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1 Introduction

In an extraordinary effort the entire Lagrangian of the (N = 8, d = 4) supergravity theory
was constructed by Cremmer and Julia [1]. They found that it had, in addition to the full
N = 8 supersymmetry, an E7 7y duality symmetry among the vector fields which appears as
a o-model symmetry of the scalar fields. The origin of their calculation was the construction
of the d = 11 supergravity theory, achieved with Scherk [2]. They dimensionally reduced
the d = 11 theory to four dimensions and used clever field redefinitions to make both
symmetries manifest. The exceptional symmetry which is the maximally non-compact
version of the algebra was fairly unexpected. This symmetry acts only on the scalar and
vector fields and seems to lie outside the spacetime symmetries. A superspace formulation
in terms of a superfield that contained the full supermultiplet with many auxiliary fields
was subsequently found by Brink and Howe [3]. Using it, Howe and Lindstrom [4] argued
that there could be possible counterterms at the seven-loop level. This was taken as an
indication that the theory would not make sense quantum mechanically at some loop order,
probably at a level lower even than seven. When superstring theory appeared, supergravity
came to be seen as the low-energy limit and as such is not believed to be consistent.



In more recent work, Bern, Dixon and collaborators [5] have established a program to
compute higher loop orders in four-graviton scattering. They have been able to conclude
that these are indeed finite at least up to four-loop order and there are clear signs that
these amplitudes are “more” finite than suggested by discussions based on the superfield
formalism [3]. We will return to this issue later in the paper.

A very different description of supergravity was initiated by Bengtsson, Bengtsson
and Brink [6] which involved the construction of (N = 8,d = 4) supergravity iteratively
in the coupling constant, as a representation of the N' = 8 superPoincaré algebra acting
on a superfield containing exclusively the physical degrees of freedom. They showed that
this was identical to the light-cone gauge formulation of the theory. By choosing light-cone
gauge and eliminating all unphysical degrees of freedom one is led to the same Hamiltonian,
which in this case is also one of the generators of the algebra. This approach had only been
used to derive the three-point coupling and as such was incomplete. Even so, one can learn
a lot about the theory in this formalism since the Hamiltonian is remarkably simple to that
order. One must bear in mind that the (N = 8, d = 4) supergravity lagrangian is probably
the most complicated lagrangian ever constructed. In component form, expanding around
a flat vacuum, there are of the order of 5000 four-point couplings. The four-point coupling
in the light-cone gauge version was eventually constructed in [7] although the resulting
expression is not simple. However, most of the juice in the theory is contained in the
three-point coupling and we will only consider this here.

A natural question to ask is how the E7(7) symmetry is manifested in the light-cone
gauge formulation. A duality transformation in this formulation is equivalent to a field
redefinition. In the component formulation, and in the covariant superfield formulation,
the Er(7) symmetry acts only on the scalar and vector fields. In the light-cone formu-
lation a transformation on the superfield transforms all the fields in the supermultiplet.
Hence an E7(7) transformation would also transform the graviton and spinor fields. Fur-
thermore, the typical representations of the E7(7) symmetry, the 56 and the 133 are indeed
intimately connected to only the vector representation and the scalar one. These issues
were addressed by Brink, Kim and Ramond [8]. When implementing the light-cone gauge
one solves for the unphysical fields and this procedure mixes up all the fields in terms of
new fields which constitute the superfield. Hence all the fields will be transformed under
the E7(7) symmetry. Furthermore this symmetry is non-linearly realized in the sense that
while SU(8) is linearly realized, E7(7)/SU(8) is not. The supermultiplet is a representa-
tion of the E7(7) symmetry and somehow the exceptional group can distinguish bosons and
fermions, a classical problem when dealing with exceptional groups that do not have spinor
representations.

The supermultiplet is a non-linearly realized representation of both the supersymmetry
algebra and the E7(7) symmetry and both these symmetries may be used to derive the
interacting theory as was shown in [8]. What happens if we “oxidize” the theory back
to d = 117 In this paper, we will do this in two ways, one which explicitly shows the
supersymmetry and another that exhibits the E77) symmetry. We will argue that the
eleven-dimensional theory is invariant under both these defining symmetries, even though
one has to perform a field redefinition to go from one approach to the other.



