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1 Introduction

In an extraordinary effort the entire Lagrangian of the (N = 8, d = 4) supergravity theory

was constructed by Cremmer and Julia [1]. They found that it had, in addition to the full

N = 8 supersymmetry, an E7(7) duality symmetry among the vector fields which appears as

a σ-model symmetry of the scalar fields. The origin of their calculation was the construction

of the d = 11 supergravity theory, achieved with Scherk [2]. They dimensionally reduced

the d = 11 theory to four dimensions and used clever field redefinitions to make both

symmetries manifest. The exceptional symmetry which is the maximally non-compact

version of the algebra was fairly unexpected. This symmetry acts only on the scalar and

vector fields and seems to lie outside the spacetime symmetries. A superspace formulation

in terms of a superfield that contained the full supermultiplet with many auxiliary fields

was subsequently found by Brink and Howe [3]. Using it, Howe and Lindström [4] argued

that there could be possible counterterms at the seven-loop level. This was taken as an

indication that the theory would not make sense quantum mechanically at some loop order,

probably at a level lower even than seven. When superstring theory appeared, supergravity

came to be seen as the low-energy limit and as such is not believed to be consistent.
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In more recent work, Bern, Dixon and collaborators [5] have established a program to

compute higher loop orders in four-graviton scattering. They have been able to conclude

that these are indeed finite at least up to four-loop order and there are clear signs that

these amplitudes are “more” finite than suggested by discussions based on the superfield

formalism [3]. We will return to this issue later in the paper.

A very different description of supergravity was initiated by Bengtsson, Bengtsson

and Brink [6] which involved the construction of (N = 8, d = 4) supergravity iteratively

in the coupling constant, as a representation of the N = 8 superPoincaré algebra acting

on a superfield containing exclusively the physical degrees of freedom. They showed that

this was identical to the light-cone gauge formulation of the theory. By choosing light-cone

gauge and eliminating all unphysical degrees of freedom one is led to the same Hamiltonian,

which in this case is also one of the generators of the algebra. This approach had only been

used to derive the three-point coupling and as such was incomplete. Even so, one can learn

a lot about the theory in this formalism since the Hamiltonian is remarkably simple to that

order. One must bear in mind that the (N = 8, d = 4) supergravity lagrangian is probably

the most complicated lagrangian ever constructed. In component form, expanding around

a flat vacuum, there are of the order of 5000 four-point couplings. The four-point coupling

in the light-cone gauge version was eventually constructed in [7] although the resulting

expression is not simple. However, most of the juice in the theory is contained in the

three-point coupling and we will only consider this here.

A natural question to ask is how the E7(7) symmetry is manifested in the light-cone

gauge formulation. A duality transformation in this formulation is equivalent to a field

redefinition. In the component formulation, and in the covariant superfield formulation,

the E7(7) symmetry acts only on the scalar and vector fields. In the light-cone formu-

lation a transformation on the superfield transforms all the fields in the supermultiplet.

Hence an E7(7) transformation would also transform the graviton and spinor fields. Fur-

thermore, the typical representations of the E7(7) symmetry, the 56 and the 133 are indeed

intimately connected to only the vector representation and the scalar one. These issues

were addressed by Brink, Kim and Ramond [8]. When implementing the light-cone gauge

one solves for the unphysical fields and this procedure mixes up all the fields in terms of

new fields which constitute the superfield. Hence all the fields will be transformed under

the E7(7) symmetry. Furthermore this symmetry is non-linearly realized in the sense that

while SU(8) is linearly realized, E7(7)/SU(8) is not. The supermultiplet is a representa-

tion of the E7(7) symmetry and somehow the exceptional group can distinguish bosons and

fermions, a classical problem when dealing with exceptional groups that do not have spinor

representations.

The supermultiplet is a non-linearly realized representation of both the supersymmetry

algebra and the E7(7) symmetry and both these symmetries may be used to derive the

interacting theory as was shown in [8]. What happens if we “oxidize” the theory back

to d = 11? In this paper, we will do this in two ways, one which explicitly shows the

supersymmetry and another that exhibits the E7(7) symmetry. We will argue that the

eleven-dimensional theory is invariant under both these defining symmetries, even though

one has to perform a field redefinition to go from one approach to the other.
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In section 2 we describe the (N = 8, d = 4) supergravity in light-cone superspace

in quite some detail so that in section 3 we will be able to perform the oxidation to

d = 11. As mentioned, we will do this in two different ways which each preserve the

relevant symmetry. We will then discuss how the approaches are related. In section 4 we

discuss higher exceptional symmetries such as the E8(8) symmetry that has been found in

(N = 16, d = 3) supergravity. We argue that this symmetry should also be hidden in higher

dimensions. We will not have anything to say on the even higher exceptional symmetries

at this stage. In section 5 we discuss the relevance of our results to the discussions about

counterterms, possible finiteness and how these results might influence discussions on M-

Theory and Superstring theory.

2 (N = 8, d = 4) supergravity in light-cone superspace

In this section, we briefly review the light-cone superspace fomulation of (N = 8, d = 4)

supergravity. We work with the metric (−,+,+,+), and introduce the following light-cone

coordinates and derivatives

x± =
1√
2

(x0±x3 ) ; ∂± =
1√
2

(− ∂0± ∂3 ) ,

x =
1√
2

(x1 + i x2 ) ; ∂̄ =
1√
2

( ∂1 − i ∂2 ) ,

x̄ =
1√
2

(x1 − i x2 ) ; ∂ =
1√
2

( ∂1 + i ∂2 ) .

