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Abstract Consider the utilization of a Lagrangian dual method which is convergent
for consistent convex optimization problems. When it is used to solve an infeasible
optimization problem, its inconsistency will then manifest itself through the diver-
gence of the sequence of dual iterates. Will then the sequence of primal subproblem
solutions still yield relevant information regarding the primal program? We answer
this question in the affirmative for a convex program and an associated subgradient
algorithm for its Lagrange dual. We show that the primal–dual pair of programs cor-
responding to an associated homogeneous dual function is in turn associated with a
saddle-point problem, in which—in the inconsistent case—the primal part amounts
to finding a solution in the primal space such that the Euclidean norm of the infeasi-
bility in the relaxed constraints is minimized; the dual part amounts to identifying a
feasible steepest ascent direction for the Lagrangian dual function. We present con-
vergence results for a conditional ε-subgradient optimization algorithm applied to the
Lagrangian dual problem, and the construction of an ergodic sequence of primal sub-
problem solutions; this composite algorithm yields convergence of the primal–dual
sequence to the set of saddle-points of the associated homogeneous Lagrangian func-
tion; for linear programs, convergence to the subset in which the primal objective is
at minimum is also achieved.
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1 Introduction and motivation

Lagrangian relaxation—together with a search in the Lagrangian dual space of
multipliers—has a long history as a popular means to attack complex mathemati-
cal optimization problems. Lagrangian relaxation is especially popular in cases when
an inherent problem structure is present, such that a suitable relaxation is much easier
to solve than the original problem, and where the result from optimizing the multipli-
ers is acceptable even if the final primal solution is only near-feasible; examples are
found, among others, among economics and logistics applications where the relaxed
constraints are associated with capacity or budget constraints. Lagrangian relaxation
is also frequently applied in combinatorial optimization, as a starting phase or as a
heuristic. In the history of mathematical optimization, several classical works are built
on the use of Lagrangian relaxation; see, e.g., the work by Held and Karp [15,16] on
the traveling salesperson problem. For text book coverage and tutorials on Lagrangian
relaxation, see, e.g., [2,3,28,32] and [10,11,13,29], respectively.

The convergence theory of Lagrangian relaxation is quite well developed for the
cases in which the original, primal, problem has an optimal solution, or at least
exhibits feasible solutions, even in cases when strong duality fails to hold. For the
case when strong duality holds, several techniques have been developed in order to
“translate” a dual optimal solution to a primal optimal one; this translation is sup-
ported by a consistent primal–dual system of equations and inequalities, sometimes
referred to as characterizations of “saddle-point optimality” (cf. [28, Sect. 1.3.3] and [2,
Thm. 6.2.5]).

In linear programming, decomposition–coordination techniques, like Dantzig–
Wolfe decomposition and its dual equivalent Benders decomposition, ensure the
convergence to a primal–dual optimal solution. In convex programming, ascent meth-
ods for the Lagrange dual, such as (proximal) bundle methods, can be equipped with
the construction of an additional, convergent sequence of primal points which are
provided by the optimality certificate of the ascent direction-finding quadratic sub-
problems (e.g., [19,20,33]). When utilizing classical subgradient methods from the
“Russian school” (e.g., [9,35,36,40])—in which one subgradient, calculated at the
current dual iterate, is utilized as a search direction and combined with a pre-defined
step length rule—a convergent sequence of primal vectors can also be constructed as
a convex combination of primal subproblem solutions (see, e.g., [40, pp. 116–118]
and [39] for linear programs, and [1,14,25–27] for general convex programs). In the
case where strong duality does not hold, the “translation” from an optimal Lagrangian
dual solution to a primal optimal solution is much more involved, since the primal and
dual optimal solutions may then violate both Lagrangian optimality and any comple-
mentarity conditions (cf. [22]).

What is hitherto an unsufficiently explored question is to what the sequence
of above-mentioned simple convex combinations of primal subproblem solutions
converges—if at all—when the original primal problem is inconsistent, in which case
the Slater constraint qualification (CQ) assumed in [25] cannot hold. The purpose of
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this article is to investigate this issue for convex programming; for the special case of
linear programming quite strong results are obtained.