In section 2 we describe the (N = 8,d = 4) supergravity in light-cone superspace
in quite some detail so that in section 3 we will be able to perform the oxidation to
d = 11. As mentioned, we will do this in two different ways which each preserve the
relevant symmetry. We will then discuss how the approaches are related. In section 4 we
discuss higher exceptional symmetries such as the Fgg) symmetry that has been found in
(N = 16,d = 3) supergravity. We argue that this symmetry should also be hidden in higher
dimensions. We will not have anything to say on the even higher exceptional symmetries
at this stage. In section 5 we discuss the relevance of our results to the discussions about
counterterms, possible finiteness and how these results might influence discussions on M-
Theory and Superstring theory.

2 (N = 8,d = 4) supergravity in light-cone superspace

In this section, we briefly review the light-cone superspace fomulation of (N = 8,d = 4)
supergravity. We work with the metric (—, +, +, +), and introduce the following light-cone
coordinates and derivatives

l’Zf(l’lﬁ—Z’{Ez); 5:7(81—1'(92), (2.1)

2.1 The superfield

All the physical degrees of freedom in the A/ = 8 theory are contained in a single super-
field [9] written in terms of complex Grassmann variables ™ (m =1 ... 8 are SU(8) indices)
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The fields in the superfield are as follows. h and h: the two-component graviton, ,:
the 8 spin—% gravitinos, A,,,: the 28 gauge fields with Xmnp being the corresponding 56
gauginos and Cyynp, representing the 70 scalar fields. Complex conjugation of the fields is
denoted with a bar. These fields are all local in the coordinates

y:<x, Tty =0 — \;597"9,”) ) (2.3)



We note that all the unphysical degrees of freedom have been integrated out. The
superfield ¢ and its conjugate ¢ satisfy the chiral constraints

dm¢(y):0; anz(y)zo, (2'4)

where

m__ 90 1 O L g o+ (2.5)
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and are further related through the “inside-out” constraint

gm ot dn

L (d)° -
¢_18+4 (ba (26)
where (d)8 = d'd? ... d® this constraint being unique to maximally supersymmetric

theories.

2.2 SuperPoincaré algebra in d = 4

We review here, the results of [6], starting with the construction of the generators of the
SuperPoincaré algebra at light-cone time z+ = 0. The kinematical generators are,

e the three momenta,
pt=-i0", p=-id, p=-id, (2.7)

e the transverse space rotation,

j=xzd—-z0+ 852, (2.8)
with §12 = 1 (620, — 0,0) + Mﬁ (d*dy — do d®) which satisfies
[j,d*]=1[j,dg]=0 (2.9)
e and the “plus-rotations”,
jt=ixzot, jt=izot. (2.10)
it =i a+—% (60, +0,0%) , (2.11)
which obey
Ty =iy,
[j*‘,da]zgda, [j+—,Jﬁ]:%‘B, (2.12)
The dynamical generators are,
e the light-cone Hamiltonian, ~
p = —ig—f (2.13)



e and the dynamical boosts,
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which satisfy
[j_aj+]:_ij+__ja [j_vj—i__]:ij_‘ (215)

The supersymmetry generators are of two varieties [6], the kinematical

N A

06, V2

and the dynamical ones

0,07, (2.16)

q% =

(2.17)

2.3 The action to order &

The N = 8 supergravity action to order & in terms of the superfield described above reads
B / dz /d86 oL, (2.18)
where = — 6%1 and
P 2 L 3060 L 40309 2.1
——¢@¢—FD ng ¢¢+ﬁ¢¢¢' (2.19)
The d’Alembertian is

O0=2(80—0,0_), (2.20)

k = v87 G and Grassmann integration is normalized such that [ d®0 0)° = 1.
In principle this is to be augmented with the full non-linear superPoincaré algebra to
this order. The important generator is the dynamical supersymmetry generator

1
S ot

Note that we have suppressed the + index on ¢4 to make things easier to read. By

Q¢ (DGgmpd*° ¢ — 0 gm0 09). (2.21)

taking the complex conjugate of this formula we obtain Q" (*)¢. Using the “inside-out”
constraint (2.6) we can then derive Q™% ¢ and Q,,"¢. Commuting these will yield
P~ ¢ and its complex conjugate. These can also be obtained from the action by taking a
functional derivative remembering that ¢ is a constrained field. We also have to construct
the non-linear parts of the generators J~ and J~. These can be found in [6].



