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Abstract
This paper studies the influence of turbulence on the sound reduction by a thin
screen with varying height. In the model used, the field due to the acoustic source is
substituted by a distribution of sources above the barrier (here called substitute
sources). The amplitudes of the substitute sources are randomly perturbed to
simulate the effect of a turbulent atmosphere. At the receiver the mean power is
calculated from a number of realisations. The results are compared to those from
using a mutual coherence function between all substitute sources. In this study only
two-dimensional situations are considered. The Kirchhoff approximation is used to
calculate the strengths of the substitute sources.
Introduction
Screens and buildings along the roadside are used as noise barriers for reducing the
traffic noise in residential areas. For a good prediction of the performance of noise
barriers, the non-homogeneous nature of the outdoor air is needed to be taken into
account.

In terms of physical modelling, the problem situation with a noise barrier in an
outdoor environment can be seen as consisting of two interacting processes:
diffraction (due to the barrier) and sound propagation in an inhomogeneous
medium. A direct numerical solution of the whole problem would in general be very
expensive computationally (using e.g. a finite element method), and therefore a
model is preferable where the two processes can be separated to some extent,
without too large approximations.

The approach is that the field at a receiver, due to a source, can be described as a
superposition of fields from a distribution of sources on a surface located between
the source and the receiver. The surface will here be called the substitute surface, and
the sources on it substitute sources. (See Figure 1.)

If the substitute surface is located between the barrier and the receiver, there will
be a free path from all substitute sources to the receiver. In a previous work [1], a
model using a mutual coherence function for a turbulent atmosphere is developed.
In the work presented here, the effect of a turbulent atmosphere is simulated by
realisations of random changes of the amplitudes and phases of the substitute
sources. The mean power at the receiver is calculated from a large number of



independent realisations. Both different models can be referred to as a substitute-
sources model.

In this model the turbulent atmosphere is assumed to cause an increased noise
level behind the barrier due to a decorrelation of the contributions from the
substitute sources. This implies that, in the absence of turbulence, the contributions
from the substitute sources must be interfering negatively.

The strengths of the substitute sources are, as an approximation, calculated as for
a barrier in a homogeneous atmosphere. This approximation would be acceptable for
weak inhomogeneity (a weak turbulence) and if the distance from the source to the
barrier is short compared to the total source-receiver distance.
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Figure 1. The substitute surface S and the normal velocity vn  there.

Theory and implementation
The strengths of the substitute sources need to be determined, i.e. the normal velocity
of the sound field at the substitute surface is needed as the source distribution for the
Rayleigh integral (see equation 1). In this study the normal velocity is approximated
by the free field due to the source, i.e. the Kirchhoff approximation, and the normal
velocity due to the introduction of the barrier is neglected.

Then the expected power at the receiver of the sum of the waves propagated
through the turbulent atmosphere from all the substitute sources needs to be
estimated. The spatial correlation functions for the amplitude and phase of the
substitute sources are used to construct the random realisations of the perturbations.

The theoretical description of the problem is held for three-dimensional
situations. The numerical results presented here are, however, for two-dimensional
situations, and the necessary modifications of the theory are shown.

If the substitute surface (denoted S) is a plane and the particle velocity vn  normal
to the plain is known, then the monopole source strengths of the substitute sources
are known, and the response p at the receiver position can be calculated as a Rayleigh
integral:

p = jωρ0
2π vnG dSS∫  , (1)

where ω  is the angular frequency of a time-oscillation e jωt with time t, ρ0  is the
medium density, vn  is the normal velocity, and G is a Green function. Any Green
function suitable for the situation can be used, for instance for a mean wind profile,



found either analytically, numerically or by measurements. Here, however, a Green
function for a homogeneous atmosphere is used.

If it is assumed that the barrier has a hard plane surface toward the receiver, then
the surface of integration S can be placed so that it coincides with the barrier's surface
toward the receiver, as shown in Figure 1. This leads to a simplified problem since
the particle velocity is zero on the hard barrier surface.

The normal velocity vn  on the surface S can be seen as consisting of two parts:
The free field contribution vn0 , set to zero on the barrier, and the contribution due to
the diffraction from the barrier vnd :

vn = vn0 + vnd .
In general, the free field velocity contribution vn0  can be obtained straightforwardly,
while the diffraction contribution vnd  is more complicated to obtain.
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Figure 2. Geometry for the calculations.
The Kirchhoff approximation is vn ≈ vn0 , which often can be applied when the
distances from source and receiver to the screen are large compared to the height of
the screen, i.e. for small diffraction angles (see Figure 2).