(2.1)

2.1 The superfield

All the physical degrees of freedom in the N = 8 theory are contained in a single super-

field [9] written in terms of complex Grassmann variables θm (m = 1 . . . 8 are SU(8) indices)

φ ( y ) =
1

∂+2 h (y) + i θm
1

∂+2 ψ̄m (y) +
i

2
θm θn

1

∂+
Āmn (y) ,

− 1

3!
θm θn θp

1

∂+
χ̄mnp (y) − 1

4!
θm θn θp θq C̄mnpq (y) ,

+
i

5!
θm θn θp θq θr εmnpqrstu χ

stu (y) ,

+
i

6!
θm θn θp θq θr θs εmnpqrstu ∂

+Atu (y) ,

+
1

7!
θm θn θp θq θr θs θt εmnpqrstu ∂

+ ψu (y) ,

+
4

8!
θm θn θp θq θr θs θt θu εmnpqrstu ∂

+2
h̄ (y) .

(2.2)

The fields in the superfield are as follows. h and h̄: the two-component graviton, ψ̄m:

the 8 spin-3
2 gravitinos, Āmn: the 28 gauge fields with χ̄mnp being the corresponding 56

gauginos and C̄mnpq representing the 70 scalar fields. Complex conjugation of the fields is

denoted with a bar. These fields are all local in the coordinates

y =

(
x, x̄, x+, y− ≡ x− − i√

2
θm θ̄m

)
. (2.3)
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We note that all the unphysical degrees of freedom have been integrated out. The

superfield φ and its conjugate φ̄ satisfy the chiral constraints

dm φ ( y ) = 0 ; d̄n φ̄ ( y ) = 0 , (2.4)

where

dm = − ∂

∂ θ̄m
− i√

2
θm ∂+ ; d̄n =

∂

∂ θn
+

i√
2
θ̄n ∂

+ , (2.5)

and are further related through the “inside-out” constraint

φ =
1

4

(d )8

∂+4 φ̄ , (2.6)

where (d )8 = d1 d2 . . . d8; this constraint being unique to maximally supersymmetric

theories.

2.2 SuperPoincaré algebra in d = 4

We review here, the results of [6], starting with the construction of the generators of the

SuperPoincaré algebra at light-cone time x+ = 0. The kinematical generators are,

• the three momenta,

p+ = −i ∂+ , p = −i ∂ , p̄ = −i ∂̄ , (2.7)

• the transverse space rotation,

j = x ∂̄ − x̄ ∂ + S12 , (2.8)

with S12 = 1
2 ( θα ∂̄α − θ̄α ∂α ) + i

4
√

2 ∂+
( dα d̄α − d̄α dα ) which satisfies

[ j , dα ] = [ j , d̄β ] = 0 . (2.9)

• and the “plus-rotations”,

j+ = i x ∂+ , j̄+ = i x̄ ∂+ . (2.10)

j+− = i x− ∂+ − i

2

(
θα∂̄α + θ̄α ∂

α
)
, (2.11)

which obey

[ j+− , y− ] = −i y− ,

[ j+− , dα ] =
i

2
dα , [ j+− , d̄β ] =

i

2
d̄β ,

(2.12)

The dynamical generators are,

• the light-cone Hamiltonian,

p− = −i ∂∂̄
∂+

(2.13)
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• and the dynamical boosts,

j− = i x
∂∂̄

∂+
− i x− ∂ + i

(
θα∂̄α +

i

4
√

2 ∂+

(
dα d̄α − d̄α dα

)) ∂

∂+
,

j̄− = i x̄
∂∂̄

∂+
− i x− ∂̄ + i

(
θ̄β∂

β +
i

4
√

2 ∂+

(
dβ d̄β − d̄β dβ

)) ∂̄

∂+
, (2.14)

which satisfy

[ j− , j̄+ ] = −i j+− − j , [ j− , j+− ] = i j− . (2.15)

The supersymmetry generators are of two varieties [6], the kinematical

qm+ = − ∂

∂ θ̄m
+

i√
2
θm ∂+; q̄+n =

∂

∂ θn
− i√

2
θ̄n ∂

+ , (2.16)

and the dynamical ones

qm− ≡ i [ j̄− , qm+ ] =
∂̄

∂+
qm+ ,

q̄−n ≡ i [ j− , q̄+n ] =
∂

∂+
q̄+n .

(2.17)

2.3 The action to order κ

The N = 8 supergravity action to order κ in terms of the superfield described above reads

β

∫
d4x

∫
d8θ d8θ̄L , (2.18)

where β = − 1
64 and

L = −φ̄ �
∂+4

φ− 2κ

(
1

∂+2 φ ∂̄ φ ∂̄ φ+
1

∂+2 φ∂ φ ∂ φ

)
. (2.19)

The d’Alembertian is

� = 2 ( ∂ ∂̄ − ∂+ ∂− ) , (2.20)

κ =
√

8πG and Grassmann integration is normalized such that
∫
d8θ (θ)8 = 1.

In principle this is to be augmented with the full non-linear superPoincaré algebra to

this order. The important generator is the dynamical supersymmetry generator

Q̄m
(κ)φ =

1

∂+
(∂̄q̄mφ∂

+2
φ− ∂+q̄mφ∂

+∂̄φ). (2.21)

Note that we have suppressed the + index on q+ to make things easier to read. By

taking the complex conjugate of this formula we obtain Qm(κ)φ̄. Using the “inside-out”

constraint (2.6) we can then derive Qm(κ)φ and Q̄m
(κ)φ̄. Commuting these will yield

P−(κ)φ and its complex conjugate. These can also be obtained from the action by taking a

functional derivative remembering that φ is a constrained field. We also have to construct

the non-linear parts of the generators J− and J̄−. These can be found in [6].

– 5 –
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2.4 The E7(7) symmetry of the theory

As mentioned in the introduction the E7(7) symmetry of the theory was discussed in [8].