2 Preliminaries and main result

Consider the problem to

minimize f (x), (2.1a)

subject to gi (x) ≤ 0, i ∈ I, (2.1b)

x ∈ X, (2.1c)

where the set X ⊂ R
n is nonempty, convex and compact, I = {1, . . . ,m}, and the

functions f : Rn �→ R and gi : Rn �→ R, i ∈ I, are convex and, thus, continuous;
these properties are assumed to hold throughout the article. The notation g(x) is in the
sequel used for the vector [gi (x)]i∈I . Moreover, whenever f and gi , i ∈ I, are affine
functions, and X is polyhedral, we denote the program (2.1) as a linear program. The
corresponding Lagrange function L f : Rn × R

m �→ R with respect to the relaxation
of the constraints (2.1b) is defined by L f (x, u) := f (x)+uTg(x), (x, u) ∈ R

n ×R
m .

The Lagrangian dual objective function θ f : Rm �→ R is the concave function defined
by

θ f (u) := min
x∈X L f (x, u), u ∈ R

m . (2.2)

With no further assumptions on the properties of the program (2.1), the minimization
problem defined in (2.2) can be solved in finite time only to ε-optimality ([2, Ch. 7]).
For any approximation error ε ≥ 0, an ε-optimal solution, xε

f (u), to the minimization
problem in (2.2) at u ∈ R

m is denoted an ε-optimal Lagrangian subproblem solution,
and fulfils the inclusion

xε
f (u) ∈ Xε

f (u) := {
x ∈ X

∣
∣ f (x) + uTg(x) ≤ θ f (u) + ε

}
. (2.3)

The Lagrange dual to the program (2.1) with respect to the relaxation of the constraints
(2.1b) is the convex program to find

supremum
u∈Rm+

θ f (u). (2.4)

2.1 Primal and dual convergence in the case of consistency

We first recall some convergence results for dual subgradient methods for the case
when the feasible set of the program (2.1) is nonempty, while assuming a constraint
qualification (e.g., Slater CQ, which for the problem (2.1) is stated as { x ∈ X | g(x) <

0m} �= ∅; see [25]). Denote the optimal objective value of the program (2.1) by
θ∗
f > −∞, and its solution set by
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X∗
f := {

x ∈ X
∣
∣ g(x) ≤ 0m, f (x) ≤ θ∗

f

}
. (2.5)

By the continuity of f and gi , i ∈ I, and the compactness of X , we have, according
to [37, Thm. 30.4(g)], that the primal optimal objective value equals the value obtained
when solving the Lagrangian dual program, i.e., that

θ∗
f := sup

u∈Rm+
θ f (u). (2.6)

We denote the solution set to the Lagrange dual as

U∗
f := {

u ∈ R
m+

∣
∣ θ f (u) ≥ θ∗

f

}
, (2.7)

the nonemptiness of which can be assured by presuming, e.g., Slater CQ or that the
program (2.1) is linearly constrained ([2, Sect. 5]).

With respect to a convex setU ⊆ R
m and an ε ≥ 0, the conditional ε-subdifferential

([2, Thms. 3.2.5 and 6.3.7], [26, Sect. 2], [8,23]) of the concave function θ f at u ∈ U
is given by

∂Uε θ f (u) := {
γ ∈ R

m
∣
∣ θ f (v) ≤ θ f (u) + γ T(v − u) + ε, v ∈ U

}
. (2.8)

This definition implies the inclusions ∂R
m

ε θ f (u) ⊆ ∂Uε θ f (u) ⊆ ∂U
ε′ θ f (u) for all u ∈ U

and 0 ≤ ε ≤ ε′ < ∞. Further, from (2.2), (2.3), and (2.8), follow the inclusion

g(xε
f (u)) ∈ ∂R

m

ε θ f (u), u ∈ R
m, ε ≥ 0. (2.9)