It should be noted that, strictly, this only holds for a semi-infinite screen. In real
cases the field diffracted at the screen edge might be reflected in a ground surface
and diffracted again at the edge, and thereby influence the field at the receiver. These
higher-order diffraction terms increase in strength when the screen height is reduced.
Therefore, the error when using the Kirchhoff approximation (or other common
diffraction theories) for a screen on ground can be substantial for very low screens in
comparison to the acoustic wavelength.

For situations without ground, it is concluded that the error is smaller than
about 1 dB for diffraction angles smaller than 12° if the frequency is sufficiently high
(so that the distance from screen to source and receiver is larger than about 30
wavelengths) [1].

Furthermore, when the Kirchhoff approximation is valid, a change of the
acoustic properties of the barrier surfaces will be without effect, since the free field
contribution will be unchanged. Also, changing a thin screen into a wedge will have
little effect. The reasoning above explains the applicability of one-way PE methods to
situations with low (but not too low) barriers. In these implementations the PE
method calculates wave propagation in one direction (outward from the source) and
a barrier is modelled by setting the pressure field equal to zero at the location of the
barrier [2]. The free field above the barrier is calculated correctly, and as long as the



Kirchhoff approximation is valid, the free field will produce the correct result at the
receiver. Consequently, when the Kirchhoff approximation is not valid one would
assume that the one-way PE method would give a substantial error, when including
a barrier.
When implementing the model, a finite substitute surface S is needed. If then the size
of the surface S is varied (or if the source or the receiver is moved), the error due to
the finite surface shows an oscillatory pattern, corresponding to the Fresnel-zones.
The introduction of an artificial damping of the substitute sources leads to weaker
oscillations and thereby a smaller surface is needed (see [1]).

There will be line-of-sight propagation from the substitute sources on the surface
S to the receiver, that is, no barriers or other obstacles are shielding the sound
propagation. The subject of line-of-sight propagation in a turbulent atmosphere has
been studied extensively (e.g. [3-7]), and the theoretical results most useful here deal
with the correlation between acoustic pressure signals that are received at different
positions but are originating from a single point monopole source. These theoretical
results can be applied to the reciprocal problem at hand: the correlation between
signals coming from different sources to one receiver position. The correlation
between signals from different sources is used to calculate the mean square pressure
amplitude for single frequencies. The correlation between two source signals is
usually described by the mutual coherence function Γ .
For the description of the turbulence, a homogeneous and isotropic turbulence is
assumed, that is, the fluctuations are assumed to follow the same statistics in all
points and in all directions. The turbulence is described by a fluctuating part of the
index of refraction following a Gaussian correlation function with the standard
deviation µ02 = 3 ⋅10−6  and the correlation length l=1.1 m. Other turbulence models
than the Gaussian could be used, and this would then lead to different mutual
coherence functions.

Temperature and velocity fluctuations affect the sound field in different ways.
The mutual coherence function for velocity fluctuations is deduced in [8, 7] where
also the older result for Gaussian temperature fluctuations is shown. Here, only
temperature fluctuations are considered, but to include other medium fluctuations
should not be a problem.

If we assume that the turbulence can be described by a Gaussian correlation
function we can write the mutual coherence function as [9, eq. 11]

Γ(L, ρ) = exp − π µ02k 2Ll 1 − Φ(ρ / l)
ρ / l

 
   

   
  

 
  , (2)

where k  is the wave number, ρ  the transversal distance between two sources, L  the
longitudinal distance, and Φ(z) = exp(−u2 )du0

z∫ .
For N  discrete source contributions pi  the mean square pressure amplitude can

be formulated as [10]
p2 = pi 2
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Figure 3. Longitudinal distance L and transversal distance ρ  for a pair of sources and one receiver.
The mutual coherence function can be deduced via the parabolic equation and the
Markov approximation [6]. Other methods than by using the parabolic equation can
be applied [11], but, in any case, it is assumed that the transversal distance ρ  is small
compared to the longitudinal distance L . This approximation leads to an
overestimation of the mutual coherence function.
An underlying part of the mutual coherence function consists of the correlation
functions for the log-amplitude and the phase fluctuations, which can be written,
respectively, as

Bχ (ρ) = χ (x)χ (x + ρ)

BS (ρ) = S(x)S(x + ρ ) , (4)
where  means expectation value, x  describes any point and ρ  is a transversal
separation with magnitude ρ  from that point. The amplitude and phase fluctuations
are described by χ = ln(A/ A0)  and S = φ − φ0 , where A is the amplitude in presence of
turbulence and A0  in absence, and φ  is the phase in presence of turbulence and φ0  in
absence. For the mutual coherence function (2) we have

Bχ (ρ) = BS(ρ ) = µ02k2Ll
π
2
Φ(ρ / l)
ρ / l , (5)

where L is assumed to be constant, at a value determined by the horizontal screen-
receiver distance (here, 900 m).