We have to write the symmetry algebra in terms of E7(7)/SU(8)×SU(8), where the SU(8)

is the linearly realized R-symmetry of the superfield. The key point in the derivation

is the assumption that E7(7)/SU(8) transformations commute with the supersymmetry.

This might sound strange since the SU(8) transformations transform the supersymmetry

generators and two E7(7)/SU(8) transformations commute to an SU(8) transformation. It

is possible though since the E7(7)/SU(8) transformations act non-linearly. The final form

for the transformations to order κ is

δφ =− 2

κ
θklmn Ξklmn

+
κ

4!
Ξmnpq

1

∂+2

(
dmnpq

1

∂+
φ∂+3φ − 4 dmnpφ dq∂

+2φ+ 3 dmn∂
+φ dpq∂

+φ

)
, (2.22)

where dm1...mn = d̄m1 . . . .d̄mn and Ξklmn = 1
2εklmnpqrs Ξpqrs, a constant. The E7(7)/SU(8)

transformation can be written in a more compact way by introducing a coherent state-like

representation

δφ = −2

κ
θijkl Ξijkl +

κ

4!
Ξijkl

(
δ

δη

)
ijkl

1

∂+2

(
eη

ˆ̄d∂+3φ e−η
ˆ̄d∂+3φ

) ∣∣∣∣∣
η=0

+O(κ2), (2.23)

where

η ˆ̄d = ηm
d̄m
∂+

, and

(
δ

δη

)
ijkl

≡ δ

δηi
δ

δηj
δ

δηk
δ

δηl
.

It is quite remarkable that the supermultiplet is a representation of E7(7). In [8] it is shown

how this may be used to construct the interaction terms of the theory. In this respect,

the E7(7) symmetry is as fundamental a symmetry as supersymmetry. In the latter case,

the commutation of two supersymmetries yields the Hamiltonian. In the E7(7) case the

Hamiltonian commutes with the E7(7) symmetry. In both cases the transformations in our

formalism are non-linear. By going back to a covariant formulation the supersymmetry

becomes linear while we cannot have the E7(7) transform linearly on the whole multiplet.

However in the light-cone formulation we treat both symmetries on an equal basis.

3 Oxidation of the (N = 8, d = 4) supergravity to d = 11

In [10], it was shown that the interacting (N = 8, d = 4) theory could be restored to

its eleven-dimensional avatar without altering the superfield. The additional SO(7) is

introduced through real coordinates, xm and their derivatives ∂m (m runs from 4 through

10). The chiral superfield remains unaltered, except for the added dependence on these

extra coordinates. The super-coordinate θ is now regarded as an SO(7) spinor θα. The

superPoincaré algebra clearly needs to be suitably enlarged. Let us first describe the free

theory and then write the interactions in two different ways, first showing the explicit

supersymmetry in the theory and then repeating the calculations from [10] to display the

E7(7) symmetry of the eleven-dimensional theory.

– 6 –
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3.1 SuperPoincaré algebra in d = 11

The SO(2) generators stay the same and we introduce the SO(9)/(SO(2) × SO(7)) coset

generators

Jm = − i (x ∂m − xm ∂ ) +
i

4
√

2 ∂+
qα ( γm)αβ qβ (3.1)

J̄ n = − i ( x̄ ∂n − xn ∂̄ ) +
i

4
√

2 ∂+
q̄α ( γn)αβ q̄β (3.2)

satisying [
J , Jm

]
= Jm ,

[
J , J̄n

]
= −J̄n[

Jpq , Jm
]

= δpm Jq − δqm Jp[
Jm , J̄n

]
= i Jmn + δmn J, (3.3)

where J ≡ j and the SO(7) generators are

Jmn = − i (xm ∂n − xn ∂n ) − 1

2
√

2
qα (γmn)αβ q̄β . (3.4)

The full SO(9) transverse algebra is generated by J , Jmn , Jm and J̄n. All rotations

preserve the chirality of the superfield they act upon. The remaining kinematical generators

do not get modified

J+ = j+ , J+− = j+− , (3.5)

while new kinematical generators appear,

J+m = i xm ∂+ ; J̄+n = i x̄n ∂+ . (3.6)

The linear part of the dynamical boosts are now

J− = i x
∂∂̄ + 1

2 ∂
m ∂m

∂+
− i x− ∂ + i

∂

∂+

{
θα ∂̄α +

i

4
√

2 ∂+
(dα d̄α − d̄α dα)

}
− 1

4

∂m
∂+

{
∂+ θα ( γm)αβ θ

β − 2

∂+
∂α ( γm)αβ ∂

β +
1

∂+
dα ( γm)αβ d

β

}
. (3.7)

The other boosts follow from the SO(9)/(SO(2)× SO(7)) rotations,

J−m = [ J− , Jm ] ; J̄−n = [ J̄− , J̄n ] . (3.8)

The dynamical supersymmetries are thus

[ J− , q̄+ η ] ≡ Qη = − i ∂
∂+

q+ η −
i√
2

( γn ) η ρ q
ρ

+

∂n

∂+
,

[ J̄− , qα+ ] ≡ Qα = i
∂̄

∂+
q+

α +
i√
2

( γm )αβ q̄+β

∂m

∂+
, (3.9)

and satisfy

{Qα , qη+ } = − ( γm )αη ∂m , (3.10)

and the supersymmetry algebra,

{Qα , Q η } = i
√

2 δαη
1

∂+

(
∂ ∂ +

1

2
∂m ∂m

)
. (3.11)
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3.2 Dynamical supersymmetry in d = 11

If we can construct the dynamical supersymmetry in d = 11 we have the full theory to this

order since we can then construct the Hamiltonian. In principle we should also construct

the generators J−, J̄−, Jn− and J̄n−. However, it is sufficient to know that the full theory

exists and then it is not necessary to explicitly construct these generators (which are always

the most difficult ones to construct). Let us concentrate on Q̄αφ - since this is a gravity

theory the dynamical supersymmetry generator must be linear in transverse derivatives to

all orders - here we construct it to order κ. We must consider the following types of terms:

• Terms with ∂̄. These must be the same as in d = 4.