The normal cone of a convex set U ⊆ R
m at u ∈ U is defined by

NU (u) := {
η ∈ R

m
∣
∣ ηT(v − u) ≤ 0, v ∈ U

}
. (2.10)

This definition implies the equivalences NR
m+(u) = {

η ∈ R
m−

∣
∣ ηTu = 0

}
for all

u ∈ R
m+, and ∂Uε θ f (u) = ∂R

m

ε θ f (u) − NU (u) for all u ∈ U and ε ≥ 0. Hence, the

inclusion g(xε
f (u)) − η ∈ ∂

R
m+

ε θ f (u) holds whenever η ≤ 0m , ηTu = 0, u ≥ 0m , and
ε ≥ 0.

We consider solving the Lagrangian dual program (2.6) by the conditional ε-
subgradient optimization algorithm1 ([26, Sect. 2.1]). It starts at some initial vector
u0 ∈ R

m+ and computes iterates ut according to

ut+ 1
2 := ut + αt

[
g(xεt

f (ut )) − ηt
]
, ut+1 := [

ut+ 1
2
]
+, t = 0, 1, . . . , (2.11)

where [ · ]+ denotes the Euclidean projection onto the nonnegative orthant, the
sequence {ηt } obeys the inclusion ηt ∈ NR

m+(ut ) for all t , and αt > 0 is the step

1 The conditional subgradient algorithm was analyzed in [23]; its special case defined by the projection of
the subgradient step direction onto the tangent cone of the feasible set yields a bounded sequence {ηt } in
(2.11).
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length chosen and εt ≥ 0 denotes the approximation error at iteration t . To simplify
the presentation, the cumulative step lengths Λt are defined by

Λt :=
t−1∑

s=0

αs, t = 1, 2, . . . .

For any closed and convex set S ⊆ R
r and any point x ∈ R

r , where r ≥ 1, the
convex Euclidean distance function dist : R

r �→ R and the Euclidean projection
mapping proj : Rr �→ S are defined as

dist(x; S) := min
y∈S {‖y − x‖} and proj(x; S) := argmin

y∈S
{‖y − x‖} , (2.12)

respectively, where ‖ · ‖ denotes the Euclidean norm. For a sequence {xt } ⊂ R
n and

a vector y ∈ R
n , the notation xt → y means that the sequence { xt } converges to the

point y.
The following proposition specializes [26, Thm. 8] to the setting at hand.

Proposition 2.1 (Convergence to a dual optimal point) Let the method (2.11) be
applied to the program (2.6), the sequence { ηt } be bounded, and the sequences of
step lengths, { αt }, and approximation errors, { εt }, fulfil the conditions

αt > 0, t = 0, 1, . . . ; αt → 0 and Λt → ∞ as t → ∞; (2.13a)
∞∑

s=0

α2
s < ∞; (2.13b)

εt ≥ 0, t = 0, 1, . . . ; εt → 0 as t → ∞;
∞∑

s=0

αsεs < ∞. (2.13c)

If U∗
f �= ∅, then ut → u∞ ∈ U∗

f .

Proof Assume thatU∗
f �= ∅. Then the primal problem (2.1) attains an optimal solution

and the Lagrange function defined by L f (x, u) := f (x) + uTg(x) has a saddle-point
over the set X × R

m+ ([2, Thm. 6.2.5]); the result then follows from [26, Thm. 8]. ��
At each iteration of the method (2.11) an εt -optimal Lagrangian subproblem solu-

tion xεt
f (ut ) is computed; an ergodic (that is, averaged) sequence { xtf } is then defined

by

xtf := 1

Λt

t−1∑

s=0

αsx
εs
f (us), t = 1, 2, . . . . (2.14)

The following result is a special case of that in [26, Thm. 19].
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Proposition 2.2 (Convergence to the primal optimal set) Let themethod (2.11), (2.13)
be applied to the program (2.6), the sequence { ηt } be bounded, and the sequence { xtf }
be defined by (2.14). If U∗

f �= ∅, then it holds that

dist(xtf ; X∗
f ) → 0 as t → ∞.

