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Many methods have been proposed for tissue segmentation in brain MRI scans. The multitude of methods proposed complicates
the choice of one method above others. We have therefore established the MRBrainS online evaluation framework for evaluating
(semi)automatic algorithms that segment gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) on 3T brain MRI
scans of elderly subjects (65–80 y). Participants apply their algorithms to the provided data, after which their results are evaluated
and ranked. Full manual segmentations of GM, WM, and CSF are available for all scans and used as the reference standard. Five
datasets are provided for training and fifteen for testing. The evaluated methods are ranked based on their overall performance to
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segment GM, WM, and CSF and evaluated using three evaluation metrics (Dice, H95, and AVD) and the results are published on
the MRBrainS13 website. We present the results of eleven segmentation algorithms that participated in the MRBrainS13 challenge
workshop at MICCAI, where the framework was launched, and three commonly used freeware packages: FreeSurfer, FSL, and
SPM.TheMRBrainS evaluation framework provides an objective and direct comparison of all evaluated algorithms and can aid in
selecting the best performing method for the segmentation goal at hand.

1. Introduction

Multiple large population studies [1–3] have shown the
importance of quantifying brain structure volume, for
example, to detect or predict small vessel disease and
Alzheimer’s disease. In clinical practice, brain volumetry can
be of value in disease diagnosis, progression, and treatment
monitoring of a wide range of neurologic conditions,
such as Alzheimer’s disease, dementia, focal epilepsy,
Parkinsonism, and multiple sclerosis [4]. Automatic brain
structure segmentation in MRI dates back to 1985 [5] and
many methods have been proposed since then. However,
the multitude of methods proposed [6–13] complicates
the choice for a certain method above others. As early
as 1986, Price [14] stressed the importance of comparing
different approaches to the same type of problem. Various
studies have addressed this issue and evaluated different
brain structure segmentation methods [15–19]. However,
several factors complicate direct comparison of different
approaches. Not all algorithms are publicly available, and
if they are, researchers who use them are generally not as
experienced with these algorithms as they are with their own
algorithm in terms of parameter tuning, which could result
in a bias towards their own method. This problem does not
exist when researchers apply their own method to publicly
available data. Therefore, publicly available databases like
the “Alzheimer’s Disease Neuroimaging Initiative” (ADNI)
(http://adni.loni.usc.edu/), the “Internet Brain Segmentation
Repository” (IBSR) (http://www.nitrc.org/projects/ibsr), the
CANDI Share Schizophrenia Bulletin 2008 (https://www
.nitrc.org/projects/cs schizbull08) [20], and Mindboggle
(http://www.mindboggle.info/) [21] are important initiatives
to enable comparison of various methods on the same data.
However, due to the use of subsets of the available data and
different evaluation measures, direct comparison can be pro-
blematic. To address this issue, grand challenges in bio-
medical image analysis were introduced in 2007 [22].
Participants in these competitions can apply their algorithms
to the provided data, after which their results are evaluated
and ranked by the organizers.Many challenges (http://grand-
challenge.org/All Challenges/) have been organized since
then, providing an insight into the performance of automatic
algorithms for specific tasks in medical image analysis.

In this paper we introduce the MRBrainS challenge eval-
uation framework (http://mrbrains13.isi.uu.nl/), an online
framework to evaluate automatic and semiautomatic algo-
rithms that segment gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) in 3T brain MRI scans of
older (mean age 71) subjects with varying degrees of atrophy
and white matter lesions. This framework has three main
advantages. Firstly, researchers apply their own segmentation
algorithms to the provided data. Parameters are optimally

tuned to achieve the best possible performance. Secondly,
all algorithms are applied to the exact same data and the
reference standard of the test data is unknown to the par-
ticipating researchers. Thirdly, the evaluation algorithm and
measures are the same for all evaluated algorithms, enabling
direct comparison of the various algorithms. The framework
was launched at the MRBrainS13 challenge workshop at the
Medical Image Computing and Computer Assisted Interven-
tion (MICCAI) conference on September 26th in 2013. Eleven
teams participated in the challenge workshop with a wide
variety of segmentation algorithms, the results for which are
presented in this paper and provide a benchmark for the
proposed evaluation framework. In addition, we evaluated
three commonly used freeware packages on the evaluation
framework: FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)
[23, 24], FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) [25], and
SPM (http://www.fil.ion.ucl.ac.uk/spm/) [26].

2. Materials and Methods

2.1. Evaluation Framework. TheMRBrainS evaluation frame-
work is set up as follows. Multisequence (T1-weighted, T1-
weighted inversion recovery, and T2-weighted fluid atten-
uated inversion recovery) 3T MRI scans of twenty sub-
jects are available for download on the MRBrainS website
(http://mrbrains13.isi.uu.nl/). The data is described in more
detail in Section 2.1.1. All scans were manually segmented
into GM, WM, and CSF. These manual segmentations are
used as the reference standard for the evaluation framework.
The annotation process for obtaining the reference standard
is described in Section 2.1.2. For five of the twenty datasets
the reference standard is provided on the website and can be
used for training an automatic segmentation algorithm. The
remaining fifteen MRI datasets have to be segmented by the
participating algorithms into GM, WM, and CSF. For these
fifteen datasets, the reference standard is not provided online.
The segmentation results can be submitted on the MRBrainS
website. With each submission, a short description of the
segmentation algorithm has to be provided, which should
at least describe the algorithm, the used MRI sequences,
whether the algorithm is semi- or fully automatic, and the
average runtime of the algorithm. The segmentation results
are then evaluated (Section 2.1.3) and ranked (Section 2.1.4)
by the organizers and the results are presented on the website.
More information on how to use the evaluation framework
is provided in the details section of the MRBrainS website
(http://mrbrains13.isi.uu.nl/details.php).

