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We prove a weak error estimate for the approximation in space and time of a 
semilinear stochastic Volterra integro-differential equation driven by additive space–
time Gaussian noise. We treat this equation in an abstract framework, in which 
parabolic stochastic partial differential equations are also included as a special case. 
The approximation in space is performed by a standard finite element method and 
in time by an implicit Euler method combined with a convolution quadrature. The 
weak rate of convergence is proved to be twice the strong rate, as expected. Our 
convergence result concerns not only functionals of the solution at a fixed time but 
also more complicated functionals of the entire path and includes convergence of 
covariances and higher order statistics. The proof does not rely on a Kolmogorov 
equation. Instead it is based on a duality argument from Malliavin calculus.

© 2016 Published by Elsevier Inc.

1. Introduction

Let (St)t∈[0,T ] be an evolution family of bounded, self-adjoint, linear operators on a separable Hilbert 
space (H, ‖ · ‖, 〈·, ·〉), not necessarily enjoying the semigroup property. Related to (St)t∈[0,T ] is a densely de-
fined, linear, self-adjoint, positive definite operator A : D(A) ⊂ H → H with compact inverse. Let (Aα)α∈R
denote the fractional powers of A, which are well defined, let (Ḣα)α∈R denote the spaces Ḣα = D(Aα) for 
α ≥ 0 with dual spaces Ḣ−α = (Ḣα)∗. We assume that (St)t∈[0,T ] is strongly differentiable with derivative 
(Ṡt)t∈[0,T ] and that there exist ρ ∈ [1, 2) and constants (Ls)s∈[0,2] such that

∥∥Amin(1,s)
ρ Stx

∥∥ +
∥∥A s−1

ρ Ṡtx
∥∥ ≤ Lst

−s‖x‖, t ∈ (0, T ], x ∈ H, s ∈ [0, 2]. (1.1)

* Corresponding author.
E-mail addresses: andersson@math.tu-berlin.de (A. Andersson), mkovacs@maths.otago.ac.nz (M. Kovács), stig@chalmers.se

(S. Larsson).
http://dx.doi.org/10.1016/j.jmaa.2015.09.016
0022-247X/© 2016 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jmaa.2015.09.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:andersson@math.tu-berlin.de
mailto:mkovacs@maths.otago.ac.nz
mailto:stig@chalmers.se
http://dx.doi.org/10.1016/j.jmaa.2015.09.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.09.016&domain=pdf


1284 A. Andersson et al. / J. Math. Anal. Appl. 437 (2016) 1283–1304
If (St)t∈[0,T ] is the analytic semigroup generated by −A, then (1.1) holds with ρ = 1. If (St)t∈[0,T ] is the 
solution operator Stx = Y x

t of the Volterra equation

Ẏ x
t +

t∫
0

bt−sAY x
s ds = 0, t ∈ (0, T ]; Y x

t = x,

where b : (0, ∞) → R is the Riesz kernel bt = tρ−2/Γ(ρ − 1) for some ρ ∈ (1, 2), then (St)t∈[0,T ] satisfies 
(1.1). The latter example is the main motivation of the present paper. In Subsection 5.2 we verify (1.1) for 
slightly more general kernels b.

The main object of study in this paper is the stochastic evolution equation

Xt = Stx0 +
t∫

0

St−sF (Xs) ds +
t∫

0

St−s dWs, t ∈ [0, T ]. (1.2)

The noise is generated by a cylindrical Q-Wiener process W on a filtered probability space (Ω, F ,

(Ft)t∈[0,T ], P) with positive semidefinite self-adjoint covariance operator Q ∈ L(H), where the latter is 
the space of bounded linear operators on H. Let H0 = Q

1
2 (H), and let L2 and L0

2 denote the spaces of 
Hilbert–Schmidt operators H → H and H0 → H, respectively. The regularity of the noise is measured by 
a parameter β ∈ (0, 1/ρ], by assuming

∥∥A βρ−1
2ρ

∥∥
L0

2
=

∥∥A βρ−1
2ρ Q

1
2
∥∥
L2

< ∞. (1.3)

Under this assumption Xt ∈ Ḣβ , P-almost surely. The smoothest case β = 1/ρ corresponds to trace class 
noise as (1.3) reduces to ‖Q 1

2 ‖L2 =
√

Tr(Q) < ∞.
For Hilbert spaces U , V the space Gk

b(U ; V ) consists of all, not necessarily bounded, functions φ : U → V , 
whose Gâteaux derivatives of orders 1, . . . , k are bounded, symmetric and strongly continuous. The non-
linear drift F : H → H is assumed to satisfy, for some δ ∈ [0, 2/ρ),

F ∈ G1
b(H;H) ∩ G2

b(H; Ḣ−δ). (1.4)

This assumption includes interesting cases where F /∈ G2
b(H; H), e.g., Nemytskii operators on H = L2(D)

for a spatial domain D ⊂ Rd, with δ > d/2. The initial value x0 is deterministic and satisfies

x0 ∈ Ḣ3 := D(A 3
2 ). (1.5)

In the present paper we study weak convergence of approximations of the solution of (1.2). Our main 
example is the mild solution of the stochastic Volterra integro-differential equation

dXt +
( t∫

0

bt−sAXs ds
)

dt = F (Xt) dt + dWt, t ∈ [0, T ]; X0 = x0, (1.6)

where bt = tρ−2/Γ(ρ − 1) as above or slightly more general. Discretization in time is performed by the 
backward Euler method and the convolution integral is approximated by a convolution quadrature. For 
spatial approximation either spectral or finite element approximation is considered. In the papers [15,
16], strong, respectively weak, convergence of numerical approximations were proven, for linear stochastic 
Volterra equations (F = 0). The deterministic error analysis needed for the present paper will be cited from 
these papers.
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Another example to which our results apply is the mild solution of the parabolic stochastic evolution 
equation

dXt + AXt dt = F (Xt) dt + dWt, t ∈ [0, T ]; X0 = x0. (1.7)

Approximation in time is performed by the backward Euler method and the same spatial approximation 
is considered as for (1.6). Weak convergence analysis for (1.7) is well studied [1,2,4–6,8,11–13,24–26]. In 
contrast to [1] we allow the nonlinear drift F to be a Nemytskii operator not only in one space dimension 
but also in two and three space dimensions, without imposing restrictions on the choice of the spatial 
approximation. We also consider a more general form of the weak error, see (1.8) below. We thus present 
some new results also for (1.7).

Let K ∈ N and ϕi : H → R, i = 1, . . . , K, be twice Gâteaux differentiable mappings of polynomial 
growth and ν1, . . . , νK finite Borel measures on [0, T ]. We consider the generalized weak error

∣∣∣E[
Φ
(
X
)
− Φ

(
Y
)]∣∣∣, with Φ(Z) =

K∏
i=1

ϕi

( T∫
0

Zt dνi,t
)
, (1.8)

for X, Y, Z ∈ ∩K
i=1L

1
νi

(0, T ; Lp(Ω; H)) with a suitable exponent p ≥ 2. In all the works we are aware of, 
(1.8) is considered with K = 1, ν1 = ν = δτ , where δτ is the Dirac measure concentrated at τ , for fixed 
τ ∈ (0, T ]. In that case E[ϕ(Xτ )] is the solution to a Kolmogorov PDE, which is used in the analysis. 
Unfortunately, this is not true for E[ϕ(

∫ T

0 Xt dνt)]. Moreover, Volterra equations are non-Markovian, so 
there is no Kolmogorov equation available for the analysis. Instead, we use another approach to analyze 
(1.8) that was recently introduced in [1]. The approach relies on a duality argument with a Gelfand triple of 
refined Sobolev–Malliavin spaces. In [1] the technique was demonstrated in the Markovian setting of (1.7)
and ν = δτ . In the present paper we apply it in a setting where no other known approach applies.

Our main result, Theorem 4.7, shows convergence of the weak error of the form (1.8) for abstractly 
defined approximations of the solution X to (1.2). The general form of the functional Φ allows us to prove 
convergence of approximations of covariances

Cov
(〈
Xt1 , φ1

〉
,
〈
Xt2 , φ2

〉)
, φ1, φ2 ∈ H, t1, t2 ∈ (0, T ],

in Corollary 4.8. The generalization to higher order statistics is straightforward and omitted.
The paper is organized as follows: In Subsection 2.1 we fix the basic notation and in Subsection 2.2 we 

recall the theory of refined Sobolev–Malliavin spaces from [1]. In Section 3 we discuss existence and unique-
ness of solutions of (1.2) and prove temporal Hölder regularity in the classical Lp(Ω; H)-sense and in the 
weaker sense of a dual Sobolev–Malliavin norm. In Section 4 we present an abstractly defined approximation 
scheme for (1.2) and prove our main result on weak convergence, Theorem 4.7. In addition, we prove strong 
convergence in Theorem 4.2, which is then used to establish Malliavin regularity for the solution to (1.2)
by a limiting procedure. In Section 5 we verify our abstract assumptions for semilinear parabolic stochastic 
partial differential equations and stochastic Volterra integro-differential equations.