2.4 The Er;) symmetry of the theory

As mentioned in the introduction the E;(7) symmetry of the theory was discussed in [8].
We have to write the symmetry algebra in terms of E7(7)/SU(8) x SU(8), where the SU(8)
is the linearly realized R-symmetry of the superfield. The key point in the derivation
is the assumption that Er(7)/SU(8) transformations commute with the supersymmetry.
This might sound strange since the SU(8) transformations transform the supersymmetry
generators and two Fr(7)/SU(8) transformations commute to an SU(8) transformation. It
is possible though since the E7(7)/SU(8) transformations act non-linearly. The final form
for the transformations to order & is

5¢:_ geklmnf
K

—klmn
K o 1 — 1 - — - -
i <dmnpqa+¢ 03¢ — 4dmnpd dg02¢ + 3dndt ¢ dpqa+¢> , (2.22)
where dy . m, = dmy - - - A, and Zg;,,, = %Ek‘lmnpqrs EPI" a constant. The Ey7)/SU(8)

transformation can be written in a more compact way by introducing a coherent state-like
representation

2 k= K ikl [ O 1 da+3 , —ndo+3
0= 0 Bt g ZG, ) o (00T )

where
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It is quite remarkable that the supermultiplet is a representation of E7(7). In [8] it is shown
how this may be used to construct the interaction terms of the theory. In this respect,
the E7(7) symmetry is as fundamental a symmetry as supersymmetry. In the latter case,
the commutation of two supersymmetries yields the Hamiltonian. In the Er) case the
Hamiltonian commutes with the E7(7) symmetry. In both cases the transformations in our
formalism are non-linear. By going back to a covariant formulation the supersymmetry
becomes linear while we cannot have the E7(7) transform linearly on the whole multiplet.
However in the light-cone formulation we treat both symmetries on an equal basis.

3 Oxidation of the (M = 8,d = 4) supergravity to d = 11

In [10], it was shown that the interacting (N = 8,d = 4) theory could be restored to
its eleven-dimensional avatar without altering the superfield. The additional SO(7) is
introduced through real coordinates, ™ and their derivatives 9™ (m runs from 4 through
10). The chiral superfield remains unaltered, except for the added dependence on these
extra coordinates. The super-coordinate 6 is now regarded as an SO(7) spinor #%. The
superPoincaré algebra clearly needs to be suitably enlarged. Let us first describe the free
theory and then write the interactions in two different ways, first showing the explicit
supersymmetry in the theory and then repeating the calculations from [10] to display the
E7(7y symmetry of the eleven-dimensional theory.



3.1 SuperPoincaré algebra in d = 11

The SO(2) generators stay the same and we introduce the SO(9)/(SO(2) x SO(7)) coset
generators
]

J" = —i(zd™—2™d o (y™)P 3.1
i(x TO) + gyt (V) as (3.1)
- = 1
J"=—i(zd"—2"9) + To (V)7 q 3.2
i(zd" —a"9) 4\/5(%(1(7) a3 (3.2)
satisying
R R P B
[Jpq,Jm] — gpm ga _ gam gp
[Jm, J"] SN L (3.3)
where J = j and the SO(7) generators are
1
Jgmn — _ magn _ angny _ @ mnaﬁfl 3.4
i(x " o) ok (™)™ a3 (3-4)

The full SO(9) transverse algebra is generated by .J, J™, J™ and J". All rotations
preserve the chirality of the superfield they act upon. The remaining kinematical generators
do not get modified

Jr=gt. Tt =gt (3.5)
while new kinematical generators appear,
JT™ = jg™oT Jtr=4z" ot . (3.6)
The linear part of the dynamical boosts are now
. 85—%%8’"8’” L .0 o = i - -
J =ir———— —i 8+za—+ {0 8a+m(dada—dada)}
1 am a m 2 le} m 1 (e} m
- A O MR G WY SRy
The other boosts follow from the SO(9)/(SO(2) x SO(7)) rotations,
JTm=[g g =0 T (3.8)
The dynamical supersymmetries are thus
_ — .0 _ i n am"
[T an] =9y = —’Laqurn—ﬁ(W )Tiquaj’
e O o e O™
[J7,q¢t]=2Q = iora+ +E(’7 ) s 5y (3.9)
and satisfy
{0, ¢l }=—(y™)"o™, (3.10)
and the supersymmetry algebra,
a N : (e 1 9 1 m am
{Q ,Qn}:zﬁén&L(@B—i—Q& d ) (3.11)



3.2 Dynamical supersymmetry in d = 11

If we can construct the dynamical supersymmetry in d = 11 we have the full theory to this
order since we can then construct the Hamiltonian. In principle we should also construct
the generators J—,J~,J" and J"~. However, it is sufficient to know that the full theory
exists and then it is not necessary to explicitly construct these generators (which are always
the most difficult ones to construct). Let us concentrate on Q,¢ - since this is a gravity
theory the dynamical supersymmetry generator must be linear in transverse derivatives to
all orders - here we construct it to order k. We must consider the following types of terms:

e Terms with 0. These must be the same as in d = 4.
e Terms with 0". These are new types of terms associated with the dimensions 4 ... 10.

e Terms with 0. These terms do not exist in the d = 4 formulation that we have used in
the past. The d = 11 case however, has a SO(7) R-symmetry and for a d = 4 theory
with SO(7) R-symmetry, instead of SU(8) R-symmetry, such a term can appear.