2.1.1. Data. The focus was on brain segmentation in the
context of ageing. Twenty subjects (mean age ± SD = 71 ± 4
years, 10 male, 10 female) were selected from an ongoing
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cohort study of older (65–80 years of age) functionally
independent individuals without a history of invalidating
stroke or other brain diseases [27]. This study was approved
by the local ethics committee of the University Medical
Center Utrecht (Netherlands) and all participants signed an
informed consent form. To be able to test the robustness
of the segmentation algorithms in the context of ageing-
related pathology, the subjects were selected to have varying
degrees of atrophy and white matter lesions. Scans with
major artefacts were excluded. MRI scans were acquired on
a 3.0 T Philips AchievaMR scanner at the University Medical
Center Utrecht (Netherlands). The following sequences were
acquired and used for the evaluation framework: 3D T1 (TR:
7.9ms, TE: 4.5ms), T1-IR (TR: 4416ms, TE: 15ms, and TI:
400ms), and T2- FLAIR (TR: 11000ms, TE: 125ms, and TI:
2800ms). Since the focus of the MRBrainS evaluation frame-
work is on comparing different segmentation algorithms, we
performed two preprocessing steps to limit the influence
of different registration and bias correction algorithms on
the segmentation results. The sequences were aligned by
rigid registration using Elastix [28] and bias correction was
performed using SPM8 [29]. After registration, the voxel size
within all provided sequences (T1, T1 IR, and T2 FLAIR)
was 0.96 × 0.96 × 3.00mm3. The original 3D T1 sequence
(voxel size: 1.0 × 1.0 × 1.0mm3) was provided as well. Five
datasets that were representative for the overall data (2 male,
3 female, varying degrees of atrophy andwhitematter lesions)
were selected for training. The remaining fifteen datasets are
provided as test data.

2.1.2. Reference Standard. Manual segmentations were per-
formed to obtain a reference standard for the evaluation
framework. All axial slices of the 20 datasets (0.96 × 0.96
× 3.00mm3) were manually segmented by trained research
assistants in a darkened room with optimal viewing con-
ditions. All segmentations were checked and corrected by
three experts: a neurologist in training, a neuroradiologist
in training, and a medical image processing scientist. To
perform the manual segmentations, an in-house developed
tool based on MeVisLab (MeVis Medical Solutions AG,
Bremen, Germany) was used, employing a freehand spline
drawing technique [30]. The closed freehand spline drawing
technique was used to delineate the outline of each brain
structure starting at the innermost structures (Figure 1(a)),
working outward. The closed contours were converted to
hard segmentations, and the inner structures were itera-
tively subtracted from the outer structures to construct the
final hard segmentation image (Figure 1(b)). The following
structures were segmented and are available for training:
cortical gray matter (1), basal ganglia (2), white matter (3),
white matter lesions (4), peripheral cerebrospinal fluid (5),
lateral ventricles (6), cerebellum (7), and brainstem (8).These
structures can be merged into gray matter (1, 2), white matter
(3, 4), and cerebrospinal fluid (5, 6). The cerebellum and
brainstem are excluded from the evaluation. All structures
were segmented on theT1-weighted scans thatwere registered
to the FLAIR scans, except for the white matter lesions
(WMLs) and the CSF outer border (used to determine

the intracranial volume). The WMLs were segmented on
the FLAIR scan by the neurologist in training and checked
and corrected by the neuroradiologist in training. The CSF
outer border was segmented using both the T1-weighted
and the T1-weighted IR scan, since the T1-weighted IR scan
shows higher contrast at the borders of the intracranial
volume.TheCSF segmentation includes all vessels (including
the superior sagittal sinus and the transverse sinuses) and
nonbrain structures such as the cerebral falx and choroid
plexuses.

2.1.3. Evaluation. To evaluate the segmentation results we
use three types of measures: a spatial overlap measure, a
boundary distance measure, and a volumetric measure. The
Dice [31] coefficient is used to determine the spatial overlap
and is defined as

𝐷 =
2 |𝐴 ∩ 𝐺|

|𝐴| + |𝐺|

⋅ 100, (1)

where 𝐴 is the segmentation result, 𝐺 is the reference
standard, and 𝐷 is the Dice expressed as percentages. The
95th-percentile of theHausdorffdistance is used to determine
the distance between the segmentation boundaries. The
conventional Hausdorff distance uses the maximum, which
is very sensitive to outliers. To correct for outliers, we use
the 95th-percentile of theHausdorff distance, by selecting the
𝐾th ranked distance as proposed by Huttenlocher et al. [32]:

ℎ
95 (𝐴, 𝐺) =

95
𝐾

th
𝑎∈𝐴

min
𝑔∈𝐺


𝑔 − 𝑎

, (2)
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is the𝐾th rankedminimumEuclidean distance
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𝑎
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} of the segmentation result, and 𝐺 is the set of
boundary points {𝑔

1
, . . . , 𝑔

𝑁
𝑔

} of the reference standard. The
95th-percentile of the Hausdorff distance is defined as

𝐻
95
(𝐴, 𝐺) = max (ℎ

95
(𝐴, 𝐺) , ℎ

95
(𝐺, 𝐴)) . (3)

The third measure is the percentage absolute volume differ-
ence, defined as

AVD =

𝑉
𝑎
− 𝑉
𝑔



𝑉
𝑔

⋅ 100, (4)

where 𝑉
𝑎
is the volume of the segmentation result and 𝑉

𝑔

is the volume of the reference standard. These measures are
used to evaluate the following brain structures in each of the
fifteen test datasets: GM, WM, CSF, brain (GM + WM), and
intracranial volume (GM + WM + CSF). The brainstem and
cerebellum are excluded from the evaluation.