2. Preliminaries

2.1. Spaces of functions and operators

Let (U, ‖ · ‖U , 〈·, ·〉U ), (V, ‖ · ‖V , 〈·, ·〉V ) be separable Hilbert spaces. Let L(U ; V ) be the Banach space 
of all bounded linear operators U → V . We use the abbreviations L(U) = L(U ; U) and L = L(H), where 
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H is the Hilbert space introduced in Section 1. By L2(U ; V ) ⊂ L(U ; V ) we denote the subspace of all 
Hilbert–Schmidt operators. It is a Hilbert space endowed with the norm and inner product

‖T‖L2(U ;V ) =
( ∑

j∈N
‖Tuj‖2

V

) 1
2
, 〈S, T 〉L2(U ;V ) =

∑
j∈N

〈Suj , Tuj〉V . (2.1)

Both are independent of the specific choice of ON-basis (uj)j∈N ⊂ U .
For k ≥ 1, let L[k](U ; V ) be the Banach space of all multilinear mappings b : Uk → V , equipped with the 

norm

‖b‖L[k](U ;V ) = sup
u1,...,uk∈U

‖b · (u1, . . . , uk)‖V
‖u1‖U · · · ‖uk‖U

.

It is clear that L[1](U ; V ) = L(U ; V ).
Denote by C(U ; V ) the space of all continuous mappings U → V and further by Cstr(U ; L[k](U ; V )) the 

space of strongly continuous mappings U → L[k](U ; V ), i.e., mappings B : U → L[k](U ; V ) such that for 
u1, . . . , uk ∈ U , the mapping

U � x → B(x) · (u1, . . . , uk) ∈ V,

is continuous. A function φ : U → V is said to be k times Gâteaux differentiable if the recursively defined 
derivatives, φ(l) : U l+1 → V , l ∈ {1, . . . , k},

φ(l)(x) · (u1, . . . , ul) = lim
ε→0

φ(l−1)(x + εul) · (u1, . . . , ul−1) − φ(l−1)(x) · (u1, . . . , ul−1)
ε

,

exist for u1, . . . , ul, x ∈ U , l ∈ {1, . . . , k}, as limits in V , where φ(0) = φ. This class of functions is large and 
fails to have natural properties, e.g., Gâteaux differentiability does not imply continuity and the multilinear 
mapping φ(l)(x) may not be symmetric. We therefore introduce a smaller class, with useful properties. For 
k ≥ 1, let Gk(U ; V ) ⊂ C(U ; V ) be the subset of all k-times Gâteaux differentiable mappings φ ∈ C(U ; V ), 
whose derivatives φ(l) ∈ Cstr(U ; L[l](U ; V )), l ∈ {1, . . . , k}, are symmetric. This is a weaker assumption than 
requiring φ(l) ∈ C(U ; L[l](U ; V )), l ∈ {1, . . . , k}, which would be the same as assuming Fréchet differentia-
bility. For integers k ∈ {0, . . . , m} and φ ∈ Gk(U ; V ), let

|φ|Gk,m
p (U ;V ) = sup

u∈U

‖φ(k)(u)‖L[k](U ;V )

(1 + ‖u‖m−k
U )

, (2.2)

and let Gk,m
p (U ; V ) be the space of φ ∈ Gk(U ; V ) such that |φ|Gl,m

p (U ;V ) < ∞ for l ∈ {1, . . . , k}. Let G∞
p (U ; V )

be the space of all infinitely many times differentiable mappings φ : U → V such that φ and all its derivatives 
satisfy a polynomial bound. Let Gk

b(U ; V ) denote the space of φ ∈ Gk(U ; V ) such that

|φ|Gl
b(U ;V ) = sup

u∈U
‖φ(l)(u)‖L[l](U ;V ) < ∞, l ∈ {1, . . . , k}.

For φ ∈ G1(U ; R) we can identify the derivative with the gradient φ′(u) ∈ U∗ = U , by the Riesz Repre-
sentation Theorem. For m ≥ 1, φ ∈ G1,m

p (U ; V ), the map [0, 1] � λ → φ′(y + λ(x − y)) · (x − y) ∈ V is 
continuous and Bochner integrable and therefore

φ(x) = φ(y) +
1∫
φ′(y + λ(x− y)) · (x− y) dλ, x, y ∈ U. (2.3)
0
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By MT we denote the space of all finite Borel measures on the interval [0, T ]. For ν ∈ MT we write 
|ν| = ν([0, T ]) and for a Banach space V we let Lp

ν(0, T ; V ) be the Bochner space of ν-measurable mappings 
Z : [0, T ] → V such that

∥∥Z∥∥
Lp

ν(0,T ;V ) =
( T∫

0

∥∥Zt

∥∥p
V

dνt
) 1

p

< ∞,

with the usual modification for p = ∞. When ν is Lebesgue measure we write Lp(0, T ; V ).
The next lemma is used in the proof of Malliavin regularity by a limiting procedure in Proposition 4.4.

Lemma 2.1. Let X , Y be separable Hilbert spaces such that the embedding X ⊂ Y is continuous. If x ∈ Y
and (xn)n∈N ⊂ X satisfies xn → x weakly in Y as n → ∞ and supn∈N ‖xn‖X < ∞, then x ∈ X .

Proof. Any closed ball in X is weakly compact and since (xn)n∈N is a bounded sequence in X , there exists 
a subsequence (xnk

)k∈N and x̃ ∈ X such that xnk
→ x̃ weakly in X . Therefore xnk

→ x̃ also in the 
weak topology of Y because Y∗ ⊂ X ∗ is continuous. By assumption xn → x weakly in Y, as n → ∞, so 
x = x̃ ∈ X . �

We cite the following version of Gronwall’s lemma [9, Lemma 7.1].

Lemma 2.2. Let T > 0, N ∈ N, k = T/N , and tn = nk for 0 ≤ n ≤ N . If ϕ1, . . . , ϕN ≥ 0 satisfy for some 
M0, M1 ≥ 0 and μ, ν > 0 the inequality

ϕn ≤ M0 (1 + t−1+μ
n ) + M1 k

n−1∑
j=1

t−1+ν
n−j ϕj , 1 ≤ n ≤ N,

then there exists a constant M2 = M2(μ, ν, M1, T ) such that

ϕn ≤ M0M2 (1 + t−1+μ
n ), 1 ≤ n ≤ N.

2.2. The Wiener integral and Malliavin calculus

Let (Ω, F , (Ft)t∈[0,T ], P), be a filtered probability space, with Bochner spaces Lp(Ω; V ) =
Lp((Ω, F , P); V ), p ∈ [1, ∞], V being a Banach space. In the case V = R we write Lp(Ω) = Lp(Ω; R). 
Recall that Q ∈ L(H) is a linear, self-adjoint and positive semidefinite operator. Let H0 = Q

1
2 (H) be the 

Hilbert space endowed with inner product 〈u, v〉H0 = 〈Q− 1
2u, Q− 1

2 v〉, where Q− 1
2 denotes the pseudoinverse 

of Q 1
2 if it is not injective. By L0

2 = L2(H0; H) we denote the space of Hilbert–Schmidt operators H0 → H. 
Let W be a cylindrical Q-Wiener process on (Ω, F , (Ft)t∈[0,T ], P), i.e., W ∈ L(H0; C(0, T ; L2(Ω))) and 
((Wu)t)t∈[0,T ] is an (Ft)t∈[0,T ]-adapted real-valued Brownian motion for every u ∈ H0 with

E
[
(Wu)s (Wv)t

]
= min(s, t)〈u, v〉H0 , u, v ∈ H0, s, t ∈ [0, T ].

The stochastic Wiener integral

T∫
0

Φt dWt, Φ ∈ L2(0, T ;L0
2),
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is a random variable in Lp(Ω; H), p ∈ [2, ∞). It can be defined in various ways and its basic properties are 
not hard to derive, we refer to [7,20,23]. We cite the following consequence of the Burkholder inequality [7, 
Lemma 7.2], for deterministic integrands and p ≥ 2,

∥∥∥
T∫

0

Φt dWt

∥∥∥
Lp(Ω;H)

≤ p(p− 1)
2

∥∥Φ
∥∥
L2(0,T ;L0

2)
, Φ ∈ L2(0, T ;L0

2). (2.4)

By taking H = R and noting the isomorphisms H0 ∼= H∗
0

∼= L2(H0; R) we see that a function 
φ ∈ L2(0, T ; H0) defines an integrand in L2(0, T ; L2(H0; R)) for the stochastic integral and the integral ∫ T

0 φt dWt ∈ L2(Ω) is real-valued. As Lp(0, T ; H0) ⊂ L2(0, T ; H0) for p ≥ 2 the stochastic integral is well 
defined for φ ∈ Lp(0, T ; H0).

We now recall some concepts from Malliavin calculus introduced in [1]. For q ∈ [2, ∞] let Sq(R) be the 
class of smooth cylindrical random variables of the form

F = f
( T∫

0

φ1,s dWs, . . . ,

T∫
0

φn,s dWs

)
,

f ∈ G∞
p (Rn;R), (φk)nk=1 ⊂ Lq(0, T ;H0), n ∈ N.

For F ∈ Sq(R) with the above representation, we define the Malliavin derivative

(
DtF

)
t∈[0,T ] =

(
n∑

j=1
∂jf

( T∫
0

φ1,s dWs, . . . ,

T∫
0

φn,s dWs

)
⊗ φj,t,

)
t∈[0,T ]

.

Let V be a separable Hilbert space. We define Sq(V ) to be the space of all V -valued random variables of the 
form Y =

∑m
i=1 vi ⊗ Fi with (vi)mi=1 ⊂ V , (Fi)mi=1 ⊂ Sq(R), m ∈ N. The Malliavin derivative of Y ∈ Sq(V )

of the above form is given by DtY =
∑m

i=1 vi⊗DtFi. As (DtFi)t∈[0,T ] is an H0-valued process, (DtY )t∈[0,T ]
is a V ⊗H0 = L2(H0; V )-valued process.

