CHAL

UNIVERSITY OF TECHNOLOGY

Modeling and Optimization of Hybrid Systems

Downloaded from: https://research.chalmers.se, 2024-09-17 13:05 UTC

Citation for the original published paper (version of record):

Lennartson, B., Wigstrom, O., Riazi, S. et al (2015). Modeling and Optimization of Hybrid System:s.
IFAC-PapersOnLine, 48(27): 351-357. http://dx.doi.org/10.1016/j.ifacol.2015.11.199

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



ScienceDirect

Available online at www.sciencedirect.com

IFAC “*ic

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 48-27 (2015) 351-357

Modeling and Optimization of Hybrid Systems

Bengt Lennartson * Oskar Wigstrom * Sarmad Riazi *
Kristofer Bengtsson *

* Department of Signals and Systems, Chalmers University of Technology,
SE-412 96 Goteborg, Sweden (e-mail: bengt.lennartson @ chalmers.se)

Abstract: In this paper a predicate transition model for discrete event systems is generalized to include
continuous dynamics, and the result is a modular hybrid predicate transition model. Based on this
model a hybrid Petri net, including explicit differential equations and shared variables, is also proposed.
It is then shown how this hybrid Petri net model can be optimized based on a simple and robust
nonlinear programming formulation. The procedure only assumes that desired sampled paths for a
number of interacting moving devices are given, while originally equidistant time instances are adjusted
to minimize a given criterion. This optimization of hybrid systems is also applied to a real robot station
with interacting devices, which results in about 30% reduction in energy consumption.
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1. INTRODUCTION

A generic model for hybrid systems is proposed based on mod-
ular components and transition predicates on shared variables.
This modeling framework is an extension of a recently pre-
sented state-vector transition model, Lennartson et al. (2014a),
that unifies models for discrete event systems, such as automata
and Petri nets, optionally including discrete shared variables.
The extended hybrid predicate transition model (HPTM) is
shown to be both flexible, general and easy to adapt to different
types of hybrid automata and hybrid PNs. Ordinary hybrid
PNs (HPNs) David and Alla (2001) combine continuous and
discrete PNs. Continuous PNs were originally introduced as an
approximation of discrete PNs with many tokens, but they also
work well for modeling continuous flow systems. Logical con-
ditions on the continuous flows, represented by discrete places
and tokens, result in HPNs that are purely graphical models.

Different simplifications and generalizations of this hybrid
model have been proposed such as differential PNs, Demon-
godin and Koussoulas (2006), differential hybrid PNs, Sousa
and Lima (2008), and differential predicate transition nets, Vil-
lani et al. (2007). For pure flow systems, the graphical informa-
tion in HPNs on the continuous states gives a valuable insight.
In this paper it is shown that logical conditions on the continu-
ous flows are preferably expressed as predicates on continuous
states and discrete variables, instead of complex discrete place-
transition formulations. Moreover, a modular formulation of
HPNs is demonstrated to give more readable models for larger
systems.

We also propose hybrid Petri nets including differential equa-
tions (HPNDs), where differential equations (DEs) are intro-
duced in a similar way is in hybrid automata Alur et al. (1993).
The parallel behavior of HPNs means, however, that some re-
strictions are introduced, where an HPND must be complete
and nonconflicting to guarantee a well formulated continuous
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time model. HPNDs are appropriate especially for systems that
have no pure flow character, such as moving devices with dou-
ble integrator and/or resonance dynamics.

Explicit DEs are also used in differential predicate transition
nets, Villani et al. (2007), which are related to high level PNs
where tokens involve data. Our proposed HPNs, including both
explicit differential equations and shared variables, are on the
other hand based on ordinary PNs. They have a more simple
and modular structure, where shared variables are introduced to
easier express complex logical relations between different local
HPN models.

