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Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of
native metabolites or to endow cells with the ability to produce new products. The potential appli-
cations of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds,
and pharmaceuticals. However, making cells into efficient factories is challenging because cells
have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication
between molecular pathways that resist efforts to divert resources. Here, we will review the current
status and challenges of metabolic engineering and will discuss how new technologies can enable
metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control
for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways
that overcome cellular regulation.
Introduction
For at least 8,000 years, humans have harnessed microbes to

produce fermented foods and beverages. In more recent his-

tory, microbes have been used to produce chemicals for a

wide range of applications. During World War I, Chaim Weis-

mann developed the acetone-butanol-ethanol fermentation pro-

cess, which was used for �50 years to produce acetone and is

now being revived for production of 1-butanol. In the 1920s,

fermentation of the filamentous fungus Aspergillus niger was

adapted to generate citric acid, a food and beverage ingredient.

During World War II, the same technology was used for indus-

trial scale production of penicillin, the first pharmaceutical pro-

duced by fermentation.

The following decades witnessed a dramatic increase in the

useofmicroorganisms to synthesize natural products of pharma-

ceutical interest, such as antibiotics, cholesterol lowering agents,

immunosuppressants, and anti-cancer drugs. Improved perfor-

mance of classical fermentation processes for such purposes

was typically achieved through mutagenesis and screening.

For antibiotics in particular, this was an extremely efficient

approach, with penicillin production using Penicillium chrysoge-

num boosted by more than 10,000-fold (Thykaer and Nielsen,

2003). Although genetic engineering made it possible to use a

more directed approach to improve metabolism, most work

focused on the development of cell factories for production of re-

combinant proteins for use as pharmaceuticals, and today, there

aremore than 300 biopharmaceutical proteins and antibodies on

the market with sales exceeding $100 billion (Langer, 2012).

With the late 1980s and early 1990s came new insights into the

complex inner workings of cellular metabolism, fueled by bioin-
formatics and mathematical modeling methods that allowed

quantitative analysis. This enabled specific genetic modifica-

tions altering cellular metabolism to be introduced, such that

fluxes could be directed toward the product of interest. Thus,

the field of metabolic engineering was born (Bailey, 1991; Ste-

phanopoulos and Vallino, 1991; Nielsen, 2001; Keasling, 2010).

Now, more than twenty years later, metabolic engineering has

been exploited not only to improve traditional microbial fermen-

tation processes, but also to produce chemicals that are

currently used as fuels, materials, and pharmaceutical ingredi-

ents (Table 1).

Despite the advanced systems and synthetic biology technol-

ogies now available for detailed phenotypic characterization of

cells and genome editing, developing new cell factories that

meet the economic requirements for industrial scale production

is still challenging, typically requiring 6–8 years and over $50

million. The reason for this is inherent to the cells themselves.

To ensure metabolic homeostasis even when exposed to vary-

ing environmental conditions, cells have evolved extensive

regulation and complex interactions between metabolic path-

ways. Redirecting carbon fluxes toward desired metabolites

therefore requires modulating the lines of communication in

endogenous metabolic pathways or infiltrating the system with

disruptive signals that interfere with these regulatory mecha-

nisms. At present, our knowledge of how metabolism is regu-

lated even in simple model cells is limited. As a result, engineer-

ing a cell factory involves several rounds of the so-called

‘‘design-build-test’’ cycle, in which a certain metabolic design

is implemented and improved through genetic engineering

and thereafter tested.
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Table 1. Some Success Stories of Metabolic Engineering

Chemical Application Cell Factory Companies

Lysine feed additive (>1 million tons/year) Corynebacterium glutamicum Evonik, ADM, CJ, Ajinomoto

1,3-Propanediol chemical building block, e.g., for production

of materials, cosmetics, and food ingredients

Escherichia coli Dupont and Tate&Lyle

joint venture

7-ADCA precursor for the broad-spectrum antibiotic

Cephalexin

Penicillium chrysogenum DSM

1,4-Butanediol chemical building block, e.g., for production

of Spandex

Escherichia coli Genomatica

Artemisinic acid anti-malarial drug Saccharomyces cerevisiae Sanofi Aventis (process

developed by Amyris)

Isobutanol advanced biofuel Saccharomyces cerevisiae Gevo, Butamax
Here, we will discuss the principles and current challenges of

metabolic engineering, focusing on how metabolism can be en-

gineered for industrial level production of specific chemicals,

either through de-regulation of endogenous metabolism or

through insertion of heterologous pathways that overcome

cellular regulation. We will then discuss how technologies devel-

oped in recent years can contribute to the design-build-test cy-

cle and how adding a fourth element to this cycle, namely

‘‘learn,’’ can improve the process. Based on implementation of

specific metabolic designs, can we gain new knowledge about

how metabolism operates and how it is regulated and subse-

quently use this knowledge for improved design?

Challenges for Metabolic Engineering
Even though metabolic engineering has found applications in

optimization of existing processes, much of the current focus

is on the development of novel bioprocesses. In the fuel and

chemical industry, there is much interest in exploiting the poten-

tial of bio-based production for two major reasons: the sustain-

ability factor and the possibility of producing new molecules.

Bio-based production of chemicals allows for use of renewable

raw materials, such as plant-derived feedstocks like starch, su-

crose, cellulose, and lignocellulose that are more sustainable

than many traditional chemical processes relying on fossil fuels.

Furthermore, replacement of traditional chemical synthesis with

bio-based production typically results in reduced environmental

footprint in terms of energy usage and emission (Saling, 2005).

The key driver for the chemical industry is, however, the produc-

tion of chemicals that have either better properties than tradi-

tional chemicals or chemicals that can find new applications.