Proof As in the proof of Proposition 2.1, the conditionU∗
f �= ∅ ensures the existence

of a saddle-point of L f . The compactness assumptions (on the dual solution set U∗
f )

in [26, Thm. 20] is here replaced by the conditions (2.13b)–(2.13c), under which the
dual sequence { ut } is bounded (see, e.g., the proof of [26, Thm. 8]), i.e., for all t ≥ 0,
‖ut‖ ≤ M holds, where M > ‖u∗‖ for all u∗ ∈ U∗

f . By restricting the dual space to
R
m+ ∩ { u | ‖u‖ ≤ M }, the result in [26, Thm. 19] applies. ��
Proposition 2.2 states that whenever the dual solution set U∗

f is nonempty, the

sequence { xtf } of primal iterates defined in (2.14) will converge towards the primal
optimal set X∗

f , provided that the sequence { αt } of step lengths and the sequence { εt }
are chosen such that the assumptions (2.13) are fulfilled. For convergence results when
more general constructions of the ergodic sequence (2.14) are employed, see [14].

2.2 Outline and main result

Section 2.1 considers the consistent case of the program (2.1) and presents convergence
results for the primal and dual sequences ({ xtf } and { ut }, respectively) obtained when
the method (2.11) is applied to its Lagrange dual. In the remainder of the article we
will analyze the properties of these two sequences when the primal problem (2.1) is
inconsistent, i.e., when { x ∈ X

∣
∣ g(x) ≤ 0m } = ∅, in which case the Slater CQ cannot

be assumed.
The remainder of the article is structured as follows. In Sect. 3 we show that, during

the course of the iterative scheme (2.11) for solving the program (2.4), the sequence
{ ut } of dual iterates diverges when employing step lengths (αt ) and approximation
errors (εt ) fulfilling (2.13). As the sequence diverges, i.e., as ‖ut‖ → ∞, the term
f (x) of the Lagrange function L f (x, ut ) loses significance in the definition (2.3) of
the εt -optimal subproblem solution, xεt

f (ut ) ∈ Xεt
f (ut ). In Sect. 4 we characterize

the homogeneous dual function, which is the Lagrangian dual function obtained when
f ≡ 0.We show that there is a primal–dual problem associated with the homogeneous
dual in which the primal part amounts to finding the set X∗

0 of points in X with
minimum infeasibility with respect to the relaxed constraints, i.e.,

X∗
0 := argmin

x∈X

{ ∥
∥
∥
[
g(x)

]
+
∥
∥
∥

}
. (2.15)

In Sect. 5 we show that a sequence of scaled dual iterates will in fact converge to
the optimal set of the homogeneous dual problem.

Section 6.1 presents the corresponding primal convergence results, i.e., that the
sequence of primal iterates { xtf } converges to the set X∗

0 . To simplify notation we
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redefine the primal optimal set X∗
f (defined in 2.5) as the optimal set for the so–called

selection problem, i.e.,

X∗
f := argmin

x∈X∗
0

{ f (x) } . (2.16)

Note that, when
{

x ∈ X
∣
∣ g(x) ≤ 0m

} �= ∅, the equivalence X∗
0 = {

x ∈ X
∣
∣ g(x) ≤

0m
}
holds, then implying that X∗

f equals the optimal set for the program (2.1). Here
lies the main point of departure when differentiating the convex program (2.1) from its
linear programming special case (i.e., when f and gi , i ∈ I, are affine functions and
X is a polyhedral set), in which the selection problem (2.16) is a linear program (pos-
sessing Lagrange multipliers). For general convex programming, however, this may
not be the case. The stronger convergence results achieved for the linear programming
case are presented in Sect. 6.2.

Our analysis leads to the main contribution of this article, which is then formulated
as the following generalization of Proposition 2.2 to hold also for inconsistent convex
programs.

Theorem 2.3 (Main result) Apply the method (2.11), (2.13a), (2.13b) to the pro-
gram (2.4), let the sequence { ηt } be bounded, and let the sequence { xtf } be defined
by (2.14).