The proposed extensions of hybrid Petri nets are used for opti-
mization of hybrid systems. Barton and Lee (2002) argue that
hybrid optimal control problems are very difficult to solve, due
to the combinatorial explosion in the discrete decision space,
combined with the infinite dimensional continuous trajectories
in each mode. However, a general and efficient method for
optimization of hybrid systems, recently presented in Wigstrdom
and Lennartson (2014), is further developed in this paper for
moving devices with a given path. A procedure adjusting the
time axis by a simple nonlinear programming formulation is
shown to work extremely well for energy optimization of robot
stations, including shared and interacting zones. The energy
consumption is evaluated on real industrial robots with impres-
sive reduction of the energy consumption.

The main contributions of this paper are as follows: A recently
presented predicate transition model is generalized to modular
hybrid predicate transition systems. A new type of modular
HPNs including differential equations and shared variables
is also proposed, demonstrated and applied to a real robot
station with interacting moving devices. Furthermore, a simple
and powerful strategy for optimization of hybrid systems is
proposed for moving devices, where the path is given but not
the complete trajectory. Applying this method shows that up to
30% energy reduction can be obtained for real industrial and
interacting robots.

In Section 2 the hybrid predicate transition model is presented,
followed by different types of hybrid Petri nets, presented in
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Section 3. In Section 4 it is shown how hybrid systems can be
optimized, and conclusions are given in Section 5.

2. GENERIC MODEL FOR HYBRID SYSTEMS

A generic model for hybrid systems is presented in this sec-
tion, based on modular components and transition predicates
on shared variables. It is an extension and clarification of a
preliminary formulation in Lennartson et al. (2014b).

2.1 Hybrid Predicate Transition Model

First, observe that a subset W of a set X can also be defined by
the predicate mapping W : X — Bas W(z) = liffx €¢ W
and W(x) =0iffx ¢ W.

The proposed hybrid predicate transition model (HPTM)
is based on a universal ordered set (tuple) of wvariables
(21,...,2y). This tuple includes both discrete and continuous
variables, where the domain of definition for each variable x;
is X;. A subset of these variables is included in a tuple x for
which the HPTM is defined.

Definition 1. (Hybrid Predicate Transition Model). A hybrid
predicate transition model G is a 9-tuple
G: <Qz7QIC7X7E7T7X07Xi7Xm7Xin7j>7 (1)

where

1) Q2 = {j1,...,Jn} is the index set for the tuple z =

Tjys---3Tj, ).
(i) Q. = {¢1,...,4, } is the index set for the tuple x. =
(gy,-..,xe, ) of continuous state variables, also being a

subset of the variables in z.
(i) X = X,
(iv) X is a finite set of events.

x -+ x Xj is the domain of definition for .

(v) T is a finite set of transitions. Each transition is a tuple
(0,C), where 0 € Y and C : X x X — B is a predicate
on the current value x and the next value .

(vi) X.: X x X. — B is the continuous state predicate on the
current value = and the time derivative of the continuous
state vector ., where X, is the domain of definition
for x..

(vii) &; : X — Bis apredicate, defining possible initial values
of x.

(viii) &, : X — B is a predicate, defining marked (desired)
values of .

(ix) Xjnp : X — B is a predicate, defining desired invtariants
of x that must always be satisfied. a

The tuple x is normally divided into three parts x = (2, u., Z4),
including the continuous state variables in z., but also contin-
uous input signals in u. and discrete variables in x4. Thus,
Q.. C Q, and the domain of definition X includes both
continuous and discrete domains. The reason to introduce the
index set 2, is that variables can be arbitrarily shared between
different local models. The predicates are generated by boolean
expressions, including conjunction A, disjunction V, and nega-
tion —, while relations between variable values involve the
operators =, #, <, >, <, and >.

A transition (o, C) is enabled when the predicate C(z, ) is true.
When the enabled transition is executed the event o occurs.
Also note the condition on the next value £ € X. Assuming that

X ={0,1,...,n}, this means that the conditions & = = + 1
and £ = x—1 implicitly include the additional guards x < n
and x > 0, respectively. These guards on the current value of x
do not need to be explicitly introduced, since they are achieved
by the domain of definition for .