The Route for Development of a Novel Bioprocess

Production of a so-called ‘‘drop-in’’ chemical starts with identifi-

cation of the molecule of interest, followed by determination of

whether there exists a metabolic pathway in nature to produce

this molecule (Figure 1A). Drop-in chemicals are molecules pro-

duced by fermentation instead of from fossil feedstock or other

natural sources that are difficult to work with (such as rare

plants). In some cases, it is possible to identify a natural producer

of the molecule, and this cell factory can then be used for further

improvement. If, on the other hand, you want to transfer the

biosynthetic pathway to a heterologous host, and if all of the en-

zymes of the biosynthetic pathway have not yet been identified,

heterologous expression requires enzyme discovery as part of
1186 Cell 164, March 10, 2016 ª2016 Elsevier Inc.
the metabolic engineering program, as illustrated for production

of artemisinic acid (Ro et al., 2006; Westfall et al., 2012; Paddon

et al., 2013) and opioids (Galanie et al., 2015). In some cases,

however, it is difficult to identify all the biosynthetic enzymes

needed to produce a molecule, and this hinders pathway recon-

struction in a heterologous host. For instance, not all the en-

zymes involved in biosynthesis of the anti-cancer drug taxol

have yet been identified (Ajikumar et al., 2010). Improved tech-

nologies for DNA and RNA sequencing, bioinformatics, and

structure-function predictions have advanced our ability to

rapidly identify enzyme candidates for a specific biosynthetic

pathway that can subsequently be evaluated for their ability to

reconstruct a complete pathway. In case it is not possible to

identify a natural producer, chimeric pathways may have to be

reconstructed and some of the enzymesmay have to be evolved

or engineered to have new features.

Traditionally, natural producers were developed for produc-

tion of the molecule of interest through classical strain improve-

ment. However, with the advent of metabolic engineering, the

preferred route for developing a novel bio-process is now

through the use of ‘‘platform cell factories’’ (Figure 1A). Examples

include Saccharomyces cerevisiae, Escherichia coli, Aspergillus

niger, Bacillus subtilis, Corynebacterium glutamicum, and Chi-

nese hamster ovary (CHO) cells. The advantage of using platform

cell factories are numerous: (1) they are very well characterized in

terms of genetics and physiology; (2) it is easier to obtain product

approval by governmental organizations if they have been used

for production of a range of products already; (3) many tools for

genome editing are available; and (4) many gene expression

tools are available, e.g., plasmids, promoters, and terminators.

Each of the above mentioned cell factories have specific advan-

tages. For example, A. niger and B. subtilis have very efficient

protein secretion and are therefore widely used for production

of industrial enzymes, while CHO cells are well suited for pro-

duction of glycosylated proteins to be used as pharmaceuticals.

For fuels and chemicals, there is an increasing focus on use

of S. cerevisiae and E. coli as platform cell factories, with

C. glutamicum as an attractive third choice. To produce a mole-

cule of interest, the biosynthetic pathway for the molecule is

reconstructed in the platform cell factory, resulting in establish-

ment of a proof-of-principle strain (Figure 1B). Generally, this

strain can be patented and represents a key milestone in the

development of a novel bioprocess.



Figure 1. Development of Novel Biopro-

cesses
(A) The typical workflow for developing a biotech
process for production of a new molecule. TRY
stands for titer, rate, and yield.
(B) With current technologies, development of a
final strain that can be used for industrial produc-
tion from a proof-of-principle strain takes several
years and is costly. There is a need for new tech-
nologies that can shorten the development time
and reduce the costs.
(C) Example of time and cost for development of
bioprocesses for two molecules that have been
launched on the market, the anti-malarial drug ar-
temisinin and the chemical building block 1,3
propanediol.
Improving Strain Performance

The road from development of a proof-of-principle strain to hav-

ing a cell factory that can be used for commercial production is

long and arduous. The majority of operational costs come with

the fermentation process (Caspeta and Nielsen, 2013), primarily

due to relatively high feedstock costs, and being cost-competi-

tive therefore translates to specific demands on titer (final con-

centration in the fermentation medium), rate (production per

unit of time), and yield (units of product synthesized per unit of

raw material consumed), often referred to as titer, rate, and yield

(TRY) requirements. Moving from a proof-of-principle strain to a

production strain that meets industrial TRY requirements is the

last but most challenging part of developing a novel bioprocess

(Figure 1A), typically involving many years of costly development

time (Figure 1B and 1C).

The main reason for the long development time is the need to

go through many rounds of strain construction and subsequent

phenotypic characterization. Most strains used for industrial

production require a large number of genetic modifications,

not only in the pathways of interest, but also in other pathways

in order to efficiently redirect metabolic flux. For example, in

the E. coli strain used for production of 1,3-propanediol

(used for production of polymers and solvents), the phospho-

transferase (PTS) transport system for glucose uptake and

phosphorylation was replaced by a heterologous glucose

transporter and an additional hexokinase (Nakamura and

Whited, 2003). This was done in order to decouple glucose

transport from the lower glycolysis, making it possible to

convert glucose to 1,3-propanediol with higher yield. In

S. cerevisiae, improved ethanol and reduced glycerol pro-

duction could be obtained by engineering the glutamate

biosynthetic pathway (Nissen et al., 2000). By replacing the

NADPH-dependent glutamate dehydrogenase with a NADH-

dependent pathway, ammonia uptake became linked to

NADH consumption. With this new NADH ‘‘sink,’’ glycerol pro-

duction was reduced, freeing up more carbon for ethanol pro-
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duction. Traditionally, each round of ge-

netic engineering could only be done in a

serial fashion, so it was time consuming

to introduce the many genetic modifica-

tions required for a final production

strain. As we will discuss later, a number
of new technologies are likely to change this and reduce the

time and cost of strain development.

The Bow-Tie Structure of Metabolism

There is a fundamental biological reason why it is often neces-

sary to make a large number of genetic modifications to alter

cell metabolism. Metabolism is one of the conserved features

of all living cells and has evolved to be organized into a ‘‘bow-

tie’’ structure (Figure 2A). This means that all carbon and energy

sources are converted through central carbon metabolism path-

ways into a set of 12 precursor metabolites (Figure 2A) that are

used for biosynthesis of all cellular components and natural

products generated by cells (Neidhardt et al., 1990). This results

in high flux of carbon through most of the precursor metabolites,

each of which is involved in a large number of reactions (Nielsen,

2003). For example, in yeast, acetyl-CoA is involved in 34 com-

partmentalized metabolic reactions, besides being used for

acetylation of macromolecules. To balance the use of these pre-

cursor metabolites, cells have evolved several levels of tight

regulation, especially to control biosynthesis of amino acids,

lipids, nucleotides, and carbohydrates needed for cell growth,

homeostasis, and maintenance. It is due to this tight regulation

that redirecting the carbon fluxes in central carbon metabolism

toward molecules of interest is inherently so difficult.