In particular, this means that the oxidized theory cannot be simply reduced to the d = 4
theory with an SU(8) R-symmetry. This is known from the Cremmer-Julia theory where
they had to use duality transformations. Since there are no duality transformations in the
light-cone gauge formulation, one instead needs to employ field redefinitions. Notice that
when we check chirality and supersymmetry these terms do not talk to each other. This
only happens when we invoke the rotations with J™ and J". The first type of terms are
the known ones from (2.21) (ignoring the ).

- 1 _ _
0.2¢ = 67(0q_a¢8+2¢ — 0" a0t D) (3.12)
1 _
_ 6T(Ea+a¢E—la+2¢)|pa, (3.13)
where B
E =exp (%—f) . (3.14)
By this expression we really mean
= 5 o 1 5 e
Qa’0 = 5 57 (BOYOE"109)| e (3.15)

Note that by writing the term using the coherent state-technique its commutation relation
with ¢ is automatic. By only using ¢’s chirality is also automatic. Further, the commuta-
tion relations with other kinematical generators are obviously correct except the rotations
with J™ and J” - these are the crucial commutators to check.

We can now construct the most general term with ™. From the appendix, we see that
terms with three spinors can be written either as a |8) or a |48). For simplicity, we mix

them while keeping two free parameters. The most general expression is then

~ on n 1 Aqn | e
Qa9 = 14"V S5 [BOT 0" OB 0 6) 0. o
n,.my«a m 1 Aqn _
+ (1" ) ) S (BTG ET O ) e (316)



where A + B = 5 and ¢; and ¢y are normalization constants to be determined. Before
turning to the third possible term, we calculate the commutator

[T, Qal = —V2(v™)asQ", (3.17)

where

Jr=—i(z9" —2"8) +

L (YR gs. 3.18
1/aar (") s (3.18)

By this commutator we really mean

(070,00, ¢- (3.19)
We compute
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We see from (3.16) that we must choose A =2 and B = 3. Now consider
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We have to add (3.20) and (3.21). We see that the terms with [48) must cancel and the
term with a |8) is of the correct form in (3.17). We then obtain the first relation

1
—— 41 =0 (3.22)

42

We continue by performing the commutator
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We now return to the third possible term
9 n n\d e 1 3 _ 4
Qa6 = es(1") V(") 5 BO 0GB TIO Bl o 8 e e (3.25)

Under a rotation, it will contribute with
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We now add these three expressions and demand that the result be of the form in (A.9).
This calculation is done in the appendix and the coefficients are found to be

1
=——), 3.27
“ 44/2 (3.27)
1
g = ——, (3.28)
3612
1
= 2
c3 538 (3.29)

There is one more term to the rotation
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Using the appendix (A.14) we can see that the term involving seven ¢’s under Fierz, has
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the correct form. The correct form for @Q, is then
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We can now read off Q¢ to be
o= 723+2(7 ) (PO EO T IGE O B) | 5 o
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We first note that even though these formulae are written using the highly economical
light-cone superfield formalism, it would still be very hard to write them had we not

~10 -



used the coherent state technique. We can now ask if this still commutes with the Fr ()
transformations in (2.23). It is easy to see that it will not since the last term in (3.31)
contains a bare field ¢ which will transform under the constant term in (2.23) and there is
nothing to cancel against it. Hence we conclude that the formulation in this section is not
invariant under the transformation (2.23).