2.1.4. Ranking. To compare the segmentation algorithms
that participate in the MRBrainS evaluation framework, the
algorithms are ranked based on their overall performance to
segment GM,WM, and CSF. Each of these components (𝐶 =
{GM,WM,CSF}) is evaluated by using the three evaluation
measures (𝑀 = {𝐷,𝐻

95
,AVD}) described in Section 2.1.3.
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(a) (b) (c) (d) (e)

Figure 1: Example of themanually drawn contours (a), the resulting hard segmentationmap (GM: light blue,WM: yellow, andCSF: dark blue)
that is used as the reference standard (b), the T1-weighted scan (c), the T1-weighted inversion recovery (IR) scan (d), and the T2-weighted
fluid attenuated inversion recovery (FLAIR) scan (e).

For each component 𝑐 ∈ 𝐶 and each evaluation measure𝑚 ∈
𝑀, the mean and standard deviation are determined over all
15 test datasets. The segmentation algorithms are then sorted
on the mean 𝐷 value in descending order and on the mean
𝐻
95

and AVD value in ascending order. Each segmentation
algorithm receives a rank (𝑟) between 1 (ranked best) and 𝑛
(number of participating algorithms) for each component 𝑐
and each evaluation measure 𝑚. The final ranking is based
on the overall score of each algorithm, which is the sum over
all ranks, defined as

𝑠 =

|𝑀|

∑

𝑚=0

|𝐶|

∑

𝑐=0

𝑟
𝑚𝑐
, (5)

where 𝑟
𝑚𝑐

is the rank of the segmentation algorithm for
measure 𝑚 of component 𝑐. For the final ranking 𝑟, the
overall scores 𝑠 are sorted in ascending order and ranked
from 1 to 𝑛. In case two or more algorithms have equal
scores, the standard deviation over all 15 test datasets is taken
into account to determine the final rank. The segmentation
algorithms are then sorted on the standard deviation in
ascending order and ranked for each component 𝑐 and each
evaluation measure𝑚. The overall score is determined using
(5) and the algorithms are sorted based on this score in
ascending order and ranked from 1 to 𝑛. The algorithms that
have equal overall scores based on the mean value are then
ranked based on this standard deviation rank.

2.2. EvaluatedMethods. Theevaluation framework described
in Section 2.1 was launched at the MRBrainS13 challenge
workshop at the Medical Image Computing and Computer
Assisted Intervention (MICCAI) conference on September
26th in 2013. For the workshop challenge, the test datasets
were split into twelve off-site and three on-site test datasets.
For the off-site part, teams could register on the MRBrainS
website (http://mrbrains13.isi.uu.nl/) and download the five
training and twelve test datasets. A time slot of eight weeks
was available for teams to download the data, train their
algorithms, segment the test datasets, and submit their results
on the website. Fifty-eight teams downloaded the data, of
which twelve submitted their segmentation results. The eval-
uation results were reported to the twelve teams and all teams
submitted a workshop paper to the MRBrainS13 challenge
workshop at MICCAI. Eleven teams presented their results

at the workshop and segmented the three on-site test datasets
live at the workshop within a time slot of 3.5 hours. These
algorithms provide a benchmark for the proposed evaluation
framework and are briefly described in Sections 2.2.1–2.2.11
in alphabetical order of teams’ names. The teams’ names
are used in the paper to identify the methods. For a full
description of the methods we refer to the workshop papers
[33–43]. In Section 2.2.12 we describe the evaluated freeware
packages.

2.2.1. BIGR2 [37]. This multifeature SVM [37] method clas-
sifies voxels by using a Support Vector Machine (SVM)
classifier [44] with a Gaussian kernel. Besides spatial features
and intensity information from all three MRI sequences, the
SVM classifier incorporates Gaussian-scale-space features to
facilitate a smooth segmentation. Skull stripping is performed
by nonrigid registration of the masks of the training images
to the target image.

2.2.2. Bigr neuro [41]. This auto-kNN [45] method is based
on an automatically trained kNN-classifier. First, a proba-
bilistic tissue atlas is generated by nonrigidly registering the
manually annotated atlases to the subject of interest. Training
samples are obtained by thresholding the probabilistic atlas
and subsequently pruning the feature space. White matter
lesions are detected by applying an adaptive threshold, deter-
mined from the tissue segmentation, to the FLAIR sequence.

2.2.3. CMIV [43]. A statistical-model-guided level-set
method is used to segment the skull, brain ventricles, and
basal ganglia. Then a skeleton-based model is created by
extracting the midsurface of the gray matter and defining
the thickness. This model is incorporated into a level-set
framework to guide the cortical gray matter segmentation.
The coherent propagation algorithm [46] is used to accelerate
the level-set evolution.

2.2.4. Jedi MindMeld [42]. Thismethod starts by preprocess-
ing the data via anisotropic diffusion. For each 2D slice of a
labeled dataset, the canny edge pixels are extracted, and the
Tourist Walk is computed. This is done for axial, sagittal, and
coronal views. Machine learning is used with these features
to automatically label edge pixels in an unlabeled dataset.
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Finally, these labels are used by the Random Walker for
automatic segmentation.

2.2.5. LNMBrains [35]. The voxel intensities of all MRI
sequences are modelled as a Gaussian distribution for each
label. The parameters of the Gaussian distributions are
evaluated asmaximum likelihood estimates and the posterior
probability of each label is determined by using Bayesian
estimation. A feature set consisting of regional intensity,
texture, spatial location of voxels, and the posterior prob-
ability estimates is used to classify each voxel into CSF,
WM, GM, or background by using a multicategory SVM
classifier.