Keep-current-value semantics  When no condition on £; is
included in C(z, £), it is assumed that x ; keeps its current value.
Therefore, consider the index set

Q¢ = {j | condition on Z; in C(z, £)}.

Any expression involving £;, such as £; = z; +2or £; < 3,
implies that j € Q¢. No condition on #; in C(x, %) yields
J € Qg \ Qc, and the variable z; will be assumed to keep its
current value, i.e. £; = x;. Introducing the keep-current-value
predicate

Cor(, )= N\ dj=a5, ®)
jEQw\QC

the complete transition predicate for transition (o, C) becomes
O(x, %) = C(x,£) A Cep(x,£). This results in the following

set of explicit state transition relations {(z,0,%) € X x 3 x
X|3(o,C) e T:P(z,1)}.

Continuous dynamics ~ The predicate X.(x,&.) typically in-
cludes a nonlinear state space model &, = f(x), where the
dependency on the discrete part in  may result in different
dynamics depending on the actual value of ;. More general
forms like the differential algebraic equation g(z, &.) = 0 and
differential inclusions such as . > f1(z) A . < fo(x) may
be included in the predicate X.(x,Z.) as well. The continuous
state variables can also be updated at the transitions as state
jumps, where resetting clocks is a classical example.

2.2 Synchronous Composition

The synchronous composition of HPTMs is defined based
on Hoare’s full synchronous composition Hoare (1978), but
extended to include shared variables.

Definition 2. (Synchronous composition of HPTMs). Let G =
(Q’;,Q:’;C7Xk,Z’“,T’ﬁXf,Xﬁ,XﬂXi’;v}, k = 1,2, be two

HPTMs, including their individual tuple of variables z*. The
synchronous composition of G and G? is then defined as

G'G*=(Q,uQ2 0L U2 X, 2 USE T, X A X2,
X AXE XL AXZ XL N X

muv 1n'u>7

where the domain of definition X and the corresponding tuple
of variables x are defined based on the index set QL U Q2,
according to Definition 1. The transition (o,C) € T is defined

for each combination of (o, C*) € T*, k = 1,2, such that
Cl(zt, #Y AC? (2%, 4%), o € 2T N X2
cl(xt, Y, ceX\¥?* . (3
C*(x?,4%), oexi\x!

Clx,2) =
0O

The reason why the synchronization in (3) only involves the
predicate condition C, but not the keep-current-value predicate
Cev, 1s that shared variables can be updated in different HPTMs.
The keep-current-value predicate is therefore a global property
that can be determined first after all local models have been
synchronized. Then, the set ¢ for the global model and the
complete transition predicate ®(x, ) are determined.
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It is reasonable to assume that a continuous state variable is
only updated in one local model. Thus, it is assumed that the
continuous state vectors x} and x2, representing the continuous
state of corresponding local model, do not have any shared
variables. This means that 2,1 N (2,2 = &. Logical conditions
on these state variables are typically transferred between the
local models by discrete variables. This is illustrated in the
following example, where it will also be shown how modular
representations of hybrid systems are easily formulated by
HPTMs.

Example 1. (Two robots with shared zone). Consider two one
degree of freedom (1-DOF) robots with identical continuous

dynamics
i o
L'Jk} N {—dcos(@k) +uk |’ @

where d is the distance to the center of gravity, and £ = 1,2
for the two robots. Also, suppose that these robots are to move
through a shared zone. The robots are in this shared zone when
|6%| < /4 and outside otherwise. To avoid collision between
the two robots, the shared zone is considered as a common
resource that needs to be booked to be allowed to access the
zone. This is easily represented by a shared discrete variable
Z € {0,1}, where Z = 0 means that the zone is booked, and
Z =1 the opposite.

