
HyComp: A Hybrid Cache Compression Method for Selection of
Data-Type-Specific Compression Methods

Downloaded from: https://research.chalmers.se, 2025-10-17 02:54 UTC

Citation for the original published paper (version of record):
Arelakis, A., Dahlgren, F., Stenström, P. (2015). HyComp: A Hybrid Cache Compression Method for
Selection of Data-Type-Specific Compression
Methods. 48th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2015,
Waikiki, United States, 5-9 December 2015, 05-09-December-2015: 38-49.
http://dx.doi.org/10.1145/2830772.2830823

N.B. When citing this work, cite the original published paper.

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



HyComp: A Hybrid Cache Compression Method for
Selection of Data-Type-Specific Compression Methods

Angelos Arelakis∗‡ Fredrik Dahlgren∗† Per Stenstrom∗‡
angelos@chalmers.se fredrik.dahlgren@ericsson.com per.stenstrom@chalmers.se

∗Chalmers University of Technology ‡ZeroPoint Technologies AB †Ericsson AB
Göteborg, Sweden Göteborg, Sweden Lund, Sweden

ABSTRACT
Proposed cache compression schemes make design-time
assumptions on value locality to reduce decompression
latency. For example, some schemes assume that com-
mon values are spatially close whereas other schemes
assume that null blocks are common. Most schemes,
however, assume that value locality is best exploited
by fixed-size data types (e.g., 32-bit integers). This
assumption falls short when other data types, such as
floating-point numbers, are common. This paper makes
two contributions. First, HyComp – a hybrid cache
compression scheme – selects the best-performing com-
pression scheme, based on heuristics that predict data
types. Data types considered are pointers, integers,
floating-point numbers and the special (and trivial) case
of null blocks. Second, this paper contributes with a
compression method that exploits value locality in data
types with predefined semantic value fields, e.g., as in
the exponent and the mantissa in floating-point num-
bers. We show that HyComp, augmented with the pro-
posed floating-point-number compression method, of-
fers superior performance in comparison with prior art.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories; E.4 [Coding
and information theory]: Data compaction and com-
pression

Keywords
Cache Compression, Huffman Coding, Hybrid Compres-
sion, Floating-Point Data, Value Locality

1. INTRODUCTION
Large last-level caches (LLC) help reduce the speed

gap between processing and off-chip memory access. To

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
MICRO-48, December 05-09, 2015, Waikiki, HI, USA
ACM 978-1-4503-4034-2/15/12
http://dx.doi.org/10.1145/2830772.2830823.

this end, enlarging the LLC space requires to sacrifice
processing cores in the chip’s real estate and may re-
sult in longer cache access latencies and more energy
consumption. Cache compression [1, 2, 3, 4, 5, 6] is a
promising approach to increase cache capacity by ex-
ploiting the available cache resources more efficiently.

Cache compression has, however, disadvantages too:
Decompression inevitably adds to the cache access la-
tency. For this reason, proposed compression methods
make design-time assumptions about the most common
values to simplify the decompression process and keep
decompression latency low. For example, Frequent Pat-
tern Compression (FPC) [2] assumes that the most fre-
quent values are either the value zero or narrow inte-
gers. On the other hand, Base-Delta-Immediate com-
pression (BDI) [3] assumes that common values are spa-
tially close to each other making it meaningful to en-
code them with their difference to a base value. In
contrast, Zero-Content Augmented Cache (ZCA) [1] as-
sumes that null blocks, i.e., blocks filled with the value
zero, are common and encode these with a single bit.
Finally, SC2 [5] Huffman-encodes fixed-size values (32-
bit integers) based on value frequency. While SC2 [5]
appears to be a reasonable default strategy, it does not
always result in the highest compressibility. For ex-
ample, a null block is more compactly encoded using
ZCA than SC2. Moreover, integers that are moderately
common are in SC2 replaced by longer code-words than
the most common ones. Therefore, if these integers are
also spatially close, they can potentially be coded much
denser by BDI instead. In essence, none of the proposed
schemes are hitherto always better than others.

A second problem with compression methods so far is
their design-time assumption that fixed-size data types
(e.g., 32-bit integers) are the root cause of value locality.
This assumption falls short in light of, e.g., floating-
point numbers according to IEEE-754 or other data
types such as text strings. What is needed is a com-
pression scheme that can exploit data locality exhibited
by data types with predefined semantic fields, such as
exponents and mantissas in floating-point numbers.

This paper makes two major contributions: First, it
presents HyComp, a hybrid compression method tai-
lored for caches that selects the best compression method
based on data-type prediction. Data-type prediction
has been also used to improve link compression schemes [7,

38

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2830772.2830823&domain=pdf&date_stamp=2015-12-05


8] but not to select the best performing compression
method among a number of different ones. We show
that HyComp can, at run-time, select between integers,
pointers, floating-point numbers as well as the trivial
special case of null blocks. The paper shows that Hy-
Comp can quickly and with an accuracy that often ex-
ceeds 80%, select between example data-type-specific
methods expected to show the best compressibility, such
as ZCA, BDI, SC2 and a compression method tailored
to floating-point data.

Secondly, this paper presents a compression method
that exploits value locality in data types with prede-
fined semantic value fields, such as the exponent and
mantissa in floating-point numbers. While it is well
known [9, 10, 11] that there is significant value local-
ity in the exponent, we show for the first time, that
there is significant value locality in the most significant
bits of the mantissa as well. Our proposed compression
method, referred to as FP-H, exploits this insight and
we show that significant compressibility can be achieved
in floating-point intensive applications.

We have incorporated HyComp and FP-H in an ar-
chitectural model of an LLC in a multi-core system. We
study in detail the impact of the compression / decom-
pression engines on performance and energy consump-
tion and show that it provides superior compressibility
and performance gains in comparison with prior work.

As for the rest of the paper, Section 2 provides moti-
vational data for the case of hybrid cache compression
schemes and for data-type-aware compression methods.
Then, Sections 3 and 4 describe our proposed com-
pression methods: HyComp and our data-type aware
floating-point scheme, respectively. Sections 5 and 6
present our methodology and results, respectively. We
end the paper by positioning our contributions in rela-
tion to prior work after which we conclude.

2. MOTIVATION
Prior cache compression schemes target different sets

of common values but have in common that value local-
ity stems from 32-bit entities. Floating-point numbers
constitute one example data type where this assump-
tion falls short. Figure 1 shows the compressibility of a
1-MB cache for different compression algorithms across
14 workloads after removing the null blocks. We re-
move the null blocks because, as shown later, these can
be effectively compressed by e.g. ZCA [1]. The 7 first
workloads are realistic data sets from the Florida Sparse
Matrix Collection [12]; lu, mg and is are from NAS [13];
cactus and gromacs are from SPEC2006FP and the rest
are SPEC2006INT applications. We provide results for
the entire SPEC2006 suite in Section 6.

BDI [3], SC2 [5] and C-PACK [4] represent state of
the art cache compression schemes. FPC [14] is a state-
of-the-art method in IEEE double-precision floating-
point compression proposed by Burtscher and Ratana-
worabhan. FP-H is our proposed data-type aware cache
compression scheme for floating-point (FP) data and
Hybrid is our proposed HyComp scheme. FPC can only
compress streams of data; because of this, it is not suit-

A
b
a
q
u
s

A
c
u
s
im

H
o
lli

n
g
e
r

M
a
ri
n
i

P
a
rs

e
c

R
u
d
n
iy

S
a
n
d
ia lu

m
g

c
a
c
tu

s

g
ro

m
a
c
s

G
M

 F
P

a
s
ta

r

m
c
f is

G
M

 I
n
t

G
M

 A
llC

o
m

p
re

s
s
io

n
 R

a
ti
o
 

 (
ti
m

e
s
)

1

2

3

4

BDI SC^2 C−PACK FPC FP−H Hybrid LZMA

Figure 1: Compressibilty of HyComp and FP-H
in relation to prior art.

able for cache compression, but it is used for reference.
LZMA1 is an efficient software implemented dictionary-
based compression algorithm (used by 7-Zip). While
LZMA is used as a reference, because of its high com-
pression ratio, it demands complex and slow software
algorithms and is therefore not applicable to caches that
demand fast decompression.