• Terms with ∂n. These are new types of terms associated with the dimensions 4 . . . 10.

• Terms with ∂. These terms do not exist in the d = 4 formulation that we have used in

the past. The d = 11 case however, has a SO(7) R-symmetry and for a d = 4 theory

with SO(7) R-symmetry, instead of SU(8) R-symmetry, such a term can appear.

In particular, this means that the oxidized theory cannot be simply reduced to the d = 4

theory with an SU(8) R-symmetry. This is known from the Cremmer-Julia theory where

they had to use duality transformations. Since there are no duality transformations in the

light-cone gauge formulation, one instead needs to employ field redefinitions. Notice that

when we check chirality and supersymmetry these terms do not talk to each other. This

only happens when we invoke the rotations with Jm and J̄n. The first type of terms are

the known ones from (2.21) (ignoring the κ).

Q̄α
∂̄φ =

1

∂+
(∂̄q̄αφ∂

+2
φ− ∂+q̄αφ∂

+∂̄φ) (3.12)

=
1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα , (3.13)

where

E = exp
( q̄ · ρ
∂+

)
. (3.14)

By this expression we really mean

Q̄α
∂̄φ =

δ

δρα
1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα . (3.15)

Note that by writing the term using the coherent state-technique its commutation relation

with qα is automatic. By only using q̄’s chirality is also automatic. Further, the commuta-

tion relations with other kinematical generators are obviously correct except the rotations

with Jm and J̄n - these are the crucial commutators to check.

We can now construct the most general term with ∂n. From the appendix, we see that

terms with three spinors can be written either as a |8〉 or a |48〉. For simplicity, we mix

them while keeping two free parameters. The most general expression is then

Q̄α
∂nφ = c1(γn)βγ

1

∂+2 [E∂+A∂nφE−1∂+Bφ)|ρβ ,ργ ,ρα

+ c2(γnγm)αδ(γm)βγ
1

∂+2 [E∂+A∂nφE−1∂+Bφ)|ρβ ,ργ ,ρδ , (3.16)

– 8 –
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where A + B = 5 and c1 and c2 are normalization constants to be determined. Before

turning to the third possible term, we calculate the commutator

[J̄m, Q̄α] = −
√

2(γm)αβQ
β , (3.17)

where

J̄ n = − i ( x̄ ∂n − xn ∂̄ ) +
i

4
√

2 ∂+
q̄α ( γn)αβ q̄β . (3.18)

By this commutator we really mean

[δJ̄n , δQ̄α ]φ. (3.19)

We compute

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ ,

1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα ]

=
i

4
√

2 ∂+2 ( γn)βγ (E∂+2
∂̄φE−1∂+3

φ)|ρβ ργ ρα . (3.20)

We see from (3.16) that we must choose A = 2 and B = 3. Now consider

[− i ( x̄ ∂n − xn ∂̄ ) , c1(γm)β γ
1

∂+2 [E∂+2
∂mφE−1∂+3

φ)|ρβ ,ργ ,ρα

+ c2(γmγp)αδ(γp)βγ
1

∂+2 [E∂+2
∂mφE−1∂+3

φ)|ρβ ,ργ ,ρδ ]

=
ic1

∂+2 (γn)β γ [E∂+2
∂̄φE−1∂+3

φ)|ρβ,ργ ,ρα

+
ic2

∂+2 (γnγp)αδ(γp)βγ [E∂+2
∂̄φE−1∂+3

φ)|ρβ ,ργ ,ρδ . (3.21)

We have to add (3.20) and (3.21). We see that the terms with |48〉 must cancel and the

term with a |8〉 is of the correct form in (3.17). We then obtain the first relation

1

4
√

2
+ c1 = 0 (3.22)

We continue by performing the commutator

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ , c1(γm)δ ε

1

∂+2 (E∂+2
∂mφE−1∂+3

φ)|ρδ ,ρε,ρα ]

=
ic1

4
√

2 ∂+3 ( γn)βγ (γm)δ ε(E∂+3
∂mφE−1∂+4

φ)|ρβ ργ ρδ ρε ρα . (3.23)

and

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ , c2(γmγp)αδ(γp)εη

1

∂+2 [E∂+A∂mφE−1∂+Bφ)|ρε,ρη ,ρδ ]

=
ic2

4
√

2 ∂+3 ( γn)βγ (γmγp)αδ(γp)εη(E∂+3
∂mφE−1∂+4

φ)|ρβ ργ ρδ ρε ρη . (3.24)

– 9 –



J
H
E
P
0
3
(
2
0
1
6
)
0
5
1

We now return to the third possible term

Q̄α
∂φ = c3(γn)β γ(γn)δ ε

1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρβ ,ργ ,ρδ ,ρε,ρα . (3.25)

Under a rotation, it will contribute with

[− i ( x̄ ∂n − xn ∂̄ ) , c3(γm)β γ(γm)δ ε
1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρβ ,ργ ,ρδ ,ρε,ρα

= −ic3(γm)β γ(γm)δ ε
1

∂+3 [E∂+3
∂nφE−1∂+4

φ]|ρβ ,ργ ,ρδ ,ρε,ρα . (3.26)

We now add these three expressions and demand that the result be of the form in (A.9).