For p ∈ [2, ∞), q ∈ [2, ∞], Sq(V ) ⊂ Lp(Ω; V ) is dense by [1, Lemma 3.1] and the operator D : Sq(V ) →
Lp(Ω; Lq(0, T ; L2(H0; V ))) is closable by [1, Lemma 3.2]. Let M1,p,q(V ) denote the closure of Sq(V ) with 
respect to the norm

‖Y ‖M1,p,q(V ) =
(
‖Y ‖pLp(Ω;V ) + ‖DY ‖pLp(Ω;Lq(0,T ;L2(H0;V )))

) 1
p

.

We also use the corresponding seminorm |Y |M1,p,q(V ) = ‖DY ‖Lp(Ω;Lq(0,T ;L2(H0;V ))). The spaces M1,p,q(V )
are Banach spaces, densely embedded into L2(Ω; V ). Thus, M1,p,q(V ) ⊂ L2(Ω; V ) ⊂ M1,p,q(V )∗ is a Gelfand 
triple. By [1, Theorem 3.5] the following inequality holds for p ∈ [2, ∞), q ∈ [2, ∞] with 1

q + 1
q′ = 1:

∥∥∥
T∫

0

Φt dWt

∥∥∥
M1,p,q(V )∗

≤
∥∥Φ

∥∥
Lq′ (0,T ;L2(H0;V )), Φ ∈ L2(0, T ;L2(H0;V )). (2.5)

What makes this duality theory useful is the possibility of taking q′ close to 1, cf., (2.4) where the exponent 
is 2. We only need (2.4) and (2.5) for deterministic integrands but remark that [1, Theorem 3.5] allows Φ
to be random and only Skorohod integrability is required. Following [1] we refer to M1,p,q(H) for q > 2
as refined Sobolev–Malliavin spaces. The spaces M1,p,2(V ) are classical Sobolev–Malliavin spaces, often 
denoted D1,p(V ). For p = q we write M1,p(V ) := M1,p,p(V ).
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We next state a modified version of [1, Lemma 3.10]. It provides a local Lipschitz bound that enables 
us to prove an error estimate in the M1,p(H)∗-norm by a Gronwall argument in Lemma 4.6 below. More 
precisely, [1, Lemma 3.10] is a local Lipschitz bound from G1,p(U)∗ to G1,p(V )∗ for mappings σ ∈ G2

b(U ; V ), 
where G1,p(U) = M1,p(U) ∩ L2p(Ω; U). The Lipschitz constant depends on the M1,2p,p(U)-norms of the 
random variables. By restriction to random variables in M1,p(U) with Malliavin derivative bounded over Ω, 
Lemma 2.3 provides a more natural bound, obviating the need for the spaces G1,p(V ). The Lipschitz constant 
now depends on the M1,∞,p(U)-seminorm. It is proved in the same way as [1, Lemma 3.10], by application 
of a modified version of [1, Lemma 3.8], based on Hölder’s inequality with exponents 1, ∞ instead of 2, 2. 
We omit the details. In the following Lemma 2.4 we cite parts of [1, Lemma 3.9].

Lemma 2.3. Let U, V be separable Hilbert spaces, σ ∈ G2
b(U ; V ), and p ∈ [2, ∞). For Y 1, Y 2 ∈ M1,p(U) with 

DY 1, DY 2 ∈ L∞(Ω; Lp(0, T ; L(H0; U))), it holds that

∥∥σ(Y 1) − σ(Y 2)
∥∥
M1,p(V )∗ ≤ max

(
|σ|G1

b(U ;V ), |σ|G2
b(U ;V )

)(
1 +

2∑
i=1

∣∣Y i
∣∣
M1,∞,p(U)

)∥∥Y 1 − Y 2∥∥
M1,p(U)∗ .

Lemma 2.4. Let p ∈ [2, ∞), q ∈ [2, ∞]. Then for all S ∈ L(H), Y ∈ L2(Ω; H) it holds that ‖SY ‖M1,p,q(H)∗ ≤
‖S‖L(H)‖Y ‖M1,p,q(H)∗ .

3. Existence, uniqueness and regularity

Throughout this section we assume that (1.1), (1.3)–(1.5) hold with ρ ∈ [1, 2), β ∈ (0, 1/ρ]. We begin by 
proving existence, uniqueness, and Malliavin regularity of the solution of (1.2). Recall that two stochastic 
processes X1, X2 are modifications of each other if for all t ∈ [0, T ] it holds that P(X1

t �= X2
t ) = 0.

Proposition 3.1. There exists an, up to modification, unique stochastic process X : [0, T ] ×Ω → H such that 
X ∈ C(0, T ; Lp(Ω; H)) for p ∈ [2, ∞) and such that X ∈ C(0, T ; M1,p,q(H)) for p ∈ [2, ∞), q ∈ [2, 2

1−ρβ )
and which satisfies equation (1.2) P-a.s.

Proof. Existence is proved by a standard application of Banach’s Fixed Point Theorem, see, e.g., [14, 
Theorem 1] or [3, Theorem 3.3]. We note that for proving existence and uniqueness in C(0, T ; Lp(Ω; H)) it is 
not crucial whether (St)t∈[0,T ] is a semigroup or not. For the C(0, T ; M1,p,q(H)) regularity, see Proposition 4.4
below. �

The next proposition states the temporal Hölder regularity of X in the Lp(Ω; H) and M1,p,q(H)∗ norms. 
Note that the Hölder exponent in the M1,p,q(H)∗ norm is twice that in the Lp(Ω; H) norm.

Proposition 3.2. Let X be the solution to (1.2). For γ ∈ (0, β), p ≥ 2, q = 2
1−ργ , there exists C > 0 such 

that ∥∥Xt2 −Xt1

∥∥
Lp(Ω;H) ≤ C

∣∣t2 − t1
∣∣ ργ

2 , t1, t2 ∈ [0, T ],∥∥Xt2 −Xt1

∥∥
M1,p,q(H)∗ ≤ C

∣∣t2 − t1
∣∣ργ , t1, t2 ∈ [0, T ].

Proof. Fix γ ∈ (0, β), p ≥ 2. In order to treat both cases simultaneously we define V2 = Lp(Ω; H), cp,2 =
p(p − 1)/2, and Vr = M1,p,r(H)∗, cp,r = 1 for r ∈ (2, ∞]. In view of (2.4) and (2.5) it holds that

∥∥∥
T∫

0

Φt dWt

∥∥∥
Vr

≤ cp,r
∥∥Φ

∥∥
Lr′ (0,T ;L0

2)
, Φ ∈ L2(0, T ;L0

2), r ∈ [2,∞], (3.1)
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where 1
r + 1

r′ = 1. Let t2 > t1. The difference Xt2 −Xt1 can be written in the form

Xt2 −Xt1 =
(
St2 − St1

)
x0 +

t1∫
0

(
St2−s − St1−s

)
F (Xs) ds +

t2∫
t1

St2−sF (Xs) ds

+
t1∫

0

(
St2−s − St1−s

)
dWs +

t2∫
t1

St2−s dWs.

Taking Vr-norms, using the continuous embeddings H ⊂ Lp(Ω; H) ⊂ L2(Ω; H) ⊂ M1,p,r(H)∗, yields

∥∥Xt2 −Xt1

∥∥
Vr

≤
∥∥(St2 − St1

)
x0

∥∥
+
∥∥∥

t1∫
0

(
St2−s − St1−s

)
F (Xs) ds

∥∥∥
Lp(Ω;H)

+
∥∥∥

t2∫
t1

St2−sF (Xs) ds
∥∥∥
Lp(Ω;H)

+
∥∥∥

t1∫
0

(
St2−s − St1−s

)
dWs

∥∥∥
Vr

+
∥∥∥

t2∫
t1

St2−s dWs

∥∥∥
Vr

.

First, by (1.1) and (1.5), we obtain

∥∥(St2 − St1

)
x0

∥∥ =
∥∥∥

t2∫
t1

ṠtA
− 1

ρA
1
ρx0 dt

∥∥∥ ≤ L0
∥∥A 1

ρx0
∥∥(t2 − t1).

It is straightforward to show that the terms containing F are bounded up to a constant by |t2 − t1|1−ε, and 
|t2 − t1| respectively, for every ε ∈ (0, 1). For the case ρ = 1 see the proof of [1, Proposition 3.11].

By (3.1), (1.3), and (1.1) we get

∥∥∥
t1∫

0

(
St2−s − St1−s

)
dWs

∥∥∥
Vr

≤ cp,r

( t1∫
0

∥∥(St2−s − St1−s

)
A

1−βρ
2ρ

∥∥r′
L
∥∥A βρ−1

2ρ
∥∥r′
L0

2
ds

) 1
r′

≤ cp,r
∥∥A βρ−1

2ρ
∥∥
L0

2

( t1∫
0

( t2∫
t1

‖Ṡt−sA
(3−βρ)/2−1

ρ ‖L dt
)r′

ds
) 1

r′

≤ cp,r
∥∥A βρ−1

2ρ
∥∥
L0

2
L 3−βρ

2

( t1∫
0

( t2∫
t1

(t− s)−
3−βρ

2 dt
)r′

ds
) 1

r′
.

Bounding the integrals yields, for η ∈ (0, 1/ρ) to be chosen,

( t1∫
0

( t2∫
t1

(t− s)−
3−βρ

2 dt
)r′

ds
) 1

r′ ≤
( t1∫

0

(
(t1 − s)−

1−(β−2η)ρ
2

t2∫
t1

(t− t1)−1+ηρ dt
)r′

ds
) 1

r′

= (t2 − t1)ηρ

ηρ

( t1∫
0

(t1 − s)−
r

r−1
1−(β−2η)ρ

2 ds
) r−1

r

.
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For r = q = 2/(1 − γρ) and η < (β + γ)/2, the exponent is

r

r − 1
1 − (β − 2η)ρ

2 = 1 − βρ + 2ηρ
1 + ργ

< 1.