First, BDI assumes that value locality stems from
values that are spatially close. For example, addresses
that differ by a small amount will be encoded densely
by the difference to a base address. In contrast, SC2

uses Huffman coding to encode frequent values densely
and, like BDI, assumes that data types expose value
locality using fixed-size entities (e.g., 32 bits). On the
other hand, C-PACK compresses based on patterns and
a small dictionary looking for small and repeated values
still in 32-bit granularities.

From Figure 1, we can make several important obser-
vations. The LZMA bar shows that there is significant
value locality in the set of workloads after null blocks
have been removed. However, it is challenging to un-
cover this level of compressibility with low decompres-
sion latency. BDI, SC2 and C-PACK have been shown
to support fast compression/decompression, but their
compressibility is quite limited. Considering first their
average (geometric mean) compressibility across work-
loads, Figure 1 shows that BDI and C-PACK offer a
compressibility of 1.3X or less. While SC2 shows sub-
stantially higher compressibility, especially for integer
applications, the average compressibility is limited to
about 1.5X. BDI shows higher compression in gromacs
where there are many pointer values.

The limited compressibility of previously proposed
methods is mainly attributed to FP intensive applica-
tions. From Figure 1, we can see that BDI and C-PACK
perform, in general, poorly for FP intensive applica-
tions, whereas SC2 exploits some value locality. For
cactus from the SPEC2006FP suite, compressibility re-
sults are mixed for BDI, C-PACK and SC2 but in gen-
eral below 2X.

The main limitation of previously proposed compres-
sion schemes is that they make a priori assumptions
on what data types are the root cause of value local-
ity. First, if all data were FP numbers, the way the
exponent and mantissa are represented would be ex-
plicit making it interesting to unlock the value locality

1Lempel-Ziv-Markov chain

39



in each of these entities. Our proposed FP-H scheme
does exactly that and Figure 1 shows how it performs.
We can see that for FP workloads, FP-H does better
than BDI, C-PACK and SC2 in all cases, except for
gromacs. It also compresses better than FPC, which
unlike FP-H, does not break the 64-bit (double preci-
sion) FP value in its fields but rather tries to predict it
based on history, using also shift operations to eliminate
the irregular mantissa’s least-significant bits.

Unfortunately, memory or cache content does not carry
any semantic information about data types. HyComp
approaches this issue by predicting the data type based
on characteristics of 64-bit entities to distinguish be-
tween integers, pointers and FP numbers. As we can
see in Figure 1, HyComp outperforms all prior schemes
by selecting the best compression method based on its
prediction. Section 3 describes HyComp whereas Sec-
tion 4 describes FP-H.

3. HYCOMP: HYBRID COMPRESSION

3.1 Overview
Our baseline system is a multi-core architecture with

a multi-level cache hierarchy. HyComp is integrated
in the last-level cache (LLC) as in prior approaches [5,
15, 16]. Figure 2 illustrates how HyComp is integrated
in a conventional LLC with a number of known com-
pression methods. Although data could be compressed
in memory and caches closer to the processor, called
upper-level caches, we assume in this paper that data
are only compressed in the LLC. Hence, data are com-
pressed before inserted into the LLC from the memory,
or when they are written back to LLC from an upper-
level cache. On the other hand, when a block is evicted
from LLC, or when it is fetched by an upper-level cache
it is decompressed. While the compression latency can
be hidden, the decompression latency is on the critical
memory access path and may lead to performance loss.

HyComp compresses blocks inserted from memory or
blocks written back from the upper-level cache by mak-
ing a data-type prediction using heuristics. Based on
the prediction, it selects among a set of compression
methods the one expected to provide the best com-
pressibility. The compressed block is then inserted in
the LLC and the type of method selected is recorded as
metadata in the tag store. Conversely, HyComp simply
decompresses a block by selecting one out of a set of de-
compression methods based on the metadata in the tag
store. Thus, while compression will take longer time,
decompression will be as fast as using a single compres-
sion method. We next describe our assumed association
between common data types and compression methods
that the HyComp embodiment evaluated in this paper
leverages upon.

3.2 Data Types vs. Compression Methods
While the general idea behind HyComp can poten-

tially be built on any set of available compression meth-
ods, we have selected methods that perform well for
certain common data types. The data types considered

HyComp

DATATAG

LLCUpper cache 
levels Main memory

Write-back Insert

EvictFetch

Compression

Decision

Decompression

LLC w/o 
compression
LLC with one 

compr. scheme

LLC with HyComp

SC^2ZCA BDI FP-H

SC^2ZCA BDI FP-H

(Uncompressed)(Uncompressed)

Figure 2: HyComp integration in the LLC.

in this paper are integers, pointers and 64-bit floating-
point numbers. In addition, while not a data type
per se, we also consider the trivial case when all 64-
bit values in a cache block are zero, referred to as null
blocks. The particular HyComp embodiment evaluated
in this paper associates 64-bit data types with compres-
sion methods as follows:

• Integers: Integers are associated with SC2 [5] be-
cause it assigns denser codes to more frequently
used integers than other schemes by using Huff-
man coding [17].

• Pointers: As pointers typically exhibit spatial
value locality, meaning that values differ by a small
amount, they are associated with BDI [3]. The
limitation of BDI in its main configuration with
two bases (one as zero) is that a block is com-
pressed only, if all the values contained in the block
fall in two ranges; otherwise it is left uncompressed.
This is taken into account when building HyComp.

• Floating-point numbers (FP): FP numbers are
associated with FP-H, a novel compression method
proposed in this paper and described in Section 4.

• Null blocks: Null blocks are associated with Zero-
content augmented cache compression (ZCA) [1].
Null blocks are common [18, 19]. We encode null
blocks with a single bit. A block can be considered
null even when it stores negative zero FP values.
We refer to this as negative null block.

3.3 Heuristics for Prediction of Data Types
When compressing a block, one could aggressively

try each of the aforementioned compression methods,
one-by-one, and then select the one with the best com-
pression ratio. We refer to this as the brute-force mode.
The advantage of this approach is optimality in terms of
compressibility, but it could lead to prohibitive power
consumption and possibly prohibitive compression la-
tency. However, as a point of comparison, we use the
brute-force mode in our evaluations to establish the
upper-bound potential of HyComp.

Pragmatically, HyComp uses instead heuristics to pre-
dict the data type and then apply the compression method
associated with it, as defined in the previous section.

40



Conceptually, within each block (say 64 bytes), it ap-
plies its heuristics to each 64-bit (8-byte) entity, called
a chunk. The data type of each chunk is first classified.
HyComp then counts the occurrences of each predicted
data type within the block and predicts a predominant
data type that is associated with a single compression
method. That compression method is applied to all
chunks, i.e., 64-bit entities, in the block.

HyComp compresses a block in two process steps:
Phase-I: The block is divided into chunks. For each
chunk, it inspects particular bit-portions referred to as
Inspection Portions (IPs) and classifies the data type
of the chunk. Phase-II: Based on the classification of
the individual chunks, a best compression method is
predicted and selected for the block.

In Phase-I, the following data-type classifications are
performed in parallel. Note: The IP size depends on
the data types being predicted:

• Integers: The IP is the 4 most significant bytes
of a chunk. If IP is either 0x00000000 (i.e., pos-
itive integer) or 0xFFFFFFFF (i.e., negative in-
teger), the chunk is classified as an integer. In
addition, a flag is set if a negative value encoded
in a chunk is detected - the treatment of that flag
is described later. If a chunk is classified as an
integer, a counter (#Int) is incremented.

• Pointers: The IP is the 4 most significant bytes of
a chunk. If the two most significant bytes of the IP
=0x0000 and the two least significant bytes of the
IP 6=0x0000, the chunk is classified as a pointer.
The rationale is to neither classify small integers
nor small pointers as pointers. A counter (#Ptr)
is incremented for each chunk classified as pointer.