2.2.6. MNAB [38]. This method uses Random Decision
Forests to classify the voxels into GM, WM, and CSF. It
starts by a skull stripping procedure, followed by an intensity
normalization of each MRI sequence. Feature extraction is
then performed on the intensities, posterior probabilities,
neighborhood statistics, tissue atlases, and gradient mag-
nitude. After classification, isolated voxels are removed by
postprocessing.

2.2.7. Narsil [34]. This is a model-free algorithm that uses
ensembles of decision trees [47] to learn the mapping from
image features to the corresponding tissue label. The ensem-
bles of decision trees are constructed from corresponding
image patches of the provided T1 and FLAIR scans with
manual segmentations. The N3 algorithm [48] was used for
additional inhomogeneity correction and SPECTRE [49] was
used for skull stripping.

2.2.8. Robarts [39]. Multiatlas registration [50] with the T1
training images was used to propagate labels to generate
sample histograms in a log-likelihood intensity model and
probabilistic shape priors. These were employed in a MAP
data term and regularized via computation of a hierar-
chical max-flow [51]. A brain mask from registration of
the T1-IR training images was used to obtain the final
results.

2.2.9. S2 QM [36]. This method [52] is based on Bayesian-
based adaptive mean shift and the voxel-weighted 𝐾-means
algorithm. The former is used to segment the brain into a
large number of clusters or modes. The latter is employed to
assign these clusters to one of the three components: WM,
GM, or CSF.

2.2.10. UB VPMLMed [40]. This method creates a multiatlas
by registering the training images to the subject image
and then propagating the corresponding labels to a fully
connected graph on the subject image. Label fusion then
combines the multiple labels into one label at each voxel
with intensity similarity based weighted voting. Finally the
method clusters the graph using multiway cut in order to
achieve the final segmentation.

2.2.11. UofL BioImaging [33]. This is an automated MAP-
based method aimed at unsupervised segmentation of differ-
ent brain tissues from T1-weighted MRI. It is based on the
integration of a probabilistic shape prior, a first-order inten-
sity model using a Linear Combination of Discrete Gaussians
(LCDG), and a second-order appearance model. These three
features are integrated into a two-level joint Markov-Gibbs
Random Field (MGRF) model of T1-MR brain images.
Skull stripping was performed using BET2 [40] followed by
an adaptive threshold-based technique to restore the outer
border of the CSF using both T1 andT1-IR; this techniquewas
not described in [33], due to a US patent application [53], but
is described in [54]. This method was applied semiautomat-
ically to the MRBrainS test data, due to per scan parameter
tuning.

2.2.12. Freeware Packages. Next to the methods evaluated
at the workshop, we evaluated three commonly used free-
ware packages for MR brain image segmentation: FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/) [23, 24], FSL (http://fsl
.fmrib.ox.ac.uk/fsl/fslwiki/) [25], and SPM12 (http://www.fil
.ion.ucl.ac.uk/spm/) [26]. All packages were applied using
the default settings, unless mentioned otherwise. FreeSurfer
(v5.3.0) was applied to the high resolution T1 sequence. The
mri label2vol tool was used to map the labels on the thick
slice T1 that was used for the evaluation. FSL (v5.0) was
directly applied to the thick slice T1 and provides both a
pveseg and a seg file as binary output. We evaluated both
of these files. The fractional intensity threshold parameter
“𝑓” of the BET tool that sets the brain/nonbrain intensity
threshold was set according to [55] at 0.2 (Philips Achieva
3T setting). SPM12 was directly applied to the thick slice
T1 sequence as well. However, it also provides the option
to add multiple MRI sequences. Therefore we evaluated
SPM12 not only on the thick slice T1 sequence but added
the T1-IR and the T2-FLAIR scan as well and tested various
combinations.The number of Gaussians was set according to
the SPM manual to two for GM, two for WM, and two for
CSF.

2.3. Statistical Analysis. All evaluated methods were
compared to the reference standard. In summary of
the results, the mean and standard deviation over
all 15 test datasets were calculated per component
(GM, WM, and CSF) and combination of components
(brain, intracranial volume) and per evaluation measure
(Dice, 95th-percentile Hausdorff distance, and absolute
volume difference) for each of the evaluated methods.
Boxplots were created using R version 3.0.3 (R project
for statistical computing (http://www.r-project.org/)).
Since white matter lesions should be segmented as white
matter, the percentage of white matter lesion voxels
segmented as white matter (sensitivity) was calculated
for each algorithm over all 15 test datasets to evaluate
the robustness of the segmentation algorithms against
pathology.
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3. Results

Table 1 presents the final ranking (𝑟) of the evaluatedmethods
that participated in the workshop, as well as the evalu-
ated freeware packages. During the workshop team UofL
BioImaging ranked first and BIGR2 ranked second with one
point difference in the overall score 𝑠 (5). However, adding
the results of the freeware packages resulted in an equal score
for UofL BioImaging and BIGR2. Therefore the standard
deviation rank was taken into account and BIGR2 is ranked
first with standard deviation rank four and UofL BioImaging
is ranked second with standard deviation rank eight. Table 1
further presents the mean, standard deviation, and rank for
each evaluation measure (𝐷,𝐻

95
, and AVD) and component

(GM, WM, and CSF), as well as the brain (WM + GM) and
intracranial volume (WM+GM+CSF). Team BIGR2 scored
best for theGM,WM, and brain segmentation and teamUofL
BioImaging for the CSF segmentation. Team Robarts scored
best for the intracranial volume segmentation. The boxplots
for all evaluation measures and components are shown in
Figures 2–4 and include the results of the freeware packages.
Figure 5 shows an example of the segmentation results at
the height of the basal ganglia (slice 22 of test subject 9).
The sensitivity of the algorithms to segment white matter
lesions as WM and examples of the segmentation results in
the presence of white matter lesions (slice 31 of test subject
3) are shown in Figure 6. Team UB VPML Med scores the
highest sensitivity of white matter lesions segmented as white
matter and is therefore most robust in the presence of this
type of pathology.