3.3 An oxidized Hamiltonian with Er) symmetry

In an earlier paper [10], N/ = 8 supergravity was oxidized to d = 11, keeping the derivative
structure of the d = 4 theory. The key step was to introduce the ‘generalized derivative’

=_5,0 3 B 7 om
V—8+16da( ™) dﬂ8+’ (3.33)
which naturally incorporates the coset derivatives 0" and its partner
v Jm]zvm:—zam+—d (y™)*P dg 9 (3.34)
’ 16 ot

Note that the derivative 9 is not introduced. This new derivative (V, V™) transforms as a
vector under the little group in eleven dimensions. The essential point here, is to keep the
eleven-dimensional cubic vertex in the same form as the d = 4 vertex but with transverse
derivatives replaced by generalized derivatives. The cubic vertex is thus

:_H/dﬂ /d89d8 — ¢ VoVo+ecec (3.35)

The SO(2) invariance follows from the work in d = 4 and the SO(7) invariance is covariantly
realized so only the invariance under SO(9)/(SO(7) x SO(2)) needs explicit verification. We
consider the following variations
3§ = = om 4" (70546 = K(0) (3.36)
& =g pem grd® (Vapd’ 6 = Kla). :

Using the “inside-out” constraint (2.6), we obtain

1 (d)® 1 (d)°
Smé= 1 o0r (6md) = 1 L K@, (3.37)
We also have, from earlier,
SmV=—wn,V", (3.38)

where wy, are the parameters of the SO(9)/(SO(7) x SO(2)) coset transformations. This
check is straightforward to perform and the only relevant terms in the variation all involve
one SO(2) derivative and one ™. The net variation yields

R N
5JVO(/<\/§lU+Z> Wqﬁ@(ﬁ@ o, (3.39)

which needs to vanish for invariance under the relevant coset group. This determines
o = —v/2 and fixes the generalized derivative entirely. In this light-cone form, the Lorentz

- 11 -



invariance in eleven dimensions is automatic once the little group invariance has been
established.
Thus, the N' = 1 supergravity action, to order s, in eleven dimensions is

B/d”x/dSGdSéﬁ, (3.40)

where B:—G%l and
L= ¢ 2 L 5vev L 6vavs 3.41
——¢ﬁ¢— K ng ¢ ¢+W¢ ¢V, (3.41)
with the d’Alembertian being
= 1
O0=2 (88+28m8m—8+6> . (3.42)

To investigate a possible E7 7y symmetry of this Hamiltonian we first have to remember that
it should be invariant under the maximal subgroup SU(8). We now have to momentarily
forget the calculations above and consider the Hamiltonian to be a function of € (that
transforms as 8 of SU(8)). The superfields that the Hamiltonian consists of are simply
regarded as being built up from representations of SU(8). We can then check that to this
order the Hamiltonian is invariant under the E7 (7 transformations (2.23). The point being
that there are no 0 mixed up with 0 in the expressions in the interaction term to this order.

We know that there is only one supergravity theory in eleven dimensions. Hence the
two expressions we have derived must be equivalent. In order to go from one to the other
we need to perform a field redefinition. Since we know it must exist we do not need to
find it since we will not use it the following discussions. As stated before, we have only
performed the calculations to the lowest order in the coupling constant and it would be
nice to have this done to higher orders or even to arbitrary order. This cannot be done
simply even with sophisticated computer programs. Our experience though tells us that
what is true to the lowest order is usually true to all orders.

It should be mentioned that Hohm and Samtleben have, in an interesting series of
papers, constructed models with explicit covariant exceptional symmetries. The price they
have to pay is to enlarge spacetime. In the case of Ey) they use a (4 + 56)-dimensional
spacetime [11]. Again, since there should be only one supergravity theory in d = 11 there
should be a relation between their model and ours. In this context we also refer the reader
to [12-14] and references therein. An early approach to studying higher symmetries in
d = 11 involved the introduction of new gauge degrees of freedom [15, 16].

4 Higher exceptional symmetries

It was pointed out by Julia after the first paper on Er(7) symmetry that there should exist
a maximally supersymmetric supergravity theory in d = 3 with an Eg(g) symmetry. This
was subsequently constructed by Marcus and Schwarz [17], starting from scratch in d = 3.
An alternative way to construct it is to start from the d = 11 theory and dimensionally
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reduce to d = 3 [18]. To find the complete FEg(g) theory one has to perform various
duality transformations. Since the theory is unique, both approaches should lead to the
same theory.

We may use our canonical superfield and construct this theory in the light-cone
gauge [19]. The R-symmetry in this case is SO(16), which is the maximal symmetry
that we can represent in the superspace used above.

