) Let E be an M -set; then there exists a non-zero operator T ∈
J(E)⊥ ∩ C∗

r (G). Suppose that AT = 0 for all A ∈ D0. Since D0 is weak* dense in D, 
there exists a net (Aj)j∈J ⊆ D0 such that limj∈J Aj = I in the weak* topology. After 
passing to a limit, we obtain that T = 0, a contradiction. Thus, there exists A ∈ D0
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such that AT �= 0; in view of (7), AT ∈ K. By Lemma 4.8, T ∈ Mmax(E∗) and hence 
AT ∈ Mmax(E∗); thus, E∗ is an operator M -set.

(ii) ⇒ (iii) ⇒ (iv) follow from the inclusions (10).
(iv) ⇒ (i) Suppose that T ∈ R ∩Mmax(E∗) is non-zero. By Lemma 4.7, there exist 

a, b ∈ L2(G) such that Ea⊗b(T ) �= 0. By Theorem 4.6, Ea⊗b(T ) ∈ C∗
r (G); we claim that, 

moreover, Ea⊗b(T ) ∈ J(E)⊥. To see this, let u ∈ A(G) vanish on an open neighbourhood 
of E and have compact support. Then N(u) ∈ S(G, G) vanishes on an ω-open neigh-
bourhood of E∗, and hence the function (a ⊗ b)N(u) ∈ Γ (G, G) vanishes on an ω-open 
neighbourhood of E∗. On the other hand, by [35, Theorem 4.3], we have(

SN(u)(T )a, b
)

=
〈
T, (a⊗ b)N(u)

〉
= 0,

giving 〈Ea⊗b(T ), u〉 = 0. Thus, 0 �= Ea⊗b(T ) ∈ J(E)⊥ and hence E is an M -set.
(b) (i′) ⇒ (ii′) We claim that λs ∈ Mmin(E∗) for every s ∈ E. To see this, suppose that 

w ∈ Γ (G, G) vanishes on the set E∗, that is, wχE∗ = 0 marginally almost everywhere. 
For every r ∈ G and s ∈ E, we have that (s−1r, r) ∈ E∗ and hence w(s−1r, r) = 0 for 
every s ∈ E and almost every r ∈ G. By (2), P (w)(s) = 0 for every s ∈ E and hence, 
by (1), 〈λs, w〉 = 0 for every s ∈ E; the claim is thus proved.

Suppose that E is an M1-set, and let 0 �= T ∈ I(E)⊥ ∩ C∗
r (G). A direct verifica-

tion shows that I(E)⊥ = [λs : s ∈ E]
w∗

. It follows from the previous paragraph that 
T ∈ Mmin(E∗). As in the proof of the implication (i) ⇒ (ii), we conclude that there 
exists A ∈ D0 such that 0 �= AT ∈ K ∩Mmin(E∗), that is, E∗ is an M1-set.

(ii′) ⇒ (iii′) ⇒ (iv′) follow from the inclusions (10).
(iv′) ⇒ (i′) Suppose that 0 �= T ∈ R ∩ Mmin(E∗). As in the proof of (a), we can 

show that there exist a, b ∈ L2(G) such that Ea⊗b(T ) is a non-zero element of C∗
r (G)

annihilating I(E). �
4.5. The case of M0-sets

In order to establish a statement for M0-sets, analogous to the ones from Theorem 4.9, 
we need a couple of auxiliary lemmas.

Lemma 4.10. If σ is an Arveson measure on G ×G then for every ϕ ∈ Γ (G, G) there exists 
a unique measure σϕ ∈ M(G) such that Eϕ(Tσ) = λ(σϕ). Moreover, if suppσ ⊆ Ê∗ then 
suppσϕ ⊆ E.

Proof. Let ϕ =
∑∞

i=1 fi ⊗ gi ∈ Γ (G, G) (here 
∑∞

i=1‖fi‖2
2 < ∞ and 

∑∞
i=1‖gi‖2

2 < ∞); 
note that ∥∥∥∥∥

∞∑
i=1

|fi| ⊗ |gi|
∥∥∥∥∥
Γ

≤ ‖ϕ‖Γ .

If u ∈ C0(G) then
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∣∣∣∣ ˆ

G×G

ϕ(s, t)u
(
ts−1)dσ(t, s)

∣∣∣∣ ≤ ˆ

G×G

∣∣ϕ(s, t)
∣∣∣∣u(ts−1)∣∣d|σ|(t, s)

≤ ‖u‖∞
ˆ

G×G

∞∑
i=1

∣∣fi(s)∣∣∣∣gi(t)∣∣d|σ|(t, s)
= ‖u‖∞

∞∑
i=1

(
T|σ||fi|, |gi|

)
= ‖u‖∞

〈
T|σ|,

∞∑
i=1

|fi| ⊗ |gi|
〉

≤ ‖u‖∞‖T|σ|‖
∥∥∥∥∥

∞∑
i=1

|fi| ⊗ |gi|
∥∥∥∥∥
Γ

≤ ‖u‖∞‖σ‖A‖ϕ‖Γ .

It follows that the functional R : C0(G) → C given by

R(u) =
ˆ

G×G

ϕ(s, t)u
(
ts−1)dσ(t, s), u ∈ C0(G),

is well-defined and bounded. Hence, there exists σϕ ∈ M(G) such that
ˆ

G×G

ϕ(s, t)u
(
ts−1)dσ(t, s) =

ˆ

G

u(x)dσϕ(x), u ∈ C0(G). (13)

On the other hand,
ˆ

G

u(x)dσϕ(x) =
〈
λ(σϕ), u

〉
, u ∈ A(G).

By (13) and Theorem 3.2,〈
λ(σϕ), u

〉
=
〈
Tσ, ϕN(u)

〉
=
〈
Eϕ(Tσ), u

〉
, u ∈ A(G);

thus, Eϕ(Tσ) = λ(σϕ).
Now suppose that suppσ ⊆ Ê∗ and that U ⊆ G is an open set, disjoint from E. For 

any function u ∈ C0(G) with suppu ⊆ U , we have that suppN(u) ⊆ Û∗. On the other 
hand, Û∗ is disjoint from Ê∗ and hence Proposition 3.1 implies that |σ|(Û∗) = 0. Now 
(13) shows that 

´
G
u(x)dσϕ(x) = 0. It follows that σϕ(U) = 0; thus, suppσϕ ⊆ E. �

We will need the following fact, which was discussed in [37, p. 347] in the case of a 
finite measure (here we need a σ-finite version of this as the Haar measure on a locally 
compact non-compact group is such).
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Lemma 4.11. Let (X, μ) and (Y, ν) be σ-finite standard measure spaces and (σx)x∈X be 
a family of complex Borel measures on Y such that, for every measurable F ⊆ Y , the 
function x �→ σx(F ) is measurable. Suppose that the function x �→ ‖σx‖ is integrable and 
essentially bounded (with respect to the measure μ). Then there exists a Borel measure σ

on Y ×X such that σ(E) =
´
X

´
Y
χE(y, x)dσx(y)dμ(x), for every measurable set E ⊆

Y × X, and a constant c > 0 such that |σ|(Y × α) ≤ cμ(α) for every measurable set 
α ⊆ X.

Proof. First of all, notice that the quantity

σ(E) =
ˆ

X

ˆ

Y

χE(y, x)dσx(y)dμ(x)

is finite. Indeed,∣∣∣∣ˆ
X

ˆ

Y

χE(y, x)dσx(y)dμ(x)
∣∣∣∣ ≤ ˆ

X

ˆ

Y

χE(y, x)d
∣∣σx
∣∣(y)dμ(x)

≤
ˆ

X

∣∣σx
∣∣(Y )dμ(x) < ∞.

A direct verification now shows that σ is a measure. Moreover, the above estimate 
yields

|σ|(E) ≤
ˆ

X

ˆ

Y

χE(y, x)d
∣∣σx
∣∣(y)dμ(x),

for every measurable set E ⊆ Y ×X. Letting c = ess supx∈X‖σx‖, for every measurable 
α ⊆ X, we have

|σ|(Y × α) ≤
ˆ

α

∥∥σx
∥∥dμ(x) ≤ cμ(α). �

In the next theorem, we let

P(κ) =
{
Tμ : μ ∈ A(κ̂)

}
.

Theorem 4.12. Let E ⊆ G be a closed set. The following are equivalent:

(i) E is an M0-set;
(ii) E∗ is an operator M0-set;
(iii) A ∩P(E∗) �= {0};
(iv) R ∩P(E∗) �= {0}.
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Proof. (i) ⇒ (ii) Let θ ∈ M(G) be such that supp θ ⊆ E and λ(θ) ∈ C∗
r (G). Then 

Mgλ(θ)Mf is a compact operator for all f, g ∈ C0(G) (see (7)).
For each x ∈ G, let θx ∈ M(G) be given by θx(α) = θ(xα−1) and θx be given by 

θx(α) = θ(αx−1), for any measurable α ⊆ G (here α−1 = {s−1 : s ∈ α}). Let θ∗ ∈ M(G)
be defined by dθ∗(s) = dθ(s−1); then λ(θ∗) = λ(θ)∗. First observe that ‖θx‖ = ‖θ‖ for 
each x ∈ G. Indeed, if {αj}Nj=1 is a measurable partition of G then {xα−1

j }Nj=1 is also 
such, and hence

N∑
j=1

∣∣θx(αj)
∣∣ =

N∑
j=1

∣∣θ(xα−1
j

)∣∣ ≤ ‖θ‖.

On the other hand, for every ε > 0, letting {βk}Kk=1 be a measurable partition of G such 
that 

∑K
k=1|θ(βk)| > ‖θ‖ − ε, we see that {β−1

k x}Kk=1 is a measurable partition of G with ∑K
k=1|θx(β−1

k x)| > ‖θ‖ − ε, and so ‖θx‖ ≥ ‖θ‖. Similarly, ‖θ∗x‖ = ‖θ∗‖ for all x ∈ G.
If f, g ∈ C0(G) then

(
Mgλ(θ)Mfξ, η

)
=
¨

f
(
y−1x

)
ξ
(
y−1x

)
g(x)η(x)dθ(y)dx

=
¨

f(z)ξ(z)g(x)η(x)dθx(z)dx (14)

and, also, (
Mgλ(θ)Mfξ, η

)
=
(
Mfξ, λ

(
θ∗
)
Mḡη

)
=
¨

f(z)ξ(z)g
(
x−1z

)
η
(
x−1z

)
dθ∗(x)dz

=
¨

f(z)ξ(z)g(x)η(x)d
(
θ∗
)z(x)dz.

If, moreover, f, g ∈ C0(G) ∩ L1(G) and x ∈ G, the total variation of the mea-
sure g(x)f(·)dθx(·) equals 

´
G
|f(z)|d|g(x)θx| which does not exceed ‖f‖∞‖g(x)θx‖. 

Hence, ‖g(x)f(·)dθx(·)‖ ≤ ‖g‖∞‖f‖∞‖θ‖ for all x ∈ G. Furthermore, the function 
x �→ ‖f‖∞‖g(x)θx‖ is integrable since x �→ ‖θx‖ is a constant function.

Similarly, the total variation of the measure f(z)g(·)d(θ∗)z(·) does not exceed 
‖g‖∞‖f‖∞‖θ∗‖, and the function z → ‖g‖∞‖f(z)d(θ∗)z‖ is integrable. Lemma 4.11
now shows that, if f, g ∈ C0(G) ∩ L1(G), then Mgλ(θ)Mf is the pseudo-integral op-
erator of the Arveson measure σf,g,θ given by dσf,g,θ(x, z) = g(x)f(z)d(θ∗)z(x)dz =
g(x)f(z)dθx(z)dx. On the other hand, since λ(θ) ∈ C∗

r (G), the operator Mgλ(θ)Mf is 
compact whenever f, g ∈ C0(G) ∩ L1(G). It is now clear that, since θ �= 0, we can find 
functions f, g ∈ C0(G) ∩ L1(G) such that Mgλ(θ)Mf is non-zero.

