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Subgap current in superconducting tunnel junctions with diffusive electrodes
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We calculate the subgap current in planar superconducting tunnel junctions with thin-film diffusive leads. It

is found that the subharmonic gap structure of the tunnel current scales with an effective tunneling transpar-

ency which may exceed the junction transparency by up to two orders of magnitude depending on the junction

geometry and the ratio between the coherence length and the elastic scattering length. These results provide an
alternative explanation of enhanced values of the subgap current in tunneling experiments often ascribed to
imperfection of the insulating layer. We also discuss the effect of finite lifetime of quasiparticles as the possible
origin of additional enhancement of multiparticle tunnel currents.
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Subgap quasiparticle current in superconducting junctions
at small applied voltages eV <<2A is the subject of persistent
theoretical interest and experimental research. Recently, the
problem has attracted new attention, and a number of mea-
surements of the subgap current in high-quality tunnel junc-
tions have been performed,'> motivated by the problem of
decoherence in Josephson-junction-based superconducting
qubits.’> The subgap current at zero temperature is due to
multiparticle tunneling (MPT) processes,* whose intensities
strongly depend on the quality of the insulating layer, being
enhanced by disorder, localized electronic states, pinholes,
etc.’ The effect of disorder in the junction electrodes on the
subgap current has never been questioned.

According to the MPT theory,* the subgap tunnel current
depends on the transparency D of the tunnel barrier: it de-
creases with decreasing voltage in a steplike fashion with
step heights proportional to (D/2)" at voltages eV=2A/n,
n=1,2,... [subharmonic gap structure (SGS)]. Similar re-
sults have been obtained for junctions with ballistic
electrodes,® and mesoscopic point contacts with diffusive
electrodes’ on the basis of the theory of multiple Andreev
reflections (MARs).”

Experimentally, the SGS scaling parameter in atomic size
junctions nicely agrees with the theory;® however, in macro-
scopic tunnel junctions it is usually much larger!? (see also
earlier data’); moreover, there is a smooth residual current at
a very low voltage.! Although enhanced SGSs in high-
transmission junctions could be explained by assuming ran-
domly distributed resonant levels within the tunnel barrier, !°
enhanced subgap current in low-transmission junctions with
presumably good insulating layers remains an open question.

In this paper we reexamine the problem of the subgap
current in macroscopic tunnel junctions, and consider the
effects of diffusive electrodes and planar junction geometry
common for the experiment (see Fig. 1). Our main result is
that the SGS scaling parameter for such junctions signifi-
cantly exceeds the junction transparency: for the sandwich-
type junction with thin-film leads shown in Fig. 1(b), the
scaling is determined by the effective transparency defined as

D,=(3&/td)D, (1)

where &,=\D/2A is the diffusive coherence length (we as-
sume fi=kgz=1), € is the elastic mean free path, d < &, is the
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thickness of the leads, and D is the diffusion coefficient. For
Al junctions with €~d=50 nm and &,=300 nm, the en-
hancement factor approaches 100. For the junctions with
one-dimensional (1D) geometry of Fig. 1(a), D,y
=(3&,/€)D." This result also applies to nonhomogeneous
tunnel barriers as soon as the size of pinholes (more trans-
parent spots) exceeds the elastic mean free path, otherwise
the ballistic scaling® will be valid.

The enhancement effect can be qualitatively understood
by considering a short point contact with the reservoirs lo-
cated very close to the contact, L< &, [cf. Fig. 1(a)]. In this
case, the current can be calculated within the mesoscopic
approach,'? by integrating over contributions of normal con-
ducting eigenmodes with randomly distributed transparen-
cies. The relevant distribution is known to be spread over the
interval ~(L/€)D>>D."3 The most transparent modes domi-
nate the subgap current, giving D, s~ (L/€)D. In our case of
junctions with large distance to the reservoirs, the scale of
the spatial variation of the Green’s function &, plays the role
of the effective junction length giving qualitatively our re-
sult, D s~ (&/€)D."* We note that for the long junctions
under consideration the statistics of the eigenmode transpar-
encies is not known, and a quantitative result has to be de-
rived from the quasiclassical theory for diffusive supercon-
ductors.

Our analysis is based on the diffusive equations!’ for the

quasiclassical two-time Keldysh-Green functions é(r,tl 1),

R AK
[H,°oG]=iDVJ, Go°G=1, G=(i) GAA). (2)
8

Here I:I(tl ,1) =[i0’zz9,1 +A explio,@)io,]8(t, 1), ¢ is the su-
perconducting phase, the sign o denotes time convolution,

T © l_
I
— x =
-L 0 L x
® 1d
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FIG. 1. One-dimensional (a) and planar (b) models of the tunnel
junction with diffusive leads; equilibrium reservoirs are far from the
contact, L>> &.
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and J=GoVG. Equation (2) can be decomposed into the Us-
adel equation for the retarded or advanced Green’s functions
&®4 and the equation for the Keldysh function GK= gRo f - f‘
g4, where f =f+o,f_ is the distribution function.