4. Discussion

In this paper we proposed the MRBrainS challenge online
evaluation framework to evaluate automatic and semiauto-
matic algorithms for segmenting GM, WM, and CSF on
3T multisequence (T1, T1-IR, and T2-FLAIR) MRI scans of
the brain. We have evaluated and presented the results of
eleven segmentation algorithms that provide a benchmark
for algorithms that will use the online evaluation framework
to evaluate their performance. Team UofL BioImaging and
BIGR2 have equal overall scores, but BIGR2 was ranked
first based on the standard deviation ranking. The evalu-
ated methods represent a wide variety of algorithms that
include Markov random field models, clustering approaches,
deformable models, and atlas-based approaches and classi-
fiers (SVM, KNN, and decision trees). The presented evalua-
tion framework provides an insight into the performance of
these algorithms in terms of accuracy and robustness. Various
factors influence the choice for a certain method above
others. We provide three measures that could aid in selecting
the method that is most appropriate for the segmentation
goal at hand: a boundarymeasure (95th-percentile Hausdorff
distance 𝐻

95
), an overlap measure (Dice coefficient 𝐷), and

a volume measure (absolute volume difference AVD). All
three measures are taken into account for the final ranking
of the methods. This ranking was designed to get a quick
insight into how the methods perform in comparison to each
other. The best overall method is the method that performs

well for all three measures and all three components (GM,
WM, andCSF). However, whichmethod to select depends on
the segmentation goal at hand. Not all measures are relevant
for all segmentation goals. For example, if segmentation is
used for brain volumetry [4], the overlap (𝐷) and volume
(AVD) measures of the brain and intracranial volume (used
for normalization [56]) segmentations are important to take
into account. On the other hand, if segmentation is used
for cortical thickness measurements, the focus should be on
the gray matter boundary (𝐻

95
) and overlap (𝐷) measures.

Therefore the final ranking should be used to get a first insight
into the overall performance, after which the performance
of the measures and components that are most relevant for
the segmentation goal at hand should be considered. Besides
accuracy, robustness could also influence the choice for a
certain method above others. For example, team UB VPML
Med shows a high sensitivity score for segmenting whitemat-
ter lesions as white matter (Figure 6) and shows a consistent
segmentation performance of gray and white matter over all
15 test datasets (Figures 2–4). This could be beneficial for
segmenting scans of populations with white matter lesions
but is less important if the goal is to segment scans of
young healthy subjects. In the latter case, the most accurate
segmentation for gray and white matter (team BIGR2) is
more interesting. If a segmentation algorithm is to be used
in clinical practice, speed is an important consideration as
well. The runtime of the evaluated methods is reported in
Table 1. However, these runtimes are merely an indication
of the required time, since academic software is generally
not optimized for speed and the runtime is measured on
different computers andplatforms.Another relevant aspect of
the evaluation framework is the comparison of multi- versus
single-sequence approaches. For example, most methods
struggle with the segmentation of the intracranial volume on
the T1-weighted scan. There is no contrast between the CSF
and the skull, and the contrast between the dura mater and
the CSF is not always sufficient. Team Robarts used an atlas-
based registration approach on the T1-IR scan (good contrast
between skull and CSF) to segment the intracranial volume,
which resulted in the best performance for intracranial
volume segmentation (Table 1, Figures 2–4). Most methods
add the T2-FLAIR scan to improve robustness against white
matter lesions (Table 1, Figure 6). Although using only the
T1-weighted scan and incorporating prior shape information
(team UofL BioImaging) can be very effective also, the
freeware packages support this as well. Since FreeSurfer is
an atlas-based method, it uses prior information and is the
most robust of all freeware packages to white matter lesions.
However, adding the T2 FLAIR scan to SPM12 increases
robustness against white matter lesions as well, as compared
to applying SPM12 to the T1 scan only (Figure 6). In general
SPM12with the T1 and the T2-FLAIR sequence performswell
in comparison to the other freeware packages (Table 1 and
Figures 2–4) on the thick slice MRI scans. Although adding
the T1-IR scan to SPM increases the performance of the CSF
and ICV segmentations as compared to using only the T1 and
T2-FLAIR sequence, it decreases the performance of the GM
and WM segmentations. Therefore adding all sequences to
SPM12 did not result in a better overall performance.
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Table 1: Results of the 11 evaluated algorithms presented at the workshop and the evaluated freeware packages on the 15 test datasets. The
algorithms are ranked (𝑟) based on their overall score (𝑠) by using (5). This score is based on the ranks of the gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) segmentation and the three evaluated measures: Dice coefficient (𝐷 in %), 95th-percentile Hausdorff
distance (𝐻

95
in mm), and the absolute volume difference (AVD in %). The rank 𝑟

𝑚𝑐
denotes the rank based on the mean (𝜇) over all 15 test

datasets for each measure 𝑚 (0: 𝐷, 1: 𝐻
95
, and 2: AVD) and component 𝑐 (0: GM, 1: WM, 2: CSF, 3: brain (WM + GM), and 4: intracranial

volume (ICV = WM + GM + CSF)). Teams BIGR2 and UofL BioImaging, and FreeSurfer and Jedi Mind Meld have equal scores based on
the mean (𝜇); therefore the ranking based on the standard deviation (𝜎) is taken into account to determine the final rank (BIGR2: 𝜎 rank 4,
UofL BioImaging: 𝜎 rank 8, FreeSurfer: 𝜎 rank 13, and Jedi MindMeld: 𝜎 rank 17). Columns 2 and 3 present the average runtime 𝑡 per scan in
seconds (s), minutes (m), or hours (h) and the scans (T1: T1-weighted scan, 3D T1: 3D T1-weighted scan, IR: T1-weighted inversion recovery
(IR), and F: T1-weighted FLAIR) that are used for processing.