Suppose that α × β is a measurable rectangle with (α× β) ∩ E∗ = ∅ and ξ ∈ L2(G)
(resp. η ∈ L2(G)) vanishes everywhere on αc (resp. βc). For each x ∈ G, the function
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y �→ ξ(y−1x)η(x) vanishes on E and hence, by (14), (Mgλ(θ)Mfξ, η) = 0. Thus, 
Mgλ(θ)Mf is supported on E∗.

(ii) ⇒ (iii) ⇒ (iv) are trivial.
(iv) ⇒ (i) Suppose that σ is an Arveson measure supported on Ê∗ such that 0 �=

Tσ ∈ R. By Lemma 4.7, there exists ϕ ∈ Γ (G, G) such that Eϕ(Tσ) �= 0. By Lemma 4.10, 
Eϕ(Tσ) = λ(σϕ), where σϕ is supported on E and, by Theorem 4.6, λ(σϕ) belongs 
to C∗

r (G). �
4.6. An application: unions of sets of uniqueness

It was shown in [34, Proposition 5.3] that the union of two operator U -sets (resp. 
operator U1-sets) is an operator U -set (resp. an operator U1-set). A similar statement 
holds for operator U0-sets.

Proposition 4.13. Let E1, E2 ⊂ X × Y be ω-closed operator U0-sets. Then E1 ∪E2 is an 
operator U0-set.

Proof. Let Tσ be a pseudo-integral compact operator supported on E1 ∪ E2; we may 
assume that the total variation of σ is 1. Let θi ∈ Φ(Ei) ∩S(X, Y ), i = 1, 2, and write 
θ1(x, y) =

∑∞
i=1 fi(x)gi(y), where ‖

∑∞
i=1|fi|2‖∞ ≤ C and ‖

∑∞
i=1|gi|2‖∞ ≤ C. We have 

that θ1θ2 ∈ Φ(E1 ∪ E2) and hence

0 = 〈Tσ, θ1θ2〉 =
〈
Sθ1(Tσ), θ2

〉
. (15)

Let ρ be the measure on Y ×X given by

ρ(E) =
ˆ

E

θ1(x, y)dσ(y, x).

Denoting by 
.⋃

the union of a pairwise disjoint family of measurable sets, we have

|ρ|X(α) = |ρ|(Y × α)

= sup
{

r∑
j=1

∣∣ρ(Ej)
∣∣ : Y × α =

r.⋃
j=1

Ej

}

= sup
{

r∑
j=1

∣∣∣∣ ˆ
Ej

θ1(x, y)dσ(y, x)
∣∣∣∣ : Y × α =

r.⋃
j=1

Ej

}

≤ sup
{

r∑
j=1

ˆ ∣∣θ1(x, y)
∣∣d|σ|(y, x) : Y × α =

r.⋃
j=1

Ej

}

Ej
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≤
ˆ

Y×α

∞∑
i=1

∣∣fi(x)
∣∣∣∣gi(y)∣∣d|σ|(y, x)

≤
∞∑
i=1

( ˆ

Y×α

∣∣fi(x)
∣∣2d|σ|(y, x)

)1/2( ˆ

Y×α

∣∣gi(y)∣∣2d|σ|(y, x)
)1/2

≤
( ˆ

Y×α

∞∑
i=1

∣∣fi(x)
∣∣2d|σ|(y, x)

)1/2( ˆ

Y×α

∞∑
i=1

∣∣gi(y)∣∣2d|σ|(y, x)
)1/2

≤ C2|σ|X(α).

Similarly, |ρ|Y (β) ≤ C2|σ|Y (β) showing that ρ is an Arveson measure. Now the identity

(
Sθ1(Tσ)ξ, η

)
=

ˆ

Y×X

θ1(x, y)ξ(x)η(y)dσ(y, x), ξ ∈ H1, η ∈ H2,

shows that Sθ1(Tσ) = Tρ.
Let h ∈ Φ(E2) and write h =

∑∞
i=1 fi ⊗ gi, where 

∑∞
i=1‖fi‖2

2 < ∞ and ∑∞
i=1‖gi‖2

2 < ∞. Let XN = {x ∈ X :
∑∞

i=1|fi(x)|2 ≤ N} and YN = {y ∈ Y :∑∞
i=1|gi(y)|2 ≤ N}. Then χXN×YN

h ∈ S(X, Y ) and ‖χXN×YN
h − h‖Γ →N→∞ 0. Thus, 

Φ(E2) ∩S(X, Y ) is dense in Φ(E2), and, by (15), Tρ ∈ Φ(E2)⊥ = Mmin(E2). As E2 is an 
operator U0-set, Tρ = 0 and therefore ρ = 0. By Theorem 3.2, 〈Tσ, θ1〉 = ρ(Y ×X) = 0. 
Since this holds for any θ1 ∈ Φ(E1) ∩S(X, Y ), the operator Tσ is supported on E1. Since 
E1 is an operator U0-set, Tσ = 0. �

Proposition 4.13, [34, Proposition 5.3], Theorem 4.9 and Theorem 4.12 have the fol-
lowing immediate corollary.

Corollary 4.14. Let G be a locally compact second countable group. Suppose that 
E1, E2 ⊆ G are U -sets (resp., U1-sets, U0-sets). Then E1∪E2 is a U -set (resp. a U1-set, 
a U0-set).

5. Preservation properties

The aim of this section is to show that the property of being a set of multiplicity, or 
a set of uniqueness, is preserved under some natural operations. The section is divided 
into three subsections.

5.1. Sets possessing an m-resolution

Here we consider a certain type of a countable union of operator U -sets. Theorem 5.2
should be compared to the classical result of N.K. Barry that a countable union of U -sets 
is a U -set [24].
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Definition 5.1. Let (X, μ) and (Y, ν) be standard measure spaces.
(i) A pair (κ1, κ2) of ω-closed subsets of the direct product X × Y will be called 

m-separable if there exist a function ϕ1 ∈ S(X, Y ) and ω-open neighbourhoods E1

and E2 of κ1 and κ2, respectively, such that ϕ|E1 = 1 and ϕ|E2 = 0.
(ii) Let κ ⊆ X × Y be an ω-closed set and α be a countable ordinal. We call a family 

(κβ)β≤α of ω-closed sets an m-resolution of κ if

• κ1 = κ;
• κβ+1 ⊆ κβ , the set κβ\κβ+1 is ω-closed and the pair κβ+1, κβ\κβ+1 is an m-separable, 

for every ordinal β < α;
• κβ =

⋂
γ<β κγ , for every limit ordinal β ≤ α.

Theorem 5.2. Let (X, μ) and (Y, ν) be standard measure spaces and κ ⊆ X × Y be an 
ω-closed set which possesses an m-resolution (κβ)β≤α such that κβ \κβ+1 is an operator 
U -set, for each β < α, and κα is an operator U -set. Then κ is an operator U -set.

Proof. Let (κβ)β≤α be an m-resolution of κ such that κβ \κβ+1 is an operator U -set for 
each β < α.

We first observe that if T ∈ Mmax(κβ) ∩ K for some ordinal β < α, then T ∈
Mmax(κβ+1) ∩K. In fact, let κ′

β = κβ−1 \ κβ . By our assumptions, κ′
β is an ω-closed set 

and there exists a function ϕ ∈ S(X, Y ) such that ϕ = 1 on an ω-open neighbourhood 
of κβ+1 and ϕ = 0 on an ω-open neighbourhood of κ′

β. Clearly, 1 −ϕ ∈ S(X, Y ), 1 −ϕ = 0
on an ω-open neighbourhood of κβ+1 and 1 −ϕ = 1 on an ω-open neighbourhood of κ′

β. 
Moreover, T = Sϕ(T ) + S1−ϕ(T ).

For each ψ ∈ S(X, Y ) vanishing on an ω-open neighbourhood of κβ+1, the function 
ψϕ ∈ S(X, Y ) vanishes on an ω-open neighbourhood of κβ and, since T ∈ Mmax(κβ), 
Lemma 3.4 implies that Sψ(Sϕ(T )) = Sψϕ(T ) = 0. By Lemma 3.4 again, Sϕ(T ) ∈
Mmax(κβ+1). Similarly, S1−ϕ(T ) ∈ Mmax(κ′

β). Since K is invariant under Schur multi-
pliers, we conclude that S1−ϕ(T ) ∈ Mmax(κ′

β) ∩K. However, κ′
β is an operator U -set by 

assumption. It follows that S1−ϕ(T ) = 0 and hence T = Sϕ(T ) ∈ Mmax(κβ+1) ∩ K.
Let now T ∈ Mmax(κ) ∩K. It follows by transfinite induction that T ∈ Mmax(κβ) ∩K

for all β ≤ α. In fact, assuming that the statement holds for all γ < β we get by the 
previous paragraph that T ∈ Mmax(κβ) ∩ K if β has a predecessor while, if β is a limit 
ordinal, the inclusion follows from the assumption that κβ =

⋂
γ<β κγ .

Since κα is an operator U -set, we have now T = 0 and hence κ is an operator U -set. �
The following corollary should be compared to M. Bożejko’s result [5,4] that every 

compact countable set in a non-discrete locally compact group is a U -set.

Corollary 5.3. Let G be a non-discrete locally compact second countable group and E ⊆ G

be a closed countable set. Then E is a U -set.



V.S. Shulman et al. / Journal of Functional Analysis 268 (2015) 1454–1508 1485
Proof. Recall that the successive Cantor–Bendixson derivatives of the set E are defined 
as follows: let E0 = E and for an ordinal β, let Eβ be equal to the set of all limit points 
of Eβ−1 if β has a predecessor, and to 

⋂
γ<β Eγ if β is a limit ordinal. Since E is countable, 

there exists a countable ordinal α such that Eα = ∅. Moreover, Eβ \Eβ+1 is a countable 
set consisting of isolated points of E. By the regularity of A(G), a pair of the form 
({s}∗, F ∗), where F is a closed set and s /∈ F , is m-separable. One hence easily obtains an 
m-resolution for E∗. On the other hand, if G is not discrete then Mmax({s}∗) = λsD does 
not contain non-zero compact operators. It follows from Theorem 5.2 and Theorem 4.9
that E is a U -set. �
5.2. Inverse images

In this subsection, we establish an Inverse Image Theorem for sets of multiplicity. Our 
result, Theorem 5.5, should be compared to [35, Theorem 4.7], an inverse image result 
for operator synthesis.

Let (X, μ), (X1, μ1), (Y, ν) and (Y1, ν1) be standard measure spaces. We fix, for the 
remainder of this section, measurable mappings ϕ : X → X1 and ψ : Y → Y1 such that 
ϕ(X) and ψ(Y ) are measurable, the measure ϕ∗μ on X1 given by ϕ∗μ(α1) = μ(ϕ−1(α1))
is absolutely continuous with respect to μ1, and the measure ψ∗ν, defined similarly, is 
absolutely continuous with respect to ν1.

