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Background

The Approximate Population Likelihood

Highlights
� Robust computation of gradients

�Methodology applies to both individual and population log-likelihoods

� Improves computational speed compared to finite differences
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Sensitivity Equations Provide More Robust 

Gradients and Faster Computation of the FOCE 

Approximation to the Population Likelihood

The Outer Optimization Problem

The first order conditional estimation (FOCE) method [1] is still one of the parameter estimation workhorses for nonlinear mixed effects (NLME) modeling used in

population pharmacokinetics and pharmacodynamics [2]. We propose an novel implementation of the FOCE and FOCEI methods where instead of obtaining the 

gradients needed for the two levels of quasi-Newton optimizations from the standard finite difference approximation, gradients are computed using so called 

sensitivity equations [3].

Starting Values for Random Parameters

where the total derivatives of ��	
and �� wrt �	can be expressed in terms 

of solutions to the sensitivity differential equations, e.g., 

The outer optimization problem consists of finding the � that maximizes

the log-likelihood. The ��� component of the gradient of the log-

likelihood wrt �

The state-space model for a single individual is described by a system of

ordinary differential equations and a corresponding set of measurement

equations

The Inner Optimization Problem
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where indices � and � denote individuals and observations, respectively.

Furthermore, � are fixed effects parameters, �
��� are covariates,

	
~�0, Ω� are random effect parameters, and �
� are measurement

error covariance matrices.

Given a set of experimental observations, ��� , for the individuals 

� � 1, … , � at the time points ���, where � � 1,…�� , we define the 

residuals

where

The approximate log-likelihood function is obtained using the Laplacian 

approximation, which involves a second order Taylor expansion wrt 	
 of 

�� around points 	

∗ that maximizes the individual ��. 

The inner optimization problem consists of finding the 	
 that maximizes

the individual �� (for a given �). Gradient based optimization methods

need accurate gradients. The  !" component of the gradient of the log-

likelihood wrt 	


where
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The sensitivity differential equations wrt 	
#
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The sensitivity differential equations wrt �$
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Second order sensitivities are also required: 
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Precision, Accuracy, and Performance
Two different levels of magnification of an element of the log-likelihood

gradient as a function of the finite difference step, �.
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Model M1: 2-compartment, 

nonlinear elimination

S-F- 	: Sensitivities (inner), 

Finite differences (outer), 

improved .	starting values

Example: F-F (central diff) to 

S-S-	 gives 50-fold decreased 

computational time 

Benchmarking – relative estimation times