The hybrid system involving the two robots is modeled as
two local HPTMs G*. In Fig. 1 the local G* is graphically
represented as an automaton, including the shared variable Z
for the discrete part and the continuous state invariants. The
initial location is outside the shared zone (|6*| > 7/4), and the
common continuous-time dynamics is given by the continuous
state predicate % = w* A WF = —dcos(0*) + u*. Moreover,
notice the individual tuple of variables ¥ = (6%, w* u*, Z),
which includes both the continuous state variables 8% and w”,
the input signal u*, and the shared discrete resource variable
Z that is common for G' and G?, resulting in the total hybrid
system G = G*||G?. g

Compared to the well-established hybrid automaton, see Alur
et al. (1993), this HPTM is more general, clean and flexible.
The logical behavior can be expressed not only by transitions
between specific locations, but also by combining locations
with discrete variables, in this example the shared zone vari-
able Z. Also note the modular formulation, where all variables
are local, except for the shared variable Z.

The HPTM is not bounded to any specific graphical representa-
tion. Our experience shows, however, that focusing the graph-
ical model on parts of the discrete behavior, including some
shared discrete variables, as Z in Fig. 1, is often preferable.

Gk l Z=z-1

4 4

Z=27Z+1

0% = wk AWk = —dcos(0F) + uF

Fig. 1. Local HPTM for a 1-DOF robot, where the discrete
part is modeled as an EFA, including the discrete shared
variable Z representing the shared zone between the two
robots.

The continuous part can often be modeled by a common set
of differential equations, where mode specific details are han-
dled by adding local discrete variables that are updated at the
discrete transitions. A graphical representation also involving
continuous time dynamics is an additional option included in
the next section, where different versions of hybrid PNs are
presented.

3. HYBRID PETRI NETS

Hybrid Petri nets, including different combinations of graphical
and equation based formulations, will be discussed in this
section. They are all formally defined as HPTMs, but with
different graphical representations.

3.1 Ordinary Hybrid Petri Nets

In an ordinary hybrid Petri net, David and Alla (2001), both the
discrete and the continuous dynamics are represented graph-
ically. This includes both discrete places (circles) and con-
tinuous places (double circles), as well as discrete transitions
(filled thin rectangles) and continuous transitions (empty thin
rectangles).

To illustrate a HPN, consider the tank process in Fig. 2, where
liquid is added and removed from three tanks by input and
output on-off valves (open vy, = 1, closed vy, = 0, k = 1,2, 3).
Furthermore, vessels on a conveyor belt are filled with liquid by
pumping from the third tank. The check valve is open when the
height iy in Tank 1 is higher than the height ho in Tank 2. To
examplify the continuous flow, observe that the height in Tank 2
is defined by the differential equation

1
i (v2g2 + qu2 —v3q3) b1 > ho,
; 2
ho =4
I(Uqu — v3q3) hy < hs.
2

Example 2. (HPN for tank process). An HPN for the tank pro-
cess in Fig. 2 is shown in Fig. 3. The flow rates q1, q12, g2, and

%Valve 1 %Valve 2

Tank 1 || Discrete ~
level Tank 2
indicators~
~
Hé g ? Check valve “ _D
) Mixer
Heater
Continous
Val
Temp. sensor é level indicator % alve 3
Mixer

Discrete
level
indicator

Tank 3

Empty Disgl‘r‘ete N

vessels .pcglgltlton \ PUMp. gijjeq
U/ \U\ml{jor U/vessel
O O O O O O Q

Conveyor

Fig. 2. A tank process including three tanks and a conveyor
where vessels are filled with liquid, cf. Pettersson and
Lennartson (1995).
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Fig. 3. An HPN for the tank process in Fig. 2, cf. Pettersson and
Lennartson (1995).

qs are defined at the continuos transitions, including weighting
factors at the edges. The on-off valves are represented by dis-
crete decision places that control the continuous transitions by
self-loops. Moreover, the transitions on the check valve model
the on condition h; > hs and the off condition h; < ks by self-
loops on the continuous height places iy and ho, respectively.

The discrete transition above place F'C'is fired when hg > Ahg
and there is a discrete marking in place F'P (filling position).
When this transition is fired the height h3 is immediately
reduced by a quick pumping action. This is modeled as a

continuous state jump, such that the updated height hs = hs —
Ahs. O

3.2 Modular Hybrid Petri Nets with Shared Variables

Instead of modeling all discrete conditions graphically, some
of them can be expressed by predicates in an HPN. An HPN
can also be separated into local hybrid Petri nets including
shared variables (HPNSVs). This is illustrated in the following
example.