In particular, we can take η = γ as required since γ < β. For r = 2, the analogous condition is η < β/2 and 
we can take η = γ/2. Next, similarly,

∥∥∥
t2∫

t1

St2−s dWs

∥∥∥
Vr

≤ cp,r

( t2∫
t1

∥∥St2−sA
1−βρ

2ρ
∥∥r′
L
∥∥A βρ−1

2ρ
∥∥r′
L0

2
ds

) 1
r′

≤ cp,rL 1−βρ
2

∥∥A βρ−1
2ρ

∥∥r′
L0

2

( t2∫
t1

(t2 − s)−
r

r−1
1−βρ

2 ds
) r−1

r

≤ (t2 − t1)
r−1
r − 1−βρ

2 .

For r = q = 2/(1 − γρ) we have the Hölder exponent

r − 1
r

− 1 − βρ

2 = ρ(β + γ)
2 > γρ,

and for r = 2 the Hölder exponents equals βρ/2 > γρ/2. �
4. Weak and strong convergence

This section contains our main result and its proof. Theorem 4.7 states a weak error estimate for abstractly 
defined approximations of quantities of the form E[Φ(X)] = E[

∏K
i=1 ϕi(

∫ T

0 Xt dνit)] for (νi)Ki=1 ⊂ MT , 
(ϕi)Ki=1 ⊂ G2,m

p (H; R), m ≥ 2, and X being the solution to (1.2). Theorem 4.2 provides a strong error 
estimate for approximations of X. For parabolic problems, weak convergence, more precisely, convergence 
of approximations of E[ϕ(Xt)] for fixed t ∈ [0, T ] has been considered [1], and for Volterra equations in [16]
but only in the linear case F = 0. To the best of our knowledge the more general convergence in Theorem 4.7
is new in both cases. The rate of convergence for E[Φ(X)] is twice the strong rate as expected. We begin 
by presenting a family of abstractly defined approximations.

4.1. Approximation

Assume that (1.1), (1.3)–(1.5) hold. Let (Vh)h∈(0,1) be a family of finite-dimensional subspaces of H
and let Ph : H → Vh be the orthogonal projector. Let k ∈ (0, 1) and tn = nk, n = 0, . . . , N , where 
tN < T ≤ tN + k. Let (Bh,k)h,k∈(0,1) be a family of operator-valued functions Bh,k : {0, . . . , N} → L(H; Vh)
such that Bh,k

n = Bh,k
n Ph, and let (Ah)h∈(0,1) be a collection of linear operators Ah : Vh → Vh such that for 

n = 1, . . . , N it holds that

∥∥A s
ρ

hB
h,k
n x

∥∥ ≤ Lst
−s
n ‖x‖, x ∈ H, 0 ≤ s ≤ 1, (4.1)

with the same constants (Ls)s∈[0,1] as in (1.1). For other constants (Kε)ε∈(0,∞) and (Rs)s∈[0,1], let the 
corresponding error operator (Eh,k)h,k∈(0,1), given by Eh,k

n = Stn − Bh,k
n for n = 0, . . . , N , satisfy the 

smooth data error estimate
∥∥Eh,k

n x
∥∥ ≤ Kε

(
hσ + k

σ
2
)
‖x‖Ḣσ(1+ε) , 0 ≤ σ ≤ 2, ε > 0, (4.2)
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and the non-smooth data error estimates, for n = 1, . . . , N , t > 0,
∥∥A s

2ρEh,k
n x

∥∥ ≤ Rs

(
h

σ
ρ + k

σ
2
)
t
−σ+s

2
n ‖x‖, 0 ≤ σ ≤ 2, 0 ≤ s ≤ 1 − σ/2, (4.3)∥∥(e−tA − e−tAhPh

)
x
∥∥ ≤ R0h

σt−
σ
2 ‖x‖, 0 ≤ σ ≤ 2, (4.4)

where (e−tA)t∈[0,∞) and (e−tAh)t∈[0,∞) are the analytic semigroups generated by −A and −Ah, respectively. 
We introduce the piecewise continuous operator function Ẽh,k : [0, T ] → L given by Ẽh,k

t = St − Bh,k
n for 

t ∈ [tn, tn+1) and n = 0, . . . N − 1. By (1.1) and (4.2) the family (Ẽh,k
t )t∈[0,T ] satisfies for t ∈ (0, T ] the 

bound ∥∥A s
2ρ Ẽh,k

t

∥∥
L ≤ Rs

(
h

σ
ρ + k

σ
2
)
t−

σ+s
2 , 0 ≤ σ ≤ 2, 0 ≤ s ≤ 1 − σ/2. (4.5)

The discrete and continuous stochastic convolutions are defined by

WS
t =

t∫
0

St−s dWs, t ∈ [0, T ]; WBh,k

n =
n−1∑
j=0

tj+1∫
tj

Bh,k
n−j dWt, n = 1, . . . , N.

We now define approximations of equation (1.2). For h, k ∈ (0, 1), let (Xh,k
n )Nn=0 be the solution to the 

equation

Xh,k
n = Bh,k

n x0 + k
n−1∑
j=1

Bh,k
n−jF (Xh,k

j ) + WBh,k

n , n = 1, . . . , N. (4.6)

4.2. Strong convergence

Boundedness in the Lp(Ω; H)-sense of the approximate family (Xh,k
n )Nn=0 is stated in the next proposition. 

For a proof in the parabolic case, i.e., for ρ = 1, see [1, Proposition 3.15]. The general case is proved in the 
same way but using the different smoothing property in (4.1).

Proposition 4.1. Let the setting of Section 4.1 hold. For p ≥ 2 it holds that

sup
h,k∈(0,1)

max
n∈{0,...,N}

∥∥Xh,k
n

∥∥
Lp(Ω;H) < ∞.

We next prove strong convergence. This is interesting in itself, but it is also used in our proof of the 
Malliavin regularity of X in Proposition 4.4.

Theorem 4.2. Let the setting of Section 4.1 hold, let X be the solution to (1.2) and let (Xh,k)h,k∈(0,1] be the 
solutions to (4.6). For γ ∈ [0, β), p ∈ [2, ∞), there exists C > 0 such that

max
n∈{0,...,N}

∥∥Xtn −Xh,k
n

∥∥
Lp(Ω;H) ≤ C

(
hγ + k

ργ
2
)
, h, k ∈ (0, 1).

Proof. We take the difference of (1.2) and (4.6) to obtain the equation for the error,

Xtn −Xh,k
n =

(
Stn −Bh,k

n

)
x0 +

n−1∑
j=0

tj+1∫
tj

(
Stn−t −Bh,k

n−j

)
F (Xt) dt

+
n−1∑
j=0

tj+1∫
Bh,k

n−j

(
F (Xt) − F (Xh,k

j )
)
dt + WS

tn −WBh,k

n . (4.7)

tj
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The deterministic nature of the first two terms allows us to obtain twice the rate of convergence compared 
to the other terms. This will be used later in the proof of Lemma 4.6. Recall that Ẽh,k

t = St − Bh,k
n for 

t ∈ [tn, tn+1) and n = 0, . . . , N − 1. We get

∥∥Xtn −Xh,k
n

∥∥
Lp(Ω;H) ≤

∥∥Eh,k
n x0

∥∥
H

+
∥∥∥

tn∫
0

Ẽh,k
tn−tF (Xt) dt

∥∥∥
Lp(Ω;H)

+
∥∥∥ n−1∑

j=0

tj+1∫
tj

Bh,k
n−j

(
F (Xt) − F (Xh,k

j )
)
dt
∥∥∥
Lp(Ω;H)

+
∥∥WS

tn −WBh,k

n

∥∥
Lp(Ω;H).

Using (1.5), (4.2) with σ = 2ργ, ε = (3 − 2γρ)/2γρ we obtain

max
n∈{0,...,N}

∥∥Eh,k
n x0

∥∥ ≤ K 3−2γρ
2γρ

(
h2ργ + kργ

)
‖x0‖Ḣ3 . (4.8)

By Proposition 3.1, (1.4), (4.5) it holds that

∥∥∥
tn∫
0

Ẽh,k
tn−tF (Xt) dt

∥∥∥
Lp(Ω;H)

≤
tn∫
0

∥∥Ẽh,k
tn−t

∥∥
L
∥∥F (Xt)

∥∥
Lp(Ω;H) dt

≤ R0
(
h2γ + kργ

)
|F |G1

b(H;H)

(
1 + sup

t∈[0,T ]

∥∥Xt

∥∥
Lp(Ω;H)

) tn∫
0

(tn − t)−ργ dt

� h2γ + kργ . (4.9)

Using (1.4), (2.3), (4.1), and Proposition 3.2 yields

∥∥∥ n−1∑
j=0

tj+1∫
tj

Bh,k
n−j

(
F (Xt) − F (Xh,k

j )
)
dt
∥∥∥
Lp(Ω;H)

≤ |F |G1
b(H;H)

n−1∑
j=0

tj+1∫
tj

∥∥Bh,k
n−j

∥∥
L
∥∥Xt −Xh,k

j

∥∥
Lp(Ω;H) dt

≤ L0|F |G1
b(H;H)

n−1∑
j=0

tj+1∫
tj

(∥∥Xt −Xtj

∥∥
Lp(Ω;H) +

∥∥Xtj −Xh,k
j

∥∥
Lp(Ω;H)

)
dt

≤ L0|F |G1
b(H;H)

(
CTk

ργ
2 + k

n−1∑
j=0

∥∥Xtj −Xh,k
j

∥∥
Lp(Ω;H)

)
.