Assuming that χ  and S are Gaussian random variables, we can produce
realisations of χ  and S by filtering Gaussian white noise (independent samples) with
a chosen filter function. Starting with a correlation function B(ρ)  we can calculate the
impulse response of the wanted filter via a Fourier transform. First, B(ρ)  is sampled
at points   ρm = ∆ρ ⋅(0,1,K ,M −1) , where ∆ρ  is simply chosen to be the discretisation
needed to resolve the acoustic field (here, five points per wavelength is used). The
sampling length, M∆ρ , is chosen large enough that B(ρ)  is small for ρ ≥ M∆ρ ,
compared to B(0) . (Here, M∆ρ  is chosen to be 50 m, with l=1.1.) A window is
applied to smoothly force the function to zero before ρ = M∆ρ . (Here, half a
Hanning window starting at ρ=40 m is used.) Second, an autospectrum is calculated
as the discrete Fourier transform of the sampled and windowed version of B(ρ)  is



calculated. The inverse Fourier transform of the square root of this autospectrum is
the impulse response h(ρm)  of the wanted (finite impulse response) filter.

The realisations of the random data are then produced by the convolution of
h(ρm)  and Gaussian white noise with mean value 0 and variance 1. (Not all data are
used; the tails with lengths one sample less than the filter length are cut.)

Here, 500 realisations of χ  and S are used, and the mean value of the acoustic
power is calculated therefrom. For each realisation of χ(yi )  and S(yi )  at all discrete
points yi  on the substitute surface, the amplitudes p(yi )  of the sources are multiplied
by exp[χ (yi ) + j S(yi )] ⋅exp[−2Bχ (0)] .

The normalising factor exp[−2Bχ (0)]  is due to the mean power added when
amplitude fluctuations are introduced. This can be seen from the relation

ebξ = eb2 ξ2 / 2  , (6)
which is valid for a Gaussian variable ξ  with zero mean and for any constant b. Since
the power is proportional to the square of the absolute value of the amplitude, we
have b=2 and ξ2 = Bχ (0)  in the above.

When long data series are wanted, the above explained procedure for making
random data with a wanted correlation function is advantageous. For shorter data
series the commonly used procedures with Fourier modes [12, 13] or, similarly, by
assigning a random phase to each sample of the square root of the autocorrelation
function and then taking the inverse transform [14].
In the numerical study the geometry is two-dimensional, and the substitute surface is
a line in the vertical direction y, with sources in discrete points yi . Also the
turbulence is assumed to be two-dimensional. For the mutual coherence function (2),
the values of the input parameters are found from the projections on the vertical xy-
plane. This is in accordance with Salomons' analysis [15] for a Gaussian turbulence
that is rotationally symmetrical around the vertical axis through the source.
The acoustic pressure p0  due to a coherent line source is calculated as the far-field
approximation

p0 =
Q 2
πkR e− j(kR−π / 4) (7)

where Q is a source strength and R is the distance.
Results
This paper mainly studies how the influence of turbulence varies with screen height.
Here, the screen height is the vertical position of the screen edge compared to the line
through the source and the receiver. Starting with representing the free field solution
by substitute sources all the way from – ymax  to ymax  and then taking away source
after source, starting at – ymax , simulates an increasing screen height (under the
Kirchhoff approximation). The maximum height ymax  used for the substitute sources
is about 200 m, found by numerical tests in the absence of turbulence.

Artificial damping is introduced in the strength of the substitute sources to
decrease the small oscillations in the solution when the receiver distance is varied.
The damping is chosen to start at 75 m, and the strengths of the substitute sources



above that were multiplied by the factor, exp[−a * (y − 75)] with a=0.05 m−1. For the
discretisation, a horizontal distance between the substitute sources of λ / 5  was used.
The calculations are made for two frequencies, 500 Hz and 1000 Hz. The horizontal
distance from the source to the screen is d0=100 m and from screen to receiver
dr=900 m. No influence of a ground surface is modelled.