Example 3. (HPNSVs for tank process). Consider the HPN in
Fig. 4, where the on-off valves have been simplified to predi-
cates on the discrete variables v1, ve, and vs, and the predicate
on the check valve depends the heights i and ho. Obviously,
it is easier to understand the predicates in Fig. 4, especially the
one on the check valve, compared to corresponding graphical
representations in Fig. 3.

A modular version of this HPN is given by three HPNSVs in
Fig.5, where shared variables hi, ho, and g2, and a shared
event ¢ are used to synchronize the behavior between the local
HPNSVs. Note that the modularization is not unique. The right
continuous flow including Tank 2 and Tank 3 can also be
divided into two HPNSVs, one for each tank. Alternatively, all
three tanks can be composed into one HPNSV. a

Comparing the HPNs in Fig.4 and Fig.5 shows that for flow
systems of moderate size the global model in Fig.4 may be

vi=1 q1

1/41

/A q12 /A
1/A, 1/A
m Q)

h1>ho
1/Aq

43 == v3=1

1/A3

O

EC FP FC
(@) —— O
Fig. 4. An HPN including explicit predicates, modeling the
same behavior as the HPN in Fig. 3.

preferable. For larger systems, benefits are on the other hand
achieved by dividing global HPNs into smaller communicating
modules, which sizes depend on the actual application.

3.3 Hybrid Petri Nets with Explicit Differential Equations

For systems without a natural flow, hybrid Petri nets including
explicit differential equations (HPNDs) are often preferable.
Differential equations (DEs) are then introduced at discrete
places in a similar way as DEs are included in hybrid automata,
optionally including shared variables, see Fig. 1. There is, how-
ever, one fundamental difference, where a hybrid automaton has
only one active or executing location at a time, and the DEs in a
specific location are only executed when that location is active.

PNs, on the other hand, may include parallel behavior, where
tokens are distributed in various places at the same time. For
a place p; with a number of tokens m;, the place is called an
active place when m; > 0. In the proposed HPND it is assumed
that all DEs included in an active place are executed, as long as

q2 == vy =1

1/Ay
q12
1/Ao
q1 == v1 = |]+>© ho
1/A, h1>ha
1/Aqo
@ h1 3 == v3=1
1/A3
1/Aq
q12 == hy >hs @ h3
Ahs
— O
EC FpP o FC
o ()1 R I
—)—t—0—

Fig. 5. A number of HPNSVs, modeling the same behavior as
the HPNSs in Fig. 3 and 4.
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this place is active. A number of places may be active at the
same time, and DEs are generally distributed arbitrarily among
the places, including a number of places without any DEs.
Thus, there is a potential risk that different DEs for the same
continuous state variable are defined in different places, which
happen to be active at the same time. In the same way, some
continuous state variables may lack DEs for some specific token
combinations. Therefore, two formal conditions are introduced
to avoid these problems.

In each place p; of an HPND, local DEs, or more generally
conditions on z, are defined by a local continuous-state place-
predicate X,;(x, &), and the set

Qu,, = {j| condition on &; in X,;(x, &)}

is the index set for the continuous variables x; for which there
are conditions on their time derivative in X,;. No condition on
Z. in a place p; means that X,;(x,&.) = True and Qx,, = 2.
The time varying set §,,, = {i|m; > 0} is the index set for
the currently active places p;, where there is at least one token
(m; > 0). This set is updated after each discrete transition in
the HPND.

When there are conditions on all continuous state derivatives
for each reachable marking vector m, an HPND it is said to be
complete. At the same time, conditions on the derivative of one
specific state variable &; should not be included in more than
one active place, to avoid conflicts in the continuous state space
solution. An HPND without such conflicts for any continuous
state variable and for all reachable markings, is said to be non-
conflicting. These two properties are now formalized in the
following definition.