Regulation of central carbon metabolism has evolved to

ensure that production of cellular components is balanced with

energy production and consumption. This allows cells to main-

tain metabolic homeostasis even when exposed to varying envi-

ronmental and nutritional conditions. The same biological and

thermodynamic principles that allow cells to be robust andmain-

tain homeostasis also make metabolic engineering challenging.

On the other hand, this robustness can be an advantage. Indeed,

many industrial processes take advantage of cells’ ability to

maintain homeostasis in changing and often harsh industrial

conditions, such as stress imposed by high osmolality, varying

temperatures, low pH, and high product concentrations that

are often toxic. For these reasons, industry often prefers robust
, March 10, 2016 ª2016 Elsevier Inc. 1187



Figure 2. The Bow-Tie Structure of Meta-

bolism and Acetyl-CoA Metabolism in Yeast
(A) According to the bow-tie structure of meta-
bolism, all carbon sources are converted to 12 pre-
cursor metabolites that are used for biosynthesis
of all secreted metabolites. The precursor metabo-
lites are also used for the biosynthesis of all building
blocks that are needed for synthesizing macromol-
ecules making up the biomass of the cell. The 12
precursor metabolites are: glucose-6-phosphate,
fructose-6-phosphate, ribose-5-phosphate, eryth-
rose-4-phosphae, glyceraldehyde-3-phosphate,
3-phosphoglycerate, phosphoenol-pyruvate, pyru-
vate, acetyl-CoA, 2-oxoglutarate, succinyl-CoA,
and oxaloacetate.
(B) Illustration of how an acetyl-CoA over-produc-
ing strain can be used as a platform strain for
production of a range of different molecules.
Acetyl-CoA (AcCoA) metabolism in yeast is com-
partmentalized and there is no direct exchange of
this metabolite between the different compart-
ments. AcCoA is formed in the mitochondria from
pyruvate and enters the tricarboxylic acid cycle
(TCA). AcCoA is also formed in the peroxisome
from either fatty acids or acetate and can, via the
glyoxylate cycle (GYC), be converted to malate that
can be transported to the mitochondria for oxida-
tion. In order to ensure efficient secretion of the
product from the cell it is generally preferred to

reconstruct the heterologous pathway in the cytosol, and there is therefore a need to ensure efficient provision of cytosolic AcCoA. AcCoA in the cytosol is
produced from acetate and is used for production of acetoacetyl-CoA (AcAcCoA), required for the biosynthesis of sterols via farnesyl pyrophosphate (FPP), and for
production of malonyl-CoA (MalCoA), required for fatty acid biosynthesis. AcAcCoA, MalCoA, FPP, and fatty acids can all be converted to commercially interesting
products.
cell factories that not only survive, but also divide and produce

the product of interest even under such adverse conditions.

The yeast S. cerevisiae has a proven record of large-scale pro-

duction of bioethanol and is a favorite organism within industry,

but its central carbon metabolism is extensively regulated and

has a relatively ‘‘flat’’ structure, with transcriptional regulation

alone involving 102 transcription factors (TFs), 78% of which

are connected by cross-regulation in a large internal regulatory

loop (Österlund et al., 2015). Like most bacteria, E. coli has a

more hierarchical TF network structure (Yu and Gerstein, 2006),

making it easier to redirect carbon fluxes to overproduce a spe-

cific molecule (Chen et al., 2013a), with two prominent examples

being 1,4-butanediol (Yim et al., 2011) and short alkanes (Choi

and Lee, 2013). In addition, several recent studies in E. coli

have provided detailed new knowledge of metabolic regulation,

such as control of ironmetabolism through the Fur transcriptional

regulatory network (Seo et al., 2014) and mechanisms of oxida-

tive stress metabolism (Seo et al., 2015). Such insights will allow

for improved design and faster development of cell factories.

Principles and Tools for Advancing Metabolic
Engineering
Platform Strains

Even though the bow-tie structure of metabolism is a challenge

for metabolic engineering, it also offers some features that

may accelerate strain development in the future. For instance,

imagine that for one project, a strain is developed to convert a

carbon source (e.g., glucose) into a molecule of interest by

efficiently funneling it through an intermediate molecule (e.g.,

acetyl-CoA) at the center of the bow-tie. With additional smaller

modifications, this strain could then become a platform for
1188 Cell 164, March 10, 2016 ª2016 Elsevier Inc.
creating other strains to synthesize products derived from that

same intermediate. Since the hardest problem in strain develop-

ment is often deregulation of central carbon metabolism, such a

strain would be of great value, as the development of the new

strain from that step onward would proceed relatively fast.

This concept of platform strains (Nielsen, 2015) is by nomeans

new and has been applied successfully before. For example, the

Dutch company DSM, the largest producer of b-lactam anti-

biotics in the world, used one of their high-yielding penicillin-

producing strains as a platform strain to engineer the fungus

P. chrysogenum to efficiently produce 7-ADCA, from which

cephalosporins can be derived. They achieved this by extending

the penicillin biosynthetic pathway with an expandase, com-

bined with feeding the cells adipic acid (Crawford et al., 1995),

thereby leveraging the many years of work that went into devel-

oping efficient penicillin-producing strains to generate a new and

more valuable product. Similarly, the Danish company Novo-

zymes, the largest enzyme producer in the world, has used

strains of the fungusAspergillus oryzae that have been optimized

for protein secretion to rapidly develop efficient production pro-

cesses for new fungal enzymes to be used in detergents, the

food industry, and the biofuel industry.

Platform strains were also used early on in the development

of E. coli strains that efficiently produce aromatics. Bio-based

production of aromatics has attracted much interest from the

chemical industry, as many molecules of industrial value, such

as aspartame and indigo, can be derived from aromatic amino

acids or their intermediates. Reconstruction of the E. coli

pathway for conversion of the amino acid tryptophan into the

plant-derived dye indigo represented a key milestone in meta-

bolic engineering (Murdock et al., 1993). Following this, there



were several successful cases of engineering E. colimetabolism

to overproduce aromatics. In one study, Liao and colleagues

increased the supply of phosphoenolpyruvate (PEP), a precursor

metabolite for biosynthesis of aromatics, by either expressing a

PEP synthase (Patnaik and Liao, 1994) or using a non-PTS sugar

transport system (Patnaik et al., 1995).