Let r : X1 → R+ be the Radon–Nikodym derivative of ϕ∗μ with respect to μ1, 
that is, the μ1-measurable function such that μ(ϕ−1(α1)) =

´
α1

r(x1)dμ1(x1) for every 
measurable set α1 ⊆ X1. Similarly, let s : Y1 → R+ be the Radon–Nikodym derivative of 
ψ∗ν with respect to ν1. Let M1 = {x1 ∈ X1 : r(x1) = 0} and N1 = {y1 ∈ Y1 : s(y1) = 0}. 
Note that μ(ϕ−1(M1)) =

´
M1

r(x1)dμ1(x1) = 0. Similarly, ν(ψ−1(N1)) = 0. Observe 
that, up to a μ1-null set, M c

1 ⊆ ϕ(X). Indeed, letting M2 = M c
1 ∩ ϕ(X)c ⊆ X1, we 

see that ϕ−1(M2) = ∅ and hence 0 = μ(ϕ−1(M2)) =
´
M2

r1(x)dμ1(x). Since r1(x) > 0
for every x ∈ M2, we have that μ1(M2) = 0. Similarly, N c

1 ⊆ ϕ(Y ), up to a null 
set.

We will say that ϕ : X → X1 is injective up to a null set if there exists a subset 
Λ ⊆ X with μ(Λ) = 0, such that ϕ : Λc → X1 is injective. By [35, Lemma 4.2], there 
exists a null set N ⊆ X1 such that ϕ(Λc) \ N is measurable and the inverse of ϕ−1 on 
ϕ(Λc) \ N is measurable. We moreover have that ϕ−1(N) is null; thus, the function ϕ, 
restricted to Λc ∩ ϕ−1(N)c is a bijection onto ϕ(Λc) \N and has measurable inverse.

If the set Λ above can moreover be chosen so that μ1(ϕ(Λc)c) = 0, then we say that 
ϕ is bijective up to a null set.

The following result must be known but we could not find a precise reference.

Lemma 5.4. The operator Vϕ : L2(X1, μ1) → L2(X, μ) given by

Vϕξ(x) =
{

ξ(ϕ(x))√
r(ϕ(x)) if x /∈ ϕ−1(M1),

−1
0 if x ∈ ϕ (M1)
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is a partial isometry with initial space L2(M c
1 , μ1|Mc

1 ). Moreover, if ϕ is injective up to 
a null set then Vϕ is surjective.

Proof. Note that, if ξ ∈ L2(X1, μ1) then

‖Vϕξ‖2 =
ˆ

ϕ−1(M1)c

∣∣∣∣ ξ(ϕ(x))√
r(ϕ(x))

∣∣∣∣2dμ(x) =
ˆ

Mc
1

∣∣∣∣ ξ(x1)√
r(x1)

∣∣∣∣2dϕ∗μ(x1)

=
ˆ

Mc
1

r(x1)
∣∣∣∣ ξ(x1)√

r(x1)

∣∣∣∣2dμ1(x1) =
ˆ

Mc
1

∣∣ξ(x1)
∣∣2dμ1(x1).

It follows that Vϕ is a partial isometry with initial space L2(M c
1 , μ1|Mc

1 ).
Suppose that ϕ is injective up to a null set. By the remarks preceding the formulation 

of the lemma, we may assume that there exists a set M ⊆ X such that μ(M) = 0, 
ϕ(M c) is measurable, ϕ|Mc is one-to-one, and ϕ−1 : ϕ(M c) → M c is measurable. Let 
η ∈ L2(X, μ) and define ξ : X1 → C by setting ξ(x1) =

√
r(x1)η(ϕ−1(x1)) if x1 ∈ ϕ(M c)

and ξ(x1) = 0 if x1 /∈ ϕ(M c). We claim that ξ ∈ L2(X1, μ1). To see this, note that

μ
(
ϕ−1(α1)

)
=
ˆ

α1

r(x1)dμ1(x1),

for all μ1-measurable sets α1 ⊆ ϕ(M c). Setting μ̃ to be the measure on M c given by 
μ̃(α) = μ1(ϕ(α)) for μ-measurable subset α ⊆ M c we have

μ(α) =
ˆ

α

r
(
ϕ(x)

)
dμ̃(x).

It follows that

‖ξ‖L2(X1,μ1) =
ˆ

ϕ(Mc)

r(x1)
∣∣η(ϕ−1(x1)

)∣∣2dμ1(x1)

=
ˆ

Mc

r
(
ϕ(x)

)∣∣η(x)
∣∣2dμ̃(x)

=
ˆ

Mc

∣∣η(x)
∣∣2dμ(x) = ‖η‖L2(X,μ)

since M is μ-null. On the other hand,

Λ
def= ϕ−1(M c

1 ∩ ϕ
(
M c
)c) ⊆ ϕ−1(ϕ(M c

)c) ⊆ M,

and hence Λ is μ-null. It follows as in the third paragraph of the present subsection that 
M c

1 ∩ ϕ(M c)c is μ1-null. Thus, Vϕξ = η, and the proof is complete. �
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We now formulate and prove the main result of this subsection.

Theorem 5.5. Let ϕ : X → X1 and ψ : Y → Y1 be measurable functions. Let κ1 ⊆ X1×Y1
and κ = {(x, y) ∈ X × Y : (ϕ(x), ψ(y)) ∈ κ1}.

(i) Suppose that ϕ and ψ are injective up to a null set. If κ1 is an operator U -set (resp. 
an operator U1-set) then κ is an operator U -set (resp. an operator U1-set).

(ii) Suppose that κ1 ⊆ M c
1 ×N c

1 . If κ1 is an operator M -set (resp. an operator M1-set) 
then κ is an operator M -set (resp. an operator M1-set).

(iii) Suppose that μ1 (resp. ν1) is equivalent to ϕ∗μ (resp. ψ∗ν) and that ϕ and ψ are 
injective up to a null set. Then κ1 is an operator M -set (resp. an operator M1-set) 
if and only if κ is an operator M -set (resp. an operator M1-set).

Proof. (i) Let Θ be the linear map from the algebraic tensor product L2(X1, μ1) ⊗
L2(Y1, ν1) of L2(X1, μ1) and L2(Y1, ν1) sending f ⊗ g to Vϕf ⊗ Vψg. Since Vϕ and Vψ

are partial isometries, Θ is contractive in the norm of Γ (X1, Y1), and hence extends 
to a contractive linear map Θ : Γ (X1, Y1) → Γ (X, Y ). By Lemma 5.4, Vϕ and Vψ are 
surjective, and hence Θ has dense range. Moreover, if h ∈ Γ (X1, Y1) then

Θ(h)(x, y) = h(ϕ(x), ψ(y))√
r(ϕ(x))s(ψ(y))

, for m.a.e. (x, y) ∈ ϕ−1(M1) × ψ−1(N1). (16)

To show (16), write h =
∑∞

i=1 fi ⊗ gi, where 
∑∞

i=1‖fi‖2
2 < ∞ and 

∑∞
i=1‖gi‖2

2 < ∞, and 
set hn =

∑n
i=1 fi ⊗ gi, n ∈ N. By the definition of Θ, identity (16) holds for all hn, 

n ∈ N, if (x, y) belongs to the set ϕ−1(M1) × ψ−1(N1). By [35, Lemma 2.1], there 
exists a subsequence (hnk

) of (hn) which converges to h marginally almost everywhere. 
By passing to a further subsequence, we may assume that Θ(hnk

) converges to Θ(h)
marginally almost everywhere. Identity (16) now follows from the fact that if E ⊆ X1×Y1
is marginally null then {(x, y) ∈ X × Y : (ϕ(x), ψ(y)) ∈ E} is marginally null.

The map Θ is the adjoint to the map K(L2(X1, μ1), L2(Y1, ν1)) � K �→ V ∗
ψKVϕ ∈

K(L2(X, μ), L2(Y, ν)); indeed, if f ∈ L2(X, μ) and g ∈ L2(Y, ν) then〈
f ⊗ g, V ∗

ψKVϕ

〉
=
(
V ∗
ψKVϕf, ḡ

)
= (KVϕf, Vψ ḡ) = (KVϕf, Vψg)

= 〈Vϕf ⊗ Vψg,K〉 =
〈
Θ(f ⊗ g),K

〉
.

It follows that Θ is weak* continuous and thus, if M1 ⊆ Γ (X1, Y1) then

Θ
(
M1

w∗)
⊆ Θ(M1)

w∗

. (17)

Suppose that h|κ1 = 0. If (x, y) ∈ κ \ ((ϕ−1(M1) ×Y ) ∪ (X×ψ−1(N1))) then, by (16),

Θ(h)(x, y) = h(ϕ(x), ψ(y))√ = 0;

r(ϕ(x))s(ψ(y))



1488 V.S. Shulman et al. / Journal of Functional Analysis 268 (2015) 1454–1508
thus, Θ(Φ(κ1)) ⊆ Φ(κ). On the other hand, if E1 is an ω-open neighbourhood of κ1 then 
(ϕ ×ψ)−1(E1) is an ω-open neighbourhood of κ. Applying the same reasoning as above, 
and using the continuity of Θ with respect to ‖ · ‖Γ , we conclude that Θ(Ψ(κ1)) ⊆ Ψ(κ).

Now suppose that κ1 is an operator U -set, that is, Φ(κ1)
w∗

= Γ (X1, Y1). Using (17), 
we have

Γ (X,Y ) = Θ
(
Γ (X1, Y1)

)‖·‖
= Θ

(
Φ(κ1)

w∗)‖·‖
⊆ Θ

(
Φ(κ1)

)w∗

⊆ Φ(κ)
w∗

.

Thus, Φ(κ)
w∗

= Γ (X, Y ) and hence κ is an operator U -set. It follows similarly that if 
κ1 is an operator U1-set then κ is an operator U1-set.

(ii) Suppose that κ1 is an operator M1-set and let K1 be a non-zero compact operator 
in Mmin(κ1). Let K = VψK1V

∗
ϕ . As κ1 ⊆ M c

1 ×N c
1 , V ∗

ϕVϕ = P (M c
1) and V ∗

ψVψ = P (N c
1 ), 

we have that K1 = V ∗
ψKVϕ and hence K is a non-zero compact operator.

Let

(P,Q) ∈
(
B
(
�2
)
⊗̄ L∞(X,μ)

)
×
(
B
(
�2
)
⊗̄ L∞(Y, ν)

)
be a κ-pair [35]; this means that, after the identification of P and Q with operator-valued 
weakly measurable functions, defined on X and Y , respectively, P and Q are projection-
valued and P (x)Q(y) = 0 marginally almost everywhere on κ. It follows from the proof 
of [35, Theorem 4.7] that there exists a κ1-pair

(P̂ , Q̂) ∈
(
B
(
�2
)
⊗̄ L∞(X1, μ)

)
×
(
B
(
�2
)
⊗̄ L∞(Y1, ν)

)
,

such that P (x) ≤ P̂ (ϕ(x)) and Q(y) ≤ Q̂(ψ(x)) for almost all x ∈ X and almost all 
y ∈ Y . By Theorem 3.3,

Q̂(I ⊗K1)P̂ = 0. (18)

We claim that(
I ⊗ V ∗

ϕ

)
(R ◦ ϕ) = R

(
I ⊗ V ∗

ϕ

)
and (S ◦ ψ)(I ⊗ Vψ) = (I ⊗ Vψ)S, (19)

whenever R and S are bounded operator-valued weakly measurable functions on X1
and Y1, respectively. It clearly suffices to show only the first of these identities. Start 
by observing that P (ϕ−1(α))Vϕ = VϕP (α), for all measurable subsets α ⊆ X1. It fol-
lows that (19) holds when R =

∑k
j=1 aj ⊗ χEj

, where (Ej)kj=1 is a family of pairwise 
disjoint measurable subsets of X1 and (ai)ki=1 is a family of bounded operators on �2. 
If R is arbitrary then, by Kaplansky’s Density Theorem, it is the strong limit of a se-
quence (Rn)n∈N, where Rn is of the latter form and ‖Rn‖ ≤ ‖R‖ for each n. By the 
proof of [35, Theorem 4.6], there exists S1 ⊆ X1 with μ1(S1) = 0 such that