We present detailed calculations for the simpler, 1D ge-
ometry of Fig. 1(a). At the left electrode, x=-L, the Fourier
transformations of the two-time functions g and f with re-
spect to the variable ¢, -1, are given by the equilibrium ex-
pressions

$(E) = o.u(E) +ioyw(E), f(E)=tanh(E2T),  (3)

(u,v) = (E,A)EE), &A=[(Exi0)*-A%]"2. (4

At the right voltage-biased electrode, x=L, the function G is
defined through the gauge transformation'®

G(L)=G(-1) = S()G(- L)S (1), (5)
with a unitary operator S(r)=exp[io,¢(r)/2], where the
phase ¢ satisfies the Josephson relation ¢(¢)=2eVr.

The boundary conditions 17 for the functions G and J at
the tunnel barrier (x==+0) are given by the relations

Ry 3&

w-ae ©
where R is the resistance of the tunnel barrier, Ry=§&,/g is the
resistance of a piece of the lead with length &y, and g is the
conductance of the leads per unit length. Assuming a small
value of the tunneling parameter W, we neglect the charge
imbalance function f_ and the superfluid momentum within
the leads, as well as the variation of A. In such an approxi-

mation, Eq. (5) extends to the whole right lead, é(x)

v

v W . v
Joo=J= g_[G—o, °Gyl W=
0

=G(=x) for 0<x<L. The problem is therefore reduced to

the solution of a static equation for the function é(x,tl ,1p) at
—L<x<0 with the time-dependent boundary condition (6)

at x=—0. The electric current is related to the Keldysh com-
ponent JX of the matrix current J as ()
=(mg/4e)Tr (rzj’(()c,t,t).15 Using Egs. (5) and (6), it can be

expressed as

1(t) = (w/8eR)Tr 0. G, o GT¥(1,1). (7)

In this and following equations, the functions are taken at the
boundary x=-0. Expanding all functions over harmonics of
the Josephson frequency, A(E,f)=X,A(E,m)e V™ [t=(t,
+1,)/2], we arrive at the equation for the dc current /,

1

f T dETe S Th(E,m)G(E,~ m) - h(E,m)

—00

" 16¢R

XGKE,—m)], h=08"-3".. (8)

In the tunneling limit W<1, the amplitude of the mth
harmonic is proportional to W™; thus the zero harmonic m

=0 of the functions ¢ and G¥ in Eq. (8) plays the key role,
while the high-order harmonics can be neglected. The effect
of these harmonics will be discussed later. Within this ap-
proximation, the Green’s function matrix structure in Eq. (3)
holds, and the current Eq. (8) exactly transforms to the form
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FIG. 2. (Color online) Circuit representation of charge transport
in a diffusive tunnel junction, eV=2.5A.

©

I= L dE N(E)N(E - eV)[n(E—eV)-n(E)]. (9)

eR)_,

Here N(E)=Re uX is the density of states (DOS) normalized
to its value in the normal state, and the distribution function
n=(1/2)(1-f) approaches the Fermi function n in equilib-
rium. Furthermore, we split the integral in Eq. (9) into pieces
of length eV, denoting A (E)=A(E+keV),

1 eV *
=—f dEJ(E), J(E)= X j(E), (10)
eR 0 f=—00

Je= (e =npr's Pt = NNy (11)

The distribution function n(E,x=-0) satisfies the recurrence
relation following from the kinetic equation d,(D,dn)=0,

O(E| - M[ng(E) = ] = r(aer = jn) (12)

where O(x) is the Heaviside step function, r=Ry/R< 1, and
Ry is the normal resistance of the lead. To justify Eq. (12),
we note that the diffusion coefficient D,=(1/2)(1+]ul|?
—|v[?) is approximately constant, D, =~ 1, at |E| > A, which
leads to the linear function n(E,x)=n_g+(x/L)(n_g—ng). At
|E| <A, D, turns to zero at |x| > &), which reflects complete
Andreev reflection in the leads and results in zero probability
current D,d n=0. Then, using the boundary condition at the
tunnel  barrier following from Eq. (6), D,dn
=(2W/ &) 21NN (n—n), we arrive at Eq. (12).

A convenient interpretation of Egs. (11) and (12) in terms
of circuit theory'® is given by an infinite network in the en-
ergy space with the period eV, graphically presented in Fig.
2. The electric current spectral density J(E) consists of par-
tial currents j;, which flow through the tunnel “resistors” p;
connected to adjacent nodes of the network having “poten-
tials” n; and n;_;. At |E| > A, the nodes are also attached to
the distributed “equilibrium source” nz(E) through equal re-
sistors r. Below we impose the equilibrium quasiparticle dis-
tribution at |E| > A, n(E)=ng(E), neglecting the effect of
small resistors r.