• Floating-point numbers (FP): The IP is the
7 bits (part of exponent) placed next to the most
significant bit (the sign bit) of a chunk, as further
justified in Section 4 where FP-H is described. The
rationale is that FP numbers contained in a block
often have the same exponents or their exponents
are clustered (the 7-bit IP). HyComp makes pair-
wise comparisons between adjacent and alterna-
tive IPs, and increments #FP when they match.

• (Negative) Null blocks: The IP is a chunk. If
all chunks have the null value (0x00...0) or a nega-
tive zero value (0x80...0), the block is classified as
a null block.

In Phase-II, the heuristic selects the best compression
method for the block by evaluating the classifications
carried out in Phase-I in a certain order, as depicted
in Figure 3. As a first step, if a block is classified as a
(negative) null block, ZCA is selected. Then it checks
whether all counts (#Int, #FPs and #Ptr) are zero.
This is expected to be rare, but if it holds HyComp
speculates that data will not compress efficiently be-
cause of randomness, being encrypted or belonging to a
data type not considered. The next step is to evaluate
the flag and #Int for integer prediction to select SC2.

Check the Inspected 
portions (IPi)

New/Modified
block

(minus) 
NULL blk?ZCA chunk x,

Vx<0?

E

SC^2

#Int ≥ #Ptr
& 

#Int ≥ #FP?

#Ptr ≥ #FP?BΔI FP-H

True

False

True
True

True

False

False

False
#Int, #Ptr, 

#FP=0?

False

TrueDon’t 
Compress!

Figure 3: HyComp classification process.

After this point in the process, the selected compres-
sion method is based on the count of #Ptr and #FPs.
The maximum count selects the compression method
according to the association between data types and
compression methods described in Section 3.2.

Finally, this heuristic is fully implemented in hard-
ware to accelerate the decisions. The characterization
phase (Phase-I) requires inspecting various bit portions
and increment counters. Each characterization is per-
formed in parallel using bitwise comparators and adders.
In Phase-II, the decision is made using priority encoders.
The detailed delays and overheads for HyComp are de-
scribed in Section 5.2.

3.4 HyComp Cache Design
To support cache compression using any compression

method, a conventional cache must be re-designed to
pack multiple compressed blocks into a cache-block/set
frame. Our baseline does this as follows. First, the tag
store is decoupled from the data store [6, 5]. To accom-
modate a compression ratio of K, K tags are associated
with each block frame as shown on the right of Figure 4,
where K=2. While this creates tag-store overhead, it
also enables aggressive compression [5]. Second, to use
the block frame space efficiently, we allow a compressed
block to be placed at an arbitrary position inside the
frame. To accommodate this, we adopt the method-
ology of SC2 [5] to use K pointers per block frame to
point to the exact position in the data store, where a
compressed block is stored. We evaluate later a design
where the resolution is a single byte.

Finally, fragmentation is tackled by adopting the same
methodology for free-space management, as proposed
in SC2 [5]. Specifically, if a block being written back
from an upper-level cache to the LLC is compressed
to a larger size than the one selected for eviction in the
LLC, more blocks in the LLC need to be evicted. Evict-
ing the next LRU blocks may take time, as compaction
is also required. According to that methodology and
as shown on the bottom of Figure 4, adjacent blocks
are evicted but only if they are not null, otherwise no
space is gained unless we run out of tags [3]. On the
other hand, if the block is smaller than the old one,
compaction is done in order to release more contiguous
space to the next LRU block. This happens, however, in

41



A DC B

Way-0 Way-1(2x tags)

A DC B

TAG

0 123

DATA

F
New block

Victim

Extra
Victim

A BA F B
3 102

algtag v d repl c enc
1b 2b 3b

00: ZCA
01: BDI
10: SC2
11: FP-H

x x x

mL Compr?
(FP-H)

null or
-null?
(ZCA)

7 cases
(BDI)

Version
(SC2, FP-H)

idx

Figure 4: HyComp cache structure.

the background after the block has been written. Com-
paction is off of the critical access path.

Beyond the typical control bits (tag, valid, dirty and
replacement bits – shown in grey on the left of Fig-
ure 4) and the index (i.e., pointer to the block frame),
HyComp adds the following status bits in the tag store
associated with a block frame: Compression status (c –
1-bit), Method (alg – 2-bits) and Special encoding (enc
– 3-bits). The c bit indicates whether a block is com-
pressed. The used compression scheme is recorded by
the method bits, as shown in Figure 4, while the special
encoding (enc.) is used in different ways depending on
the selected method:

• BDI: The special encoding determines the base/delta
granularity used: 1) Base=8 bytes and Delta=1,
2 or 4 bytes (3 cases); 2) Base=4 bytes and Delta
is 1 or 2 bytes (2 cases); 3) 2) Base=2 bytes and
Delta is 1; and 4) Base is 8 bytes and delta is 0
(i.e., compression of repeated values).

• ZCA: The rightmost bit of the special encoding
determines whether it is a null block or a negative
null block. The rest of the bits are not used.

• SC2 or FP-H: As two Huffman encodings may ex-
ist for each scheme at the same time in order to
allow smooth transitions from an old encoding to
a new one [5], the leftmost bit determines the right
Huffman-encoding’s version. The middle bit is
used only by FP-H to determine whether the group
of Mantissa-Low subfields is uncompressed (see Sec-
tion 4). The leftmost bit is not used when these
methods are selected.

The area overheads are presented in Section 5. More-
over, since value locality changes slowly [5], SC2 and
FP-H create their Huffman encodings in software as-
suming that encodings change once every second.

4. FP-H: SEMANTIC BIT-FIELD COMPRES-
SION APPLIED TO FP NUMBERS

Previous work [9, 10] notes that value locality is only
exposed in the exponent. By contrast, in this paper,
FP-H exploits the observation that there is ample value
locality also in the mantissa, if it is partitioned. To
exploit this, FP-H divides a floating-point number into
three fields: Exponent, Mantissa-High and Mantissa-
Low and employs Huffman coding to compress each
of these fields in isolation using the methodology in

SC2 [5]. In particular, a Value-Frequency Table (VFT) [5]
establishes the value-frequency statistics that are asso-
ciated with the exponent and mantissa fields.

FP-H views a cache block as a row of consecutive,
e.g. 8-byte, floating-point numbers, as depicted in the
top chart of Figure 5. The alignment may differ, as
depicted in the bottom chart of Figure 5, however, we
only consider the first alignment scenario as relevant for
the X86-64 architectures assumed in our evaluations.
We next describe the compression and decompression
processes.

...
4B

FP0 FP1 FP2

8B

...
4B

FP0 FP1 FPn

8B

int int

Figure 5: FP-alignment cases.

4.1 Compression
Compression is carried out in the following steps: I)

Each of the floating-point numbers is broken down into
four subfields: Sign (s), Exponent (e), Mantissa-High
(mH) and Mantissa-Low (mL), which are grouped to-
gether as shown in the left part of Figure 6. II) Each
subfield is compressed separately and in parallel by the
respective compression engine. III) When data in all
subfields are compressed (except for sign), they are con-
catenated together in a certain order to form the com-
pressed block as shown at the bottom of Figure 6. Field
grouping is not necessary, however, as various variable-
length encodings are used this way of restructuring the
data of the compressed block can dramatically acceler-
ate decompression, as we show later. As we consider
Huffman encoding for the compression of the mantissa
subfields and for the exponent, the statistics for each
subfield are monitored during the sampling phase using
VFTs (e-VFT, mH-VFT and mL-VFT).

4.2 Decompression
A compressed block that is requested to be decom-

e-VFT

mH-VFT

mL-VFT

...

FP0

s e mH mL s e mH mL s e mH mL s e mH mL

FP1 FP2 FP7

sign

exp

mant-H

mant-L

exp-
Huffman
Compr.

mH-
Huffman
Compr.

mL-
Huffman
Compr.

0 1 ...

...0 1

0 1 ...

...0 1

Compressed block

sign mant-L mant-Hexp

Com
pressed 

group fields

Figure 6: FP-H compression.

42



sign

X
X+8

mL0

mant-L

...mL1 mH1 mH0...

mant-H

Y

mH-
Huffman
Decompr.

mL-
Huffman
Decompr.