Recently, S. cerevisiae has also been engineered for high-level

production of aromatics (Rodriguez et al., 2015), with the objec-

tive of producing natural plant products such as stilbenoids and

flavonoids. In these cases, one can take advantage of prior

knowledge from plant engineering, since it is generally relatively

easy to express plant P450 enzymes in S. cerevisiae. Indeed,

there are numerous examples of reconstructing complex plant

pathways using aromatic amino acids as building blocks in

yeast. These include production of the antioxidant and potential

drug resveratrol, which is found in the skin of grapes (Li et al.,

2015), and the antioxidant naringenin, which has anti-inflamma-

tory and immune-stimulating effects (Koopman et al., 2012).

Notably, the recent reconstruction of a 23-enzyme pathway to

produce opioids in yeast (Galanie et al., 2015) represents an

important milestone in the field, as it shows that even very long

and complex pathways can be successfully reconstructed.

This study illustrates another advantage of using a platform cell

factory: having a strain with increased flux toward tyrosine, the

precursor for the biosynthetic pathway, made it easier to identify

good candidate enzymes for the pathway (Galanie et al., 2015).

Despite the success, however, obtaining a proof-of-principle

strain producing a low titer of the product is only the first step to-

ward establishing a commercial process, and the TRY of opioid

production will need to be significantly improved before microbi-

al production can replace the current process with extraction

from plants.

One area that has attracted significant attention recently is

the development of yeast platform strains to produce acetyl-

CoA, as many chemicals of interest can be derived from this

precursor metabolite (Nielsen, 2014; Krivoruchko et al., 2015).

Many commodity chemicals and advanced biofuels must be

produced in large quantities, and using yeast as a cell factory

is therefore favorable, as current bioethanol plants could be ret-

rofitted to produce these more valuable chemicals. However,

as illustrated in Figure 2, acetyl-CoA metabolism in yeast is

compartmentalized. In the cytosol, acetyl-CoA is used for lipid

biosynthesis, either via malonyl-CoA for fatty acids or acetoa-

cetyl-CoA for sterols via the mevalonate pathway, and is

derived from acetate by acetyl-CoA synthetases (Acs). Acetate

comes from acetaldehyde, an intermediate in the conversion of

pyruvate to ethanol, the key fermentative route for yeast. On

the other hand, acetyl-CoA in the mitochondria is formed

from pyruvate by the pyruvate dehydrogenase (Pdh) complex,

and there is no direct exchange of acetyl-CoA between the

two compartments, although acetyl-CoA in the cytosol can

be transported to the mitochondria via malate or succinate

(Chen et al., 2012a). Even though biosynthetic pathways can

be reconstructed in the mitochondria (Avalos et al., 2013), it

is generally preferable to do so in the cytosol, as this facilitates

export of the final product, which in turn facilitates isolation and

purification of the desired compound and reduces the produc-

tion costs dramatically.
The biosynthesis of lipids is highly regulated, particularly at

two enzymatic steps, the conversion of acetyl-CoA to malonyl-

CoA by acetyl-CoA carboxylase (Acc) and the conversion of hy-

droxy-3-methyl-glutaryl-CoA (HMG-CoA) into mevalonate by

HMG-CoA reductase (Hmgr). Acc is inactivated at the protein

level by the protein kinase Snf1 (AMPK in human) (Nielsen,

2009), a global energy regulator (Usaite et al., 2009). Recently,

it was shown that a mutant version of Acc that cannot be phos-

phorylated enables high flux toward malonyl-CoA (Shi et al.,

2014). Hmgr is also regulated at the protein level and is bound

to the endoplasmic reticulum membrane while facing the

cytosol. By sensing ER membrane sterol composition, Hmgr

is feedback inhibited by the presence of ergosterol (Nielsen,

2009). Several studies have shown that flux toward mevalonate

can be increased significantly through deregulation of Hmgr by

deleting its membrane-binding domain (Donald et al., 1997).

The Acs enzyme is also believed to be regulated through phos-

phorylation and acetylation, but the exact sites have not been

identified. A breakthrough in increasing flux toward acetyl-

CoA-derived products was the expression of a mutant version

of Acs from Streptococcus enterica that carries a point mutation

preventing inactivation by phosphorylation (Shiba et al., 2007).

Expression of this heterologous Acs is often combinedwith over-

expression of ALD6 (Shiba et al., 2007), which catalyzes the con-

version of acetaldehyde to acetate. This strategy was recently

combined with blocking of the glyoxylate cycle to prevent trans-

fer of acetyl-CoA from the cytosol to the mitochondria (Chen

et al., 2013b). However, the Acs-catalyzed reaction involves

conversion of ATP to AMP, so several studies have aimed at

creating an energetically more efficient pathway from pyruvate

to acetyl-CoA in the cytosol. For example, some groups have

heterologously expressed bacterial pyruvate formate lyase,

which converts pyruvate to formate and acetyl-CoA (Waks and

Silver, 2009; Kozak et al., 2014a; Zhang et al., 2015), where

formate can subsequently be oxidized to carbon dioxide, with

the generation of NADH, by formate dehydrogenase. Alterna-

tively, a bacterial Pdh localized to the cytosol can directly

generate acetyl-CoA from pyruvate (Kozak et al., 2014b), but

this is a major undertaking as this enzyme is a multimeric and

is larger than bacterial ribosomes.

These studies teach the general lesson that it is often neces-

sary to combine overexpression of specific enzymes with dereg-

ulation of the pathway in order to ensure high flux through the

pathway of interest. An alternative to de-regulation of individual

enzymes is the expression of a complete heterologous pathway,

as illustrated by expression of the yeast mevalonate pathway in

E. coli (Martin et al., 2003). E. coli uses a non-mevalonate

pathway for the biosynthesis of farnesyl pyrophosphate, an in-

termediate of the sterol biosynthetic pathway and a precursor

for biosynthesis of sesquiterpenes, a broad class of chemicals

that can be used as perfumes, pharmaceuticals, and biofuels.