𝑟 Team 𝑡 Scans

GM WM CSF

𝑠

Brain ICV
𝑟
00
𝑟
10
𝑟
20
𝑟
01
𝑟
11
𝑟
21
𝑟
02
𝑟
12
𝑟
22

𝑟
03
𝑟
13
𝑟
23
𝑟
04
𝑟
14
𝑟
24

𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD
𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎)

1 BIGR2 35m T1, IR, F
1 2 4 2 2 4 4 5 14

38
1 2 12 8 4 12

84.7 1.9 6.1 88.4 2.4 6.0 78.3 3.2 23 95.1 2.7 3.2 96.0 3.9 5.2
(1.3) (0.4) (3.3) (1.2) (0.5) (5.1) (5.0) (0.8) (17) (0.5) (0.8) (1.6) (1.3) (1.1) (3.0)

2 UofL
BioImaging∗ 6 s T1

5 1 9 4 1 13 2 2 1
38

2 1 12 5 2 5
83.0 1.7 8.6 87.9 2.2 8.7 78.9 2.7 9.7 94.9 2.4 3.9 96.7 3.4 1.8
(1.5) (0.3) (5.4) (2.0) (0.6) (6.6) (4.2) (0.5) (10) (0.6) (0.5) (2.0) (0.8) (0.6) (2.0)

3 CMIV 3m T1, F
6 7 5 5 3 10 3 3 8

50
5 7 2 4 3 11

82.4 2.7 6.8 87.7 2.4 7.3 78.6 3.0 14 94.5 3.8 2.6 96.8 3.8 4.9
(1.4) (0.4) (4.0) (1.6) (0.4) (3.8) (3.1) (0.4) (5.9) (0.5) (1.1) (2.2) (0.8) (1.3) (2.3)

4 UB VPML
Med 30m T1, IR, F

4 4 2 1 5 7 8 13 17
61

4 4 1 10 11 15
83.3 2.1 5.9 88.6 2.7 7.1 74.8 4.3 31 94.6 2.8 2.4 94.8 6.6 7.7
(1.3) (0.3) (5.3) (1.7) (0.4) (3.8) (7.1) (1.7) (19) (0.6) (0.4) (1.8) (2.0) (2.0) (4.1)

5 Bigr neuro 2 h T1, F
7 13 3 6 6 9 6 4 10

64
7 10 10 7 5 8

81.5 3.7 5.9 87.3 3.0 7.3 78.2 3.2 16 94.0 4.6 3.6 96.3 3.9 3.5
(1.7) (0.9) (4.2) (1.4) (0.4) (3.8) (4.7) (0.6) (14) (0.8) (1.4) (2.4) (1.2) (0.9) (2.7)

6 Robarts 16m 3D T1, IR
11 3 15 8 8 6 1 1 13

66
16 3 18 1 1 1

79.7 2.0 9.8 86.2 3.1 7.1 80.3 2.7 20 93.1 2.8 7.9 97.9 2.6 0.9
(2.4) (0.1) (7.3) (1.3) (0.4) (6.2) (4.1) (0.5) (13) (1.6) (0.5) (3.6) (0.3) (0.4) (0.7)

7 Narsil 2m T1, F
3 5 1 7 11 2 17 18 7

71
3 5 3 16 18 9

83.5 2.3 5.5 87.1 3.3 5.8 66.6 13.3 14 94.8 2.9 2.9 92.5 24 3.7
(1.8) (0.4) (4.4) (1.3) (0.9) (5.3) (2.4) (5.4) (9.5) (0.5) (0.5) (2.0) (0.5) (8.9) (1.7)

8 SPM T1 F 3m T1, F
8 9 16 9 7 1 9 14 2

75
9 14 14 6 14 4

81.2 2.9 10 86.0 3.0 5.2 74.1 4.6 10 93.9 5.8 5.3 96.6 8.2 1.5
(2.2) (0.3) (8.5) (1.5) (0.1) (3.8) (3.4) (0.6) (4.7) (1.0) (2.2) (3.8) (0.2) (3.0) (1.0)

9 SPM T1 IR 3m T1, IR
12 11 7 16 12 5 5 10 3

81
8 11 7 2 8 2

79.4 3.0 7.2 83.5 3.6 6.3 78.3 4.0 10 93.9 4.6 3.4 97.7 6.5 1.0
(2.1) (0.4) (6.3) (2.1) (0.3) (4.6) (3.8) (0.6) (5.7) (0.8) (1.2) (2.8) (0.2) (1.3) (0.8)

10 MNAB 15m T1, IR, F
2 8 12 3 4 11 15 15 16

86
6 9 11 15 12 17

83.9 2.8 9.1 88.0 2.7 7.8 68.1 4.9 29 94.5 4.5 3.8 92.5 7.1 9.7
(2.1) (0.9) (6.5) (1.2) (0.8) (4.0) (4.0) (2.2) (21) (1.0) (2.0) (3.2) (1.1) (4.2) (4.7)

11 SPM T1 3m T1
9 10 6 11 10 3 11 16 15

91
10 8 6 9 13 13

80.3 3.0 6.9 85.6 3.1 6.0 70.7 5.3 23 93.9 4.4 3.2 95.3 8.1 5.5
(2.4) (0.5) (6.8) (1.7) (0.1) (4.1) (3.8) (1.5) (15.7) (0.9) (1.6) (2.9) (0.9) (3.7) (3.7)

12 FSL Seg 10m T1
13 16 10 10 13 14 12 6 5

99
13 13 4 12 6 6

78.7 4.3 8.6 86.0 3.7 11.5 69.9 3.4 12 93.3 5.5 3.0 94.2 5.3 3.4
(2.2) (1.2) (6.3) (2.6) (0.8) (6.3) (2.8) (0.2) (10.3) (0.8) (1.4) (1.5) (0.8) (1.1) (1.5)
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Table 1: Continued.