SO(16) > SU(8) x U(1), 16 =8 + 8.
The SU(8) and U(1) generators are given by
, i . 1 l
T, =——\dg — =;da%), T= M), 4.1
T (qqg S jQQk> 1/agr |40 0] (4.1)

with commutation relations

(T, T% ] =61 -, T%, [T,T]=0.
The other quadratic combinations describe coset transformations SO(16)/(SU(8) x U(1))

T = %%qiqj, T;j = é%@'%, (4.2)
which form the 28 and 28 of SU(8), and close on (SU(8) x U(1))

[T, Ty ] = 64T = 8'4T7) — 1T+ 64T + 2 (618" — 616%) T .
SO(16) acts linearly on the chiral superfield

Ssusp=wiT' 0, dume=Te,

q'q¢ i 0id;
528 Y = Q44 574_ 2 6%‘70 =a" g_: 2 (43)

where w/;, ajj, and a% the transformation parameters. Since the superfield is written in
terms of SU(8) x U(1) representations we must also decompose the non-linearly realized
quotient group Egg)/SO(16) into such representations.

128 = 15, + 28, + 700 + 28, +1,. (4.4)

We recognize the 70 as the representation in E7(7)/SU(8); the rest of the coset Er(7)/SO(16)
transformations form two U(1) singlets, a twenty-eight dimensional representation and its
complex conjugate (not to be confused with the 1, 28, and 28 in the adjoint representation
of SO(16)) - all components of the superfield. This means that there is a constant term in
the variation of all the components. They all transform as in a o-model.

In [19] it was found that the Eg)/SO(16) coset transformations could be written in
the compact form

2

1 ivig...i = c
Op,q /s0(16) ¢ = — F + Rt > (di1i2~~-i2(c+2)a+ F) (4.5)
c=—2
X { <6> a+(6—2) <en~ja+(3—c)¢e—n-ja+(3—c)¢) + O(HQ)},
9 2c45° 18 n=0
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where the sum is over the U(1) charges ¢ = 2,1,0 — 1, —2 of the bosonic fields, and

1

1 — ; gmn n — mnpq 3 -
F:WB(Z/ ) +i0 ﬁﬂmn(y )— g mnpq(y )

00 1 0 BT (yT) + 4087 B(y7),

and

~

Ei1i2'“i2(c+2) = Eiﬁl-Q ce EQ(C—F?) .

For a more detailed description see [19]. It is remarkable that the Fg(g) symmetry can also
be represented on the same supermultiplet as the E7(7) symmetry. What happens if we
dimensionally reduce the d = 4 theory. Let us start by looking at the equation of motion
for the superfield to order k. We can obtain this from the action remembering that the

superfield is constrained
O¢ = %[5% 9*tp— 00" 00T @) + F(p @) + O(4%). (4.6)

The term F is obtained from the complex conjugate of the term in the action leading
to the first interaction term. It is clear that a theory invariant under Egg) cannot have a
three-point coupling since the maximal subalgebra SO(16) (which is the part of the algebra
which is linearly realized) will not allow it. The superfield consists of two representations
128, one bosonic and one fermonic. That is a spinor representation of SO(16), and we
cannot have three spinor representations forming a scalar. This is key to understanding
what kind of field redefinition we must make to find the full Egg) symmetry. When we
dimensionally reduce to d = 3 we will have only one transverse derivative which we will
write as 0. Let us so dimensionally reduce the equation above and then use the equation
of motion to find

O[ote 0T ¢ = 2[0%¢ 0°Tp — 00T ¢ 90T @] + O(¢?), (4.7)

where we have used the equation of motion as 07 ¢ = g—igb + O(¢?). We can now rewrite
the equation of motion (4.6) as

O¢ = 57000%6 9%l + F(68) + O(¢"). (4.8)
and make a field redefinition
K
o = 6— 1076 0%, (49)
to obtain a new equation of motion of the form
O = F(¢¢) +0(6"). (4.10)

By making systematic field redefinitions like this order by order, one should be able to
reach the Eg) symmetric formulation. Note that there are no duality transformations in
the light-cone formulation. As mentioned earlier, a duality transformation in the covariant
formulation amounts to a field redefinition in the light-cone formulation.
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5 Consequences for discussions about finiteness

In principle, we can repeat what we have done for the d = 4 theory and oxidize the

= 3 theory. If we do this in a single step up to d = 11 the full transverse symmetry
will need to be constructed as an SO(9) ~ SO(9)/SO(8) x SO(8) and the spinors 6§ and
6 will transform as the two eight-dimensional spinor representations of SO(8). We can
instead, in the spirit of [18], keep the SO(16) symmetry and combine the two 6’s into a
16 of SO(16). Let us, however, contemplate how this may be done in two steps. First
oxidize the d = 3 theory to d = 4 and subsequently to d = 11 as done in previous
sections. If we follow the supersymmetry as in section 3.2 we will now have to deal with
two kinds of transverse derivatives 0 and 0. If we follow the first way, concentrating on
the dynamical supersymmetry, we will reach the result in (2.21). We now know that we
will loose the explicit Eg(g) symmetry. The second approach, oxidation, will focus instead
on the Hamiltonian and keep the derivative structure, but adding in O appropriately as
in section 3.3. We should then be able to maintain the Egg) symmetry but will obscure
the supersymmetry in the process. By a clever field redefinition we should then be able to
arrive at this result from the first approach with explicit supersymmetry.