This approach circumvents the problem of the endogenous

pathway being regulated, resulting in a significant increase in

flux toward farnesyl pyrophosphate, an intermediate for the

anti-malarial drug artemisinic acid (Martin et al., 2003).

Genetic Tools

One of the key requirements for metabolic engineering is the

availability of good genetic tools for genetic engineering of the
Cell 164, March 10, 2016 ª2016 Elsevier Inc. 1189



host cell (Redden et al., 2014; Jensen and Keasling, 2014; David

and Siewers, 2014). As mentioned above, manipulation of meta-

bolism generally involves the knockout, introduction, and over-

expression or mutation of more than one gene. Although using

autonomously replicating vectors, such as plasmids, to intro-

duce genes is useful for constructing proof-of-principle strains,

plasmids tend to be unstable when used in large-scale industrial

cultivation that involves massive cell expansion. In the past,

introducing genes into chromosomeswas accomplished primar-

ily using phage integration sites in bacteria and homologous

recombination in yeast. However, ‘‘clustered regulatory inter-

spaced short palindromic repeats’’ (CRISPR)/CRISPR-associ-

ated protein Cas9-based systems now allow introduction of

genes into nearly any location in the chromosome (Jinek et al.,

2012; Jako�ci�unas et al., 2015). With the ability to vary promoter

(Jensen and Hammer, 1998; Redden and Alper, 2015) and ribo-

some binding strength (Salis et al., 2009), as well as the stability

of themRNA (Smolke et al., 2000; Pfleger et al., 2006) and the re-

sulting protein, there are many levers other than copy number

that can be used to alter enzyme production. Morever, in cases

where copy number limits protein production, one can amplify

genes on the chromosome to increase copy number (Tyo

et al., 2009).

Promoters play an essential role in controlling biosynthetic

pathways. Inducible promoters are often essential for pathways

that produce toxic products, and several inducible expression

systems are now available for use in bacteria, yeasts, and other

organisms (Wang et al., 2012). Ensuring that these promoters

have consistent, tunable control in all cells in a culture is essen-

tial for consistent production of the desired molecule and

for preventing non-producer cells from taking over the popula-

tion (Khlebnikov et al., 2001; Lee and Keasling, 2005).

Promoters that are constitutive, induced by starvation or

upon entry into stationary phase, or quorum-sensing allow for

inexpensive, inducer-free gene expression, which is particularly

important in large-scale production of chemicals and fuels,

where the cost of the inducer is an issue (Tsao et al., 2010).

However, a trade-off with using constitutive expression of

pathway enzymes is that these often may account for a major

fraction of the cellular proteome. Although small non-coding

RNAs can be used to control protein expression (Na et al.,

2013), so far there have been relatively few implementations

of this approach.

Production ofmostmolecules of interest often requires several

enzymes, and the expression of the genes encoding these en-

zymes must be coordinated. There are many ways to coordinate

expression of multiple genes: (1) use different inducible pro-

moters for each gene; (2) use the same inducible promoter for

each gene but vary the promoter strength (Bakke et al., 2009);

(3) use a non-native RNA polymerase or transcription factor to

control the expression of more than one gene (Alper and Stepha-

nopoulos, 2007); (4) group multiple, related genes into operons

(and use internal ribosomal entry sequences in eukaryotes (Ko-

mar and Hatzoglou, 2005); (5) vary the ribosome binding strength

for the enzymes encoded in the operon (Salis et al., 2009); (6)

control segmental mRNA stability of each coding region (Smolke

et al., 2000; Pfleger et al., 2006); (7) control the stability of each

enzyme, and (8) spatial control through attachment to a protein
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scaffold (Dueber et al., 2009) or targeting to special organelles

(Farhi et al., 2011; Avalos et al., 2013).

In all of these cases, it is desirable for the metabolic engineer

to know the specific activity of each enzyme in the pathway in or-

der to design promoter or ribosome binding site strength or the

stability of mRNA or protein in order to ‘‘dial in’’ the correct

amount of enzyme in the pathway. However, as knowledge

about the activity of each enzyme in vivo is often absent, the

levels of each metabolite and enzyme in the pathway must be

measured to determine if there are any pathway bottlenecks

and then the level of expression (or mRNA or protein stability)

of the limiting enzyme must be adjusted. This can be a laborious

process. The development of dynamic regulators using tran-

scription factors that can sense intermediates in the biosynthetic

pathway (Farmer and Liao, 2000; Zhang et al., 2012) or pro-

moters that respond to stress (Dahl et al., 2013) eliminates the

need to regulate every step of the pathway and puts the control

in the hands of the cell. Similarly, gene expression can be

controlled in response to medium components, as illustrated

by promoters for hexose transporters in yeast allowing dynamic

regulation of gene expression in response to the extracellular

glucose concentration, which can be used to downregulate a

pathway competing for the precursor needed for the desired

product (Scalcinati et al., 2012).

Regardless of how sophisticated the design tools and how

good the blueprint, there will always be ‘‘bugs’’ in the engineered

system, as we do not know everything about how metabolism is

regulated. For the development of microbial cell factories, sys-

tems biology can provide debugging routines (Park et al.,

2007; Park et al., 2014; Caspeta et al., 2014; Kizer et al., 2008).

Through transcriptomic, proteomic, and metabolomic measure-

ments combined with integrative analysis, it is possible to get

insight into how the introduction of a metabolic pathway impacts

overall cellular physiology. Often, expression of a heterologous

metabolic pathway elicits a stress response in the host, due to

protein overproduction or accumulation of toxic intermediates

or end products (Gill et al., 2000; Martin et al., 2003). These

stresses are reflected in mRNA and protein expression and

can therefore be identified using analysis of the transcriptome,

proteome, metabolome, or fluxome. Information from one or

more of these techniques can then be used tomodify expression

of genes in the metabolic pathway or in the host to improve titers

and/or productivity of the final product.

Adaptive Laboratory Evolution and High-Throughput

Screening

Once an organism is constructed with a desired metabolic

pathway, it is necessary to further optimize the metabolic

pathway to increase TRY. Besides directed modification of

gene expression, as described above, TRY can be improved us-

ing adaptive laboratory evolution (ALE) (Dragosits and Mattano-

vich, 2013). If production of the desired chemical is coupled to

growth (that is, when the cells grow they must produce the

chemical), then one can use improvements in the growth of the

organism to improve the production of the desired molecule.