For the error of the stochastic convolution we write the difference in the form

WS
tn −WBh,k

n =
n−1∑
j=0

tj+1∫
tj

(
Stn−t −Bh,k

n−j

)
dWt (4.10)

=
tn∫
Ẽh,k

tn−t dWt =
tn∫
Ẽh,k

t dWt. (4.11)

0 0
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By (2.4) and (4.5) with σ = γρ, and s = 1 − βρ, we obtain the estimate

∥∥WS
tn −WBh,k

n

∥∥
Lp(Ω;H) ≤

(p(p− 1)
2

tn∫
0

∥∥A βρ−1
2ρ

∥∥2
L0

2

∥∥A 1−βρ
2ρ Ẽh,k

t

∥∥2
L dt

) 1
2

� R1−βρ

( tn∫
0

tρ(β−γ)−1 dt
) 1

2 (
hγ + k

ργ
2
)
� hγ + k

ργ
2 .

Collecting the estimates yields that, for all n = 0, . . . , N , it holds

∥∥Xtn −Xh,k
n

∥∥
Lp(Ω;H) � hγ + k

ργ
2 + k

n−1∑
j=0

∥∥Xtj −Xh,k
j

∥∥
Lp(Ω;H).

The proof is completed by Gronwall’s lemma. �
4.3. Regularity and weak convergence

Here we state and prove our main result on weak convergence. It is based on a strong error estimate in the 
M1,p(H)∗ norm combined with boundedness of X and Xh,k in M1,p,q(H) for suitable p, q. The methodology 
was introduced in [1], but here we exploit it further in a more general setting. We begin by proving the 
Malliavin differentiability of Xh,k.

Proposition 4.3. Let the setting of Section 4.1 hold, and let Xh,k be the solution to (4.6). For p ∈ [2, ∞), 
q ∈ [2, 2

1−ρβ ), it holds that

sup
h,k∈(0,1)

max
n∈{0,...,N}

(∥∥Xh,k
n

∥∥
M1,p,q(H) +

∣∣Xh,k
n

∣∣
M1,∞,q(H)

)
< ∞.

Sketch of proof. Note first that DXh,k
0 = 0 as Xh,k

0 is deterministic. Therefore it follows inductively that 
Xh,k

j , j = 0, . . . , N , are differentiable and the derivative satisfies the equation

DrX
h,k
n = k

n−1∑
j=0

Bh,k
n−jF

′(Xh,k
j )DrX

h,k
j +

n−1∑
j=0

χ[tj ,tj+1)(r)B
h,k
n−j . (4.12)

The proof is performed by straightforward analysis of this equation using the discrete Gronwall’s lemma, 
see [1, Proposition 3.16] for details in the parabolic case ρ = 1. The general case is treated analogously. �

The Malliavin regularity of X is next obtained by a limiting procedure.

Proposition 4.4. Let the setting of Section 4.1 hold and let X be the solution to (1.2). For p ∈ [2, ∞), 
q ∈ [2, 2

1−ρβ ), it holds that X ∈ C(0, T ; M1,p,q(H)), and moreover it holds that

sup
t∈[0,T ]

∣∣Xt

∣∣
M1,∞,q(H) < ∞.

Proof. Let X̃h,k
t = Xh,k

n for t ∈ [tn, tn+1), n = 0, . . . , N − 1, h, k ∈ (0, 1). By Proposition 4.3 it holds in 
particular, that the family (X̃h,k)h,k∈(0,1) is bounded in the Hilbert space X = L2(0, T ; M1,2,2(H)), and by 
Theorem 4.2 it holds that X̃h,k → X as h, k → 0 in the Hilbert space Y = L2(0, T ; L2(Ω; H)). Lemma 2.1
applies and ensures that X ∈ X = L2(0, T ; M1,2,2(H)).
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By [10, Lemma 3.6] it holds that also 
∫ ·
0 S·−sF (Xs) ds ∈ L2(0, T ; M1,2,2(H)) with Dr

∫ t

0 St−sF (Xs) ds =∫ t

r
St−sF

′(Xs)DrXs ds, for 0 ≤ r ≤ t ≤ T , and 
∫ ·
0 S·−s dWs ∈ L2(0, T ; M1,2,2(H)) with Dr

∫ t

0 St−s dWs =
St−r, for 0 ≤ r ≤ t ≤ T . We remark that [10, Lemma 3.6] is formulated for semigroups, but the semigroup 
property is not used in the proof. We have thus proved that we can differentiate the equation for X term 
by term, and obtain the equation

DrXt =
{
St−r +

∫ t

r
St−sF

′(Xs)DrXs ds, t ∈ (r, T ],
0, t ∈ [0, r].

A straightforward analysis of this equation, by a Gronwall argument, remove as in the proof of [1, Proposi-
tion 3.10] completes the proof. �

In the proof of [1, Lemma 4.6], which is the analogue of Lemma 4.6 below, a bound

‖A− δ
2

h Phx‖ ≤ ‖A
δ
2
hPhA

− δ
2 ‖L‖A− δ

2x‖ ≤ C‖A− δ
2x‖, (4.13)

was used in the special case δ = 1. This estimate is true for all δ ∈ [0, 1] for both the finite element method 
and for spectral approximation. For δ > 1 it holds only for spectral approximation. In this paper we need 
δ ∈ [0, 2/ρ) and therefore we cannot rely on (4.13). In [22, Lemma 5.3] it is shown that for finite element 
discretization and for δ = 0, 1, 2 it holds

‖A− δ
2

h Phx‖ ≤ C
(
‖A− δ

2x‖ + hδ‖x‖
)
, x ∈ H.

The next lemma is a generalization of this result, assuming the availability of a non-smooth data estimate 
of the form (4.4). It will be used in the proof of Lemma 4.6 below with X = M1,p(H)∗ for a certain p. By 
using it we need not rely on (4.13) and in this way we include finite element discretization under the same 
generality as spectral approximations.

Lemma 4.5. Let the setting of Section 4.1 hold and let X be a Banach space such that the embedding 
L2(Ω; H) ⊂ X is continuous. For κ ∈ [0, 2), σ ∈ [0, κ), there exists C > 0 such that for Y ∈ L2(Ω; H) it 
holds that

∥∥A−κ
2

h PhY
∥∥
X ≤

∥∥A−κ
2 Y

∥∥
X + Chσ

∥∥Y ∥∥
L2(Ω;H), h ∈ (0, 1).

Proof. By the continuous embedding L2(Ω; H) ⊂ X we get that
∥∥A−κ

2
h PhY

∥∥
X ≤

∥∥A−κ
2 Y

∥∥
X +

∥∥(A−κ
2

h Ph −A−κ
2
)
Y
∥∥
X

�
∥∥A−κ

2 Y
∥∥
X +

∥∥A−κ
2

h Ph −A−κ
2
∥∥
L
∥∥Y ∥∥

L2(Ω;H).

By [19, Chapter 2, (6.9)] we have

A
−κ

2
h Ph −A−κ

2 = 1
Γ(κ/2)

∞∫
0

t
κ
2 −1(e−tAhPh − e−tA

)
dt.

Therefore, by (4.4),

∥∥A−κ
2

h Ph −A−κ
2
∥∥
L ≤ 1

Γ(κ/2)

∞∫
t
κ
2 −1∥∥e−tAhPh − e−tA

∥∥
L dt
0
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�
h−2∫
0

t
κ
2 −1∥∥e−tAhPh − e−tA

∥∥
L dt +

∞∫
h−2

t
κ
2 −1∥∥e−tAhPh − e−tA

∥∥
L dt

� h
κ+σ

2

h−2∫
0

t
κ−σ

4 −1 dt + h2
∞∫

h−2

t
κ
2 −2 dt = 4hσ

κ− σ
+ 2

2 − κ
h2h2−κ

2 � hσ. �

The next result is a strong error estimate in the M1,p(H)∗ norm. Together with the regularity stated in 
Propositions 4.3 and 4.4 it is the key to the proof of Theorem 4.7 below on weak convergence.

Lemma 4.6. Let the setting of Section 4.1 hold, and let X and Xh,k be the solutions to (1.2) and (4.6), 
respectively. For γ ∈ [0, β), p = 2

1−ργ , there exists C > 0 such that

max
n∈{0,...,N}

∥∥Xtn −Xh,k
n

∥∥
M1,p(H)∗ ≤ C

(
h2γ + kργ

)
, h, k ∈ (0, 1).

Proof. The proof is performed essentially as that of Theorem 4.2. By (4.7) and the continuous embeddings 
H ⊂ Lp(Ω; H) ⊂ L2(Ω; H) ⊂ M1,p(H)∗, it follows that

∥∥Xtn −Xh,k
n

∥∥
M1,p(H)∗ ≤

∥∥Eh,k
n x0

∥∥
H

+
∥∥∥

tn∫
0

Ẽh,k
tn−tF (Xt) dt

∥∥∥
Lp(Ω;H)

+
∥∥∥ n−1∑

j=0

tj+1∫
tj

Bh,k
n−j

(
F (Xt) − F (Xh,k

j )
)
dt
∥∥∥
M1,p(H)∗

+
∥∥WS

tn −WBh,k

n

∥∥
M1,p(H)∗ .