(a) Let X∗
0 be defined by (2.15). If (2.13c) holds, then

dist(xtf ; X∗
0) → 0 as t → ∞.

(b) Let X∗
f be defined by (2.16) and { εt } = { 0 }. If the program (2.1) is linear, then

dist(xtf ; X∗
f ) → 0 as t → ∞.

��
Within the context of mathematical optimization, studies of characterizations of

inconsistent systems are of course as old as the history of theorems of the alternative
and the associated theory of optimality in linear and nonlinear optimization.

An inconsistent system of linear inequalities is studied in [7], which establishes a
primal-dual theory on a strictly convex quadratic least–correction problem in which
the left-hand sides of the linear inequalities possess negative slacks, the sum of squares
of which is minimized. The article [6] is related to ours, in that it studies the behaviour
of an augmented Lagrangian algorithm applied to a convex quadratic optimization
problemwith an inconsistent system of linear inequalities. The algorithm converges—
with a linear speed—to a primal vector that minimizes the original objective function
over a set defined by minimally shifted constraints through negative slacks.

For optimization problems involving (twice) differentiable, possibly nonconvex
functions the methods in [5,31] are able to detect infeasibility and find solutions
in which the norm of the infeasibility is at minimum. Filter methods (see [12] and
references therein, and—for the nondifferentiable case—[18,34]) employ feasibility
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restoration steps to reduce the value of a constraint violation function. In [4] dynamical
steering of exact penalty methods toward feasibility and optimality is reviewed and
analysed. While these references consider infeasibility within traditional nonlinear
programming (inspired) algorithms, our work is devoted to the study of corresponding
issues within subgradient based methods applied to Lagrange duals.

As stated in Theorem 2.3(a), for the general convex case we can only establish
convergence to the set of minimum infeasibility points, while for the case of linear
programs we also show—in Theorem 2.3(b)—that all primal limit points minimize
the objective over the set of minimum infeasiblity points.

Then, in Sect. 7 we make some further remarks and present an illustrative example.
Finally, in Sect. 8, we draw conclusions and suggest further research.

3 Dual divergence in the case of inconsistency

Consider the inconsistent program (2.1) and its Lagrangian dual function θ f defined
in (2.2). We begin by establishing that the emptiness of the set { x ∈ X

∣
∣ g(x) ≤ 0m }

implies the existence of a nonempty cone C ⊂ R
m+, such that the value of the function

θ f increases in every direction v ∈ C . Consequently, for this case the Lagrangian dual
solution set (defined in (2.7) for the consistent case) fulfils U∗

f = ∅, and θ∗
f = ∞

holds.

Proposition 3.1 (A theorem of the alternative) The set
{

x ∈ X
∣
∣ g(x) ≤ 0m

}
is empty

if and only if the cone C := {
w ∈ R

m+
∣
∣ minx∈X {wTg(x)} > 0

}
is nonempty.

Proof By convexity of X and g, the set { (x, z) ∈ X×R
m | g(x) ≤ z } is convex.Hence,

its projection defined by K := { z ∈ R
m | g(x) ≤ z, x ∈ X } = { g(x) + R

m+ | x ∈ X }
is also convex. Since g is continuous the set K is closed, and from its definition follows
that { x ∈ X | g(x) ≤ 0m } = ∅ if and only if K can be separated strictly from 0m .

Assume that C �= ∅ and let w ∈ C . The inequality wTg(x) > 0 then holds for all
x ∈ X . Hence, for each x ∈ X , gi (x) > 0 must hold for at least one i ∈ I, implying
that 0m /∈ K .

Assume then that 0m /∈ K . Then there exist a w ∈ R
m and a δ ∈ R such that

wTz ≥ δ > 0 = wT0m holds for all z ∈ K . By definition of the set K , letting ei ∈ R
m

denote the i th unit vector, it follows that g(x)+eiγ ∈ K for all x ∈ X and all γ ∈ R+.
Hence, wTg(x) + wiγ > 0 holds for all x ∈ X and γ ∈ R+. Letting γ → ∞ yields
that wi ≥ 0 for all i ∈ I. Choosing γ = 0 yields that minx∈X { wTg(x) } > 0. It
follows that w ∈ C �= ∅. The proposition follows. ��
Proposition 3.2 (The cone of ascent directions of the dual function) If

{
x ∈

X
∣
∣ g(x) ≤ 0m

} = ∅ then θ f (u + v) > θ f (u) holds for all u ∈ R
m and all v ∈ C.