𝑟 Team 𝑡 Scans

GM WM CSF

𝑠

Brain ICV
𝑟
00
𝑟
10
𝑟
20
𝑟
01
𝑟
11
𝑟
21
𝑟
02
𝑟
12
𝑟
22

𝑟
03
𝑟
13
𝑟
23
𝑟
04
𝑟
14
𝑟
24

𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD 𝐷 𝐻
95

AVD
𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎) 𝜇 (𝜎)

13 SPM T1 IR F 4m T1, IR, F
10 12 18 15 14 12 7 11 6

105
12 15 13 3 15 3

80.1 3.0 13.9 83.6 3.8 8.4 76.9 4.1 12 93.6 5.9 5.1 97.7 8.2 1.2
(2.4) (0.2) (9.6) (2.1) (0.5) (5.2) (3.1) (0.5) (6.0) (1.1) (1.8) (3.6) (0.2) (1.8) (0.9)

14 FSL PVSeg 10m T1
15 15 8 13 15 17 13 7 4

107
11 16 9 13 7 7

77.7 4.3 8.4 84.8 3.8 19.7 69.5 3.4 11 93.6 6.1 3.5 94.2 5.3 3.4
(2.6) (1.3) (6.5) (3.2) (0.9) (10) (2.2) (0.3) (5.8) (0.9) (1.6) (3.0) (0.8) (1.1) (1.5)

15 FreeSurfer 1 h 3D T1
16 6 17 12 9 8 18 12 18

116
17 6 16 17 10 18

77.4 2.3 12.1 85.2 3.1 7.2 65.8 4.3 50 92.3 3.6 6.3 92.4 6.6 10
(2.0) (0.6) (6.0) (2.2) (0.5) (4.6) (3.7) (0.6) (19.6) (0.8) (0.6) (3.4) (0.9) (0.4) (4.5)

16 Jedi Mind
Meld 27 s T1, IR, F

14 14 11 17 16 15 10 8 11
116

15 12 8 11 16 14
77.8 3.9 8.9 80.6 4.5 13.7 73.3 3.7 18 93.2 5.4 3.5 94.3 20 6.8
(5.9) (2.8) (7.6) (9.6) (3.6) (12) (3.5) (0.8) (9.0) (1.7) (4.8) (3.0) (1.7) (3.7) (3.1)

17 S2 QM 1.5 h T1, IR, F
17 17 13 14 17 18 16 9 9

130
14 17 15 14 9 10

76.4 5.5 9.3 83.9 4.9 24.8 67.9 3.8 14 93.3 7.0 5.5 93.7 6.5 4.0
(3.4) (3.0) (6.4) (3.4) (3.2) (10) (2.3) (0.6) (9.9) (1.4) (3.5) (4.5) (1.1) (1.4) (2.2)

18 LNMBrains 5m T1, IR, F
18 18 14 18 18 16 14 17 12

145
18 18 17 18 17 16

72.8 6.8 9.5 78.3 6.8 15.3 68.8 7.7 20 88.5 8.6 7.4 89.2 20.4 7.9
(5.3) (2.3) (7.6) (6.4) (3.5) (13) (6.6) (2.4) (13) (4.5) (2.8) (7.7) (4.8) (3.7) (8.3)

∗Semiautomatic due to per scan parameter tuning.

Besides the advantages of the MRBrainS evaluation
framework, there are some limitations that should be taken
into account. The T1-weighted IR and the T2-weighted
FLAIR scan were acquired with a lower resolution (0.96
× 0.96 × 3.00mm3) than the 3D T1-weighted scan (1.0 ×
1.0 × 1.0mm3). To be able to provide a registered multise-
quence dataset, the 3D T1-weighted scan was registered to
the T2-weighted FLAIR scan and downsampled to 0.96 ×
0.96 × 3.00mm3. The reference standard is therefore only
available for this resolution. The decreased performance of
the FreeSurfer GM segmentation as compared to the other
freeware packages might be due to the fact that we evaluate
on the thick slice T1 sequence instead of the high resolution
T1. Performing the manual segmentations to provide the
reference standard is very laborsome and time consuming.
Instead of letting multiple observers manually segment the
MRI datasets or letting one observer manually segment
the MRI datasets twice, much time and effort was spent
on creating one reference standard that was as accurate as
possible. Therefore we were not able to determine the inter-
or intraobserver variability. Finally, we acknowledge that our
evaluation framework is limited to evaluating the accuracy
and robustness over 15 datasets for segmenting GM, WM,
and CSF on 3T MRI scans acquired on a Philips scanner of
a specific group of elderly subjects. Many factors influence
segmentation algorithm performance, such as the type of
scanner (vendor, field strength), the acquisition protocol,
the available MRI sequences, and the type of subjects.

Participating algorithmsmight have been designed for differ-
ent types of MRI scans. Therefore the five provided training
datasets are important for participants to be able to train
their algorithms on the provided data. Some algorithms are
designed to segment only some components, such as only
GM and WM, instead of all three components, and use
freely available software such as the brain extraction tool
[57] to segment the outer border of the CSF (intracranial
volume). We have chosen to base the final ranking on all
three components, but it is therefore important to assess not
only the final ranking, but the performance of the individual
components as well.