Definition 3. (Complete and nonconflicting HPND). An HPND
is complete, if for each reachable marking vector m

U Q. =9, (5)
1€Q,
and nonconflicting, if for each reachable marking vector m
Qx, NQx,, =2, i F J. (6)
O

i,J € Qm,

The following example illustrates these properties for an HPND
version of the two robots in Example 1.

Example 4. (HPND for two robots with shared zone). An HP-
ND corresponding to the two 1-DOF robots in Fig. 1 is shown in
Fig. 6, where the continuous dynamics has been simplified to a
double integrator process, and the invariants have been replaced
by entry and exit points for the shared zone. The continuous
state vector is z. = (01,0',62,6%), and v = (x.,m) where
m is the marking vector. Therefore, €2, = {1,2,3,4}, and we
see that the conditions (5) and (6) are satisfied for the initial
marking my, since Q,,, = {1,3,5} and Qx, = {1,2},
OQx, = {3,4}, while Qx. = @. In the same way these
conditions are satisfied for the other reachable markings, where
Q,, = {2,3} and Q,,, = {1, 4}. Thus, (5) and (6) are satisfied
for all reachable marking vectors, and the HPND is complete
and nonconflicting. m|

For a complete and nonconflicting model, the predicate X,
in Definition 1 can be expressed as X, = A, cq,, Xei- Fur-
thermore, if two local HPNDs G and G5 are complete and
nonconflicting, the synchronized version G1||G2 will be the
same. This means that modular HPNDs are formally defined
as HPTMs, according to Definition 1.

91 =41 D1 p3 02 =2
1_pl 2_p2
0 _027 0 _927
Z
21 62 —q2
2_p2
02=02,

Fig. 6. HPND for the two 1-DOF robots in Fig. 1.

Combining HPNDs and HPNSVs results in hybrid Petri nets
including explicit differential equations and shared variables
(HPNDVs). This is a flexible modeling language, where graph-
ical modeling can be used where it has its strength, typi-
cally showing continuous and/or discrete flows between places.
Complicated logical conditions related to mutual exclusion,
synchronization, precedence relations, and continuous states
are preferably expressed by predicates on discrete and contin-
uous variables. Logical conditions between places, far away
from each other, generate complex graphical models. These
models may be much harder to understand than modularized
HPNDVs with added explicit transition predicates on variables,
whose names can be chosen to clearly express the meaning of
for instance resource booking and conditions on continuous
variables, as in Fig.5. In the next section it is shown how
robot systems modeled as hybrid Petri nets can be optimized,
especially concerning energy consumption.

4. OPTIMIZATION OF HYBRID SYSTEMS

The objective in optimization of hybrid systems is to com-
pute optimal or sub-optimal trajectories for the systems. In
the context of hybrid systems, a trajectory can be regarded as
a sequence of discrete modes, as well as a set of continuous
trajectories describing the continuous dynamics for each dis-
crete mode. The combinatorial explosion in the discrete deci-
sion space, combined with the infinite dimensional continuous
trajectories in each mode makes the hybrid optimal control
problem very difficult to solve, Barton and Lee (2002). Several
approaches to solve this challenging problem have been pro-
posed. These fall into two categories, indirect and direct meth-
ods. The field of indirect methods include different variations
of Dynamic Programming (DP), e.g. Branicky et al. (1998);
Hedlund and Rantzer (2002). While these approaches guarantee
a globally optimal trajectory, they also suffer from the ’curse of
dimensionality’.

In this paper, direct methods are considered, where local opti-
mality is sufficient. The problem is split into two parts, search-
ing the discrete mode sequence search space, and computing
the optimal continuous trajectories for each discrete candidate
sequence. Take for example, the Hybrid Maximum Principle
(HMP), in which a set of necessary conditions for optimality
is posed, Sussmann (1999); Shahid Shaikh and Caines (2007).
Within a neighborhood of mode trajectories, a combinatorial
algorithm searches for the optimal sequence, and for each mode
trajectory, the optimal continuous-time state trajectories are
determined using for instance collocation, Benson (2005), or
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a shooting method, Riedinger et al. (2005). The discrete search
space may be modeled using mixed integer constraints. In com-
bination with the continuous dynamics, this results in a mono-
lithic non-convex Mixed Integer Nonlinear Program (MINLP),
Avraam et al. (1998); Barton and Lee (2002) or a Generalized
Disjunctive Program, Oldenburg and Marquardt (2008).