R(x1) = s-limRnk
(x1) if x1 /∈ S1.
n→∞
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Let S = ϕ−1(S1); then R(ϕ(x)) = s-limk→∞ Rnk
(ϕ(x)) if x /∈ S. As μ(S) = ϕ∗μ(S1)

and ϕ∗μ is absolutely continuous with respect to μ1, we have that μ(S) = 0 and hence 
(Rnk

◦ ϕ)k∈N converges almost everywhere to R ◦ ϕ.
Since ‖Rn‖ = ess supx1∈X1

‖Rn(x)‖B(�2) and (Rn)n∈N is bounded by ‖R‖, there exists 
a μ1-null set M ⊆ X1 such that ‖Rn(x1)‖B(�2) ≤ ‖R‖ for all x1 /∈ M and all n ∈ N. 
Therefore ‖Rn(ϕ(x))‖B(�2) ≤ ‖R‖ for all x /∈ ϕ−1(M) and all n ∈ N. As μ(ϕ−1(M)) = 0, 
we have that ‖Rn ◦ϕ‖ = ess supx∈X‖Rn(ϕ(x))‖B(�2) ≤ ‖R‖, for all n ∈ N. By a straight-
forward application of the Lebesgue Dominated Convergence Theorem, (Rnk

◦ ϕ)k∈N

converges strongly to R ◦ ϕ. As (I ⊗ V ∗
ϕ )(Rn ◦ ϕ) = Rn(I ⊗ V ∗

ϕ ) holds for every n and 
(I ⊗ V ∗

ϕ )(Rn ◦ ϕ) → (I ⊗ V ∗
ϕ )(R ◦ ϕ), Rn(I ⊗ V ∗

ϕ ) → R(I ⊗ V ∗
ϕ ) in the strong operator 

topology, (19) is proved. Using (18) and (19), we now obtain

Q(I ⊗K)P = Q(Q̂ ◦ ψ)
(
I ⊗ VψK1V

∗
ϕ

)
(P̂ ◦ ϕ)P

= Q(I ⊗ Vψ)Q̂(I ⊗K1)P̂
(
I ⊗ V ∗

ψ

)
P = 0.

By Theorem 3.3, K ∈ Mmin(E); hence, κ is an operator M1-set.
Now suppose that κ1 is an operator M -set and let K1 ∈ Mmax(κ1) be a non-zero 

compact operator. Let (P, Q) be a simple κ-pair [35], that is, a κ-pair (P, Q) for which 
each of the projection valued functions P and Q takes finitely many values. We recall the 
construction of the pair (P̂ , Q̂) from [35]. Let (ξj)j∈N be a dense sequence in �2. It was 
shown on [35, p. 311] that there are null sets M1

0 ⊆ X1 and M0 ⊆ X and, for each j ∈ N, 
a measurable function gj : ϕ(X) \M1

0 → X with ϕ(gj(x1)) = x1 for all x1 ∈ ϕ(X) \M1
0 , 

and (P (gj(ϕ(x)))ξj , ξj) > (P (x)ξj , ξj) − 1
j , x ∈ X \M0. Let, similarly, (ηj)j∈N be a dense 

sequence in �2 and for each j ∈ N, let hj : ϕ(Y ) \ N1
0 → Y be a measurable function 

with ψ(hj(y1)) = y1 for all y1 ∈ ψ(Y ) \N1
0 , and (Q(hj(ψ(y)))ηj , ηj) > (Q(y)ηj , ηj) − 1

j , 
y ∈ Y \N0, where N1

0 ⊆ Y1 and N0 ⊆ Y are null sets. Set

P̂n(x1) =
n∨

j=1
P
(
gj(x1)

)
, P̂ (x1) =

∞∨
j=1

P
(
gj(x1)

)
, x1 ∈ ϕ(X) \M1

0 ,

Q̂n(y1) =
n∨

j=1
Q
(
hj(y1)

)
, Q̂(y1) =

∞∨
j=1

Q
(
hj(y1)

)
, y1 ∈ ψ(Y ) \N1

0 .

We have that P̂n →n→∞ P̂ and Q̂n →n→∞ Q̂ in the strong operator topology. Fur-
thermore, since P (resp. Q) takes only finitely many values, the same is true for P̂n

(resp. Q̂n), n ∈ N. If

(x1, y1) ∈ κ1 ∩
((
ϕ(X) \M1

0
)
×
(
ψ(Y ) \N1

0
))

then (gj(x1), hj(y1)) ∈ κ. However, κ1 ⊆ M c
1×N c

1 , while M c
1×N c

1 is marginally contained 
in ϕ(X) ×ψ(Y ). It follows that P̂n(x1)Q̂n(y1) = 0 for marginally almost all (x1, y1) ∈ κ1
and every n ∈ N. Thus, (P̂n, Q̂n) is a simple κ1-pair, n ∈ N, and hence, by Theorem 3.3, 
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Q̂n(I ⊗K1)P̂n = 0 for every n. Since P ≤ P̂ ◦ϕ and Q ≤ Q̂ ◦ψ, it follows from (19) and 
the first part of the proof that

P = P (P̂ ◦ ϕ) = s-lim
n→∞

P (P̂n ◦ ϕ) and Q = Q(Q̂ ◦ ψ) = s-lim
n→∞

Q(Q̂n ◦ ψ).

As in the previous paragraph, we conclude that

Q(I ⊗K)P = w-lim
n→∞

Q(I ⊗ Vψ)Q̂n(I ⊗K1)P̂n

(
I ⊗ V ∗

ψ

)
P = 0.

By Theorem 3.3, K ∈ Mmax(κ) and since K is a non-zero compact operator, κ is an 
operator M -set.

(iii) In this case μ1(M1) = 0 and ν1(N1) = 0; thus, (iii) is immediate from (i) 
and (ii). �
Remark 5.6. (i) The statement in Theorem 5.5 (ii) does not hold without the assumption 
κ1 ⊆ M c

1 ×N c
1 ; indeed, assuming that M1 and N1 are non-null and letting κ1 = M1×N1, 

we see that κ1 is an operator M -set; but κ is marginally equivalent to the empty set and 
hence is an operator U -set.

(ii) G.K. Eleftherakis has recently proved part (i) of Theorem 5.5 without the injec-
tivity assumption on the mappings ϕ and ψ, see [8].

Corollary 5.7. Let G and H be locally compact second countable groups with Haar mea-
sures mG and mH , respectively, ϕ : G → H be a continuous homomorphism and E be a 
closed subset of H. Assume that ϕ∗mG is absolutely continuous with respect to mH .

(i) Suppose that ϕ is injective and has a continuous inverse on ϕ(G). If E is a U -set 
(resp. a U1-set) then ϕ−1(E) is a U -set (resp. a U1-set).

(ii) Suppose that ϕ∗mG is equivalent to mH . If E is an M -set (resp. an M1-set) then 
ϕ−1(E) is an M -set (resp. an M1-set).

(iii) If ϕ is an isomorphism then E is an M -set (resp. an M1-set) if and only if ϕ−1(E)
is an M -set (resp. an M1-set).

Proof. First observe that, since ϕ is a homomorphism, ϕ−1(E)∗ = (ϕ × ϕ)−1(E∗). If ϕ
is an isomorphism then ϕ∗mG is equivalent to mH , see Remark 5.8. The corollary now 
follows from Theorems 4.9 and 5.5. �
Remark 5.8. We note that if mH(ϕ(G)) �= 0 then the condition that ϕ∗mG is absolutely 
continuous with respect to mH can be dropped. In fact, in this case, by Steinhaus’s 
Theorem, ϕ(G) is an open subgroup of H and if ϕ is injective and has a continuous 
inverse on ϕ(G), ϕ is a homeomorphism between G and ϕ(G). One can easily see that the 
measures ϕ∗mG and mH restricted to ϕ(G) satisfy the conditions of (left) Haar measures 
of ϕ(G). Hence, since mH(ϕ(G)) �= 0 there exists c > 0 such that ϕ∗mG|ϕ(G) = cmH |ϕ(G). 
Let W ⊆ H be any Borel subset of H. Then
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ϕ∗mG(W ) = ϕ∗mG

(
W ∩ ϕ(G)

)
= cmH

(
W ∩ ϕ(G)

)
= c

ˆ

W

χϕ(G)(x)dmH(x),

giving the claim. It follows that the measures ϕ∗mG and mH are equivalent in the case 
ϕ is an isomorphism.

We next include a characterisation of the closed subgroups that are also sets of multi-
plicity answering a question posed by M. Bożejko in [5]. We will need the following lemma.

Lemma 5.9. Let G be a locally compact second countable group with a left Haar mea-
sure m. Let H be a closed subgroup of G. Let q : G → G/H be the quotient map. Then 
there exists a finite Borel measure μ on G/H, equivalent to q∗m.

Proof. If G is compact then the measure is finite itself and we are done. Suppose that G
is non-compact. As G is second countable it is σ-compact, i.e., there exists an increasing 
sequence (Kn)n∈N of compact subsets of G such that G =

⋃
n Kn. By deleting some of 

the terms of this sequence, we may assume that m(Kn+1 \ Kn) > 0 for each n ∈ N. 
Define a measure μn on G/H by letting μn(α) = m(q−1(α) ∩ Kn). Then μn is finite; 
indeed, μn(G/H) = m(Kn) < ∞.

As Kn ⊆ Kn+1, we have that μn(α) ≤ μn+1(α) for any Borel set α. Now define

μ(α) =
∞∑

n=0

μn+1(α) − μn(α)
2nm(Kn+1 \Kn)

where we have μ0(α) = 0. Clearly, μ is a finite measure. Since μ(α) = 0 ⇔
μn+1(α) −μn(α) = 0 for all n ≥ 0 ⇔ μn(α) = 0 for all n ≥ 0 ⇔m(q−1(α)) = q∗m(α) = 0, 
q∗m is absolutely continuous with respect to μ. �
Corollary 5.10. Let H be a closed subgroup of a locally compact second countable group G. 
Then H is an M -set if and only if H is open.

Proof. We note first that by Steinhaus’s Theorem, H is open if and only if m(H) > 0. 
If m(H) > 0 then H is an M -set by Remark 4.3. Assume now that m(H) = 0. By 
Theorem 4.9, it suffices to see that

H∗ =
{
(s, t) : ts−1 ∈ H

}
=
{
(s, t) : Ht = Hs

}
is an operator U -set. Let q : G → G/H be the quotient map given by q(s) = Hs. By [17, 
5.22, 8.14] G/H is a locally compact metrisable separable space. By Lemma 5.9, there 
exists a finite measure μ on G/H, equivalent to q∗m. Thus, μ is non-atomic. Since any 
finite measure on a locally compact second countable space is regular [13, Theorem 7.8], 
the measure space (G/H, μ) is standard.

Let now D = {(z, z) : z ∈ G/H}. Since every bounded operator on L2(G/H, μ)
supported on D is a multiplication operator and μ is non-atomic, the only compact 
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operator on L2(G/H, μ) supported on D is the zero operator. Therefore D is an operator 
U -set. By Remark 5.6 (ii), H∗ = (q−1 × q−1)(D) is a set of uniqueness. �
5.3. Direct products

In this subsection, we show that direct products preserve the property of being an 
operator M -set (resp. an operator M1-set, an operator M0-set).

Theorem 5.11. Let (Xi, μi) and (Yi, νi) be standard measure spaces and κi ⊆ Xi × Yi be 
ω-closed sets, i = 1, 2. The set ρ(κ1 × κ2) is an operator M -set (resp. operator M1-set) 
if and only if both κ1 and κ2 are operator M -sets (resp. operator M1-sets).