With the construction of a covariant superfield for the four-dimensional theory [3] Howe
and Lindstrom asked what kind of counterterms could be constructed. They concluded that
there should be a possible term at the seven-loop order. In recent years, Bern, Dixon and
collaborators [5] have explicitly calculated four-graviton scattering to four loops and found
it to be finite. They have even found indications that the loop graphs are “more” finite
than previously expected. We claim that one cannot trust the counterterm arguments in a
theory like (N = 8,d = 4) supergravity since it has additional symmetries as indicated in
this paper. In a covariant formulation, these are often difficult to find since they are non-
linearly realized. In the light-cone formulation one can understand the different symmetries
but the formalism has to be tailored to make each particular symmetry manifest. As
mentioned, there should then exist very complex field redefinitions to go between the
various formalisms.

What does all this mean for the finiteness of (N = 8, d = 4) supergravity in pertur-
bation theory? It would be rather surprising if the theory were indeed finite but it looks
like the only way to really answer this question is through explicit computations. One
may try to construct counterterms in the light-cone formulation. This is an arduous task
since one has to construct four-point functions with a large number of derivatives. In a
previous paper [20] it was found that not only do the counterterms have to satisfy the full
superPoincaré algebra (together with the exceptional symmetry) but they also have to be
invariant under residual reparametrization and gauge transformations. For the moment
this looks technically very challenging. See also [21].

It has been found that (M = 0,d = 4) Yang-Mills theory (pure Yang-Mills theory)
and (N = 4,d = 4) Yang-Mills as well as (N = 0,d = 4) supergravity (Einstein gravity)
and (N = 8,d = 4) supergravity have “better” quantum properties than one would expect
from counterterm and power-counting arguments. Interestingly, we have found [22] that
all these theories have Hamiltonians with very special forms in the light-cone formulation,
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as quadratic forms, [7]. This quadratic form makes it easier to check various symmetries
but we still do not know whether it admits additional symmetries.

It was pointed out by Julia [23] that the exceptional symmetry algebra grew bigger
under dimensional reduction. In particular, when going from d = 3 to d = 2 one should get
an Fy infinite symmetry algebra, to d = 1 an E1g symmetry and to d = 0 an E1; symmetry.
In more recent time it has been argued by West [24] that the Eq; symmetry could already
be present in the eleven-dimensional theory - see also [18]. Similarly Damour, Henneaux
and Nicolai [25, 26] have argued that the Ejy symmetry is present. At this stage we have
not been able to to find these symmetries in our formalism but it is clearly very intriguing
and well worth further investigation.

When the action for superstring theory was constructed [27, 28] the focus was lo-
cal supersymmetry on the two-dimensional world-sheet. In the corresponding light-cone
formulation, one can start with a free two-dimensional action and enlarge it with a full
representation of the superPoincaré generators in ten dimensions. Can there be additional
symmetries lurking behind these structures? This is quite possible. We know that other
symmetries, such as U-duality, appear in superstring theory in various dimensions. This
is essentially a discretized version of the exceptional symmetries we find in the low-energy
limit, the maximal supergravity theory in various dimensions. It is certainly a possibility
that there exist even further symmetries, non-linearly realized, present in the theory that
make it even better behaved quantum mechanically.

One goal of many of these efforts is to find the magical M-theory. Most attempts
to find it are based on extensions of the supersymmetric analyses that we are so used
to. Are we climbing up the wrong tree? Should one instead be attempting to ascend the
‘exceptional tree’? Here we can offer no new insights, but our analysis of the symmetries in
maximally supersymmetric field theories tell us that we should broaden such investigations.