This calculation is done in the appendix and the coefficients are found to be

c1 = − 1

4
√

2
, (3.27)

c2 =
1

36
√

2
, (3.28)

c3 = − 1

288
. (3.29)

There is one more term to the rotation

[
i

4
√

2 ∂+
q̄β ( γn)β γ q̄γ , c3(γm)δ ε(γm)η κ

1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρδ ,ρε,ρη ,ρκ,ρα

=
ic3

4
√

2 ∂+4 (γn)β γγm)δ ε(γm)η κ [E∂+4
∂φE−1∂+5

φ]|ρβ ,ργ ,ρδ ,ρε,ρη ,ρκ,ρα . (3.30)

Using the appendix (A.14) we can see that the term involving seven q’s under Fierz, has

the correct form. The correct form for Q̄α is then

Q̄αφ =
1

∂+
(E∂+∂̄φE−1∂+2

φ)|ρα

− 1

4
√

2
(γn)βγ

1

∂+2 [E∂+2
∂nφE−1∂+3

φ)|ρβ ,ργ ,ρα

+
1

36
√

2
(γnγm)αδ(γm)βγ

1

∂+2 [E∂+2
∂nφE−1∂+3

φ)|ρβ ,ργ ,ρδ

− i

288
(γn)β γ(γn)δ ε

1

∂+3 [E∂+3
∂φE−1∂+4

φ]|ρβ ,ργ ,ρδ ,ρε,ρα . (3.31)

We can now read off Qα to be

Qαφ =
i

72∂+2 (γp)αβ(γp)γδ[E∂+2
∂̄φE−1∂+3

φ)|ρβ ,ργ ,ρδ

+
i

288
√

2∂+3 (γr)αβ(γr)γδ(γm)εη
1

∂+2 [E∂+3
∂mφE−1∂+4

φ)|ρβ ,ργ ,ρδ ,ρε,ρη (3.32)

+
i

16128∂+4 (γr)αβ(γr)γδ(γm)εη(γm)κρ[E∂+4
∂φE−1∂+5

φ]|ρβ ,ργ ,ρδ ,ρε,ρη ,ρκ,ρρ .

We first note that even though these formulae are written using the highly economical

light-cone superfield formalism, it would still be very hard to write them had we not
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used the coherent state technique. We can now ask if this still commutes with the E7(7)

transformations in (2.23). It is easy to see that it will not since the last term in (3.31)

contains a bare field φ which will transform under the constant term in (2.23) and there is

nothing to cancel against it. Hence we conclude that the formulation in this section is not

invariant under the transformation (2.23).

3.3 An oxidized Hamiltonian with E7(7) symmetry

In an earlier paper [10], N = 8 supergravity was oxidized to d = 11, keeping the derivative

structure of the d = 4 theory. The key step was to introduce the ‘generalized derivative’

∇ = ∂̄ +
σ

16
d̄α ( γm )αβ d̄β

∂m

∂+
, (3.33)

which naturally incorporates the coset derivatives ∂m and its partner

[ ∇ , Jm ] ≡ ∇m = − i ∂m +
i σ

16
d̄α ( γm )αβ d̄β

∂

∂+
. (3.34)

Note that the derivative ∂ is not introduced. This new derivative (∇,∇m) transforms as a

vector under the little group in eleven dimensions. The essential point here, is to keep the

eleven-dimensional cubic vertex in the same form as the d = 4 vertex but with transverse

derivatives replaced by generalized derivatives. The cubic vertex is thus

V = −3

2
κ

∫
d11x

∫
d8θ d8θ̄

1

∂+2 φ ∇φ ∇φ+ c.c. (3.35)

The SO(2) invariance follows from the work in d = 4 and the SO(7) invariance is covariantly

realized so only the invariance under SO(9)/(SO(7)×SO(2)) needs explicit verification. We

consider the following variations

δJm φ =
i

2
√

2
ωm

1

∂+
qα ( γm)αβ q

β φ ≡ K(q) . (3.36)

Using the “inside-out” constraint (2.6), we obtain

δJm φ =
1

4

(d)8

∂+4 (δJm φ) ≡ 1

4

(d)8

∂+4 K(q) . (3.37)

We also have, from earlier,

δJm ∇ = −ωm∇m , (3.38)

where ωm are the parameters of the SO(9)/(SO(7) × SO(2)) coset transformations. This

check is straightforward to perform and the only relevant terms in the variation all involve

one SO(2) derivative and one ∂m. The net variation yields

δJ V ∝
∫ (

1√
2
iσ + i

)
1

∂+2φ ∂̄φ ∂
mφ , (3.39)

which needs to vanish for invariance under the relevant coset group. This determines

σ = −
√

2 and fixes the generalized derivative entirely. In this light-cone form, the Lorentz
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invariance in eleven dimensions is automatic once the little group invariance has been

established.

Thus, the N = 1 supergravity action, to order κ, in eleven dimensions is

β

∫
d11x

∫
d8θ d8θ̄L , (3.40)

where β = − 1
64 and

L = −φ̄ �
∂+4

φ− 2κ

(
1

∂+2 φ̄ ∇φ ∇φ+
1

∂+2 φ∇ φ̄∇ φ̄
)
, (3.41)

with the d’Alembertian being

� = 2

(
∂ ∂̄ +

1

2
∂m ∂m − ∂+ ∂−

)
. (3.42)

To investigate a possible E7(7) symmetry of this Hamiltonian we first have to remember that

it should be invariant under the maximal subgroup SU(8). We now have to momentarily

forget the calculations above and consider the Hamiltonian to be a function of θ (that

transforms as 8 of SU(8)). The superfields that the Hamiltonian consists of are simply

regarded as being built up from representations of SU(8). We can then check that to this

order the Hamiltonian is invariant under the E7(7) transformations (2.23). The point being

that there are no ∂ mixed up with ∂̄ in the expressions in the interaction term to this order.