Proof. By [26], the support of Mmax(κ1) ⊗̄Mmax(κ2) is ρ(κ1 × κ2). It follows that

Mmax(κ1) ⊗̄Mmax(κ2) ⊆ Mmax
(
ρ(κ1 × κ2)

)
. (20)

Assume first that κ1 and κ2 are operator M1-sets (resp. operator M sets). Suppose 
that Ti is a non-zero compact operator in Mmin(κi) (resp. Mmax(κi)), i = 1, 2. By 
Theorem 3.8 (resp. by (20)), T1⊗T2 is a non-zero compact operator in Mmin(ρ(κ1×κ2))
(resp. Mmax(ρ(κ1 × κ2))). Hence ρ(κ1 × κ2) is an operator M1-set (resp. an operator 
M -set).

We next show that if either κ1 or κ2 is an operator U -set then so is ρ(κ1×κ2). Suppose 
that T ∈ K(H1 ⊗ H2, K1 ⊗ K2) is supported on ρ(κ1 × κ2). Let ω ∈ (K(H2, K2))∗ =
C1(K2, H2) and let Lω be the slice map from K(H1⊗H2, K1⊗K2) to K(H1, K1) defined 
on elementary tensors by Lω(A ⊗B) = ω(B)A. Then suppLω(T ) ⊆ κ1. In fact, if α× β

is a measurable rectangle marginally disjoint from κ1, then ((α×X2) ×(β×Y2)) ∩ρ(κ1×
κ2) � ∅ and

P (β)Lω(T )P (α) = Lω

((
P (β) ⊗ I

)
T
(
P (α) ⊗ I

))
= 0.

If κ1 is an operator U -set, Lω(T ) = 0 for all ω and hence T = 0.
If T ∈ K(H1 ⊗H2, K1 ⊗K2) ∩Mmin(ρ(κ1 ×κ2)) and (P , Q) is a κ1-pair, then (P ⊗ I,

Q ⊗ I) is a ρ(κ1 × κ2)-pair and hence

Q
(
I�2 ⊗ Lω(T )

)
P = (id ⊗ Lω)

(
(Q⊗ I)(I�2 ⊗ T )(P ⊗ I)

)
= 0;

by Theorem 3.3, Lω(T ) ∈ Mmin(κ1). If κ1 is an operator U1-set, arguments similar to 
the ones above show that T = 0 and hence ρ(κ1 × κ2) is an operator U1-set. �
Corollary 5.12. Let G1 and G2 be locally compact second countable groups and E1 ⊆ G1, 
E2 ⊆ G2 be closed sets. If E1 and E2 are M -sets (resp. M1-sets) then E1 × E2 is an 
M -set (resp. an M1-set).
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Proof. Suppose that E1 ⊆ G1 and E2 ⊆ G2 are M -sets. By Theorem 4.9, E∗
1 and E∗

2 are 
operator M -sets, and by Theorem 5.11, ρ(E∗

1 ×E∗
2 ) = (E1 ×E2)∗ is an operator M -set. 

By Theorem 4.9 again, E1 ×E2 is an M -set. A similar argument applies to M1-sets. �
6. Sets of finite width

Let (X, μ) and (Y, ν) be standard measure spaces. A subset E ⊆ X×Y is called a set 
of finite width if there exist measurable functions fi : X → R, gi : Y → R, i = 1, . . . , n, 
such that

E =
{
(x, y) ∈ X × Y : fi(x) ≤ gi(y), i = 1, . . . , n

}
; (21)

the width of E is the smallest n for which E can be represented in the form (21). By [35, 
Theorem 4.8] and [40, Theorem 2.1], any such set is operator synthetic. In this section 
we identify those sets of finite width which are operator M1-sets, and hence operator 
M -sets.

We first assume that the measures μ and ν are finite and the standard measure spaces 
X and Y arise from compact topologies. A system is a finite set D of disjoint rectangles 
Π = α × β, where α ⊆ X and β ⊆ Y are measurable. Set r(α × β) = min{μ(α), ν(β)}. 
The volume of a system D = {Πj : 1 ≤ j ≤ J} is the number r(D) def= max1≤j≤J r(Πj). 
Let UD =

⋃J
j=1 Πj and call the systems D1 and D2 disjoint if UD1 ∩ UD2 = ∅; in this 

case, denote by D1 ∨D2 their union.
With each system D = {αj × βj : 1 ≤ j ≤ J}, we associate the projection πD on 

B(H1, H2) by setting

πD(T ) =
J∑

j=1
P (βj)TP (αj), T ∈ B(H1, H2).

It is easy to see that πD depends only on UD and that πD1∨D2 = πD1 + πD2 ; thus, the 
mapping U → πU is a projection-valued measure on the algebra of sets generated by all 
rectangles. Note that the range of πD coincides with Mmax(UD).

A system D = {αj × βj : 1 ≤ j ≤ J} will be called diagonal if αi ∩ αj = βi ∩ βj = ∅
whenever i �= j. The system D will be called n-diagonal, if D = D1∨D2∨· · ·∨Dn where 
D1, . . . , Dn are diagonal systems. It is easy to see that ‖πD‖ = 1 if D is diagonal. Hence, 
‖πD‖ ≤ n if D is n-diagonal.

Lemma 6.1. Let (Dk)k∈N be a sequence of n-diagonal systems such that r(Dk) →k→∞ 0. 
Then ‖πDk(T )‖ →k→∞ 0 for each compact operator T .

Proof. It suffices to prove the statement for rank one operators T = u ⊗ v where u, v
are bounded functions on X and Y , because the set of all linear combinations of such 
operators is dense in K(H1, H2) and the sequence (πDk)k∈N is uniformly bounded.
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If D = {αj × βj}Jj=1 is a diagonal system, then for T = u ⊗ v, we have

∥∥πD(T )
∥∥ ≤

∥∥πD(T )
∥∥

2 =

∥∥∥∥∥
J∑

j=1
(χαj

⊗ χβj
)(u⊗ v)

∥∥∥∥∥
L2(X×Y,μ×ν)

≤ ‖u‖∞‖v‖∞

(
J∑

j=1
μ(αj)ν(βj)

)1/2

≤ ‖u‖∞‖v‖∞

(
J∑

j=1
r(Πj)

(
μ(αj) + ν(βj)

))1/2

≤ ‖u‖∞‖v‖∞r(D)1/2
(
μ(X) + ν(Y )

)1/2
.

It follows that if D is an n-diagonal system then∥∥πD(T )
∥∥ ≤ n‖u‖∞‖v‖∞r(D)1/2

(
μ(X) + ν(Y )

)1/2
.

Hence ‖πDk(T )‖ →k→∞ 0 whenever r(Dk) →k→∞ 0. �
Let us call a set E n-quasi-diagonal if for each ε > 0 there is an n-diagonal system D

with E ⊆ UD and r(D) < ε.
We say that a (measurable) function defined on a measure space is non-atomic if it is 

not constant on any set of positive measure.

Lemma 6.2. Let f : X → R, g : Y → R be Borel maps and assume that f is non-atomic. 
Then the set

Ef,g =
{
(x, y) ∈ X × Y : f(x) = g(y)

}
is 1-quasi-diagonal.

Proof. Let μf be the measure on the Borel σ-algebra of R given by μf (C) = μ(f−1(C)). 
By our assumption, μf is non-atomic and finite. Hence, for every ε > 0, there ex-
ists a partition R =

⋃N
j=1 Cj with μf (Cj) < ε/ν(Y ) for all j. In fact, letting h(x) =

μf ((−∞, x]) we have that h is a bounded increasing function such that h(R) ⊆ [0, C], 
where C = μf (R). As μf is non-atomic, h is continuous and (0, C) ⊆ h(R). Let 
0 = a0 < a1 < . . . < aN+1 = C be a partition of [0, C] such that ai+1 − ai < ε/ν(Y ), 
0 ≤ i ≤ N , and h(xi) = ai, 1 ≤ i ≤ N . Set C0 = (0, x1], Ci = (xi, xi+1] if 0 < i < N , 
and CN = (xN , ∞). Then R =

⋃N
i=1 Ci and μf (Ci) < ε/ν(Y ), 1 ≤ i ≤ N .

Setting αj = f−1(Cj), βj = g−1(Cj) and D = {αj × βj : 1 ≤ j ≤ N}, we now see 
that D is diagonal, E ⊆ UD and r(D) < ε. �

Fix T ∈ B(H1, H2), F ∈ C1(H2, H1) and set

ϕ(Π) =
〈
πΠ(T ), F

〉
,
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for each rectangle Π ⊆ X × Y . We say that Π is ϕ-null, if ϕ(Π ′) = 0 for all rectangles 
Π ′ ⊆ Π.

Lemma 6.3. If Π =
⋃∞

j=1 Πj and each Πj is ϕ-null then Π is ϕ-null.

Proof. It suffices to show that ϕ(Π) = 0. Without loss of generality we may assume that 
all Πj are mutually disjoint.

By Lemma 2.2, for each ε, there are Xε ⊆ X and Yε ⊆ Y such that μ(X \Xε) < ε, 
ν(Y \ Yε) < ε and the rectangle Πε = Π ∩ (Xε × Yε) is covered by a finite number of 
rectangles Πj , say, Πε ⊆

⋃m
j=1 Πj . Set Πε

j = Πj ∩ (Xε × Yε); we have

ϕ
(
Πε
)

=
m∑
j=1

ϕ
(
Πε

j

)
= 0.

On the other hand, if Π = α × β then ϕ(Πε) = 〈P (Yε)P (β)TP (α)P (Xε), F 〉 and, 
since P (Xε) → I, P (Yε) → I in the strong operator topology, we conclude that 
limε→0 ϕ(Πε) = ϕ(Π). Thus, ϕ(Π) = 0 and the proof is complete. �
Theorem 6.4. If E is a set of finite width then Mmax(E) ∩ K coincides with the norm-
closure M0(E) of the subspace of Mmax(E) generated by its rank one operators.

Proof. We may assume that the measures μ and ν are finite and the standard spaces X
and Y arise from compact topologies. Indeed, if this is not the case, write X =

⋃∞
n=1 Xn

and Y =
⋃∞

n=1 Yn as increasing unions, where Xn and Yn are compact, μ(Xn) < ∞ and 
ν(Yn) < ∞. Then P (Xn) →n→∞ I and P (Yn) →n→∞ I in the strong operator topology. 
If T ∈ Mmax(E) ∩ K then P (Yn)TP (Xn) →n→∞ T in norm, and hence we may restrict 
our attention to each of E ∩ (Xn × Yn), which is a set of finite width when considered 
as a subset of Xn × Yn.

We use induction on the width n of E. With the convention that all measurable 
rectangles are sets of width zero, the statement clearly holds for n = 0. Suppose that 
the assertion of the theorem is true for sets of width smaller than n, and let

E =
{
(x, y) ∈ X × Y : fj(x) ≤ gj(y), j = 1, . . . , n

}
,

where fj : X → R and gj : Y → R are measurable functions, j = 1, . . . , n. Let F ∈
Γ (X, Y ) be in the annihilator of M0(E). We need to show that 〈T, F 〉 = 0 for each 
compact operator T ∈ Mmax(E). Assume first that all fj, j = 1, . . . , n, are non-atomic. 
By Lemma 6.2, the sets

Ej =
{
(x, y) : fj(x) = gj(y)

}
, j = 1, . . . , n,

are 1-quasi-diagonal and hence their union 
⋃n

j=1 Ej is n-quasi-diagonal. Let E′ = E ∩
(
⋃n

j=1 Ej); then E′ is n-quasi-diagonal and
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E′′ def= E \ E′ =
{
(x, y) : fj(x) < gj(y), j = 1, . . . , n

}
is ω-open.