The first two terms was already estimated as desired in (4.8) and (4.9). Choose κ so that max(δ, 2γ) < κ <
2/ρ, where δ is the parameter in (1.4). Since ρκ < 2, we have, by Lemma 2.4 and (4.1) with s = ρκ/2, that

∥∥∥ n−1∑
j=0

tj+1∫
tj

Bh,k
n−j

(
F (Xt) − F (Xh,k

j )
)
dt
∥∥∥
M1,p(H)∗

≤
n−1∑
j=0

tj+1∫
tj

∥∥Bh,k
n−jA

κ
2
h Ph

∥∥
L
∥∥A−κ

2
h Ph

(
F (Xt) − F (Xh,k

j )
)∥∥

M1,p(H)∗ dt

≤ Lκρ
2

n−1∑
j=0

tj+1∫
tj

t
−κρ

2
n−j

∥∥A−κ
2

h Ph

(
F (Xt) − F (Xh,k

j )
)∥∥

M1,p(H)∗ dt.

Applying Lemma 4.5 with X = M1,p(H)∗ and σ = 2γ < κ yields

∥∥A−κ
2

h Ph

(
F (Xt) − F (Xh,k

j )
)∥∥

M1,p(H)∗

≤ Ch2γ∥∥F (Xt) − F (Xh,k
j )

∥∥
L2(Ω;H) +

∥∥A−κ
2
(
F (Xt) − F (Xh,k

j )
)∥∥

M1,p(H)∗ .



A. Andersson et al. / J. Math. Anal. Appl. 437 (2016) 1283–1304 1297
For the first term we get by (1.4), Propositions 3.1, and 4.1 that

sup
t∈[0,T ]

max
j∈{0,...,N}

∥∥F (Xt) − F (Xh,k
j )

∥∥
L2(Ω;H)

≤ |F |G1
b(H;H)

(
sup

t∈[0,T ]

∥∥Xt

∥∥
L2(Ω;H) + max

j∈{0,...,N}

∥∥Xh,k
j

∥∥
L2(Ω;H)

)
< ∞.

By duality in the Gelfand triple M1,p(Ḣ−δ) ⊂ L2(Ω; Ḣ−δ) ⊂ M1,p(Ḣ−δ)∗ we compute that for Y ∈
L2(Ω; Ḣ−δ),

‖Y ‖M1,p(Ḣ−δ)∗ = sup
Z∈M1,p(Ḣ−δ)

〈
Z, Y

〉
L2(Ω;Ḣ−δ)

‖Z‖M1,p(Ḣ−δ)

= sup
Z∈M1,p(Ḣ−δ)

〈
A− δ

2Z,A− δ
2Y

〉
L2(Ω;H)

‖Z‖M1,p(Ḣ−δ)

= sup
Z∈M1,p(Ḣ−δ)

〈
Z,A− δ

2Y
〉
L2(Ω;H)

‖A δ
2Z‖M1,p(Ḣ−δ)

= sup
Z∈M1,p(H)

〈
Z,A− δ

2Y
〉

‖Z‖M1,p(H)
= ‖A− δ

2Y ‖M1,p(H)∗ .

Therefore, by Lemma 2.4 and Lemma 2.3 applied with U = H, V = Ḣ−δ, σ = F we get

∥∥A−κ
2
(
F (Xt) − F (Xh,k

j )
)∥∥

M1,p(H)∗

≤
∥∥A−κ−δ

2
∥∥
L
∥∥A− δ

2
(
F (Xt) − F (Xh,k

j )
)∥∥

M1,p(H)∗

=
∥∥A−κ−δ

2
∥∥
L
∥∥F (Xt) − F (Xh,k

j )
∥∥
M1,p(Ḣ−δ)∗

≤
∥∥A−κ−δ

2
∥∥
L max

(
|F |G1

b(H;Ḣ−δ), |F |G2
b(H;Ḣ−δ)

)
×
(

sup
j∈{0,...,N}

∣∣Xh,k
j

∣∣
M1,∞,p(H) + sup

t∈[0,T ]

∣∣Xt

∣∣
M1,∞,p(H)

)

×
(∥∥Xt −Xtj

∥∥
M1,p(H)∗ +

∥∥Xtj −Xh,k
j

∥∥
M1,p(H)∗

)
.

By Propositions 3.2 and 4.3 and Proposition 4.4, we conclude

∥∥A−κ
2
(
F (Xt) − F (Xh,k

j )
)∥∥

M1,p(H)∗ � kργ +
∥∥Xtj −Xh,k

j

∥∥
M1,p(H)∗ .

Thus,

∥∥∥ n−1∑
j=0

tj+1∫
tj

Bh,k
n−j

(
F (Xt) − F (Xh,k

j )
)
dt
∥∥∥
M1,p(H)∗

� h2γ + kργ + k

n−1∑
j=0

t
−κρ

2
n−j

∥∥Xtj −Xh,k
j

∥∥
M1,p(Ḣ−δ)∗ .
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By (4.10), (2.5), and (4.5), with s = 1 − βρ, σ = 2γρ, and since p = 2
1−ργ and p′ = 2

1+ργ , we get

∥∥WS
tn −WBh,k

n

∥∥
M1,p(H)∗

≤
( tn∫

0

∥∥A βρ−1
2ρ

∥∥ 2
1+ργ

L0
2

∥∥A 1−βρ
2ρ Ẽh,k

t

∥∥ 2
1+ργ

L dt
) 1+ργ

2

≤ R1−βρ

∥∥A βρ−1
2ρ

∥∥
L0

2

( tn∫
0

t
ρ(β−γ)
1+ργ −1 dt

) 1+ργ
2 (

h2γ + kργ
)
.

Altogether we have that for every n = 1, . . . , N it holds that

∥∥Xtn −Xh,k
n

∥∥
M1,p(H)∗ � h2γ + kργ + k

n−1∑
j=0

t
−κρ

2
n−j

∥∥Xtj −Xh,k
j

∥∥
M1,p(H)∗ .

Lemma 2.2 finishes the proof. �
We next state our main result on weak convergence. We remark that to the best of our knowledge all 

previous weak convergence results concern convergence of |E[ϕ(Xh,k
τ ) − ϕ(Xτ )]| for fixed τ ∈ [0, T ], which 

is a special case of the following theorem.

Theorem 4.7. Let X and Xh,k be the solutions to (1.2) and (4.6), respectively. Let X̃h,k
t = Xh,k

n , for 
t ∈ [tn, tn+1), n ∈ {0, . . . , N − 1} and X̃h,k

t = Xh,k
N , for t ∈ [tN , T ]. For K ≥ 1, m1, . . . , mK ≥ 2, 

ϕi ∈ G2,mi
p (H; R), νi ∈ MT , i = 1, . . . , K, Φ(Z) =

∏K
i=1 ϕi(

∫ T

0 Zt dνi,t), γ ∈ [0, β), there exists C > 0 such 
that

∣∣E[
Φ(X) − Φ(X̃h,k)

]∣∣ ≤ C
(
h2γ + kργ

)
, h, k ∈ (0, 1).

Proof. We start by observing that by (2.3) we have

K∏
i=1

ϕi(xi) −
K∏
i=1

ϕi(yi)

=
K∑
l=1

l−1∏
i=1

ϕi(xi)
K∏

j=l+1

ϕj(yj)
(
ϕl(xl) − ϕl(yl)

)

=
K∑
l=1

〈
l−1∏
i=1

ϕi(xi)
K∏

j=l+1

ϕj(yj)
1∫

0

ϕ′
l(yl + λ(xl − yl)) dλ, xl − yl

〉

=:
K∑
l=1

〈γl(x1, . . . , xl, yl, . . . , yK), xl − yl〉.

Here we use the convention that an empty product equals 1. We get

∣∣E[
Φ(X) − Φ(X̃h,k)

]∣∣ =
∣∣∣ K∑
l=1

〈
γl(Y h,k

l ),
T∫

0

(
Xt − X̃h,k

t

)
dνl,t

〉
L2(Ω;H)

∣∣∣,
where
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Y h,k
l =

( T∫
0

Xt dν1,t, . . . ,

T∫
0

Xt dνl,t,
T∫

0

X̃h,k
t dνl,t, . . . ,

T∫
0

X̃h,k
t dνK,t

)
.

By duality in the Gelfand triple M1,p(H) ⊂ L2(Ω; H) ⊂ M1,p(H)∗ we obtain∣∣E[
Φ(X) − Φ(X̃h,k)

]∣∣
≤

K∑
l=1

∥∥γl(Y h,k
l )

∥∥
M1,p(H)

∥∥∥
T∫

0

(
Xt − X̃h,k

t

)
dνl,t

∥∥∥
M1,p(H)∗

≤
K∑
l=1

(
sup

h,k∈(0,1)

∥∥γl(Y h,k
l )

∥∥
M1,p(H)

)∥∥X − X̃h,k
∥∥
L1

νl
(0,T ;M1,p(H)∗).

Here γl ∈ G1,r
p (HK+1; H) and Y h,k

l ∈ M1,rp(HK+1) with r =
∑K

i=1 mi−1. Therefore [1, Lemma 3.3] applied 
with U = HK+1 and V = H gives for l ∈ {1, . . . , K} the bound

sup
h,k∈(0,1)

∥∥γl(Y h,k
l )

∥∥
M1,p(H) ≤ Cl

(
1 + sup

h,k∈(0,1)

∥∥Y h,k
l

∥∥r
M1,rp(HK+1)

)
.

Propositions 4.3 and 4.4 ensure that

sup
h,k∈(0,1)

∥∥γl(Y h,k
l )

∥∥
M1,p(H)

≤ C̃l

(
1 +

K∑
i=1

(∥∥X∥∥r
L1

νi
(0,T ;M1,rp,p(H)) + sup

h,k∈(0,1)

∥∥X̃h,k
∥∥r
L1

νi
(0,T ;M1,rp,p(H))

))
< ∞.