...s e mH mL s e mH mL

Compressed block

Uncompressed block

...0 1 ... 01e0 e1 ...

exp exp-
Huffman
Decompr

mL decompressed mH decompressed

P
h

as
e

 II
P

h
as

e
 I

Figure 7: FP-H decompression. Two phases:
(I) Simultaneous decompression for mL and mH,
(II) decompression for exponent (e).

pressed is shown at the top of Figure 7. The boundaries
of a compressed block are known (beginning: ‘X’; end:
‘Y’) through the pointers (Section 3.4). We also know
that the compressed mL group starts 8 bits after the
group of uncompressed sign bits. However, there is no
information about the exact offset for the compressed
mH and exponent (e) fields, thus decompression for each
of these fields must wait for the decompression of the
previous field to complete first: decompress mL, then
e and eventually mH. As Huffman decompression is in-
herently sequential, this could increase decompression
latency significantly. As an alternative, we could keep
metadata for the offsets of mH and e, however such area
overheads may diminish the benefits of compression.

We propose instead a 2-phase decompression process:
(I) Decompress mH and mL in parallel and then, (II) de-
compress the exponent. This is illustrated in Figure 7.
We take advantage of the field grouping and save mH
in reverse order in the end of the compressed block (‘Y’
pointer). This way we halve the decompression latency,
as mL and mH are decompressed in parallel. Decom-
pression for mH and mL will stop after each decom-
pressor outputs 8 values. At that point, the boundaries
of the compressed exponent field are also known, thus
decompression can start immediately (second phase).

The FP-H decompressor makes use of the pipelined
Huffman-based canonical decompressors as proposed in
SC2 [5]. The decompressed fields (mL, mH and e) are
placed immediately in the respective bit positions of a
fully decompressed block so that it is ready when the
last exponent field is decompressed.

Finally, we note that the mL group is not always
compressed well because of the irregularity of the man-
tissa’s least significant bits. We find that this occurs
in 45% of the cases, on average, across the simulated
floating-point benchmarks. We can take advantage of
this to further improve decompression latency in those
cases, by requiring only phase I. A single bit (per block)
keeps information about whether mL is encoded. The
decompressor inspects this bit to decide whether mL
decompression is needed, otherwise the exponent’s de-
compression can start immediately and in parallel with
mH decompression, as the group of exponents is located
8+32 x 8 = 264 bits further from the block’s beginning.

4.3 FP-H-D: Faster FP Compression
The proposed FP-H compression method can be tai-

lored in different ways depending on how we decide to

Table 1: Baseline configuration.
Cores 8 cores, X86-64, out-of-order, 3GHz

Issue: 4, LQ: 64, SQ: 36, ROB: 168, RAS: 16
L1I/L1D 32 KB, 8-way, 2 cycles, 4 MSHR

L2 256 KB, 8-way, 5 cycles, 32 MSHR
L3 (shared) 4 MB, 20 cycles, 16-way, 8 banks, 32 MSHR
Memory 200 cycles (66ns)

compress the exponent. We have previously assumed
that it is compressed using Huffman coding like the
mantissa subfields. Although we manage to parallelize
decompression for mL and mH, the inherently sequen-
tial decompression of the exponent in the second phase
may still impact the cache access time.

We notice that each floating-point data set makes
use of a few exponent values. Instead of densely en-
coding the exponent using Huffman encoding, we can
use a lighter dictionary-based compression scheme that
requires only at most two cycles in the second decom-
pression phase. We name this variation FP-H-D. The
dictionary is only updated during the sampling phase,
while when Huffman encodings are generated for the
mantissa subfields, we also freeze the dictionary for the
exponent. The compressed exponent consists of a series
of 8 index fields (4 bits per index), possibly followed by
a variable number of uncompressed exponents, if they
are not found in the dictionary. FP-H-D decompression
is simple: each index is used to retrieve an exponent
value from the dictionary. If the index is ”0000”, the
uncompressed exponent is selected instead.

5. EXPERIMENTAL SETUP

5.1 Architecture Models
We evaluate HyComp and FP-H for both single-core

and multi-core systems using the cycle-accurate GEM5
simulator [20] in syscall emulation using the classic mem-
ory system. The main baseline is a multi-core system
with eight out-of-order cores, private L1/L2 caches per
core and an L3 shared cache with eight banks as shown
in Table 1. The block size is 64 bytes. The cache la-
tencies are estimated using CACTI [21] and assuming
a 3-GHz clock. The single-core system baseline uses
a single-bank 1-MB LLC with a 10-cycle access time.
This baseline helps us to systematically create multi-
programmed workloads based on cache intensity and
compressibility.

Compression methods: All compression methods
listed in Table 2, including C-PACK+Z [4, 15], are
integrated in the LLC. The tag and data arrays are de-
coupled; there are 4X more tags to realize a compression
ratio of 4X. Extra tags and indirection adds two cycles
according to CACTI simulations. Extra metadata are
associated with each method as shown in Table 2. The
use of the “Enc.” bit(s) is described in Section 3.4 for
HyComp and BDI. For SC2 and FP-H, it determines
the encoding version; for C-PACK+Z, it distinguishes
between null blocks and CPACK-compressed ones. We
note that with 48-bit addresses, the tag-area overhead
of HyComp is only 3.8% over BDI.

43



Table 2: Tag size of a 4-MB, 16-way cache for
baseline and compression schemes (#tags=4x).

Tag v,d,lru index c Alg Enc. Total (KB)
Baseline 30 6 0 0 0 0 36 (288)

BDI 30 8 10 0 0 4 52 (1664)

SC2 30 8 10 1 0 1 50 (1600)
FP-H 30 8 10 1 0 1 50 (1600)

HyComp 30 8 10 1 2 3 54 (1728)
CPACK+Z 30 8 10 1 0 1 50 (1600)

Table 3: (De)Compression latency per scheme.
*In HyComp, it depends on the selected scheme.

ZCA SC2 BDI FP-H HyComp C-PACK+Z
Compr. 1 9 2 7 2+* 16

Decompr. 0 10 1 20/12 * 9

For each of the SC2, FP-H, Brute-F and HyComp,
the value-frequency statistics are collected by one VFT2

for the whole cache, for the first 20-M committed in-
structions of a simulation phase. To make fair com-
parisons, we assume that the cache is not compressed
by any scheme during this period. The same encod-
ing is used for the rest of the simulation. Each LLC
bank is associated with a compressor and decompres-
sor for each compression scheme to avoid contention
when there are simultaneous requests to the LLC from
different cores. Moreover, the Huffman-based schemes
make use of two decompressors to be able to decompress
based on two different encodings [5]. Consequently, per
LLC bank we have the following number of compres-
sors/decompressors. SC2: 1/4; FP-H: 3/6; FP-H-D:
2/4; Brute-F and HyComp: 4/10 Huffman-based (SC2

and FP-H), 1/1 ZCA-based and 1/1 BDI-based. The
HyComp heuristic is also modeled per bank in HyComp.

Baselines: We model and evaluate the following con-
figurations: A 1-MB and 4-MB L3 physical (uncom-
pressed) cache for the single-core and multi-core base-
lines used as references, respectively. We also com-
pare the compressed cache schemes against 2X and 4X
physically larger caches and analyze the sensitivity to
the cache hit time; 8 MB (ideal/+8 cycles) and 16
MB (ideal/+8/+17 cycles) respectively, for multi-core;
2 MB (ideal/+4 cycles) and 4 MB (ideal/+8 cycles)
respectively, for single-core systems.

5.2 Hardware Implementation
We have implemented and synthesized all the com-

pression/decompression engines and the HyComp heuris-
tic in VHDL using the Synopsys Design Compiler with
32-nm process technology and verified that they can be
clocked at 3 GHz. The (de)compression latencies are
summarized in Table 3. For C-PACK+Z, the latencies
are derived from prior work [15].

SC2: The decompressor contains combinatorial logic
and a small 4-KB SRAM for the DeLUT [5] and forms
a three-stage pipeline. Block compression and decom-
pression take 9 and 10 cycles, respectively.