Let D be an n-diagonal system with E′ ⊆ UD. If Π is a rectangle, disjoint from UD, 
then Π ⊆ E′′ ∪Ec; since both E′′ and Ec are ω-open, Π =

⋃∞
i=1 Πi where each of Πi is 

either a subset of E′′ or of Ec.
Let, as above, ϕ(α× β) = 〈P (β)TP (α), F 〉, where α ⊆ X and β ⊆ Y are measurable. 

If Πi ⊆ Ec and Π ′
i ⊆ Π then ϕ(Π ′

i) = 0 by the fact that T is supported on E.
On the other hand, if Πi = αi×βi ⊆ E′′ then, clearly, Πi ⊆ E whence P (βi)TP (αi) ∈

M0(Πi) ⊆ M0(E). It follows that ϕ(Πi) = 0. The same argument shows that ϕ(Π ′
i) = 0

whenever Π ′
i is a rectangle with Π ′

i ⊆ Πi, and hence Πi is ϕ-null. By Lemma 6.3, Π is 
ϕ-null. We thus showed that every rectangle disjoint from UD is ϕ-null.

Let D̃ = {Π ′
k : 1 ≤ k ≤ m} be a system such that (UD)c = UD̃. It follows from the 

previous paragraphs that

〈
πD̃(T ), F

〉
=

m∑
k=1

ϕ
(
Π ′

k

)
= 0.

Hence

〈T, F 〉 =
〈
πD(T ), F

〉
+
〈
πD̃(T ), F

〉
=
〈
πD(T ), F

〉
and |〈T, F 〉| ≤ ‖F‖‖πD(T )‖. Since E′ is n-quasi-diagonal, there exists a sequence 
(Dk)k∈N of n-diagonal systems such that E′ ⊆ UDk for each k and r(Dk) →k→∞ 0. 
By Lemma 6.1, ‖πDk(T )‖ →k→∞ 0 and thus 〈T, F 〉 = 0.

Now let fj be arbitrary. Then we can write X as a disjoint union 
⋃ω

k=0 Xk, ω ≤ ∞, 
where X0 is a subset of X such that all fj are non-atomic on X0 and for each k > 0 at 
least one of the functions fj is constant on Xk.

Set Pk = P (Xk), Fk(x, y) = χXk
(x)F (x, y) and Tk = TPk; then 〈T, F 〉 =∑ω

k=0〈Tk, Fk〉 and it hence suffices to show that 〈Tk, Fk〉 = 0 for each k. It is clear 
that Tk is supported on Ek

def= E ∩ (Xk × Y ) and Fk annihilates M0(Ek).
The equality 〈T0, F0〉 = 0 follows from the first part of the proof. Let k > 0, and 

suppose, for example, that the function f1 is constant on Xk: f1(x) = a, for x ∈ Xk. Set 
Yk = {y ∈ Y : g1(y) ≥ a}. Then

Ek =
{
(x, y) ∈ Xk × Yk : fj(x) ≤ gj(y), j = 2, . . . , n

}
.

Thus Ek is a set of width at most n − 1, when considered as a subset of Xk × Yk. Since 
T is supported on Ek, we have Tk = P (Yk)Tk. Moreover, χXk×Yk

Fk annihilates M0(Ek)
and hence

〈Tk, Fk〉 =
〈
P (Yk)Tk, χXk×Yk

Fk

〉
= 0

by the inductive assumption. �
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Corollary 6.5. Let E be a set of finite width. The following conditions are equivalent:

(i) E is an operator U -set;
(ii) E does not support a non-zero Hilbert–Schmidt operator;
(iii) μ × ν(E) = 0;
(iv) E does not support a non-zero nuclear operator;
(v) E does not contain a rectangle of non-zero measure.

Proof. We may assume that μ and ν are finite, for if X =
⋃∞

k=1 Xk, Y =
⋃∞

k=1 Yk, 
where (Xk)∞k=1 and (Yk)∞k=1 are increasing sequences of subsets of finite measure and 
T ∈ B(H1, H2) is a non-zero compact operator supported in E, then so is P (Yk)TP (Xk)
for some k.

(i) ⇒ (ii) is trivial.
(ii) ⇒ (iii) If μ × ν(E) were non-zero, then Tk, where k(x, y) = χE(x, y), would be a 

non-zero Hilbert–Schmidt operator supported in E.
(iii) ⇒ (iv) If E supports a non-zero nuclear operator then by [11, Theorem 6.7], 

E supports a non-zero rank one operator u ⊗ v, u ∈ L2(X, μ), v ∈ L2(Y, ν). As u ⊗ v is 
supported on suppu × supp v, we have μ × ν(E) �= 0, a contradiction.

(iv) ⇒ (v) If E contains a non-zero rectangle α×β then χα⊗χβ is a non-zero nuclear 
operator supported in E, a contradiction.

(v) ⇒ (i) If E supports a non-zero compact operator then it follows from Theorem 6.4
that there exists a non-zero rank one operator u ⊗ v supported in E. But then suppu ×
supp v is a non-zero rectangle contained in E, a contradiction. �
Remark. We note that the conditions from Corollary 6.5 are also equivalent to the set E
being a U1-set, as well as to E being a U0-set.

We have the following immediate corollary.

Corollary 6.6. A non-zero bounded operator from L2(Rn) to L2(Rm) cannot be compact 
if it is supported on a manifold of the form yj = φ(x1, . . . , xn), for some measurable 
function φ : Rn → R and some j = 1, . . . , m, or on a set that can be partitioned into 
finitely many such sets.

In particular, the support of a non-zero compact operator from L2(Rn) to L2(R1) is 
not contained in a smooth manifold of dimension strictly less than n + 1.

Proof. Assume, without loss of generality, that j = 1. Let ψ : Rm → R be given by 
ψ(y1, . . . , ym) = y1 and E = {(x1, . . . , xn, y1, . . . , ym) ∈ Rn×Rm : y1 = φ(x1, . . . , xn)} =
{(x, y) ∈ Rn × Rm : ψ(y) = φ(x)}. As ψ is non-atomic, Lemma 6.2 implies that 
E is 1-diagonal. By Lemma 6.1, E does not support a non-zero compact operator. 
By [34, Proposition 5.3] there is no non-zero compact operator supported on a set that 
can be partitioned into finitely many sets of the form {(x1, . . . , xn, y1, . . . , ym) : yj =
φ(x1, . . . , xn)}. �
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If ω : G → R+ is a continuous homomorphism, let Eω,t = {s ∈ G : ω(s) ≤ t}; we call 
the subsets of G of this form level sets (see [9]).

Corollary 6.7. Let Ej ⊆ G, j = 1, . . . , n, be level sets. The set E def=
⋂n

j=1 Ej is an M -set 
if and only if m(E) > 0.

Proof. It is straightforward to check that if F ⊆ G is a level set then F ∗ is a set of width 
one. It follows that E∗ is a set of finite width. By Theorem 4.9 and Corollary 6.5, E is 
an M -set if and only if (m ×m)(E∗) > 0. This condition is equivalent to m(E) > 0 by 
the identity

(m×m)
(
E∗) =

ˆ

G

m(Et)dt =
ˆ

G

Δ(t)m(E)dt,

where Δ is the modular function. �
7. Closable multipliers on group C∗-algebras

Let G be a locally compact group equipped with left Haar measure m and ψ : G → C

be a measurable function. It is well-known [6,19] (see also [31, Theorem 8.3]) that point-
wise multiplication on L1(G) by the function ψ defines a completely bounded map 
on C∗

r (G) if and only if the function N(ψ) is a Schur multiplier. In this section, we 
prove a version of this result for closable maps (see Theorem 7.4).

Let

D(ψ) =
{
f ∈ L1(G) : ψf ∈ L1(G)

}
;

it is easy to see that the operator f → ψf , f ∈ D(ψ), viewed as a densely defined 
operator on L1(G), is closable. Since λ(L1(G)) is dense in C∗

r (G) and ‖λ(f)‖ ≤ ‖f‖1, 
f ∈ L1(G), the space λ(D(ψ)) is dense in C∗

r (G) in the operator norm. Thus, the 
operator Sψ : λ(D(ψ)) → C∗

r (G) given by Sψ(λ(f)) = λ(ψf) is a densely defined operator 
on C∗

r (G).
We wish to study the question of when Sψ is closable. To this end, we recall [12] that 

the Banach space dual of C∗
r (G) can be canonically identified with the weak* closure 

Bλ(G) of A(G) within the Fourier–Stieltjes algebra B(G). A direct verification shows 
that the domain of S∗

ψ is equal to

Jλ
ψ

def= J
Bλ(G)
ψ =

{
g ∈ Bλ(G) : ψg ∈m Bλ(G)

}
and that S∗

ψ(g) is equivalent to ψg for every g ∈ Jλ
ψ . By Proposition 2.1, Sψ is closable 

(resp. weak* closable) if and only if Jλ
ψ is weak* dense (resp. norm dense) in Bλ(G). We 

denote by Clos(G) the set of all measurable functions ψ for which Sψ is closable and call 
the elements of Clos(G) closable multipliers on C∗

r (G). This notion of multipliers should 
not be confused with the notion of multipliers in the C∗-algebra sense.
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A function f on G is said to belong to A(G) (resp. almost belong to A(G)) at the 
point t ∈ G if there exists a neighbourhood U of t and a function u ∈ A(G) such that 
f(s) = u(s) for all (resp. m-almost all) points s ∈ U . Set [34]

Ef =
{
t ∈ G : f does not almost belong to A(G) at t

}
.

We say that f (almost) belongs locally to A(G) if f (almost) belongs to A(G) at every 
point and let A(G)loc be the set of functions which belong to A(G) at every point. If f
almost belongs to A(G) at every point then f is equivalent to a function from A(G)loc. 
To see this, we first show that, given a compact set K ⊆ G and a function f that almost 
belong to A(G) at each point of G, there exists g ∈ A(G) such that f is equivalent to g
on K. In fact, for each t ∈ G there exists a neighbourhood Vt of t and gt ∈ A(G) such 
that f ∼ gt on Vt. Then K ⊆

⋃
t∈F Vt for some finite F ⊆ K. By the regularity of A(G), 

there exist ht ∈ A(G), t ∈ F , such that 
∑

t∈F ht(x) = 1 if x ∈ K and ht(x) = 0 if x /∈ Vt, 
t ∈ F . Hence, for almost all x ∈ K, we have f(x) =

∑
t∈F f(x)ht(x) =

∑
t∈F gt(x)ht(x), 

while 
∑

t∈F gtht ∈ A(G). As the group G is σ-compact we can find compact subsets 
Kn ⊆ G, Kn ⊆ Kn+1 such that G =

⋃∞
n=1 Kn, and a sequence of functions gn ∈ A(G)

such that f ∼ gn on Kn for any n. As gn are continuous, we obtain gn+1 = gn on Kn. 
Define a function g by letting g(x) = gn(x) if x ∈ Kn. Then g is well-defined, continuous 
and f ∼ g. Clearly, g belongs to A(G) at every point of G.

The following fact was established in [34] in the case G is abelian; its proof, however, 
does not use the commutativity of G.

Lemma 7.1. (See [34].) For every measurable function ψ : G → C, let

Jψ
def= J

A(G)
ψ =

{
f ∈ A(G) : ψf ∈m A(G)

}
.

Then Eψ = null Jψ.

We say that a locally compact group G has property (A) if there exists a net 
(ui) ⊆ A(G) such that for each g ∈ Bλ(G), uig → g in the weak*-topology of Bλ(G). 
Note that if (ui) ⊆ A(G) is a net such that ui → 1 uniformly on compact sets and 
sup‖ui‖MA(G) < ∞ (in particular, if G is weakly amenable) then G has property (A). 
In fact, for g ∈ Bλ(G) and f ∈ Cc(G), we have

〈
λ(f), gui − g

〉
=
ˆ

G

f(t)g(t)
(
ui(t) − 1

)
dt → 0.