We know that there is only one supergravity theory in eleven dimensions. Hence the

two expressions we have derived must be equivalent. In order to go from one to the other

we need to perform a field redefinition. Since we know it must exist we do not need to

find it since we will not use it the following discussions. As stated before, we have only

performed the calculations to the lowest order in the coupling constant and it would be

nice to have this done to higher orders or even to arbitrary order. This cannot be done

simply even with sophisticated computer programs. Our experience though tells us that

what is true to the lowest order is usually true to all orders.

It should be mentioned that Hohm and Samtleben have, in an interesting series of

papers, constructed models with explicit covariant exceptional symmetries. The price they

have to pay is to enlarge spacetime. In the case of E7(7) they use a (4 + 56)-dimensional

spacetime [11]. Again, since there should be only one supergravity theory in d = 11 there

should be a relation between their model and ours. In this context we also refer the reader

to [12–14] and references therein. An early approach to studying higher symmetries in

d = 11 involved the introduction of new gauge degrees of freedom [15, 16].

4 Higher exceptional symmetries

It was pointed out by Julia after the first paper on E7(7) symmetry that there should exist

a maximally supersymmetric supergravity theory in d = 3 with an E8(8) symmetry. This

was subsequently constructed by Marcus and Schwarz [17], starting from scratch in d = 3.

An alternative way to construct it is to start from the d = 11 theory and dimensionally
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reduce to d = 3 [18]. To find the complete E8(8) theory one has to perform various

duality transformations. Since the theory is unique, both approaches should lead to the

same theory.

We may use our canonical superfield and construct this theory in the light-cone

gauge [19]. The R-symmetry in this case is SO(16), which is the maximal symmetry

that we can represent in the superspace used above.

SO(16) ⊃ SU(8) × U(1) , 16 = 8 + 8 .

The SU(8) and U(1) generators are given by

T ij =
i

2
√

2 δ+

(
qiq̄j −

1

8
δij q

kq̄k

)
, T =

i

4
√

2 δ+
[ qk , q̄k ] , (4.1)

with commutation relations

[T ij , T
k
l ] = δkj T

i
l − δil T kj , [T , T ij ] = 0 .

The other quadratic combinations describe coset transformations SO(16)/(SU(8)×U(1))

T ij =
1

2

1

δ+
qiqj , Tij =

1

2

1

δ+
q̄iq̄j , (4.2)

which form the 28 and 28 of SU(8), and close on (SU(8) ×U(1))

[T ij , Tkl ] = δjkT
i
l − δikT j l − δj lT

i
k + δilT

j
k + 2 ( δjkδ

i
l − δj lδik )T .

SO(16) acts linearly on the chiral superfield

δSU8
ϕ = ωj i T

i
j ϕ , δU(1) ϕ = T ϕ ,

δ28 ϕ = αij
qiqj

δ+
ϕ , δ28 ϕ = αij

q̄iq̄j
δ+

ϕ , (4.3)

where ωj i, αij , and αij the transformation parameters. Since the superfield is written in

terms of SU(8) × U(1) representations we must also decompose the non-linearly realized

quotient group E8(8)/SO(16) into such representations.

128 = 1′2 + 28′1 + 700 + 28
′
−1 + 1̄′−2 . (4.4)

We recognize the 70 as the representation in E7(7)/SU(8); the rest of the coset E7(7)/SO(16)

transformations form two U(1) singlets, a twenty-eight dimensional representation and its

complex conjugate (not to be confused with the 1, 28, and 28 in the adjoint representation

of SO(16)) - all components of the superfield. This means that there is a constant term in

the variation of all the components. They all transform as in a σ-model.

In [19] it was found that the E8(8)/SO(16) coset transformations could be written in

the compact form

δE7(7)/SO(16) φ =
1

κ
F + κ εi1i2...i8

2∑
c=−2

(
d̂i1i2···i2(c+2)

∂+c F
)

(4.5)

×

{(
∂

∂ η

)
i2c+5···i8

∂+(c−2)
(
eη·

ˆ̄d ∂+(3−c)φ e−η·
ˆ̄d∂+(3−c)φ

) ∣∣∣∣
η=0

+O(κ2)

}
,
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where the sum is over the U(1) charges c = 2, 1, 0− 1,−2 of the bosonic fields, and

F =
1

∂+2 β (y−) + i θmn
1

δ+
βmn (y−)− θmnpq βmnpq (y−)

+ iθ̃ mn δ
+ βmn (y−) + 4 θ̃ δ+2

β̄ (y−) ,

and

d̂i1i2···i2(c+2)
≡ d̂i1 d̂i2 · · · d̂2(c+2) .

For a more detailed description see [19]. It is remarkable that the E8(8) symmetry can also

be represented on the same supermultiplet as the E7(7) symmetry. What happens if we

dimensionally reduce the d = 4 theory. Let us start by looking at the equation of motion

for the superfield to order κ. We can obtain this from the action remembering that the

superfield is constrained

�φ =
2κ

∂+
[∂̄2φ ∂2+φ− ∂̄∂+φ ∂̄∂+φ] + F (φ φ̄) +O(φ3) . (4.6)

The term F is obtained from the complex conjugate of the term in the action leading

to the first interaction term. It is clear that a theory invariant under E8(8) cannot have a

three-point coupling since the maximal subalgebra SO(16) (which is the part of the algebra

which is linearly realized) will not allow it. The superfield consists of two representations