Let X̃ be the process X̃t = Xtn for t ∈ [tn, tn+1), n ∈ {0, . . . , N − 1}. Proposition 3.2 and Lemma 4.6
give, for l ∈ {1, . . . , K},∥∥X − X̃h,k

∥∥
L1

νl
(0,T ;M1,p(H)∗)

≤
∥∥X − X̃

∥∥
L1

νl
(0,T ;M1,p(H)∗) +

∥∥X̃ − X̃h,k
∥∥
L1

νl
(0,T ;M1,p(H)∗) � h2γ + kργ .

This completes the proof. �
Finally, we formulate a corollary of Theorem 4.7 that can be used to prove convergence of covariances and 

higher order statistics of approximate solutions. We demonstrate this for covariances; higher order statistics 
can be treated in a similar way.

Corollary 4.8. Let X and Xh,k be the solutions to (1.2) and (4.6), respectively. Let X̃h,k
t = Xh,k

n , for 
t ∈ [tn, tn+1), n ∈ {0, . . . , N − 1} and X̃h,k

t = Xh,k
N , for t ∈ [tN , T ]. For K ≥ 1, φ1, . . . , φK ∈ H, 

t1, . . . , tK ∈ (0, T ], γ ∈ [0, β), there exists C > 0 such that

∣∣∣E[ K∏
i=1

〈
Xti , φi

〉
−

K∏
i=1

〈
X̃h,k

ti , φi

〉]∣∣∣ ≤ C
(
h2γ + kργ

)
, h, k ∈ (0, 1).

In particular, for φ1, φ2 ∈ H, t1, t2 ∈ (0, T ], it holds that∣∣Cov
(〈
Xt1 , φ1

〉
,
〈
Xt2 , φ2

〉)
− Cov

(〈
X̃h,k

t1 , φ1
〉
,
〈
X̃h,k

t2 , φ2
〉)∣∣

≤ C
(
h2γ + kργ

)
, h, k ∈ (0, 1).
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Proof. The first statement follows from Theorem 4.7 by setting ϕi = 〈φi, ·〉, νi = δti , i ∈ {1, . . . , K}, where 
δti is the Dirac measure concentrated at ti. The second is a consequence of the first and the fact that

Cov
(〈
Xt1 , φ1

〉
,
〈
Xt2 , φ2

〉)
− Cov

(〈
X̃h,k

t1 , φ1
〉
,
〈
X̃h,k

t2 , φ2
〉)

= E
[〈
Xt1 , φ1

〉〈
Xt2 , φ2

〉]
− E

[〈
X̃h,k

t1 , φ1
〉〈
X̃h,k

t2 , φ2
〉]

− E
[〈
Xt1 , φ1

〉
−

〈
X̃h,k

t1 , φ1
〉]

E
[〈
Xt2 , φ2

〉]
− E

[〈
X̃h,k

t1 , φ1
〉]

E
[〈
Xt2 , φ2

〉
−
〈
X̃h,k

t2 , φ2
〉]
. �

5. Examples

In this section we consider two different types of equations and write them in the abstract form of 
Section 1. We verify the abstract assumptions in both cases. Numerical approximation by the finite element 
method and suitable time discretization schemes are proved to satisfy the assumptions of Section 4. We start 
with parabolic stochastic partial differential equations and continue with Volterra equations in a separate 
subsection.

5.1. Stochastic parabolic partial differential equations

Let D ⊂ Rd for d = 1, 2, 3 be a convex polygonal domain. Let Δ =
∑d

i=1
∂2

∂x2
i

be the Laplace operator 
and f ∈ G2

b(R; R). We consider the stochastic partial differential equation:

u̇(t, x) = Δu(t, x) + f(u(t, x)) + η̇(t, x), (t, x) ∈ (0, T ] ×D,

u(t, x) = 0, (t, x) ∈ (0, T ] × ∂D,

u(0, x) = u0(x), x ∈ D.

The noise η̇ is not well defined as a function, as it is written, but makes sense as a random measure. We will 
study this equation in the abstract framework of Section 1. Let H = L2(D), A : D(A) ⊂ H → H be given by 
A = −Δ with D(A) = H1

0 (D) ∩H2(D). Let (St)t∈[0,T ] denote the analytic semigroup St = e−tA of bounded 
linear operators generated by −A. Assumption 1.1 is satisfied with ρ = 1, as is easily seen by a spectral 
argument. The drift F : H → H is the Nemytskii operator determined by the action (F (g))(x) = f(g(x)), 
x ∈ D, g ∈ H. Assumption (1.4) for F is verified in [25] for δ = d

2 + ε.
Let (Th)h∈(0,1) denote a family of regular triangulations of D where h denotes the maximal mesh size. Let 

(Vh)h∈[0,1] be the finite element spaces of continuous piecewise linear functions with respect to (Th)h∈(0,1)
and Ph : H → Vh be the orthogonal projector. The operators Ah : Vh → Vh are uniquely determined by

〈
Ahφh, ψh

〉
=

〈
∇φh,∇ψh

〉
, ∀φh, ψh ∈ Vh ⊂ Ḣ1.

Remark 5.1. If the domain D is such that the pairs of eigenvalues and eigenfunctions (λn, en)n∈N of A are 
known, e.g., D = [0, 1]d, then instead of finite element discretization one can consider a spectral Galerkin 
approximation. Let the eigenvalues be ordered in increasing order so that λn ≤ λn+1 for every n ∈ N. 
Further, let h = λ

− 1
2

N+1 and Vh = span{φn : n ≤ N}. By Ph : H → Vh we denote the orthogonal projector 
and we define Ah = APh = PhA = PhAPh.

We discretize in time by a semi-implicit Euler–Maruyama method. By defining Bh,k
1 = (I + kAh)−1Ph

and Bh,k
n = (Bh,k

1 )n for n ≥ 1, the discrete solutions (Xh,k
n )Nn=0 are recursively given by
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Xh,k
n+1 = Bh,k

1 Xh,k
n + kBh,k

1 F (Xh,k
n ) +

tn+1∫
tn

Bh,k
1 dWs, n = 0, . . . , N − 1,

Xh,k
0 = Phx0.

Iterating the scheme gives the discrete variation of constants formula (4.6). For both finite element and 
spectral approximation the assumptions (4.1), (4.2), (4.3), (4.4), are valid, see, e.g., [22]. For a proof of 
(4.5), see [1, Lemma 5.1].

5.2. Stochastic Volterra integro-differential equations

Consider the semi-linear stochastic Volterra type equation

u̇(t, x) =
t∫

0

b(t− s)Δu(t, x) ds + f(u(t, x)) + η̇(t, x), (t, x) ∈ (0, T ] ×D,

u(t, x) = 0, (t, x) ∈ (0, T ] × ∂D,

u(0, x) = u0, x ∈ D. (5.1)

We assume that the kernel b ∈ L1
loc(R+) is 4-monotone; that is, b is twice continuously differentiable on 

(0, ∞), (−1)nb(n)(t) ≥ 0 for t > 0, 0 ≤ n ≤ 2, and b(2) is non-increasing and convex. We suppose further 
that limt→∞ b(t) = 0 and

lim sup
t→0,∞

(1
t

t∫
0

sb(s) ds
)/( t∫

0

−sḃ(s) ds
)
< +∞. (5.2)

In this case it follows from [21, Proposition 3.10] that the parameter ρ in Assumption 4.1 is given by

ρ = 1 + 2
π

sup{|arg b̂(λ)| : Reλ > 0} ∈ (1, 2), (5.3)

where b̂ denotes the Laplace transform of b. Finally, in order to be able to use non-smooth data estimates 
for the deterministic problem we suppose that b̂ can be extended to an analytic function in a sector Σθ =
{z ∈ C : |arg z| < θ} with θ > π

2 and |b̂(k)(z)| ≤ C|z|1−ρ−k, k = 0, 1, z ∈ Σθ. An important example is the 
kernel b(t) = 1

Γ(ρ−1) t
ρ−2e−ηt, for some ρ ∈ (1, 2) and η ≥ 0. When η = 0, then the corresponding equation 

can be viewed as a fractional-in-time stochastic equation.
We write the equation in the abstract Itō form (1.6) with A, F , W , x0 as in Subsection 5.1. Here one 

needs δ = d
2 + ε < 2

ρ and this requires ρ < 4
3 and ε small in the case d = 3 but causes no restrictions in the 

case d = 1, 2. Under the above assumptions there exists a resolvent family of operators (St)t∈[0,T ] defined 
by the strong operator limit

St =
∞∑
j=1

sj,t (ej ⊗ ej); ṡj,t + λj

t∫
0

b(t− r)sj,r dr = 0, t > 0; sj,0 = 1. (5.4)

Here (λj , ej)j∈N are the eigenpairs of A. The operator family (St)t∈[0,T ] does not possess the semigroup 
property because of the presence of the memory term. It is the solution operator to the abstract linear 
homogeneous problem
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Ẏt +
t∫

0

b(t− s)AYs ds = 0, t ∈ [0, T ]; Y0 = y0,

i.e., Yt = Sty0. The inhomogeneous problem with right hand side g(t) for Bochner integrable g : [0, T ] → H

is solved by the variation of constants formula

Yt = Sty0 +
t∫

0

St−sg(s) ds, t ∈ [0, T ].