The currents flowing between the nodes outside the gap
are related to the thermal current; at 7=0, these nodes have
equal populations (n;=1 at E,<-A, n;=0 at E,>A); thus
the corresponding partial currents are zero, and the thermal
current vanishes. As a result, only the current j, flowing
across the gap through the resistor p, survives at 7=0.

Taking the DOS in the BCS form N=Ny=Re(E/ &), we
see that if any node falls into the gap, the adjacent resistances
turn to infinity, and the current vanishes. For this reason, the
network period must exceed the gap, eV>2A, and the inte-
gration in Eq. (10) is confined to the region A <E<eV-A.
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FIG. 3. (Color online) DOS and subgap circuits at the applied

voltages eV=1.2A (a) and 0.7A (b), for the tunneling parameter
W=1073.

This recovers the tunneling model result for the single-
particle tunnel current:'” the current appears above the
threshold, eV=2A, having the threshold value I,(2A)
=mA/2eR.

To evaluate the subgap current, ¢V <<2A, the DOS must
be calculated to next order in the parameter W, which re-
quires solution of the equations for ¢ following from Egs. (2)
and (6). Using the standard parametrization g=0.e%%, we
obtain the equation and the boundary condition for the spec-
tral angle 0,

sinh(6— ) =id,.Osinh O, z=x/&, (13)
3.0+ W sinh 6(cosh 6, + cosh 6_))=0 (z=-0). (14)

With exponential accuracy, the solution of Eq. (13) for z
<0 can be approximated by the formula for a semi-infinite
wire,

tanh{[ 0(z) — 05)/4]exp(kz), (15)

where k~'(E) =i sinh 6. Equation (15) describes the decay
of perturbations of the spectral functions at distances =&,
from the barrier, where the spectral angle approaches its bulk
value fg=arctanh(A/E). The boundary value of 6 is to be
found from the equation following from Egs. (14) and (15),

2k sinh[ (6 — 6)/2] = W sinh #(cosh 6, + cosh 6_,). (16)

051/4} = tanh[ (6_, —

A direct expansion of 6 with respect to W in Eq. (16) leads to
the following expression for the DOS within the BCS gap,

N(E) = W(1 = E*A*)™SH¥[NG(E + eV) + Ng(E — eV)]. (17)

The DOS divergencies at |[E|=A,A—¢eV in Eq. (17) are po-
tentially dangerous (cf. Refs. 4), but they can be eliminated
by improving the perturbation procedure by solving a set of
recurrences in Eq. (16) in the vicinity of these points.

As follows from Eq. (17), the tunneling processes transfer
the DOS in the energy space into the BCS gap at the dis-
tances eV from the regions |E| > A, thus forming an effec-
tive spatial potential well of the width ~&, at the tunnel
barrier. At eV>A the BCS gap is entirely filled with the
quasiparticle states with a small local DOS ~W, as shown in
Fig. 3(a). The appearance of localized states enables the qua-
siparticles to overcome the BCS gap at eV<<2A via two
steps involving intermediate Andreev reflection at energies
|E| <A. The population of the intermediate state cannot be
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taken to be in equilibrium because the subgap quasiparticles
cannot access the equilibrium electrodes. In the circuit terms,
the node k=0 is disconnected from the equilibrium source,
and the subgap current flows through the two large resis-
tances py,p; ~ W' (two-particle current) [see Fig. 3(a)]. The
corresponding partial currents are equal, jo=j,=[ng(E,)
—np(E_))]/(py+p;), and their contribution to I(V) is confined
to the energy region 0 <E<eV-A (a similar contribution at
A<E<eV comes from j, and j_;). Thus the two-particle
current appears above the threshold eV=A, having the
threshold value I,(A)=7WA/eR=2WI,(2A). At eV=2A, the
two-particle current exhibits a sharp peak with the height
L(2A)=23W?5A/eR; at larger voltages, it approaches a
constant value giving rise to the excess current I,
~6.2W?3A/eR.

At eV<A, a minigap opens in the DOS around the zero
energy [see Fig. 3(b)]; however, since the number of subgap
resistors increases up to three (three-particle current), the
current across the minigap will persist as long as the network
period exceeds the minigap size, eV>2(A-eV), ie., at eV
>2A/3. The central resistance p, is large, p,~ W2, and
dominates the net subgap resistance. This leads to a smaller
charge current with the threshold value I5(2A/3) =2WI,(A).
At eV<2A/3 the network period becomes smaller than the
minigap, and further correction to the DOS is required.

Similar results were found for the planar junction Fig.