ALE is one way to select for faster growing organisms, thereby

selecting for higher production of the desired molecule, as illus-

trated by succinic acid production by yeast (Otero et al., 2013). In

this study, the normal route for biosynthesis of glycine was



Figure 3. The Design-Build-Test-Learn Cy-

cle of Metabolic Engineering
Following identification of a target molecule, a
regulatory circuit to be used for expression, and a
suitable host, the biological systems are designed.
This may involve the use of mathematical models
of metabolism and BioCAD software designing
optimal constructs. Thereafter, the pathway is re-
constructed in the build phase and the central
carbon metabolism is engineered to ensure effi-
cient provision of the precursor metabolite. The
constructed strain is tested in bioreactors that
simulate industrial-like conditions, and following
analysis of the data, new knowledge is generated.
This is stored in the learn phase of the cycle and
can hereby be used for improved design in the next
round.
deleted, and an alternative route was introduced that resulted in

production of succinic acid as a by-product, so succinic acid

became a growth-coupled metabolite. ALE has also been shown

to be very efficient for improving growth on non-preferred carbon

sources, such as glycerol for E. coli (Ibarra et al., 2002), galac-

tose for yeast (Hong et al., 2011), and xylose for yeast (Kuyper

et al., 2005), as well as for improving the tolerance to harsh con-

ditions or to the product of interest, as reviewed recently (Drag-

osits and Mattanovich, 2013).

Through the use of next-generation sequencing and systems

biology, it is possible to identify mutations responsible for the

desirable phenoptypes. For example, a single mutation in the

ERG3 gene conferred upon yeast the ability to grow at elevated

temperatures (Caspeta et al., 2014). In this study, deep

sequencing of the genome gave clear hints on causal mutations,

but transcriptome and/or metabolome analysis assisted in map-

ping molecular mechanisms underlying the acquired pheno-

types. Thus, the mutation was found to result in altered sterol

composition (ergosterol in the yeast membrane was replaced

by fecosterol), and this was associated with an upregulation of

sterol metabolism. This showed that altered membrane proper-

ties due to changes in sterol composition allowed for improved

growth at elevated temperatures.

Although it is trivial to tie substrate consumption or stress

tolerance to growth, coupling production of the majority of small

molecules of commercial interest—such as fatty acids, diols, di-

amines, and short-chain alcohols among others—to growth is

difficult. It is therefore necessary to use other screening or selec-

tion methods to identify improved strains. The combination of

microtiter plates for growth of strain libraries with gas and liquid

chromatography techniques is an option, but the throughput

(102–103 variants per machine per day) falls far short of

levels necessary for effective interrogation of large genetic li-

braries. Microfluidic cell sorting offers interesting opportunities

for screening of cell libraries, as demonstrated recently for iden-

tification of yeast strains with improved xylose uptake (Wang

et al., 2014), E. coli strains with improved lactic acid production

(Wang et al., 2014), and yeast strains with improved protein

secretion capacity (Huang et al., 2015).

In nature, the need for sensitive and specific small-molecule

detection and response has been addressed in part through evo-
lution and selection for ligand-responsive transcription factors

and their cognate promoters. Transcription-factor-promoter

pairs are archetypal genetic devices within the synthetic biology

paradigm. Abundant in nature, highly modular, and capable of

being evolved or re-engineered, transcription-factor-based

devices are well suited for a broad range of applications. While

engineered transcription-factor-based biosensors have been

employed for detection of exogenous environmental pollutants

(Simpson et al., 1998), this work has only recently been explored

in the context of metabolic engineering (Chou and Keasling,

2013). Through coupling increased production of an intracellular

metabolite with expression of fluorescent proteins, fluorescent-

activated cell sorting (FACS) has been used for screening of

strains with improved phenotype. Recently, transcription-fac-

tor-based detection of small molecules has been used to in-

crease production of adipate, succinate, and 1-butanol (Dietrich

et al., 2013).We anticipate a timewhen biosensors can be readily

made for any desired product, allowing use of high-throughput

screening using FACS or microfluidics, and hereby, significantly

reduce the time required for improving the TRY.

Design-Build-Test-Learn Cycle
As described above, the typical process for engineering meta-

bolism, as any other system, involves four highly interdependent

modules (Figure 3): design (D) of a biological system, in this case

metabolic pathways in a microorganism, to produce a desired

molecule and coding of these pathways into DNA parts and as-

sembly instructions; build (B) the biological system from DNA

parts and production-relevant microbial chassis, using inputs

from D and tools developed through synthetic biology; test (T)

to determine if and how the engineered biological system from

B carried out the desired function, using cell physiology and

omics (possibility to integrate via systems biology tools); and

learn (L) to glean information from the performance of engineered

biosystems to inform decision making in D, B, and T.

Although these steps are now carried out in the research lab-

oratory and a single turn of the DBTL cycle can take months of

work (Qin et al., 2015), we envision a time when metabolic engi-

neering will more closely resemble electronics engineering, with

turn-around times on the order of days to a couple of weeks.

Computer-aided design software for biology will allow the
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metabolic engineer to design a metabolic pathway inside an or-

ganism of interest, send that design to a biological foundry that

would construct the pathway in the organism of interest (Chen

et al., 2012b), and within a reasonable time frame, send that en-

gineered organism back to the engineer for scale-up and pro-

duction. In order for the foundry to be able to reliably construct

a functional metabolic pathway inside the target organism, the

foundry will need all of the tools to build the pathway (e.g., ro-

botic liquid handling or microfluidics for DNA construction

[Shih et al., 2015], genetic control systems to control the genes

of the new metabolic pathway [Lee et al., 2011; Lee et al.,

2015], tools to knock out competing pathways inside the host or-

ganism, etc.), methods and equipment for growing and assaying

for the final product, and above all, machine-learning software to

gather the successes and failures of the design, build, and test

processes and attempt to learn from those to make the design

software more capable during the next round. Although it may

be some time before metabolic engineering has the rapid turn-

arounds of electronics engineering, new technologies as dis-

cussed below will clearly lead to a significant reduction in the

turnaround time in the DBTL cycle.