4.1 Collocation and Integrated CP/NLP Optimization

In collocation, the continuous states and inputs are approxi-
mated as polynomials, and a common approximation is to use
Lagrange polynomials on the interval [—1, 1] given by

A
L(t) = th — {=0,..,N.
70

We see that Ly(t;) = 1if ¢ = i and Ly(¢;) = 0if £ # ¢, and the
continuous state vector x.(t) is approximated by X, (t) as

N
zo(t) & Xe(t) =Y Lu(t)ze(te).
=0

where X.(ty) =x.(t,). Differentiation yields the approximated
continuous state derivatives X, (¢;) = Zé\[:o Ly(t;)xc(te).
Now, assume that a hybrid system occupies a mode during an
interval [t,,, t;n41], and transform the time scale above from
t € [—1,1] into [ty,, tm41]. This continuous model approxima-
tion can be applied to any nonlinear state space model and op-
timization criterion. Including a sequence of mode transitions,
all state and input variables as well as mode starting times t,,
are determined by solving coupled NLPs for multiple modes.
Adding different discrete sequences, the optimization of the
total hybrid system becomes a MINLP.

Instead of solving the MINLP by traditional relaxation meth-
ods, we combine in Wigstrom and Lennartson (2014) Con-
straint Programming (CP) for the discrete sequences with NLPs
for the continuous dynamics. This integrated approach has
mainly been used to solve optimization problems involving
CP and MILP, Lombardi and Milano (2012). In our integrated
algorithm, decisions in CP are branched upon just like in a
branch and bound MINLP algorithm, but instead of solving
a relaxation, constraints are propagated in each node until a
criterion is satisfied. The good performance of the integrated
approach compared to classic MINLP is mainly due to CP’s
ability to rule out infeasible branches at a much earlier stage.
Additionally, if a branch is feasible, the propagation may still
speed up the search by inferring and fixating decisions other-
wise handled by branching.

Applied to an example where four AGVs are to move through
an intersection without collisions, cf. Wigstrom and Lennartson
(2014), the integrated algorithm manage to reduce the number
of NLPs by more than a factor 4 compared to an ordinary
but efficient MINLP solver. The added time of running the
CP routines was less than 10% of the running time for the
algorithm. Thus, an integrated CP/NLP approach is a strong
candidate for solving MINLP problems that results when hybrid
systems are optimized by numerical methods and nonlinear
criteria.

This collocation and integrated CP/NLP optimization approach
can be directly applied to modular HPNDVs, for instance
for energy optimization of coordinated moving devices. An
important industrial application is multi robot stations where

robots are acting in the same area, Vergnano et al. (2012). The
proposed method is recommended when arbitrary but collision
free optimal paths are requested. However, when the path is
already given, a much simpler method will now be introduced.

4.2 Given Paths for Moving Devices

Consider a set of moving devices, where each device Dk
includes a number of joints with joint positions in a vector 6%,
also called the pose. For an industrial robot with six degrees
of freedom, dim(0*) = 6. Assume that the pose is given at a
number of individual time instances ¢§, . . . , t%. for each moving
device. The pose at time ¥ for device D¥ is denoted 6%, and all
poses 0F ..., 0%, define a path. Given a path for each device, the
goal is to determine corresponding velocities and accelerations
for all devices such that an overall criterion as minimized. The
velocities are estimated as

\k E kY /( 4k k
O = (041 — 07)/(tiq — t7)
In the same way, the accelerations are estimated as
ik ik Gk /(K k
0 = (0711 — 07)/ (tip1 — )
When the joints are moved by servo motors, the joint motor
currents are assumed to be expressed by the vector function
i =af o 4+ 5% 008 +~* o cosbf + oF
where o = Hadamard (entry-wise) vector multiplication. The
parameters in ¥ and 6% are included to model the effect
of gravitational forces. The goal is to minimize the sum of
weighted squared currents
r N-—1
kE kT k
Z Z(W oig) iy (N
k=1 £=0
which is an approximate normalized measure of the electrical
energy consumption, where the vector wf introduces individual
weights on the different joints of the moving devices.