128, one bosonic and one fermonic. That is a spinor representation of SO(16), and we

cannot have three spinor representations forming a scalar. This is key to understanding

what kind of field redefinition we must make to find the full E8(8) symmetry. When we

dimensionally reduce to d = 3 we will have only one transverse derivative which we will

write as ∂. Let us so dimensionally reduce the equation above and then use the equation

of motion to find

� [∂+φ ∂+φ] = 2[∂2φ ∂2+φ− ∂∂+φ ∂∂+φ] +O(φ3) , (4.7)

where we have used the equation of motion as ∂−φ = ∂2

∂+
φ + O(φ2). We can now rewrite

the equation of motion (4.6) as

�φ =
κ

∂+
�[∂+φ ∂+φ] + F (φ φ̄) +O(φ3) , (4.8)

and make a field redefinition

φ′ = φ− κ

∂+
[∂+φ ∂+φ] , (4.9)

to obtain a new equation of motion of the form

�φ = F (φ φ̄) +O(φ3) . (4.10)

By making systematic field redefinitions like this order by order, one should be able to

reach the E8(8) symmetric formulation. Note that there are no duality transformations in

the light-cone formulation. As mentioned earlier, a duality transformation in the covariant

formulation amounts to a field redefinition in the light-cone formulation.
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5 Consequences for discussions about finiteness

In principle, we can repeat what we have done for the d = 4 theory and oxidize the

d = 3 theory. If we do this in a single step up to d = 11 the full transverse symmetry

will need to be constructed as an SO(9) ∼ SO(9)/SO(8) × SO(8) and the spinors θ and

θ̄ will transform as the two eight-dimensional spinor representations of SO(8). We can

instead, in the spirit of [18], keep the SO(16) symmetry and combine the two θ’s into a

16 of SO(16). Let us, however, contemplate how this may be done in two steps. First

oxidize the d = 3 theory to d = 4 and subsequently to d = 11 as done in previous

sections. If we follow the supersymmetry as in section 3.2 we will now have to deal with

two kinds of transverse derivatives ∂ and ∂̄. If we follow the first way, concentrating on

the dynamical supersymmetry, we will reach the result in (2.21). We now know that we

will loose the explicit E8(8) symmetry. The second approach, oxidation, will focus instead

on the Hamiltonian and keep the derivative structure, but adding in ∂̄ appropriately as

in section 3.3. We should then be able to maintain the E8(8) symmetry but will obscure

the supersymmetry in the process. By a clever field redefinition we should then be able to

arrive at this result from the first approach with explicit supersymmetry.

With the construction of a covariant superfield for the four-dimensional theory [3] Howe

and Lindström asked what kind of counterterms could be constructed. They concluded that

there should be a possible term at the seven-loop order. In recent years, Bern, Dixon and

collaborators [5] have explicitly calculated four-graviton scattering to four loops and found

it to be finite. They have even found indications that the loop graphs are “more” finite

than previously expected. We claim that one cannot trust the counterterm arguments in a

theory like (N = 8, d = 4) supergravity since it has additional symmetries as indicated in

this paper. In a covariant formulation, these are often difficult to find since they are non-

linearly realized. In the light-cone formulation one can understand the different symmetries

but the formalism has to be tailored to make each particular symmetry manifest. As

mentioned, there should then exist very complex field redefinitions to go between the

various formalisms.

What does all this mean for the finiteness of (N = 8, d = 4) supergravity in pertur-

bation theory? It would be rather surprising if the theory were indeed finite but it looks

like the only way to really answer this question is through explicit computations. One

may try to construct counterterms in the light-cone formulation. This is an arduous task

since one has to construct four-point functions with a large number of derivatives. In a

previous paper [20] it was found that not only do the counterterms have to satisfy the full

superPoincaré algebra (together with the exceptional symmetry) but they also have to be

invariant under residual reparametrization and gauge transformations. For the moment

this looks technically very challenging. See also [21].

It has been found that (N = 0, d = 4) Yang-Mills theory (pure Yang-Mills theory)

and (N = 4, d = 4) Yang-Mills as well as (N = 0, d = 4) supergravity (Einstein gravity)

and (N = 8, d = 4) supergravity have “better” quantum properties than one would expect

from counterterm and power-counting arguments. Interestingly, we have found [22] that

all these theories have Hamiltonians with very special forms in the light-cone formulation,
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as quadratic forms, [7]. This quadratic form makes it easier to check various symmetries

but we still do not know whether it admits additional symmetries.

It was pointed out by Julia [23] that the exceptional symmetry algebra grew bigger

under dimensional reduction. In particular, when going from d = 3 to d = 2 one should get

an E9 infinite symmetry algebra, to d = 1 an E10 symmetry and to d = 0 an E11 symmetry.

In more recent time it has been argued by West [24] that the E11 symmetry could already

be present in the eleven-dimensional theory - see also [18]. Similarly Damour, Henneaux

and Nicolai [25, 26] have argued that the E10 symmetry is present. At this stage we have

not been able to to find these symmetries in our formalism but it is clearly very intriguing

and well worth further investigation.

When the action for superstring theory was constructed [27, 28] the focus was lo-

cal supersymmetry on the two-dimensional world-sheet. In the corresponding light-cone

formulation, one can start with a free two-dimensional action and enlarge it with a full

representation of the superPoincaré generators in ten dimensions. Can there be additional

symmetries lurking behind these structures? This is quite possible. We know that other

symmetries, such as U-duality, appear in superstring theory in various dimensions. This

is essentially a discretized version of the exceptional symmetries we find in the low-energy

limit, the maximal supergravity theory in various dimensions. It is certainly a possibility

that there exist even further symmetries, non-linearly realized, present in the theory that

make it even better behaved quantum mechanically.