Proof The proposition follows by the definition (2.2) of the function θ f , and the
relations θ f (u + v) = minx∈X { f (x) + (u + v)Tg(x)} ≥ minx∈X { f (x) + uTg(x)} +
minx∈X {vTg(x)} > θ f (u), where the strict inequality follows from the definition of
C in Proposition 3.1. ��

We next utilize the fact that the cone C is independent of the objective function f
to show that in the inconsistent case the sequence {ut } diverges.
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Proposition 3.3 (Divergence of the dual sequence) Let the sequence { ut } be gener-
ated by the method (2.11), (2.13a) applied to the program (2.4), the sequence { ηt } be
bounded, and the sequence { εt } ⊂ R+. If { x ∈ X | g(x) ≤ 0m } = ∅ then ‖ut‖ → ∞.

Proof Let w ∈ C �= ∅ and define δ := minx∈X { wTg(x) } > 0 and βt := wTut for all
t . Then

βt+1 = wT(
ut + αt

[
g(xεt

f (ut )) − ηt
] )

+ ≥ wT(
ut + αt

[
g(xεt

f (ut )) − ηt
])

≥ βt + αtwTg(xεt
f (ut )) ≥ βt + αtδ,

where the first inequality holds since w ∈ R
m+, the second since ηt ∈ R

m−, and the third
since wTg(x) ≥ δ for all x ∈ X . From (2.13a) then follows that βt → ∞, and hence
‖ut‖ → ∞. ��

4 A homogeneous dual and an associated saddle-point problem in the
case of inconsistency

We next use the result of Proposition 3.3 to establish that for large dual variable values
the dual objective function can be closely approximated by an associated homogeneous
dual function. Associated with this homogeneous dual is a saddle-point problem,
in which the primal part amounts to finding the points in the primal space having
minimum total infeasibility in the relaxed constraints.

Consider the Lagrange function associated with the program (2.1), i.e.,

L f (x, u) = ‖u‖
(

f (x)

‖u‖ + uTg(x)

‖u‖
)

, (x, u) ∈ R
n × {Rm\{0m}}.

As the value of ‖u‖ increases, the term f (x) in the computation of the subproblem
solutionx f (u) in (2.3) loses significance.Hence, according toProposition3.3, for large
values of t themethod (2.11), (2.13a)will tackle an approximation of the homogeneous
dual problem to maximize θ0 over Rm+.

In what follows, unless otherwise stated, we will assume that { x ∈ X | g(x) ≤
0m } = ∅.

4.1 The homogeneous version of the Lagrange dual

Consider the problem to find an x ∈ X such that g(x) ≤ 0m . To this feasibility problem
we associate the homogeneous Lagrangian dual problem to find

supremum
u∈Rm+

θ0(u), (4.1)

where θ0 : Rm �→ R is defined by (2.2), for f ≡ 0 (i.e., θ0(u) = minx∈X { uTg(x) }). A
corresponding (optimal) subproblem solution x00(u) and the subdifferential ∂R

m

0 θ0(u)

are analogously defined.
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According to its definition, the function θ0 is superlinear (e.g., [17, Proposi-
tionV:1.1.3]),meaning that its hypograph is a nonempty and convex cone inRm+1, and
implying that θ0(δu) = δθ0(u) holds for all (δ, u) ∈ R+ × R

m . The definition of the
directional derivative, θ ′

0(u; d), of θ0 at u in the direction of d (e.g., [17, Rem. I:4.1.4]),
then yields that θ ′

0(0
m; d) = θ0(d) holds for all d ∈ R

m . The program (4.1) can thus
be interpreted as the search for a steepest feasible ascent direction of θ0. Such a search
requires that the argument of θ0 is restricted. Hence, we define

θ
V ∗
0

0 := max
u∈V

{
θ0(u)

} = max
d∈V

{
θ ′
0(0

m; d)
}
, where V := {

u ∈ R
m+

∣
∣ ‖u‖ ≤ 1

}
.