Assume that 95, if and tf are given for ¢ € {0,...,N},
either based on physical experiments or simulations. Including
the velocity and acceleration estimates, the parameter vectors
ok, gk, 4%, and 65 are first determined by least squares es-
timation for each individual robot path. The time instances
th ...tk are then adjusted (decision variables) such that
the criterion (7) is minimized, including constraints on maximal
permissive velocities, accelerations and jerks (the derivative of
the accelerations). Modifying these time instances, where the
different poses ¢} are passed, means that new velocities and
accelerations will be obtained.

This optimization procedure has been applied to industrial
robots with a given path and an original equidistant sampling
interval t§ 1 th = A = 12 ms. Applying this optimization
procedure on an individual robot results in an NLP. Further-
more, the resulting trajectory, with adjusted non equidistant
sampling instances t, for the given robot poses, is interpolated
and resampled with the original sampling period 12 ms. This
modified trajectory is then converted to trajectory control code
that is possible to directly execute by KUKA-robots.

A real KUKA robot KC30 is moved from home to fully ex-
tended position first based on standard point-to-point robot
commands. Based on the resulting path and currents as input,
the proposed optimal solution results in about 20% reduction
of the energy consumption. The reason for this significant re-
duction is that the built-in goal to keep constant velocity by
ordinary robot commands is replaced by something close to
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constant jerk in the optimized motion. Observe that this op-
timization procedure does not require any detailed physical
model, involving inertia and damping matrices that are hard
to obtain from robot vendors. The proposed optimization only
needs a densely sampled path including motor current measure-
ments, which are easily obtained from real robot experiments.

By extending the optimization to two industrial robots with a
shared zone modeled as the HPND in Fig. 6, where the poses 6*
and A2 are now six dimensional vectors, some more conditions
need to be included. In this paper we focus specifically on
the mutual exclusion problem, where the entry and exit points
9;, and 0§+ for the two robots are assumed to be given, and
the corresponding time variables at these points in the original
paths t%_ and t’§+ are identified. In the optimization, the values
of these time variables may be changed, but the following
condition

tye <15 Vig. <ty ®)
is included to guarantee that either the first robot will exit the
zone before the second one enters, or the opposite. The resulting
optimization problem is in this case a MINLP, but the only
alternative scenarios that need to be evaluated in this problem
are the two given by the alternative in (8).

Performing the optimized trajectory on the physical robots
results in an energy reduction of about 30%. In this case the
reduction is also a result of replacing normal waiting time (to
avoid collisions), followed by full speed in the original solution,
by slow speed motions and no waiting in the optimized version.
The computations for this robot station only take a few seconds,
and the energy reduction is impressive. Even for motions up to
30 seconds (2500 time points), the computation takes roughly
about a minute.

5. CONCLUSIONS

A recently proposed predicate transition model for discrete
event systems has been generalized in this paper to include
continuous dynamics, resulting in a hybrid predicate transition
model (HPTM). To obtain a hybrid model involving graphical
elements, either hybrid automata or hybrid Petri nets can be
adapted to the HPTM. In the latter case we propose a hybrid
model where both explicit differential equations are added to
discrete places, and shared discrete variables are introduced to
simplify the graphical part of the discrete logics. Special con-
ditions have been introduced for such hybrid PNs to guarantee
that a complete and nonconflicting continuous model is formu-
lated. Based on the proposed hybrid PN, a simple optimiza-
tion procedure has also been formulated and applied to energy
optimization of real industrial robots. Applying this routine on
interacting robots shows that the energy consumption can be
reduced up to 30%.
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