FP-H: A block is compressed in 7 cycles assuming
dual-port compressors and one compressor per field (Ex-

2FP-H uses one VFT for each subfield

Table 4: Total area, leakage power (per bank)
and dynamic energy (per access) for the baseline
and compressed caches. (*HyComp’s dynamic
energy depends on the selected scheme)

L3 Area (mm2) St. Power (mW) Dyn. Energy (nJ)
Cache Total per bank per Access

Baseline 40.303 17.4 0.62
2x Baseline 56.75 33.4 0.892
4x Baseline 94.71 100 1.153
Compressed 44.63 78.9 0.63

Scheme per bank per bank Compr. Decompr.
ZCA 0.0007 0.001 0.0003 0
BDI 0.062 0.05 0.096 0.028

SC2 0.138 6.76 0.21 0.168
FP-H 0.238 9.9 0.229 0.19

HyComp 0.452 16.62 * *

ponent, Mantissa-High and Mantissa-Low). For the ex-
ponent the compressor/DeLUT has only 32 entries, thus
can be implemented with logic. Hence, the exponent’s
decompressor has two pipeline stages. It takes 10 cycles
to decompress 8 mL and mH fields (phase I), another
9 cycles to decompress the exponent (phase II) and 1
cycle to form the actual decompressed block, in total 20
cycles. If the mL field is not compressed, decompression
can be completed in 11 cycles. On the other hand, in
FP-H-D decompression takes 10 cycles in phase I and 2
cycles in phase II, in total 12 cycles.

BDI: Block compression takes 2 cycles and decom-
pression one cycle.

ZCA: Block compression takes one cycle and decom-
pression zero cycles.

HyComp: The heuristic takes two cycles; the first
stage does the classification by doing the inspection of
the block for all the types. The second stage takes
as input the classification and by using simple bit-wise
comparisons and priority encoding it makes a decision.
A block’s (de)compression latency depends on the se-
lected scheme. Hence, the hit time of the compressed
cache may vary. On a write/update, the cache hit time
increases by “2+compr. lat”. On a read/evict, it in-
creases by the latency of decompressing the block by
an amount corresponding to the compression algorithm
used. This is modeled accurately in our evaluation.

Table 4 summarizes the area (in mm2), the leakage
power (per bank – in mW) and the dynamic energy (per
access – in nJ) for the baseline cache, the compressed
cache (accounting for the extra tag overheads), for the
individual compression schemes we study and for Hy-
Comp. The cache area, power and energy are estimated
using CACTI [21] for 32-nm technology. The LLC tag
array is modeled with the ITRS-LOP cell and the data
array with the ITRS-LSTP cell type. The reported area
(for all 8 banks in caches) and leakage power (per bank)
is a summary of both the tag and data arrays.

For the compression schemes the area and the leak-
age power are reported per bank but include both com-
pressor and decompressor engines using the configura-
tion discussed in Section 5.1. The dynamic energy is
provided per access for the caches and per compres-
sion/decompression of a 64-byte block for each of the
schemes. For example, FP-H requires 0.229nJ in total

44



Table 5: Multiprogrammed workloads.
Unaffected or Adversely affected CR

mix1 cg-gromacs-milc-is L
mix2 bwaves-lbm-soplex-leslie-gromacs-milc-namd-gamess LMH
mix3 games-gromacs-milc-soplex-libq-gobmk-sjeng-perlb LMH

Mixed effect
mix4 cg-bt-mg-is-lu-sp L
mix5 bt-bzip2-xalan-omnetpp-gamess-milc-lu-leslie3d LH
mix6 mcf-omnetpp-gcc-xalan-cactus-astar-libq.-soplex H
mix7 bzip2-astar-omnet-gcc-gamess-gobmk-perlben-zeus MH
mix8 h264-hmmer-bzip2-is-lbm-perlbench-gromacs-namd LMH
mix9 xalan-astar-namd-gromacs-gobmk-sjeng-gamess-lbm LMH

Benefit
mix10 astar-gcc-cactus-bzip2-zeusmp-h264-omnetpp-mcf MH
mix11 hmmer-bzip2-h264ref-cactus-lu-xalan-sp-omnetpp LMH
mix12 hmmer-sp-mg-cactus-astar-xalan-gcc-omnetpp LMH
mix13 hmmer-bzip2-h264-cactus-astar-xalan-gcc-omnet. MH
mix14 xalan-gcc-omnetpp-mcf-bzip2-astar-sp LMH
mix15 xalan-gcc-omnetpp-mcf-cactus-astar-xalan-omnetpp H

to compress all mL, mH and exponent fields in a 64-byte
block and 0.19nJ for decompressing it. Hence, a com-
pressed cache (0.63nJ per access) with FP-H consumes
38.5% and 32.2% more dynamic energy per access than
an uncompressed cache for compression and decompres-
sion respectively, but 3.5% and 8.1% less energy/access
than a 2X physically larger cache, and 25.4% and 28.8%
less energy/access than a 4X larger one.

In HyComp, the dynamic energy for (de)compression
of a block depends on the selected scheme, while the
heuristic adds 5pJ more dynamic energy to each com-
pression. The area overhead for the compression/decom-
pression logic and the heuristics in all the banks is 8%
of a 4-MB compressed cache, while the leakage power
because of compression/decompression is only 17% of
the total leakage power of this compressed cache.

5.3 Metrics
To evaluate the efficiency of the compression meth-

ods, we use Compression Ratio= Uncompressed set size
Compressed set size

for each cache set and then calculate the average across
all the sets. The accuracy of HyComp’s heuristic is
measured by comparing the decision made by HyComp
to Brute-F, which always does the right decision. Per-
formance is evaluated using Misses per Kilo Instruction
(MPKI) in the L3 cache and Speedup of execution time
for the single-core system and Weighted speedup [22] for
the multi-core system, using as reference the baseline.

5.4 Workloads
We use 28 benchmarks: 22 SPEC2006 [23] (12 integer

and 10 floating-point ones) and 6 NAS benchmarks (cg,
mg, bt, lu, sp and is) compiled with gcc (optimization
flag -O2) or Fortran. SPEC2006 applications are run
using the reference input while the NAS benchmarks
run with the B problem class. We simulate our system
for representative phases that were defined using pin-
points [24]: 10-15 pinpoints per application of duration
of 250M committed instructions each.

Classification of workloads: Benchmarks are clas-
sified based on the impact of the increased LLC capacity
on their performance, yielding three groups: 1) Appli-
cations that benefit from more cache capacity, 2) Appli-

bt cg lu m
g sp

bw
av

es
ca

ct
us

ga
m

es
s

gr
om

ac
s

lb
m

le
sl

ie
3d m
ilc

na
m

d
so

pl
ex

ze
us

m
p

G
MC
om

pr
es

si
on

 R
at

io
 (t

im
es

)

1

1.5

2

2.5

3

3.5
20+32 14+32 12+32 20+22 14+22 12+22
20+16 14+16 12+16

Figure 8: Compressibility of the mantissa.

cations that remain unaffected and 3) applications that
are adversely affected because of longer access time due
to larger cache. Based on the classification, we create 15
multiprogrammed workload mixes (mix1 to mix15) to
use in the multi-core simulations, as Table 5 shows. The
mixes are created also based on the compression ratio
(L,M,H3) of individual applications, based on our find-
ings in Section 6.2.1, similarly to prior work [3, 5]. Most
mixes contain 8 workloads except for mix1, mix4 and
mix14. Mix1 consists of compute-intensive workloads
with low compressibility; mix4 has only NAS bench-
marks, while mix14 involves the most cache-intensive
and most highly compressible applications.

Before a detailed multi-core simulation is executed,
we fast-forward the execution 5-billion committed in-
structions and warm up the caches for another 500-
M committed instructions, similarly to prior work [25].
Detailed simulation is then done until all applications
have committed 250-M instructions. When a bench-
mark completes 250-M instructions, we collect the statis-
tics and keep it running to stress the shared resources
until all of them complete 250-M instructions.