Design

Current pathway design is often treated as a one-off process,

relying heavily on domain expertise with no standardization.

The pathway designer generally determines what organism he/

she will use for the production process based on the startingma-

terials available (e.g., sucrose from cane, glucose from starch,

mixed sugars from cellulosic biomass), the toxicity of the desired

product to an organism, and the processing conditions neces-

sary to produce and purify the desired product (e.g., high tem-

perature, low pH, etc). Based on the choice of organism, the

metabolic engineer is provided with an available set of intracel-

lular metabolites fromwhich to produce the desired end product.

To get from the available starting metabolites inside the cell to

the desired product, the metabolic engineer searches for en-

zymes that could be used in a heterologous metabolic pathway;

these enzymes can be found in online databases of pathways,

the literature where metabolic pathways of various organisms

are described, and genome sequence databases where annota-

tions might indicate reactions that have little to no documenta-

tion in a particular host. In cases where no specific enzyme

can be identified, one may evolve an enzyme to carry out the

desired reaction (Renata et al., 2015) or construct an enzyme

de novo (Siegel et al., 2010), which is quite difficult.

The approach described above is difficult to scale, and is often

inefficient because there is no ability to reuse parts or data from

related designs. For data capture and exchange, there are local

successes in the broader community, such as the systems

biology community, where standards have been developed for

omics data capture, but there is little formalism around genotype

specification, strain construction specification, and particularly

formal representation of observations about data. Small-scale

labs will frequently capture these data on paper or perhaps a

spreadsheet in no particular format, making it extremely prob-

lematic to apply these results to an open-source production

framework.

Here, a BioCAD software providing information about the

starting materials available and the desired product would be
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extremely useful and this kind of software would identify a range

of suitable organisms based on substrates available and process

conditions necessary to produce and purify the desired product

(e.g., low pH, high temperature, etc). After the user selects the

organism, the BioCAD software would then identify all possible

pathways between available intermediates in the cell and the

final product, e.g., using BNICE.ch (Hadadi and Hatzimanikatis,

2015). Furthermore, using detailed metabolic models, BioCAD

would be able to enumerate different metabolic engineering tar-

gets that would improve the yield in the conversion of the sub-

strate to the product. Here, genome-scale metabolic models

(GEMs) have shown to be particularly useful (O’Brien et al.,

2015; Lee and Kim, 2015), and GEMs have been developed for

most industrially relevant microorganisms (Kim et al., 2012; Gar-

cia-Albornoz and Nielsen, 2013). Recently, these models have

been expanded to include many other key cellular processes,

such as transcription and translation (O’Brien and Palsson,

2015), allowing for improved simulation capabilities of these

models.

A strength of these models is that they are ‘‘open-ended,’’

meaning that new information can be added to the models

when it is acquired. This was illustrated in a recent study on

oxidative stress in E. coli, where several key pathways were

identified to be missing in the GEM and improved performance

of the model when added (Brynildsen et al., 2013). Thesemodels

do, however, have limitations as they only provide stoichiometric

constraints. Thus, efforts have been made toward integrating ki-

netic information into GEMs, and in this case, the BioCAD soft-

ware could also have the Vmax and Km values for all of the neces-

sary enzymes—as well as dependencies of the enzymes for

cofactors, pH, temperature, etc.—so that promoters, mRNA sta-

bilities, and enzyme stabilities could be programmed to deliver

themost appropriate enzyme for each step in the correct amount

to achieve the desired reaction. Once all design alternatives are

evaluated, the best choice would be sent for construction.

Build

The build phase is the construction or retrofitting of themetabolic

pathway in the desired host, as well as the deregulating of the

central carbon metabolism such that a higher flux can be

directed toward the product of interest. Pathway reconstruction

includes synthesis of large DNA constructs containing the genes

encoding the enzymes of the metabolic pathways and the asso-

ciated genetic control systems to regulate enzyme production.

Build also includes knocking out genes or pathways that might

compete or otherwise interfere with the functioning of the heter-

ologous metabolic pathway.

Large DNA construction is one area that has greatly expanded

over the past several years (Kosuri and Church, 2014). It is now

possible to purchase long DNA that will encode an entire enzyme

or a series of enzymes to constitute an entire metabolic pathway.

This has greatly reduced the time and effort needed to build

metabolic pathways, allowing the metabolic engineer to focus

more on developing the host.

In theory, any build team would have at their disposal a variety

of host organisms that have different characteristics: different

optimal growth temperatures, pH optima, abilities to tolerate

various chemicals, abilities to consume different carbon sour-

ces, etc. Ideally, these hosts would all be transformable and



have well-characterized genetic systems that would allow for

control of transcript and protein abundance and timing of

pathway activity during the various phases of growth. In reality,

this is rarely the case: only a few hosts are known well enough

to allow rapid and easy construction of metabolic pathways,

and even in the case of well-known hosts, the genetic tools

are rarely characterized to the extent that the desired level of

the metabolic pathway can be programmed accurately. For

instance, expression from a specific promoter may be context

dependent and, therefore, vary depending on what other genetic

modifications are introduced into the host cell.

The recent development of CRISPR/Cas9 systems has al-

lowed engineering of nearly any host that is transformable (Jinek

et al., 2012). Modifications of these systems allow insertion of

many genes into many target sites (Jako�ci�unas et al., 2015),

knock out or downregulation of competing pathways (Gilbert

et al., 2013), and upregulation of beneficial pathways. These

methods will likely continue to be used and will become a stan-

dard tool in the genetic-engineering toolbox. Furthermore, even

though well-characterized promoters, ribosome binding sites,

mRNA stability elements, and the like are limited, the develop-

ment of computer algorithms to calculate native promoter and

ribosome binding site strength and then to design new ones

will greatly facilitate construction of metabolic pathways that

perform as desired (Salis, 2011).