It follows from [7, Proposition 1.2] that, if u ∈ A(G) then ‖u‖MA(G) coincides with the 
norm of u as a multiplier of Bλ(G). Thus, ‖gui−g‖B(G) ≤ ‖ui‖MA(G)‖g‖B(G) +‖g‖B(G). 
The statement now follows from the fact that the set of all λ(f), f ∈ Cc(G), is dense 
in C∗

r (G).



1500 V.S. Shulman et al. / Journal of Functional Analysis 268 (2015) 1454–1508
Since C∗
r (G)∗ = Bλ(G) and A(G) ⊆ Bλ(G), the elements of C∗

r (G) can be identified 
with functionals on A(G) continuous with respect to the restriction to A(G) of the weak* 
topology of Bλ(G); this identification is made in the next proposition.

Proposition 7.2. Let G be a locally compact group with property (A) and ψ : G → C be 
a measurable function. The operator Sψ is closable if and only if there is no non-zero 
operator T ∈ C∗

r (G) which annihilates Jψ. In particular,

(i) if Eψ is a U -set then Sψ is closable;
(ii) if Eψ is an M1-set then Sψ is not closable.

Proof. Since A(G) is an ideal in B(G), property (A) implies that the weak* closures of 
Jψ and Jλ

ψ in Bλ(G) coincide. The first statement now follows from Proposition 2.1.
By Lemma 7.1,

J(Eψ) ⊆ Jψ ⊆ I(Eψ).

Parts (i) and (ii) follow from these inclusions and the definitions of a U -set and an 
M1-set. �
Corollary 7.3. Let G be a locally compact group with property (A) and ψ : G → C be a 
measurable function. If m(Eψ) > 0 then Sψ is not closable.

Proof. By Remark 4.3, Eψ is an M1-set. Now the claim follows from Proposi-
tion 7.2 (ii). �

Recall from Section 2 that, for a measurable function ϕ : G × G → C, we let Sϕ be 
the operator, densely defined on K(L2(G)), with domain

D(Sϕ) =
{
Tk ∈ C2(H1, H2) : ϕ̂k ∈ L2(G×G)

}
⊆ K

(
L2(G)

)
.

It was shown in [34] that the domain D(S∗
ϕ) ⊆ Γ (G, G) of its adjoint is given by

D
(
S∗
ϕ

)
=
{
h ∈ Γ (G,G) : ϕh ∈m×m Γ (G,G)

}
.

Theorem 7.4. Let G be a second countable locally compact group with property (A), 
ψ : G → C be a measurable function and ϕ = N(ψ). The following are equivalent:

(i) the operator Sψ is closable;
(ii) the operator Sϕ is closable;
(iii) A ∩D(S∗

ϕ)⊥ = {0};
(iv) R ∩D(S∗

ϕ)⊥ = {0}.
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Proof. (iv) ⇒ (iii) ⇒ (ii) follows from the fact that K ⊆ A ⊆ R and the fact that Sϕ is 
closable if and only if K ∩D(S∗

ϕ)⊥ = {0}.
(ii) ⇒ (i) If Sψ is not closable then, by Proposition 7.2, there exists a non-zero 

T ∈ C∗
r (G) which annihilates Jψ. Let A ∈ D0 be such that AT �= 0. In view of (7), 

it suffices to show that AT annihilates D(S∗
ϕ). Since D(S∗

ϕ) is invariant under S(G, G), 
it suffices to show that T annihilates D(S∗

ϕ).
Let h ∈ D(S∗

ϕ). Writing h =
∑∞

i=1 fi⊗gi, where 
∑∞

i=1‖fi‖2
2 < ∞ and 

∑∞
i=1‖gi‖2

2 < ∞, 
and using Lemma 2.3, for every f ∈ L1(G), we have

〈
λ(f), h

〉
=
〈
λ(f),

∞∑
i=1

fi ⊗ gi

〉
=

∞∑
i=1

(
λ(f)(fi), ḡi

)
=
¨

f(s)
∞∑
i=1

gi(t)fi
(
s−1t

)
dtds =

〈
λ(f), P (h)

〉
.

It follows that 〈T, h〉 = 〈T, P (h)〉. Since ϕh ∈m×m Γ (G, G), identity (2) implies that 
ψP (h) = P (ϕh) ∈m P (Γ (G, G)) = A(G), and hence P (h) ∈ Jψ. Thus, 〈T, P (h)〉 = 0
and hence 〈T, h〉 = 0.

(i) ⇒ (iv) Let Sψ be closable and suppose that 0 �= T ∈ R ∩D(S∗
ϕ)⊥. By Lemma 4.7, 

there exist a, b ∈ L2(G) such that Ea⊗b(T ) �= 0. Suppose that u ∈ Jλ
ψ ; then

ϕ(a⊗ b)N(u) = (a⊗ b)N(ψu) ∈ Γ (G,G)

and hence (a ⊗ b)N(u) ∈ D(S∗
ϕ). Thus〈

Ea⊗b(T ), u
〉

=
〈
T, (a⊗ b)N(u)

〉
= 0.

By Theorem 4.6, Ea⊗b(T ) is a (non-zero) element of C∗
r (G); in view of Proposition 7.2, 

this contradicts the closability of Sψ. �
Corollary 7.5. The set Clos(G) is an algebra under pointwise addition and multiplication.

Proof. Let ψi ∈ Clos(G), i = 1, 2. Then Nψ1 + Nψ2 = N(ψ1 + ψ2) and N(ψ1ψ2) =
(Nψ1)(Nψ2). By [34, Theorem 5.2], the closable multipliers on K(L2(G)) form an 
algebra under pointwise addition and multiplication. The claim now follows from Theo-
rem 7.4. �

We now give some examples of closable and non-closable multipliers.

Example 7.6 (A non-closable multiplier on C∗
r (T)). Using the arguments in [33, 

7.8.3–7.8.6] (see also [36, Proposition 9.9]), one can show that there exist c = (cn)n∈Z ∈
�p(Z), p > 2, and d = (dn)n∈Z ∈ �1(Z) with d̄n

def= d̄−n, n ∈ Z, such that c ∗ d = 0 and 
c ∗ d̄ �= 0. Let f ∈ A(T) ⊆ L1(T) be the function whose sequence of Fourier coefficients 
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is d and F be the pseudo-function (that is, the bounded linear functional on A(T)) whose 
sequence of Fourier coefficients is c. We have f ·F = 0 while f̄ ·F �= 0. After identifying 
the dual of A(T) with VN(T), we view F as the operator on L2(T) determined by the 
identities F̂ ξ = cξ̂, ξ ∈ L2(T) (where η̂ denotes the Fourier transform of a function 
η ∈ L2(T)). Moreover (see the start of Section 3), F ∈ C∗

r (T). Let hn ∈ L1(T) be such 
that λ(hn) →n→∞ F in the operator norm. Then

∥∥λ(hn) − F
∥∥ = sup

{∣∣〈λ(hn) − F, u
〉∣∣ : u ∈ A(T), ‖u‖ = 1

}
→n→∞ 0.

It follows that

sup
{∣∣〈λ(fhn) − f · F, u

〉∣∣ : u ∈ A(T), ‖u‖ = 1
}
→n→∞ 0

which in turn implies that λ(fhn) → f ·F in the operator norm. Similarly, λ(f̄hn) →n→∞
f̄ · F .

Let ψ : T → C be given by ψ(t) = f̄(t)/f(t) if f(t) �= 0 and ψ(t) = 0 otherwise.
Then

Sψ

(
λ(fhn)

)
= λ(ψfhn) = λ(f̄hn) �n→∞ 0

while λ(fhn) → 0. Hence ψ is a non-closable multiplier.

Example 7.7 (A continuous non-closable multiplier on C∗
r (T)). The following example 

was given in [34]. We recall the construction for completeness. Let X ⊆ T be a closed set 
of positive Lebesgue measure and S ⊆ X be a dense subset of Lebesgue measure zero. 
By [23, Chapter II, Theorem 3.4], there exists h ∈ C(T) whose Fourier series diverges 
at every point of S. By the Riemann Localisation Principle, any function which belongs 
locally to A(T) at t ∈ T has a convergent Fourier series at t; hence, S ⊆ Eh and since 
Eh is closed, X ⊆ Eh. Therefore m(Eh) > 0 and Sh is not closable by Corollary 7.3.

Example 7.8 (A class of idempotent closable multipliers on C∗
r (R)). Let F ⊆ R be a 

closed set which is the union of countably many intervals. We claim that χF ∈ Clos(R). 
Let ψ = χF ; then Eψ is the set of boundary points of F . Thus Eψ is contained in the set 
of endpoints of the intervals whose unions are F , and hence Eψ is countable. The claim 
now follows from Proposition 7.2 and Corollary 5.3.

This example should be compared with the well-known fact that there are no bounded 
non-trivial idempotent multipliers on C∗

r (R).

We next discuss the weak** closability of the operator Sψ (in the sense of Section 2.1). 
We have the following necessary condition.

Proposition 7.9. If Sψ is weak** closable then ψ ∈ A(G)loc.
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Proof. Suppose that Sψ is weak** closable. By Proposition 2.1, Jλ
ψ is dense in Bλ(G). 

Thus, A(G)Jλ
ψ is dense in A(G)Bλ(G) = A(G). However, A(G)Jλ

ψ ⊆ Jψ and hence Jψ is 
dense in A(G). By Lemma 7.1, ψ ∈ A(G)loc. �

We point out that the converse of Proposition 7.9 does not hold for non-compact 
groups. In fact, let G be a non-discrete locally compact abelian group with dual group Γ . 
Then Bλ(Γ ) = B(Γ ) �= A(Γ ). By [15, Corollary 8.2.6], there exists f ∈ B(Γ ), |f(x)| > 1, 
x ∈ Γ , such that ψ def= 1

f /∈ B(Γ ); on the other hand, ψ ∈ A(Γ )loc (see the arguments 
in [34, Remark 7.11]). We have that Jλ

ψ ⊆ (f), where (f) is the ideal in B(Γ ) generated 
by f . As f is not invertible in B(Γ ), (f) is contained in a maximal ideal, and hence 
cannot be dense in B(Γ ).

It follows that a version of Theorem 7.4, with weak** closability in the place of 
closability, does not hold. Indeed, by [34, Theorem 7.8], for abelian groups, N(ψ) is a 
weak** closable multiplier if and only if ψ ∈ A(G)loc. In view of these remarks, the 
following question arises.

Question. Is Sψ weak** closable only when Sψ is bounded?

Note that if G is compact then Sψ is weak** closable if and only if Sψ is bounded, 
that is, if and only if ψ ∈ A(G); this follows from Proposition 7.9 and the fact that in 
this case A(G) = A(G)loc.

8. Closable multipliers on group von Neumann algebras

In this section we turn our attention to multipliers acting on VN(G). We will need 
an appropriate version of closability suited for working with dual spaces, which we now 
introduce. Let X and Y be dual Banach spaces, with specified preduals X∗ and Y∗, respec-
tively, and D(Φ) ⊆ X be a weak* dense subspace. We say that an operator Φ : D(Φ) → Y
is weak* closable if the conditions xi ∈ X , y ∈ Y, xi →w∗ 0, Φ(xi) →w∗ y imply that 
y = 0. Here, the weak* convergence is in the designated weak* topologies of X and Y.

Note that, since the *-weak closure of the graph of Φ contains its norm-closure, each 
weak* closable operator is closable.

We have the following characterisation of weak* closability.