One goal of many of these efforts is to find the magical M -theory. Most attempts

to find it are based on extensions of the supersymmetric analyses that we are so used

to. Are we climbing up the wrong tree? Should one instead be attempting to ascend the

‘exceptional tree’? Here we can offer no new insights, but our analysis of the symmetries in

maximally supersymmetric field theories tell us that we should broaden such investigations.

6 Conclusions

We have argued in earlier papers that the 128 bosons and the 128 fermions in the super-

field (2.2) are representations of various superPoincaré algebras depending on the dimen-

sion of the spacetime we consider. We have seen that they are also representations of the

exceptional algebras E7(7) and E8(8). This is best seen in the light-cone gauge formulation

where only the physical degrees of freedom are present. This means that both types of

symmetries are partially non-linearly realized. In this paper we first reviewed how both

these symmetries could be explicitly constructed in the light-cone formulation in d = 4.

However, when we oxidize the theory to eleven dimensions we are forced to choose which

of these symmetries to track/follow. Since there is only one theory in eleven dimensions,

there must exist a field redefinition to take us from one result to the other. We therefore

claim that these exceptional symmetries should make an appearance in all dimensions.

We then argued that in four dimensions there are hidden symmetries such as an E8(8)

extending the E7(7) that we know of since the first paper on the subject. This suggests that

we cannot really trust arguments about perturbative behavior based on the symmetries we

– 16 –



J
H
E
P
0
3
(
2
0
1
6
)
0
5
1

know of for the theory. We believe that this is a straightforward explanation of why this

theory seems to be more convergent than the arguments based on symmetries and/or power

counting indicate. How far this convergence will reach we cannot say, based on our analysis.

Only explicit calculations are likely to settle that issue.
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A Useful results

A.1 Spinors and Fierz identities

We consider 8-dimensional spinors under SO(7). We have 28 antisymmetric γ-matrices.

They must be γm and γmn, where m,n = 1 . . . 7. We will use α, β, . . . as spinor indices.

Consider the product of two spinors

AαAβ = −1

8
γmαβ Aγ

mA+
1

16
γmnαβ Aγ

mnA. (A.1)

Let us now look at an expression

γnβγ (E∂+2∂̄φE−1∂+3φ)|ρα,ρβ ,ργ = γnβγ
∂

∂ρα
∂

∂ρβ
∂

∂ργ
(E∂+2∂̄φE−1∂+3φ)|ρ=0

≡ γnβγ AαAβAγ B. (A.2)

In order to get expressions of the form (40), we now have to Fierz this to obtain a

prefactor of the form γnαβ .

We will have expressions with up to 7 A’s. So we first have to write all such expressions

in terms of their irreducible representations. In the case of two A’s we have 28 different

components. They can be written as 7 + 21 as in (A.1). In the case of three A’s we have

56 components which can be written as 8 and 48. We write them as

|8〉3 = (γqA)αAγ
qA,

|48〉3 = AαAγ
pA− 1

7
(γpγqA)αAγ

qA.

We can now decmpose other expressions with 3A’s in terms of these states such as

(γrA)αAγ
rpA = 5(AαAγ

pA− 1

7
(γpγqA)αAγ

qA)− 2

7
(γpγqA)αAγ

qA. (A.3)

Furthermore by Fierzing we find that

(γqA)αAγ
qA =

1

2
(γqrA)αAγ

qrA, (A.4)

Consider an expression with 4 A’s. There are 70 independent such terms. What form

can they be of? They should be

AγmAAγnA which is 1 + 27.

AγmAAγmnA which is 7.

Aγ[mAAγnp]A which is 35.
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A.2 Expressions involving 5 A’s

Next we consider expressions with 5A’s. The corresponding irreducible forms for 5A’s are

|8〉5 = AαAγ
rAAγrA

|48〉5 = (γrA)αAγ
pAAγrA− 1

7
(γpA)αAγ

rAAγrA.

By Fierzing we can the find the following decomposition.

AαAγ
pqAAγqA = −2

3

[
(γrA)αAγ

pAAγrA− 1

7
(γpA)αAγ

rAAγrA

]
+

4

7
(γpA)αAγ

rAAγrA. (A.5)

A useful consequence of this formula is

(γpA)αAγ
prAAγrA = 4AαAγ

rAAγrA (A.6)

Two other useful formulae are

AαAγ
pAAγqA =

1

9
(γpγrA)αAγ

rAAγqA+
1

9
(γqγrA)αAγ

rAAγpA

+
1

9
δpq AαAγ

rAAγpA, (A.7)

and

AαAγ
[pqAAγr]A = −1

9
(γpqγsA)αAγ

sAAγrA− 1

9
(γrpγsA)αAγ

sAAγqA

− 1

9
(γqrγsA)αAγ

sAAγpA. (A.8)

If we add the contributions at the level of 5 A’s we get from (3.23), (3.24) and (3.26), apart

from a common prefactor the expression

c1AαAγ
nAAγmABm + c2(γmγpA)αAγ

nAAγpABm − c3AαAγ
mAAγmABn

=
c1

9
(γnγrA)αAγ

rAAγmABm +
(c1

9
+ c2

)
(γmγrA)αAγ

nAAγrABm

+
(c1

9
− 4
√

2 c3

)
AαAγ

rAAγrABn (A.9)

The first term is of the correct form and the other two have to cancel giving

c1 = − 1

4
√

2
, (A.10)

c2 =
1

36
√

2
, (A.11)

c3 = − 1

288
. (A.12)

A.3 Expressions involving 7 A’s

Consider so expressions with seven A’s. There is only an 8 possible.

|8〉7 = (γmA)αAγ
mAAγnAAγnA. (A.13)

By a simple Fierzing we find that

AαAγ
nAAγmAAγmA =

1

7
(γnγrA)αAγ

rAAγmAAγmA. (A.14)
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