Test

The test phase includes anything that determines the efficacy of

the design and build, including but not limited to (1) verification of

Build success (i.e., construction of metabolic pathway, knockout

of specific genes, integration of genes, etc.), (2) growth and

physiological characterization of the engineered cells, and (3)

measurement of the transcripts, proteins, and/or final products

of the engineered pathway, often at genome scale. It is advanta-

geous to use high-throughput methods, e.g., transcriptomics,

proteomics, and metabolomics, as these allow for global anal-

ysis of cellular metabolism. It is difficult to analyze multiple

data types, but GEMs provide a good scaffold for analysis (Patil

and Nielsen, 2005; Usaite et al., 2009). High-throughput analysis

allows for measurements of specific pathway protein production

(Redding-Johanson et al., 2011), specificmetabolite presence or

perturbation, or specific gene expression (Regenberg et al.,

2006; Boer et al., 2010). However, the technologies were devel-

oped for low-throughput research and biomarker identification

for small numbers of proteins or metabolites and, when adapted

for metabolic engineering applications, they are slow and only

allow analysis of a smaller subset of strains. As a result, they

cannot be used for routine analysis in the test phase, as this

would be too costly and time-consuming. The absence of a

comprehensive dataset for each constructed strain severely

limits improvement in the success rate of the DBTL cycle, so

improved technologies for formalizing data capture, data anal-

ysis, and data interpretation are needed.

Learn

Learning is possibly the most weakly supported step in current

metabolic engineering practice, yet perhaps the most important

to increasing the rate of success. It is typically nonsystematic

and lacks statistical rigor, relying on ad hoc observations, litera-

ture data, and intuition gathered by individual researchers
responsible for the next round of pathway design. Failed ex-

periments are often discarded or inaccessible to data mining

and seen as uninformative, with only rare success selectively

archived. Nonetheless, it is clear that experienced laboratories

canmore consistently produce target molecules of interest, sug-

gesting an opportunity to formalize the learning process.

One area where the DBTL cycle may particularly contribute to

gaining new biological insight is on howmetabolism is regulated.

We have extensive information about regulation of metabolism,

but this is generally based on studies of one or a few regulatory

components. A few systems biological studies have enabled

globalmapping of key regulatory components, e.g., Snf1 in yeast

(Usaite et al., 2009), but it is still a challenge to integrate this in-

formation into concrete design strategies. However, by inte-

grating engineering design with available information about

regulation, possibly combined with targeted new experiments

to identify novel regulatory structures, it may be possible to

significantly advance our understanding of how metabolism is

regulated at the global level. This may allow for new strategies,

as targeting regulation can in some cases be better than simply

overexpressing specific pathway enzymes. For example, yeast

galactose uptake rate was not improved by overexpression of in-

dividual enzymes or combinations of enzymes in the Leloir

pathway (de Jongh et al., 2008), whereas a 40% increase could

be obtained by engineering the GAL-regulon (Ostergaard et al.,

2000)

Recently, statistical techniques such as principal component

analysis (PCA) have been used to analyze data from engi-

neered organisms to inform the next round of design (Alonso-

Gutierrez et al., 2015). In the past, data from proteomics anal-

ysis were too complicated to allow one to deduce trends that

could be used to understand system limitations and to reengi-

neer the system, but techniques like PCA allow the analysis of

small datasets to reveal patterns or trends that can be used to

guide re-design of a biological system. As more data of any

one type and more diverse data are collected, it will be neces-

sary to use more sophisticated data-analysis tools, such as

machine-learning algorithms (Tarca et al., 2007). Machine-

learning techniques are being used in a diverse set of applica-

tions, but to date, it has been used relatively little for metabolic

engineering purposes. It may, however, offer the possibility of

deducing patterns and trends that will aid in redesign of biolog-

ical systems.

At this time, many biological engineering exercises still do not

collect the vast amounts of data that are collected in other set-

tings, such as over the internet. With improvements in the types

and speed with which we can collect data on engineered sys-

tems, we will soon be awash in data and will need computational

methods to make sense of it all. This will allow us to identify bot-

tlenecks in biosynthetic pathways, diagnose exactly why the

bottlenecks exist, and reengineer systems to produce higher

TRYs of the desired product in less time with less human inter-

vention.

Perspectives
The development of cell factories, which can be used for cost-

efficient production of fuels, chemicals, foods, feeds, and phar-

maceuticals, requires multiple rounds of the DBTL cycle, often
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because we are missing knowledge of how metabolism is regu-

lated. This takes time and is costly. Themain reason for this is the

extensive robustness of cell metabolism, which is due to redun-

dancy, regulation, and tight interaction of metabolism and all

other cellular processes. Metabolism has evolved to support

cell growth and maintenance, and when we seek to engineer

metabolism to redirect metabolic fluxes toward a specific

metabolite, the regulation within the cell will strive to keep ho-

meostasis and, therefore, counteract our engineering efforts.

However, by formalizing the learn part of the DBTL cycle, it will

be possible to capture knowledge generated in different meta-

bolic engineering efforts and, thereby, accelerate the process.

This will require establishment of BioCAD software that can inte-

grate knowledge and be used as an interactive tool for improved

design by the metabolic engineer. We envisage that BioCAD can

also hold information about detailed metabolic models for plat-

form cell factories and information about promoters, terminators,

integration sites, vectors, and more, so that the complete design

process can be automated. BioCAD could also be used to inte-

grate so-called ‘‘big data’’, e.g., where multi-omics data from

many different strains are collected and analyzed in an integra-

tive fashion. Together with information about transcription-factor

networks and protein-protein interaction networks, this could be

used to gain much new insight into regulation of the applied cell

factory. This will allow the metabolic engineer to rapidly test

different designs and score these against each other and,

thereby, facilitate the design phase. With the advancement in

DNA synthesis and robotics for cloning and phenotypic charac-

terization, the build and test processes may also, to a large

extent, be automated, and the development of novel cell

factories will develop similarly as seen in other manufacturing

processes.

Even though we do have extensive knowledge about yeast

and E. coli that can be integrated into a future BioCAD, a major

hindrance for advancement of the field is our lack of fundamental

knowledge. We mentioned several of these earlier, but it will also

be necessary to expand our current list of platform cell factories

in order to expand the possibilities for biochemical transforma-

tions. Not all pathways express well in yeast and E. coli, and it

may also be necessary to have cell factory platforms that can op-

erate at extreme temperatures, extreme pH values (high and

low), and extreme salt concentrations. The development of a

solid knowledge base for such new platform cell factories will

obviously be time-consuming, but using the scaffold for knowl-

edge integration established through BioCAD, it will be possible

to advance rapidly.
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