Despite these limitations, the MRBrainS evaluation
framework provides an objective and direct comparison of
segmentation algorithms. The reference standard of the test
data is unknown to the participants, the same evaluation
measures are used for all evaluated algorithms, and partici-
pants apply their own algorithms to the provided data.

In comparison to the online validation engine proposed
by Shattuck et al. [58], the MRBrainS evaluation framework
uses 3T MRI data instead of 1.5T MRI data and evaluates not
only brain versus nonbrain segmentation, but also segmenta-
tion of gray matter, white matter, cerebrospinal fluid, brain,
and intracranial volume. The availability of many different
types of evaluation frameworks will aid in the development
of more generic and robust algorithms. For example, in
the NEATBrainS (http://neatbrains15.isi.uu.nl/) challenge,
researchers were challenged to apply their algorithms to data
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Figure 2: Boxplots presenting the evaluation results for the Dice coefficient (1) of the gray matter (GM), white matter (WM), cerebrospinal
fluid (CSF), and brain and ICV segmentations for each of the participating algorithms and freeware packages over all 15 test datasets.
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Figure 3: Boxplots presenting the evaluation results for the 95th-percentile Hausdorff distance (3) of the gray matter (GM), white matter
(WM), cerebrospinal fluid (CSF), and brain and ICV segmentations for each of the participating algorithms and freeware packages over all
15 test datasets.
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Figure 4: Boxplots presenting the evaluation results for the absolute volume difference (4) of the gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF), and brain and ICV segmentations for each of the participating algorithms and freeware packages over all 15 test
datasets.



12 Computational Intelligence and Neuroscience

T2

UofL

N

FS

S2

‐FLAIR

BioImaging

Narsil

L‐Seg

2_QM

T1‐IR

CMIV

SPM12_T1

SPM12_T1_

LNMBr

_FLAIR

_IR_FLAIR

ains

T1

UB VPML Me

SPM12_T1_ I

FSL‐PVSeg

R

d B

R

F

eference

igr_neuro

MNAB

reeSurfer

BIG

Rob

SPM1

Jedi Mi

R2

arts

2_T1

nd Meld

Figure 5: Illustration of the segmentation results at the height of the basal ganglia (test subject 9, slice 22). The basal ganglia should be
segmented as gray matter. The first three images show the three MRI sequences. The fourth image (reference) is the manually segmented
reference standard (yellow: white matter, light blue: gray matter, and dark blue: cerebrospinal fluid). The results of the participating
segmentation algorithms are ordered from the best overall performance (BIGR2) to the worst overall performance (LNMBrains). Major
differences are present in the segmentation of the basal ganglia and the outer border of the cerebrospinal fluid. The arrows indicate example
locations where the segmentation results differ from the ground truth.



Computational Intelligence and Neuroscience 13

T2

UofL BioIm

Nars

FSL‐S

S2_Q

‐FLAIR

aging (86.0%)

il (89.2%)

eg (45.3%)

M (56.5%)

T1‐IR

CMIV (90

SPM12_T1_F

SPM12_T1_IR

LNMBrains

.5%) UB

(83.1%) SP

_F (81.5%) F

(28.6%)

T1

VPML Med (9

M12_T1_IR (60

SL‐PVSeg (52.5

R

1.0%) Bigr_

.5%) MN

%) FreeS

eference

neuro (89.6%)

AB (88.9%)

urfer (84.6%)

BIGR2

Robarts

SPM12_T

Jedi Mind M

(85.2%)

(81.0%)

1 (68.3%)

eld (76.9%)

Figure 6: Illustration of the segmentation results in the presence of whitematter lesions (test subject 3, slice 31).Whitematter lesions (WMLs)
should be labeled asWM; the sensitivity (percentage ofWML voxels is labeled asWM) over all 15 datasets is presented between brackets after
the team name.The first three images show the threeMRI sequences: T2-weighted fluid attenuated inversion recovery, T1-weighted inversion
recovery, and T1-weighted scan.The fourth image (reference) is themanually segmented reference standard (red: whitematter lesions, yellow:
white matter, light blue: gray matter, and dark blue: cerebrospinal fluid).The results of the segmentation algorithms are ordered from the best
overall performance (BIGR2) to the worst overall performance (LNMBrains).The arrows indicate example locations where the segmentation
results differ from the ground truth.



14 Computational Intelligence and Neuroscience

fromboth theMRBrainS and theNeoBrainS [59] (brain tissue
segmentation in neonates) challenge. Two methods [60–62]
specifically designed for neonatal brain tissue segmentation
showed a high performance for tissue segmentation on the
MRBrainS data. Applying algorithms to different types of data
has the potential to lead to new insights and more robust
algorithms. The MRBrainS evaluation framework remains
open for new contributions. At the time of writing, 21
teams had submitted their results on the MRBrainS website
(http://mrbrains13.isi.uu.nl/results.php).

5. Conclusion

The MRBrainS challenge online evaluation framework pro-
vides direct and objective comparison of automatic and
semiautomatic methods to segment GM, WM, CSF, brain,
and ICV on 3T multisequence MRI data. The first eleven
participating methods are evaluated and presented in this
paper, as well as three commonly used freeware packages
(FreeSurfer, FSL, and SPM12). They provide a benchmark
for future contributions to the framework. The final ranking
provides a quick insight into the overall performance of the
evaluated methods in comparison to each other, whereas
the individual evaluation measures (Dice, 95th-percentile
Hausdorff distance, and absolute volume difference) per
component (GM, WM, CSF, brain, and ICV) can aid in
selecting the best method for a specific segmentation goal.
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