Residue currents and fundamental cycles
Preprint, 2015

We give a factorization of the fundamental cycle of an analytic space in terms of certain differential forms and residue currents associated with a locally free resolution of its structure sheaf. Our result can be seen as a generalization of the classical Poincaré-Lelong formula. It is also a current version of a result by Lejeune-Jalabert, who similarly expressed the fundamental class of a Cohen-Macaulay analytic space in terms of differential forms and cohomological residues.

Författare

Richard Lärkäng

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Elizabeth Wulcan

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Fundament

Grundläggande vetenskaper

Ämneskategorier

Geometri

Matematisk analys

Mer information

Skapat

2017-10-07