6. EVALUATION

6.1 Value Locality in the Mantissa
Previous studies find that the exponent of floating-

point values exhibits high value locality [9, 10, 11] and
typically exhibits a compression ratio of 4X, whereas
the mantissa exhibits low value locality. However, the
exponent comprises only 17% of a floating-point num-
ber and offers overall a low compression ratio. If value
locality in the mantissa can be uncovered, it would lead
to a substantially higher overall compression ratio. To
verify this, we study the overall compression ratio of
FP numbers by dividing the mantissa into two subfields
(Mantissa-High and Mantissa-Low) and compress them
individually so as to establish the size of each of them
that maximizes the compression ratio.

Figure 8 shows the compression ratio for a 1-MB
cache (null blocks are removed) for the mantissa as-
suming its 20 most-significant bits for Mantissa-High
and its 32 least-significant bits for Mantissa-Low by
varying their widths. The compression ratio is derived
by dividing the number of mantissa values using 52
bits by “#UniqueV al ×H + #TotalV al × (20 −H) +
#UniqueV al×L+#TotalV al×(32−L)”, where H and

3L: CR < 1.5X; M: CR ≤ 2X; H: CR > 2X

45



b
t

c
g lu

m
g

s
p

b
w

a
v
e
s

c
a
c
tu

s

g
a
m

e
s
s

g
ro

m
a
c
s

lb
m

le
s
lie

3
d

m
ilc

n
a
m

d

s
o
p
le

x

z
e
u
s
m

p

G
M

 F
P

C
o
m

p
re

s
s
io

n
 R

a
ti
o
 (

ti
m

e
s
)

1

1.5

2

2.5

3

3.5

C−PACK+Z ZCA BDI SC^2 FP−H FP−H−D Brute−F HyComp

Figure 9: Compressibility for FP applications.

L are the number of bits considered to form Mantissa-
High and Mantissa-Low values, respectively. For exam-
ple, ”14+22” shows the compressibility of the mantissa
by only considering the first 14 bits of Mantissa-High
and the first 22 bits of Mantissa-Low to form unique
values, respectively, while 6 and 10 bits for all val-
ues are left uncompressed, respectively. The geometric
mean (GM) shows that by taking into account the whole
mantissa sub-fields, but extracting value locality in iso-
lation, compression is close to 1.8X. However, for NAS
benchmarks (except for lu), best results are achieved by
disregarding the 16 LSB of Mantissa-Low.

6.2 Results for Single-Core Systems

6.2.1 Compressibility Results
Figures 9 and 10 show the compression ratio across

the floating-point (FP) and the integer applications,
respectively. Brute-force (Brute-F) shows the upper
bound on compressibility of hybrid compression. The
maximum compression ratio is 4X, as we restrict the
number of tags to 4x per cache set. Cache compress-
ibility is calculated using a physical 1-MB L3 cache as
a baseline.

Figures 9 and 10 confirm that there is no single com-
pression method that always outperforms others. For
example, FP-H (and its variation FP-H-D) improves
the compressibility for some FP applications: lu, sp,
bt, cg, lbm and leslie3d, when compared to prior work.
ZCA is more efficient when null blocks are common,
e.g., gamess and namd. On the other hand, SC2 is
more capable for common 32-bit values, e.g., in inte-
ger benchmarks mcf, xalan and omnetpp. Interestingly,
FP-H compresses integer workloads quite well too. If
value locality is exhibited in 32-bit portions this can be
captured at finer granularities exploited by FP-H, but
not to the extent that SC2 does. In few FP applications,
e.g., cactus and soplex, SC2 and FP-H compress equally
well. Moreover, in gromacs, is (i.e., “integer sort” of
NAS), hmmer and h264ref, BDI offers best compres-
sion followed by C-PACK+Z, which supports partial
dictionary matches. The first two applications use a
lot of pointers (array-index values), while the other two
manipulate close or repeating 32-bit integer values.

Using an ideal hybrid scheme – Brute-F – we ver-
ify that each application contains different data types
which means that a hybrid scheme not only has a po-
tential to perform more robustly across different appli-

a
s
ta

r

b
z
ip

2

g
c
c

g
o
b
m

k

h
2
6
4
re

f

h
m

m
e
r

lib
q

m
c
f

o
m

n
e
tp

p

p
e
rl
b
e
n
.

s
je

n
g

x
a
la

n is

G
M

 I
N

T

C
o
m

p
re

s
s
io

n
 R

a
ti
o
 (

ti
m

e
s
)

1

1.5

2

2.5

3

3.5

C−PACK+Z ZCA BDI SC^2 FP−H FP−H−D Brute−F HyComp

Figure 10: Compressibility for INT applications.

cations, but also can outperform a single scheme for a
single application. More importantly, when HyComp is
used, compression is in most cases close to Brute-F and
better than individual schemes, on average.

The few cases where HyComp does not outperform
individual compression methods are: (a) mcf, sjeng and
xalan (best: SC2); (b) hmmer and is (best: BDI); and
(c) libq (best: FP-H). This is attributed to the lower
accuracy of the heuristic in predicting the right scheme.
For each application, the two leftmost bars in Figure 11
show the accuracy of HyComp and a heuristic of prior
work [7] using Brute-F as a reference (100 % accuracy).
The two rightmost stacked bars show the distribution of
the selected schemes for HyComp and Brute-F. For ex-
ample, in mcf the deviation (about 10%) is attributed to
blocks predicted as pointer but were left uncompressed
by BDI due to multiple ranges, while Brute-F selects
SC2 as is revealed by comparing the two stacked bars.

HyComp exhibits 80% accuracy in selecting the best
compression method, on average, while a prior work [7]
is limited to 60%, on average. The worst accuracy for
HyComp is noticed for hmmer and soplex. In hmmer,
there are many 32-bit values with 0xFF in their MSB,
likely negative integer. Based on the stacked bars, the
heuristic predicts them as floating-point (FP-H), but
Brute-F uses BDI. In soplex, the value 1 and other small
integers represented as FP4 occur in the cache by 40%,
on average. The heuristic chooses FP-H but Brute-F se-
lects SC2 as this way they are compressed more densely.

In summary, we have shown that hybrid compres-
sion can combine the benefits of individual compres-
sion methods to realize a compression solution that of-
fers higher compressibility robustly. The results show
that HyComp, on average, outperforms the individual
schemes. Furthermore, an improved heuristic would re-
sult in even larger improvement.

6.2.2 Performance Results
Figure 12 shows the speedup for the single-core work-

loads for the different individual compression methods
(including C-Pack+Z [4, 15]) and the hybrid schemes:
Brute-F and HyComp5 (Hycomp-free has no (de)compre-
ssion latency – upper bound). The speedup is calculated
using as reference a physical 1-MB cache. We also com-
pare against 2X and 4X physically larger caches (the

4This creates regularity in the mantissa and exponent.
5As we observe better compression and speedup with FP-H
than FP-H-D, we only explore HyComp with FP-H.

46



Ac
cu

ra
cy

 (R
ef

: B
ru

te
−F

)
0

20

40

60

80

100

bt cg lu m
g sp

bw
av

es
ca

ctu
s

ga
m

es
s

gr
om

ac
s

lbm
les

lie
3d m
ilc

na
m

d
so

ple
x

ze
us

m
p

GM
 F

P
as

ta
r

bz
ip2 gc

c
go

bm
k

h2
64

re
f

hm
m

er lib
q

m
cf

om
ne

tp
p

pe
rlb

en
.

sje
ng

xa
lan is

GM
 IN

T
GM

ut
ion

 o
f s

ch
em

es
 (%

)
yC

om
p 

& 
Br

ut
e−

F

20

40

60

80
100

Di
str

ibu
tio

n 
of

 sc
he

m
es

 (%
)

Hy
Co

m
p 

& 
Br

ut
e−

F

0

20

40

60

80

100
HyComp Nitta & Farrens ZCA SC^2 BDI FP−H No compr.

Figure 11: Heuristics accuracy (HyComp vs. prior work [7]) and Distribution of selected schemes for
HyComp vs. Brute-F (stacked bars)

leftmost bars) with and without considering the extra
latency imposed. The latter cases are denoted as“ideal”.