By [3, Lemma 4.4] condition (1.1) holds for S. Thus the setting of Section 1 is applicable.
We now turn our attention to the numerical approximation by presenting the convolution quadrature 

that we use, which was introduced by Lubich [17,18]. Let (ωk
j )j∈N be weights determined by

b̂
(1 − z

k

)
=

∞∑
j=0

ωk
j z

j , |z| < 1.

Then we use the approximation

n∑
j=1

ωk
n−jf(tj) ∼

tn∫
0

b(tn − s)f(s) ds, f ∈ C(0, T ;R).

To discretize the time derivative we use a backward Euler method, which is explicit in the semilinear term 
F . Our fully discrete scheme then reads:

Xh,k
n+1 −Xh,k

n + k

n+1∑
j=1

ωk
n+1−jAhX

h,k
j = kPhF (Xh,k

n ) +
tn+1∫
tn

Ph dWt, n = 0, . . . , N − 1,

Xh,k
0 = Phx0.

It is possible to write (Xh,k
n )Nn=0 as a variation of constants formula (4.6). Indeed, it is shown in [15] that 

one has the explicit representation

Bh,k
n =

∞∫
0

Sh
ksPh

e−ssn−1

(n− 1)! ds, n ≥ 1,

where

Sh
t =

Nh∑
j=1

shj,t (ehj ⊗ ehj )Ph; ṡhj,t + λh
j

t∫
0

b(t− r)shj,r dr = 0, t > 0; shj,0 = 1,

and (λh
j , e

h
j )Nh

j=1 are the eigenpairs corresponding to Ah. The stability (4.1) holds by [16, Theorem 3.1] and 
the smooth data error estimate (4.2) was proved in [15, Remark 5.3]. It remains to verify (4.3). By [16, 
Theorem 3.1] there exists C̃ such that

∥∥Eh,k
n

∥∥
L ≤ C̃t

− δ
2

n

(
h

δ
ρ + k

δ
2
)
, 0 ≤ δ ≤ 2, n = 1, . . . , N.
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Let 0 ≤ δ ≤ 2. Interpolation with 0 ≤ s ≤ 1 yields
∥∥A s

2ρEn,θ

∥∥
L ≤

∥∥Eh,k
n

∥∥1−s

L
∥∥A 1

2ρEh,k
n

∥∥s
L

≤
∥∥Eh,k

n

∥∥1−s

L

(∥∥A 1
2ρStn

∥∥
L +

∥∥A 1
2ρBh,k

n

∥∥
L

)s

≤
(
C̃t

− δ
2

n

(
h

δ
ρ + k

δ
2
))1−s(

2L 1
2
t
− 1

2
n

)s
≤ C̃1−s(2L 1

2
)st−

δ(1−s)+s
2

n

(
h

δ(1−s)
ρ + k

δ(1−s)
2

)
.

Setting σ = δ(1 − s) and Rs = C̃1−s(2L 1
2
)s yields the estimate

∥∥A s
2ρEh,k

n

∥∥
L ≤ Rst

−σ+s
2

n

(
h

σ
ρ + k

σ
2
)
, 0 ≤ σ ≤ 2, 0 ≤ s ≤ 1 − σ

2 ,

for n = 1, . . . , N . Therefore (4.3) holds.

Acknowledgments

We thank Arnaud Debussche for suggesting the consideration of covariances and higher order statistics. 
This motivated us to extend Theorem 4.7 from its original statement with K = 1 to K ≥ 1 and also to 
include Corollary 4.8. The second author was partially supported by the Marsden Fund project number 
UOO1418.

References

[1] A. Andersson, R. Kruse, S. Larsson, Duality in refined Sobolev–Malliavin spaces and weak approximation of SPDE, Stoch. 
Partial Differential Equations: Anal. Comput. (2015), http://dx.doi.org/10.1007/s40072-015-0065-7, online first.

[2] A. Andersson, S. Larsson, Weak convergence for a spatial approximation of the nonlinear stochastic heat equation, Math. 
Comp. (2015), http://dx.doi.org/10.1090/mcom/3016, online first.

[3] B. Baeumer, M. Geissert, M. Kovács, Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equa-
tions with multiplicative noise, J. Differential Equations (258) (2014) 535–554, http://dx.doi.org/10.1016/j.jde.2014.09.020.

[4] C.-E. Bréhier, Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space–time 
white noise, Potential Anal. 40 (2014) 1–40 (in English).

[5] C.-E. Bréhier, M. Kopec, Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a 
full-discretization scheme, arXiv:1311.7030, 2013.

[6] D. Conus, A. Jentzen, R. Kurniawan, Weak convergence rates of spectral Galerkin approximations for SPDEs with non-
linear diffusion coefficients, arXiv:1408.1108, 2014.

[7] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, 
vol. 44, Cambridge University Press, Cambridge, 1992.

[8] A. Debussche, Weak approximation of stochastic partial differential equations: the nonlinear case, Math. Comp. 80 (2011) 
89–117.

[9] C.M. Elliott, S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–
Hilliard equation, Math. Comp. 58 (1992) 603–630, S33–S36.

[10] M. Fuhrman, G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic dif-
ferential equations approach and applications to optimal control, Ann. Probab. 30 (2002) 1397–1465.

[11] E. Hausenblas, Weak approximation for semilinear stochastic evolution equations, in: Stochastic Analysis and Related 
Topics VIII, in: Progress in Probability, vol. 53, Birkhäuser, Basel, 2003, pp. 111–128.

[12] E. Hausenblas, Weak approximation of the stochastic wave equation, J. Comput. Appl. Math. 235 (2010) 33–58.
[13] A. Jentzen, R. Kurniawan, Weak convergence rates for Euler-type approximations of semilinear stochastic evolution equa-

tions with nonlinear diffusion coefficients, arXiv:1501.03539, 2015.
[14] A. Jentzen, M. Röckner, Regularity analysis for stochastic partial differential equations with nonlinear multiplicative trace 

class noise, J. Differential Equations 252 (2012) 114–136.
[15] M. Kovács, J. Printems, Strong order of convergence of a fully discrete approximation of a linear stochastic Volterra type 

evolution equation, Math. Comp. 83 (2014) 2325–2346.
[16] M. Kovács, J. Printems, Weak convergence of a fully discrete approximation of a linear stochastic evolution equation with 

a positive-type memory term, J. Math. Anal. Appl. 413 (2014) 939–952.
[17] C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988) 129–145.
[18] C. Lubich, Convolution quadrature and discretized operational calculus. II, Numer. Math. 52 (1988) 413–425.

http://dx.doi.org/10.1007/s40072-015-0065-7
http://dx.doi.org/10.1090/mcom/3016
http://dx.doi.org/10.1016/j.jde.2014.09.020
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib42726568696572s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib42726568696572s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib4272656869657233s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib4272656869657233s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib636F6E757332303134s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib636F6E757332303134s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6461707261746F31393932s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6461707261746F31393932s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib64656275737363686532303131s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib64656275737363686532303131s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib656C6C696F747431393932s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib656C6C696F747431393932s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib467568726D616E5465737369746F7265s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib467568726D616E5465737369746F7265s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib68617573656E626C6173323030335765616Bs1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib68617573656E626C6173323030335765616Bs1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib68617573656E626C617332303130s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6A656E747A656E32303135s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6A656E747A656E32303135s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6A656E747A656E3230313062s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6A656E747A656E3230313062s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6B6F7661637332303133s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6B6F7661637332303133s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6B6F7661637332303134s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib6B6F7661637332303134s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib4C756269636849s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib4C75626963684949s1


1304 A. Andersson et al. / J. Math. Anal. Appl. 437 (2016) 1283–1304
[19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sci-
ences, vol. 44, Springer, New York, 1983.

[20] C. Prévôt, M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, 
vol. 1905, Springer, Berlin, 2007.

[21] J. Prüss, Evolutionary Integral Equations and Applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, 
Basel, 1993, 2012 reprint of the 1993 edition.

[22] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, second ed., Springer Series in Computational 
Mathematics, vol. 25, Springer, Berlin, 2006.

[23] J.M.A.M. van Neerven, Stochastic Evolution Equations, ISEM Lecture Notes, 2008.
[24] X. Wang, An exponential integrator scheme for time discretization of nonlinear stochastic wave equation, arXiv:1312.5185, 

2013.
[25] X. Wang, Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus, 

arXiv:1408.0713, 2014.
[26] X. Wang, S. Gan, Weak convergence analysis of the linear implicit Euler method for semilinear stochastic partial differential 

equations with additive noise, J. Math. Anal. Appl. 398 (2013) 151–169.

http://refhub.elsevier.com/S0022-247X(15)00832-X/bib70617A7931393833s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib70617A7931393833s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib726F65636B6E657232303037s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib726F65636B6E657232303037s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib5072757373626F6F6Bs1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib5072757373626F6F6Bs1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib74686F6D656532303036s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib74686F6D656532303036s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib554D44s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib57616E67s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib57616E67s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib57616E6732303134s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib57616E6732303134s1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib57616E6747616Es1
http://refhub.elsevier.com/S0022-247X(15)00832-X/bib57616E6747616Es1

	Weak error analysis for semilinear stochastic Volterra equations with additive noise
	1 Introduction
	2 Preliminaries
	2.1 Spaces of functions and operators
	2.2 The Wiener integral and Malliavin calculus

	3 Existence, uniqueness and regularity
	4 Weak and strong convergence
	4.1 Approximation
	4.2 Strong convergence
	4.3 Regularity and weak convergence

	5 Examples
	5.1 Stochastic parabolic partial differential equations
	5.2 Stochastic Volterra integro-differential equations

	Acknowledgments
	References