6 Conclusions

We have argued in earlier papers that the 128 bosons and the 128 fermions in the super-
field (2.2) are representations of various superPoincaré algebras depending on the dimen-
sion of the spacetime we consider. We have seen that they are also representations of the
exceptional algebras Fr(7) and Egg). This is best seen in the light-cone gauge formulation
where only the physical degrees of freedom are present. This means that both types of
symmetries are partially non-linearly realized. In this paper we first reviewed how both
these symmetries could be explicitly constructed in the light-cone formulation in d = 4.
However, when we oxidize the theory to eleven dimensions we are forced to choose which
of these symmetries to track/follow. Since there is only one theory in eleven dimensions,
there must exist a field redefinition to take us from one result to the other. We therefore
claim that these exceptional symmetries should make an appearance in all dimensions.
We then argued that in four dimensions there are hidden symmetries such as an Egg)
extending the E7(7) that we know of since the first paper on the subject. This suggests that
we cannot really trust arguments about perturbative behavior based on the symmetries we
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know of for the theory. We believe that this is a straightforward explanation of why this
theory seems to be more convergent than the arguments based on symmetries and/or power
counting indicate. How far this convergence will reach we cannot say, based on our analysis.
Only explicit calculations are likely to settle that issue.
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A Useful results

A.1 Spinors and Fierz identities

We consider 8-dimensional spinors under SO(7). We have 28 antisymmetric y-matrices.

They must be 4™ and ™", where m,n =1...7. We will use «a, 3, ... as spinor indices.
Consider the product of two spinors
1 1

Let us now look at an expression

0 0 @
| oo 8,7 = 673704875877(

="gy A AgA, B. (A.2)

’Ynﬁ'y (E8+25¢E718+3¢) E8+25¢E718+3¢)|p20

In order to get expressions of the form (40), we now have to Fierz this to obtain a
prefactor of the form 7" ,g3.

We will have expressions with up to 7 A’s. So we first have to write all such expressions
in terms of their irreducible representations. In the case of two A’s we have 28 different
components. They can be written as 7+ 21 as in (A.1). In the case of three A’s we have
56 components which can be written as 8 and 48. We write them as

8)3 = (71 A)a A7 A4,
48)3 = Ap AP A — %(vaqA)a Ay1A.
We can now decmpose other expressions with 3A’s in terms of these states such as
(3 Ao AP A = 5(Aq AP A — 2 (1779 A)o Ay1A) = 2 (1774} ArTA. (A.3)
Furthermore by Fierzing we find that
(1 A)a A4 = (17 A)o A7 A, (A4)
Consider an expression with 4 A’s. There are 70 independent such terms. What form
can they be of?7 They should be
AT A Ay A which is 1 4 27.
AY"MAAY™ A which is 7.
AN A Ay A which is 35.
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A.2 Expressions involving 5 A’s
Next we consider expressions with 5A’s. The corresponding irreducible forms for 5A’s are
I8)s = A Ay"A A" A
[48)5 = (7 A0 AyPA Ay A — (P A)o Ay A Ay A,
By Fierzing we can the find the following decomposition.

Ag AYPIAAYIA = —% (7" A)a AP A AY"A - %(’YPA)a Ay AAYA

+ %(’ypA)a Ay"A Av" A. (A.5)
A useful consequence of this formula is
(YPA)q AYPTAAY"A =4A, AyTAAY"A (A.6)
Two other useful formulae are

Aqg AYPAANIA = %(’yp’yrA)a Ay"A Ay1A + é(’yq’yrA)a Ay"A AP A

+ %(5‘”‘1 A Ay A AP A, (A.7)
and

Ao AP1AAYIA = —%(7”"7814)0[ Ay AAY A~ %(V”’WSA)Q Ay A AyIA

1
- §(’qu’ysA)a AP A AVPA. (A.8)

If we add the contributions at the level of 5 A’s we get from (3.23), (3.24) and (3.26), apart
from a common prefactor the expression

ClAa Afy”A A'ymA B™ + CQ(’Ym'YpA)a A’)/nA A’YPA B™ _ CgAa AfymA A,-ymA B
= (4" Ao Ay A AY"AB™ + <c*1 + cz) (V" " A)a Ay A AY"AB™

9 9
+ (%1 — V2 c3) Aa Ay A A AB" (A.9)
The first term is of the correct form and the other two have to cancel giving
1
Cl1 = — AlO
NG (A.10)
1
cy = ——, A1l
NG (A.11)
1
3=——". A.12
T (A.12)
A.3 Expressions involving 7 A’s
Consider so expressions with seven A’s. There is only an 8 possible.
18)7 = (V" A)q Ay A AV A A" A. (A.13)
By a simple Fierzing we find that
1
Ay AY"A AT A AV A = = (V""" A)q Ay A Ay A Ay A. (A.14)
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