In Figure 4 the sound power for a varying screen height in a homogeneous
atmosphere at the frequency 500 Hz is shown. For screen heights lower than 75 m,
one can see the artificial decrease due to the damping of the strengths of the
substitute sources.
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Figure 4. Sound power relative to free field without turbulence, at the frequency 500 Hz.
Figures 5 and 6 show the influence of turbulence for the frequency 500 Hz. The
dashed line shows the result using the mutual coherence function (equations 2 and 3)
and the solid, thinner line shows the result from random realisations. The result
without turbulence (Figure 5) is plotted with a thick solid line.
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Figure 5. Sound power relative to free field with and without turbulence, at the frequency 500 Hz.
Studying the sound power in Figure 5, the results for the turbulent

atmosphere follows fairly closely the result for a homogeneous atmosphere. For a
screen well below line-of-sight (i.e. well below zero height) all results approximate



the free field solution. When increasing the screen height from minus infinity, the
effect of turbulence can be seen as a decrease in the oscillation amplitude. When the
screen height approaches zero and increases, the sound power for the turbulent
atmosphere falls off more slowly than for the homogeneous atmosphere. For positive
screen heights we then get a non-oscillating increase due to turbulence.

In figure 6 the increase due to turbulence is plotted in dB and we can see a
large influence of turbulence with a peak around the screen height 12-13 m, and then
a rapid decrease. The difference between the two curves in Figure 6 is small and
mainly looks like random errors. The small offset at negative screen heights is also
believed to be a random error, and not a bias error; each time the calculation is
repeated, the offset differs (see also Figure 7, where the offset is larger, and has
opposite sign).
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Figure 6. Increased sound level due turbulence, at the frequency 500 Hz.
Increasing the frequency to 1000 Hz (Figures 7 and 8) we can mainly notice an
increased influence of turbulence. Also the region where we have a large influence
(see Figure 8) becomes smaller: the peak is at around 8 m and dies down to less than
1 dB at about 30 m, compared to about 40 m at 500 Hz.

For very large screen heights, around 200 m and more, the numerical
resolution is getting low and rounding errors dominate the solution (see Figures 6
and 8).
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Figure 7. Sound power relative to free field with and without turbulence for the frequency 1000 Hz.
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Figure 8. Increased sound level due turbulence, at the frequency 1000 Hz.
Discussion and conclusions
The results from using random realisations compares well with the ones from using
the mutual coherence function. The results show a large influence of turbulence on
the sound reduction by a screen.

An interesting result is that the turbulence shows influence on the acoustic
power in the screen shadow only for a small range of screen heights. For higher
screens, the turbulence does not alter the acoustic power. This result is, however, for
a peculiar type of screen (or barrier), where the part of the sound wave that goes
toward the screen is totally absorbed, without influencing the (free) field above the
screen, i.e. the Kirchhoff approximation. Moreover, the Gaussian correlation function
is a rather poor approximation of the turbulent atmosphere, and a more realistic
description might lead to different results.
The two substitute-sources methods are not very expensive, computationally, for the
situations studied here, and need about the same computation time. For three-
dimensional situations, however, both methods will be much more expensive. The



computation time for the method with random realisations would roughly increase
linearly with the number of sources, whereas, roughly, a quadratic increase would be
expected for the method based on the mutual coherence function since the number of
source pairs would increase quadratically. Therefore using random realisations
might be an attractive alternative.
In this paper the turbulence is assumed to be introduced into a homogeneous free
space, and it is for this situation the used correlation functions and the mutual
coherence function has been deduced. It is, however, a reasonable approximation
that these functions also can be applied to a weakly modified medium, for instance
for a moderate sound speed profile, with the corresponding Green function. For a
more strongly modified medium, the correlation and coherence functions, as well as
the Green function, could be estimated numerically. In this respect the substitute-
sources model is applicable to a large variety of geometrical and atmospherical
situations.

For future work it would be of interest to extend the model to three dimensions,
with a point source and a three-dimensional turbulence. Also to take into account the
correct diffraction above the barrier would be of interest to try, i.e. to not use the
Kirchhoff approximation.

Moreover, it could be possible to include in the model a thick barrier of finite
length, a finite impedance ground, a sound speed profile, and an anisotropic and
inhomogeneous turbulence.
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