Figure 12 shows that hybrid compression does bet-
ter than individual methods, as Brute-F offers higher
performance robustly for all applications, on average.
HyComp, nonetheless, follows this trend by offering bet-
ter performance for integer workloads as compared to
individual methods, on average. Specifically, in many
cases, HyComp picks the method that gives best im-
provement to the system (e.g., mcf, omnetpp, bzip2 and
astar). When considering 2X and 4X larger caches, for
all floating-point and few integer applications (bzip2,
h264ref and hmmer), HyComp and other methods never
exceed the performance of a 2X larger cache, as com-
pression ratio rarely exceeds 2X. For the rest though,
HyComp performs close to a 4X larger cache.

It is important to note that HyComp neither improves
nor penalizes the performance of most floating-point
workloads6 as well as a few integer-workloads7 when
compared to individual methods. This is because most
of them do not benefit from larger caches. Among the
floating-point applications though, we notice improve-
ments for lu and sp, thanks to the proposed FP-H com-
pression scheme. The substantial speedup for sp is be-
cause MPKI is improved from 18 to 14 with FP-H and
HyComp. The loss in cg is because of the increased
cache hit time without any benefit from larger capacity
as is revealed by the baselines (ideal vs. normal).

In one case (gcc), the individual methods BDI per-
forms better. While Brute-F and HyComp select the
scheme that yields the highest compressibility (i.e., ZCA
and SC2 based on Figure 11), this does not yield the
best speedup, as SC2 imposes longer decompression la-
tency than BDI mitigating the negligible gains in com-
pression ratio (see Figure 10).

In summary, while individual compression methods
can achieve better performance in some cases, we have
shown that hybrid compression offers better performance
on average. Specifically, HyComp outperforms individ-
ual methods and achieves better performance for all
workloads independently of the data types they use.

6.3 Results for Multi-Core Systems
For the multi-core simulations, we run the multipro-

gram mixes of Table 5 on a multi-core system with eight
cores. Figure 13 shows the speedup for the different

6bt, bwaves, gamess, gromacs, lbm, milc and namd.
7libquantum, gobmk and sjeng.

mixes for HyComp and individual schemes as well as 2X
and 4X physically larger caches (both ideal and normal,
as in Section 6.2.2). The results are normalized to the
baseline system with a 4-MB physical cache.

Overall, we observe that HyComp outperforms indi-
vidual compression methods and performs nearly as well
as Brute-F. When considering physically larger caches
(the five leftmost bars), we observe that HyComp has
better speedup than a 2X baseline except for mixes with
low sensitivity and a few medium ones. In addition,
while a 4X ideal cache outperforms HyComp and in-
dividual schemes, it performs similar to Hycomp-free.
This reveals that hybrid compression is so effective that
it can reach the performance of 4X larger cache when
the latency overheads are disregarded. However, when
the cache hit time grows due to larger capacity by 8 and
17 cycles, HyComp performs similar or better, respec-
tively. In the latter case, the reason is that the access
time of the cache becomes longer than the average de-
compression latency of HyComp.

Let us now investigate results for individual workload
mixes. In the first three mixes, we see that the perfor-
mance remains unaffected. This is expected for mix2
and 3, but in mix1 we observe that HyComp may be
affected a bit negatively due to cg. In mix4, FPH and
HyComp neither show benefit nor adverse impact as the
losses in cg are compensated by the gains in sp, while for
the rest of the schemes, performance remains unaffected
as they don’t compress. Although mix5 contains xalan
and omnetpp, that benefit from compression, their ben-
efit compensates for the loss in leslie3d and bt.

As we go to the right, more applications involved in
the mix are compressed better. The higher compress-
ibility for HyComp is accounted for by the fact that
it picks the best algorithm for gcc and omnetpp, while
BDI and SC2 compensate their gains with losses from
each other. In mix8, the deviation between HyComp
and Brute-F is attributed to the inaccuracy to pick BDI
for hmmer, as in mix9 which has almost the same config-
uration as mix8, HyComp performs similarly to Brute-
F. The advantage of HyComp is clearly articulated in
the third batch of workloads mixes that mainly consists
of memory-intensive workloads.

As for cache energy consumption, a 4-MB compressed
cache with HyComp exhibits 77% higher dynamic en-
ergy than a 4-MB uncompressed cache, but only 5%
more than a 2X physically larger and 23% less than a
4X larger cache, across all workload mixes. However,
due to compression, HyComp reduces the number of

47



2x Baseline (ideal) 2x Baseline (+4 cycl) 4x Baseline (ideal) 4x Baseline (+8 cycl)
ZCA BDI SC^2 FP−H FPH−D C−PACK+Z Brute−F HyComp Hycomp−free

cg lu m
g sp

ca
ctu

s

les
lie

3d

so
ple

x

ze
us

m
p

GM
 F

P

as
ta

r

bz
ip2 gc

c

h2
64

re
f

hm
m

er m
cf

om
ne

tp
p

xa
lan

GM
 In

t

GM
 A

ll

Sp
ee

du
p 

(R
ef

: L
3=

1M
B)

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4

1.95
2

Figure 12: Speedup for single program workloads (Reference: 1-MB uncompressed cache).

m
ix1

m
ix2

m
ix3

GM
 L

ow

m
ix4

m
ix5

m
ix6

m
ix7

m
ix8

m
ix9

GM
 M

ed

m
ix1

0

m
ix1

1

m
ix1

2

m
ix1

3

m
ix1

4

m
ix1

5

GM
 H

igh

GM
 T

ot
al

Sp
ee

du
p 

(R
ef

: L
3=

4M
B)

0.9
0.95

1
1.05
1.1

1.15
1.2

1.25
1.3

2x Baseline (ideal) 2x Baseline (+8 cycl) 4x Baseline (ideal) 4x Baseline (+8 cycl) 4x Baseline (+17 cycl)
ZCA BDI SC^2 FP−H C−PACK+Z Brute−F HyComp Hycomp−free

Figure 13: Weighted speedup for multiprogram workloads (Reference: 4-MB uncompressed cache).

off-chip accesses. By assuming 20nJ to bring a 64-byte
block from memory (i.e., more conservative than prior
work [5]), HyComp is 39% more energy efficient than
the 4-MB baseline, on average, and, 16% and 7.5% than
the 2X and 4X larger caches, respectively. Compared to
Brute-F, although HyComp has slightly lower compres-
sion ratio than Brute-F, HyComp is 5% more energy
efficient, on average, as Brute-F requires 22% more dy-
namic energy to try all compression schemes. In conclu-
sion, HyComp performs closely to Brute-F and better
than prior work.

7. RELATED WORK
Concerning hybrid compression and data-type predic-

tion, Kant and Iyer [8] and Nitta and Farrens [7] con-
tribute with a data-type prediction heuristic that, simi-
larly to ours, can distinguish between integers, pointers
and floating-point numbers, but is used for the pur-
pose of optimizing link compression and not to select
compression methods. The heuristic in those works are
similar to each other but different to HyComp. The
former [8] makes a decision in a per-word basis. This
is unsuitable for cache compression as a block com-
pressed with various methods requires metadata impos-
ing extra area and decompression latency. Sardashti
and Wood [15] study the combination of two specific
compression schemes: Null-block combined and C-PACK
(i.e., C-PACK+Z). They do this for evaluation purposes
rather than exploring its design space. In contrast, this
work contributes with, for the first time, how to com-
bine the benefits of individual compression methods.

Regarding floating-point compression, Citron [9] finds
that only the most significant byte of a double-precision
floating-point number has low entropy and can be com-
pressed effectively. Recently, Townsend and Zambreno [11]
verify this by comparing the most significant byte be-

tween adjacent floating-point values. Unfortunately, the
exponent occupies a small fraction of a floating-point
number. We show, for the first time, that there is ample
value locality also in the most significant portion of the
mantissa and how it can be practically exploited. Sev-
eral proposed floating-point compression methods rely
on prediction. Isenburg et al. [26] use exponents to se-
lect among different arithmetic contexts to predict the
mantissa. Lindstrom and Isenburg [27] use prediction
and range encoding to exploit the fact that IEEE-754
floating-point numbers in 3D grids are spatially close.
They note that double-precision FP values cannot be
predicted. FPC [14], as we evaluate in this paper, com-
presses double-precision floating-point numbers by re-
lying on the history in order to predict future values.
This does not work well in context of randomly accessed
memory structures (e.g., caches). Finally, Sathish et
al. [28] explore lossy compression in the low order bits
of the mantissa in GPGPU workloads and notice a small
impact on accuracy. FP-H, on the other hand is a loss-
less compression method that does not rely on access
order, thus is well adapted for caches.