1(b), using the equation for the functions G,, at the top
(+0) and bottom (—0) sides of the tunnel barrier i[o,E

+ioA, G_o]=2AW[G_y,G.o), with the modified tunneling
parameter W=(3&/4€d)D. This equation is derived by av-
eraging Eq. (2) over the thickness of overlapping leads and
using Eq. (6) (cf. Ref. 20). From this equation we obtain a
relation for the spectral angle that does not significantly dif-
fer from Eq. (16),

k?sinh(65 — 6) = W sinh #(cosh 6, + cosh 6_,),  (18)

thus giving results which are close to those for the 1D model
with the same magnitude of the parameter W.

The presented calculation scheme, combining circuit
theory arguments with DOS iteration procedures, suggests an
appealingly simple explanation for the diffusive SGS: the
decreasing applied voltage results in a shrinking period of
the network in Fig. 2; hence a stepwise increase of the num-
ber of subgap resistors involved; simultaneously, the number
of DOS steps, scaled as W", increases, as shown in Fig. 4(a).
This results in the current staircase with the height of the
steps given by I,~QW)"'I,, at 2A/n<eV<2A/(n-1).
The quantitative result for the current at arbitrary voltages
and temperatures is

v dEN, +N * 2dE
(V)= (n_—ny)+ (np—npy),
eR  pa A eRp,

N,= Int[(A FE)eV]+1, nJ(E)= nF(EtNi). (19)

In this equation, the second term represents the thermal cur-
rent, the integers =N, are the indices of the nodes closest to
the gap edges outside the gap, Int(x) denotes integer part of
x, and the quantity py(E)==}"*,_ p; has the meaning of net

subgap resistance. The subgap distribution function reads
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FIG. 4. (Color online) DOS at ¢V=0.4A (a) and -V character-

istics (b) for the tunneling parameter W=10"3 and two values of the

damping parameter: y=0 (solid line) and y=0.003A (dashed line).

n(E)=n, +(n_—n)p3 207, pee (20)
Equations (19) and (20) are the main technical results of
the paper. The I-V characteristic (IVC) of the planar tunnel
junction calculated from Egs. (19) and (18) at 7=0 and
shown in Fig. 4(b), was found to be very close to the result
for a ballistic point contact® with the effective transparency
D, p=4W= (358/ €£d)D. This justifies our statement made in
the Introduction, and is the main conclusion of this paper.
In low-transmissive junctions, enhanced subgap current at
eV <A has been observed (see, e.g., Ref. 1). This anomaly
might be due to many-body interaction effects which intro-
duce a finite lifetime (damping) of the quasiparticles. The
damping effect can be qualitatively modeled by a small
imaginary addition to the energy in the spectral functions,
E— E+ivy. This would lead to a small residual DOS within
the BCS gap and cut the DOS staircase at the level of the
order of y/A, see Fig. 4(a). This will result in the smearing
of the tunneling SGS and crossover to a linear IVC at low
voltages, I=2.2(7y/A)?V/R, similar to the incoherent MAR
regime.'® The IVC calculated from Eq. (19) for y=0.003A
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and shown in Fig. 4(b) by a dashed line confirms these con-
siderations.

We conclude our analysis with the estimation of the con-
tribution of higher harmonics of the functions ¢ and GX to
the dc current. At 7=0, the contribution &I of the first har-
monics |m|=1 (the higher harmonics |m|>1 are smaller,
~W™) is

ZWJEV (v o X U . 2)?)

ol=— dE Im v Im| — cosh” = + — sinh™ = |, (21)
eR J, )4 2 gq 2

where x=6,+6_,, x=0,+6",, (p,q)*=(E&+&M/2iA, and
v=sinh 6. At eV<A, the energy E_, appears in the subgap
region, where 0:: 0_,+ i and §’:‘1=§Ifl; for this reason, &I
turns to zero at eV<<A, similar to /,. Numerical calculations
show that the contribution of the first harmonics to the IVC
does not exceed 30%. From this we conclude that the
adopted quasistatic approach gives a rather good approxima-
tion to a complete solution.

In our treatment, we have neglected inelastic scattering,
which might affect the quasiparticle distribution at subgap
energies. Analysis shows that this effect becomes essential
under the condition W7 A< 1, where 7, is the relaxation
time. However, this does not affect the estimate of the effec-
tive scaling factor and only changes the details of the IVC
shape.

In conclusion, we have developed a theory of subgap
charge transport and subharmonic gap structure in supercon-
ducting tunnel junctions with planar geometry and diffusive
thin-film electrodes. We found that the role of scaling factor
in the subharmonic gap structure is played by the effective
tunneling transparency D, = (35(2)/ €d)D, which may greatly
exceed the bare transparency D of the junction tunnel barrier.
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