Kudla's modularity conjecture and formal Fourier-Jacobi series
Artikel i vetenskaplig tidskrift, 2015

We prove modularity of formal series of Jacobi forms that satisfy a natural symmetry condition. They are formal analogs of Fourier–Jacobi expansions of Siegel modular forms. From our result and a theorem of Wei Zhang, we deduce Kudla’s conjecture on the modularity of generating series of special cycles of arbitrary codimension and for all orthogonal Shimura varieties.

Författare

Jan Hendrik Bruinier

Technische Universität Darmstadt

Martin Raum

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Forum of Mathematics, Pi

2050-5086 (ISSN)

Vol. 3 30- e7

Ämneskategorier

Matematik

Geometri

DOI

10.1017/fmp.2015.6

Mer information

Senast uppdaterat

2018-12-17