8. CONCLUSIONS
This paper first contributes with hybrid compression

in which one, out of several data-type specific com-
pression methods, is selected based on dynamic pre-
diction of the data type with an accuracy as high as
80%. This yields a substantially higher compression ra-
tio compared to prior work. In addition, HyComp only
adds marginally to the compression latency (2 clock cy-
cles) and does not affect the decompression latency. As
a result, we show that HyComp can offer significant
speedup for a number of multiprogrammed workloads.

The second contribution is the finding that there is
ample value locality in the high-order bits of the man-

48



tissa. Based on that, the paper proposes a new hardware-
based floating-point method (FP-H) that compresses/
decompresses the exponent and the mantissa in paral-
lel, using Huffman encodings. This paper shows that
HyComp together with FP-H can compress prevailing
data types such as integers, pointers and floating-point
numbers effectively and robustly.

9. ACKNOWLEDGEMENTS
We would like to thank Chloe Alverti and the anony-

mous reviewers for their insightful feedback. We ac-
knowledge Somayeh Sardashti for providing the code for
C-PACK+Z, and Jonas Andersson and Niklas Doverbo
for providing the area / energy numbers for BDI. This
work was funded by the European Union under the
project EUROSERVER (no: 610456), and in part by
an advanced grant from the European Research Council
(ERC) through the MECCA project (no: 340328) and
by the Swedish Foundation for Strategic Research (SSF)
under the project SCHEME (RIT10-0033). The simula-
tions ran on the resources provided by the Swedish Na-
tional Infrastructure for Computing (SNIC) at C3SE.

10. REFERENCES
[1] J. Dusser, T. Piquet, and A. Seznec, “Zero-content

augmented caches,” in Proceedings of the 23rd international
conference on Supercomputing, ICS ’09, pp. 46–55, ACM,
2009.

[2] A. R. Alameldeen and D. A. Wood, “Adaptive cache
compression for high-performance processors,” in
Proceedings of the 31st annual international symposium on
Computer architecture, ISCA ’04, pp. 212–, IEEE
Computer Society, 2004.

[3] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Base-delta-immediate
compression: practical data compression for on-chip
caches,” in Proceedings of the 21st international conference
on Parallel architectures and compilation techniques,
PACT ’12, pp. 377–388, ACM, 2012.

[4] X. Chen, L. Yang, R. P. Dick, L. Shang, and H. Lekatsas,
“C-pack: A high-performance microprocessor cache
compression algorithm.,” IEEE Trans. VLSI Syst., vol. 18,
no. 8, pp. 1196–1208, 2010.

[5] A. Arelakis and P. Stenstrom, “SC2: A statistical
compression cache scheme,” in Proceeding of the 41st
Annual International Symposium on Computer
Architecture, ISCA ’14, pp. 145–156, IEEE Press, 2014.

[6] E. Hallnor and S. Reinhardt, “A unified compressed
memory hierarchy,” in High-Performance Computer
Architecture, 2005. HPCA-11. 11th International
Symposium on, pp. 201–212, Feb 2005.

[7] C. Nitta and M. Farrens, “Techniques for increasing
effective data bandwidth,” in Computer Design, 2008.
ICCD 2008. IEEE International Conference on,
pp. 514–519, Oct 2008.

[8] K. Kant and R. Iyer, “Compressibility characteristics of
address/data transfers in commercial workloads,” 2002.

[9] D. Citron, “Exploiting low entropy to reduce wire delay,”
IEEE Comput. Archit. Lett., vol. 3, pp. 1–1, Jan. 2004.

[10] L. Gomez and F. Cappello, “Improving floating point
compression through binary masks,” in Big Data, 2013
IEEE International Conference on, pp. 326–331, Oct 2013.

[11] K. Townsend and J. Zambreno, “A multi-phase approach to
floating-point compression,” in Proceedings of the IEEE
International Conference on Electro/Information
Technology (EIT), May 2015.

[12] T. A. Davis and Y. Hu, “The university of florida sparse
matrix collection,” ACM Trans. Math. Softw., vol. 38,
pp. 1:1–1:25, Dec. 2011.

[13] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson,
T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga, “The NAS
parallel benchmarks – summary and preliminary results,” in
Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, Supercomputing ’91, (New York, NY,
USA), pp. 158–165, ACM, 1991.

[14] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed
compressor for double-precision floating-point data,”
Computers, IEEE Transactions on, vol. 58, pp. 18–31,
2009.

[15] S. Sardashti and D. A. Wood, “Decoupled compressed
cache: Exploiting spatial locality for energy-optimized
compressed caching,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-46, pp. 62–73, ACM, 2013.

[16] S. Sardashti, A. Seznec, and D. A. Wood, “Skewed
compressed caches,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-47, pp. 331–342, 2014.

[17] D. A. Huffman, “A method for the construction of
minimum-redundancy codes,” Proceedings of the Institute
of Radio Engineers, vol. 40, pp. 1098–1101, Sept 1952.

[18] M. Ekman and P. Stenstrom, “A robust main-memory
compression scheme,” in Proceedings of the 32nd annual
international symposium on Computer Architecture, ISCA
’05, pp. 74–85, IEEE Computer Society, 2005.

[19] Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh,
“Last-level cache deduplication,” in Proceedings of the 28th
ACM International Conference on Supercomputing, ICS
’14, (New York, NY, USA), pp. 53–62, ACM, 2014.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.

[21] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Cacti 6.0: A tool to model large caches,” technical report
hpl-2009-85, HP Laboratories, 2009.

[22] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for
a simultaneous multithreaded processor,” in Proceedings of
the ninth international conference on Architectural support
for programming languages and operating systems,
ASPLOS IX, pp. 234–244, ACM, 2000.

[23] C. D. Spradling, “SPEC CPU2006 Benchmark Tools,”
SIGARCH Computer Architecture News, vol. 35, 2007.

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing representative portions of
large intel itanium programs with dynamic
instrumentation,” in Proceedings of the 37th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO 37, pp. 81–92, 2004.

[25] D. Sanchez and C. Kozyrakis, “Vantage: scalable and
efficient fine-grain cache partitioning,” in Proceedings of the
38th annual international symposium on Computer
architecture, ISCA ’11, pp. 57–68, ACM, 2011.

[26] M. Isenburg, P. Lindstrom, and J. Snoeyink, “Lossless
compression of predicted floating-point geometry,” Comput.
Aided Des., vol. 37, pp. 869–877, July 2005.

[27] P. Lindstrom and M. Isenburg, “Fast and efficient
compression of floating-point data,” Visualization and
Computer Graphics, IEEE Transactions on, vol. 12,
pp. 1245–1250, Sept 2006.

[28] V. Sathish, M. J. Schulte, and N. S. Kim, “Lossless and
lossy memory i/o link compression for improving
performance of GPGPU workloads,” in Proceedings of the
21st International Conference on Parallel Architectures
and Compilation Techniques, PACT ’12, pp. 325–334,
ACM, 2012.

49


	Introduction
	Motivation
	HyComp: Hybrid Compression
	Overview
	Data Types vs. Compression Methods
	Heuristics for Prediction of Data Types
	HyComp Cache Design

	FP-H: Semantic Bit-Field Compression Applied to FP Numbers
	Compression
	Decompression
	FP-H-D: Faster FP Compression

	Experimental Setup
	Architecture Models
	Hardware Implementation
	Metrics
	Workloads

	Evaluation
	Value Locality in the Mantissa
	Results for Single-Core Systems
	Compressibility Results
	Performance Results

	Results for Multi-Core Systems

	Related Work
	Conclusions
	Acknowledgements
	References