Proposition 8.1. Let D(Φ) ⊆ X be a weak* dense subspace and Φ : D(Φ) → Y be a linear 
operator. The following are equivalent:

(i) the operator Φ is weak* closable;
(ii) the space D∗(Φ) = {g ∈ Y∗ : x → 〈Φ(x), g〉 is w*-cont. on D(Φ)} is dense in Y∗.

Proof. (ii) ⇒ (i) Suppose that xi → 0 and Φ(xi) → y in the corresponding weak* 
topologies. If g ∈ D∗(Φ) then the map x → 〈Φ(x), g〉 is weak* continuous on D(Φ). Since 
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D(Φ) is weak* dense in X , it extends to a weak* continuous functional on the whole 
of X and hence there exists f ∈ X∗ such that 〈Φ(x), g〉 = 〈x, f〉, x ∈ D(Φ). In particular, 
〈Φ(xi), g〉 = 〈xi, f〉 → 0. On the other hand, 〈Φ(xi), g〉 → 〈y, g〉. Thus, 〈y, g〉 = 0 for all 
g ∈ D∗(Φ). Since D∗(Φ) is (norm) dense in Y∗, we conclude that y = 0.

(i) ⇒ (ii) For an operator T with domain D, let Gr′ T = {(Tξ, ξ) : ξ ∈ D}. Let 
Φ∗ : D∗(Φ) → X∗ be defined by letting Φ∗(g) = f , where, for g ∈ D∗(Φ), the element 
f ∈ X∗ is the (unique) weak* continuous functional on X such that 〈Φ(x), g〉 = 〈x, f〉, 
x ∈ D∗(Φ). We claim that

(GrΦ)⊥ ⊆ Gr′(−Φ∗). (22)

To see this, let (f, g) ∈ (GrΦ)⊥; then 〈f, x〉 = −〈g, Φ(x)〉, for all x ∈ D(Φ). It follows 
that g ∈ D(Φ∗) and Φ∗(g) = −f ; thus, (22) is proved.

Now suppose that y ∈ Y annihilates D∗(Φ). Then (0, y) annihilates Gr′(−Φ∗) and 
(22) implies that

(0, y) ∈
(
(GrΦ)⊥

)⊥ = GrΦw∗

.

Since Φ is weak* closable, y = 0 and so D∗(Φ) is norm dense in Y∗. �
The von Neumann algebra VN(G) possesses two natural and, in the case G is non-

discrete, genuinely different, weak* dense selfadjoint subalgebras, one of them being 
λ(L1(G)), and the other being the (non-closed) linear span of the left translation oper-
ators

VN0(G) = [λs : s ∈ G].

Given a continuous function ψ : G → C, we can now consider, along with the operator Sψ

with domain D(ψ), a linear operator S′
ψ : VN0(G) → VN0(G) given by S′

ψ(λs) = ψ(s)λs, 
s ∈ G. Our aim in the next theorem is to characterise the weak* closability of Sψ and S′

ψ.

Theorem 8.2. Let ψ : G → C be a continuous function and ϕ = N(ψ). The following are 
equivalent:

(i) the operator Sψ is weak** closable;
(ii) the operator S′

ψ is weak* closable;
(iii) the function ψ belongs locally to A(G) at every point;
(iv) the function ϕ is a local Schur multiplier on K(L2(G));
(v) the operator Sϕ is weak** closable;
(vi) D(S∗

ϕ)
‖·‖Γ = Γ (G, G), D(S∗∗

ϕ )
w∗

= B(L2(G)), VN0(G) ⊆ D(S∗∗
ϕ ) and the operator 

S∗∗
ϕ : D(S∗∗

ϕ ) → B(L2(G)) is weak* closable;

(vii) D(S∗
ϕ)

‖·‖Γ = Γ (G, G), VN0(G) ⊆ D(S∗∗
ϕ ) and the operator S∗∗

ϕ : D(S∗∗
ϕ ) →

B(L2(G)) is weak* closable.
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Proof. We have that

D∗
(
S′
ψ

)
=
{
f ∈ A(G) : T →

〈
S′
ψ(T ), f

〉
is w*-continuous on VN0(G)

}
=
{
f ∈ A(G) : ∃u ∈ A(G) :

〈
S′
ψ(T ), f

〉
= 〈T, u〉, T ∈ VN0(G)

}
=
{
f ∈ A(G) : ∃u ∈ A(G) with

〈
S′
ψ(λs), f

〉
= 〈λs, u〉, s ∈ G

}
=
{
f ∈ A(G) : ∃u ∈ A(G) with ψ(s)f(s) = u(s), s ∈ G

}
=
{
f ∈ A(G) : ψf ∈ A(G)

}
= Jψ,

where the last equality follows from the fact that ψ is continuous. The equivalence 
(ii) ⇔ (iii) now follows from Lemma 7.1 and Proposition 8.1.

Similarly,

D∗(Sψ) =
{
f ∈ A(G) : g →

〈
Sψ

(
λ(g)

)
, f
〉

is w*-continuous on D(ψ)
}

=
{
f ∈ A(G) : ∃u ∈ A(G) :

〈
λ(ψg), f

〉
=
〈
λ(g), u

〉
, g ∈ D(ψ)

}
=
{
f ∈ A(G) : ∃u ∈ A(G) :

ˆ

G

ψfg =
ˆ

G

ug, g ∈ D(ψ)
}

=
{
f ∈ A(G) : ∃u ∈ A(G) such that ψf ∼ u

}
= Jψ

(recall that by u ∼ v we mean that u = v almost everywhere on G). The fourth equality 
in the latter chain can be seen as follows. Let K ⊆ G be a compact set; then ψ|K is 
bounded and hence L1(K) ⊆ D(ψ). It follows that 

´
K
ψfg =

´
K
ug for all g ∈ L1(K). 

Since ψf |K and u|K belong to L∞(K), we conclude that ψf |K = u|K almost everywhere. 
Since this holds for every compact K ⊆ G, we have that ψf ∼ u.

The equivalence (i) ⇔ (iii) follows, as above, from Lemma 7.1 and Proposition 8.1.
(iii) ⇒ (iv) We claim that ψu ∈ A(G) for every u ∈ A(G) ∩ Cc(G). Indeed, since 

ψ ∈ A(G)loc, for every t ∈ G there exists a neighbourhood Vt of t and a function 
gt ∈ A(G) such that ψ = gt on Vt. Since supp(u) is compact there exists a finite set 
F ⊆ G such that supp(u) ⊆

⋃
t∈F Vt. It follows from the regularity of A(G) that there 

exist ht ∈ A(G), t ∈ F , such that 
∑

t∈F ht(x) = 1 if x ∈ supp(u) and hs(x) = 0 if 
x /∈ Vs for each s ∈ F (see the proof of [17, Theorem 39.21]). Then for every x ∈ G we 
have

ψ(x)u(x) =
∑
t∈F

ψ(x)ht(x)u(x) =
∑
t∈F

gt(x)ht(x)u(x),

which gives ψu ∈ A(G).
Let (Kn)∞n=1 be an increasing sequence of compact sets such that, up to a null set, ⋃∞

n=1 Kn = G. Choose, for each n ∈ N, a function ψn ∈ A(G) ∩ Cc(G) that takes the 
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value 1 on KnK
−1
n . By the previous paragraph, ψψn ∈ A(G) and therefore N(ψψn) is a 

Schur multiplier. Thus, for each h ∈ Γ (G, G), we have

ϕχKn×Kn
h = N(ψψn)χKn×Kn

h ∈ Γ (G,G).

It follows that ϕ|Kn×Kn
is a Schur multiplier and hence ϕ is a local Schur multiplier.

(iv) ⇒ (v) follows from the fact that every local Schur multiplier is a weak* closable 
multiplier [34].

(v) ⇒ (vi) Suppose that Sϕ is weak** closable. By Proposition 2.1, the space D(S∗
ϕ)

is dense in Γ (G, G) in the norm topology. We have that

D
(
S∗∗
ϕ

)
=
{
T ∈ B

(
L2(G)

)
: h →

〈
T, S∗

ϕ(h)
〉

is continuous on D
(
S∗
ϕ

)}
.

The space D(S∗∗
ϕ ) is weak* dense in B(L2(G)) since it contains the norm dense sub-

space D(Sϕ).
Suppose that h ∈ D(S∗

ϕ); then S∗
ϕ(h) = ϕh ∈m×m Γ (G, G) and hence, if T ∈ D(S∗∗

ϕ )
then

〈T, ϕh〉 =
〈
T, S∗

ϕ(h)
〉

=
〈
S∗∗
ϕ (T ), h

〉
.

The mapping

T →
〈
S∗∗
ϕ (T ), h

〉
, T ∈ D

(
S∗∗
ϕ

)
,

is thus weak* continuous and hence h ∈ D∗(S∗∗
ϕ ). In other words, D(S∗

ϕ) ⊆ D∗(S∗∗
ϕ ); since 

D(S∗
ϕ) is dense in norm in Γ (G, G), the same holds true for D∗(S∗∗

ϕ ). By Proposition 8.1, 
S∗∗
ϕ is weak* closable.
Let s ∈ G. We show that λs ∈ D(S∗∗

ϕ ). Recall that P : Γ (G, G) → A(G) is the 
canonical contractive surjection satisfying (2); for every h ∈ D(S∗

ϕ), using Lemma 2.3, 
we see that〈

λs, S
∗
ϕ(h)

〉
= 〈λs, ϕh〉 = P (ϕh)(s) = ψ(s)P (h)(s) =

〈
ψ(s)λs, h

〉
. (23)

Thus, λs ∈ D(S∗∗
ϕ ), S∗∗

ϕ (λs) = ψ(s)λs, and (vi) is proved.
(vi) ⇒ (vii) is trivial.
(vii) ⇒ (ii) Suppose that (Ti)i ⊆ VN0(G) and T ∈ VN(G) are such that Ti →w∗ 0

and S′
ψ(Ti) →w∗

T . Then (Ti) (resp. (S′
ψ(Ti))) converges to zero (resp. T ) in the weak* 

topology of B(L2(G)). Identity (23) shows that S∗∗
ϕ (R) = S′

ψ(R) for every R ∈ VN0(G). 
Since S∗∗

ϕ is weak* closable, T = 0. �
Remark. If ψ is not assumed to be continuous, then all conditions in Theorem 8.2 apart 
from (ii) remain equivalent, provided that in (iii) we require that ψ almost belongs locally 
to A(G) at every point.
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Proposition 7.9 and Theorems 7.4 and 8.2 yield the following implications:

Sψ is weak** closable =⇒ Sψ is weak* closable =⇒ Sψ is closable.

Theorem 8.2 and the example after Proposition 7.9 show that there exists a continu-
ous function ψ for which Sψ is weak* closable but not weak** closable. On the other 
hand, Proposition 7.2 implies that if Eψ is a non-empty U -set then ψ is closable but 
ψ /∈ A(G)loc; thus, by Theorem 8.2, Sψ is not weak* closable. For example, for G = R, 
ψ = χ[0,+∞), we have Eψ = {0} which is a non-empty U -set by Corollary 5.3. One 
can also find a continuous function ψ for which Eψ is a one-point set of uniqueness. 
In fact, consider a function ψ(t) on [0, π] which is smooth on the open interval (0, π)
and ψ(0) = ψ(π) = 0. Assume also that ψ′(π) = 0 and that the integral 

´ 1
0 ψ(t)/tdt

diverges. Extend ψ to an odd (continuous) function on [−π, π]. By [20, Chapter II.14], 
ψ /∈ A(T)loc = A(T). As ψ is smooth at any t �= 0, ψ belongs to A(T) at any such point t. 
Therefore Eψ = {0}.
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