(4.2)

Defining V using the unit ball is somewhat arbitrary. Owing to the homogeneity of θ0,
the unit ball—viewed as the convex hull of the projective space—is, however, a natural
choice. As shown in Sect. 4.2, for this choice the dual mapping yields a singleton set.

4.2 An associated saddle-point problem

From the Definition (2.2) of the function θ f and the Definition (4.2) of θ
V ∗
0

0 follow
that

θ
V ∗
0

0 = max
u∈V

{
min
x∈X

{
uTg(x)

} }
= min

x∈X

{
max
u∈V

{
uTg(x)

} }
(4.3)

hold, since the Lagrange function, defined by L0(x, u) = uTg(x), is convex with
respect to x, for u ∈ R

m+, and linear with respect to u, and since the sets X and
V ⊂ R

m+ are convex and compact (see, e.g., [17, Thms. VII:4.2.5 and VII:4.3.1]).

Definition 4.1 (The set of saddle-points of the homogeneous Lagrange function [17,
Def. VII:4.1.1]) Let the mappings X0(·) : V �→ 2X and V (·) : X �→ 2V be defined
by

X0(v) := argmin
x∈X

L0(x, v), v ∈ V, and V (x) := argmax
v∈V

L0(x, v), x ∈ X,

where the homogeneous Lagrange functionL0 : X×V �→ R is defined asL0(x, v) :=
vTg(x). A point (x, v) ∈ X × V is said to be a saddle-point of the function L0 on
X × V when the inclusions x ∈ X0(v) and v ∈ V (x) hold. The set of saddle-points is
denoted by X∗

0 × V ∗
0 . ��

By the definition of the set X∗
f in (2.5), for the case when the program (2.1) is con-

sistent, X∗
0 = { x ∈ X | g(x) ≤ 0m } �= ∅ denotes its feasible set. For the inconsistent

case, whenever x ∈ X it holds that gi (x) > 0 for at least one i ∈ I, implying that∥
∥[g(x)]+

∥
∥ > 0.

Lemma 4.2 (A homogeneous dualmapping) If x ∈ X then the set V (x) is a singleton,
given by V (x) = { ‖[g(x)]+‖−1[g(x)]+ }.
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Proof Let x ∈ X and v = ‖[g(x)]+‖−1[g(x)]+. Then, for any v ∈ V it holds that

vTg(x) ≤ vT[g(x)]+ ≤ ‖v‖ · ‖[g(x)]+‖ ≤ ‖[g(x)]+‖ = vTg(x), (4.4)

where the first inequality holds since v ≥ 0m and g(x) ≤ [g(x)]+, the second follows
from the Cauchy–Schwartz inequality, and the third holds since ‖v‖ ≤ 1. Since x ∈ X
is arbitrary and v ∈ V , it follows that v ∈ V (x). That the set V (x) is a singleton
follows from the fact that equality holds in each of the inequalities in (4.4) only when
both ‖v‖ = 1 holds and the vectors v and [g(x)]+ are parallel, in which case v = v.
The lemma follows. ��

Since for all x ∈ X and { v } = V (x) the equality vTg(x) = ∥
∥[g(x)]+

∥
∥ holds,

the right-hand side of (4.3) may be interpreted as the minimal total deviation from
feasibility in the constraints g(x) ≤ 0m over x ∈ X , that is,

θ
V ∗
0

0 = min
x∈X

{ ∥
∥[g(x)]+

∥
∥ }

> 0. (4.5)

The set X∗
0 × V ∗

0 of saddle-points of L0 on X × V is thus given by

X∗
0 := argmin

x∈X
{ ∥
∥[g(x)]+

∥
∥ }

and V ∗
0 := argmax

v∈V

{
min
x∈X { vTg(x) }

}
. (4.6)

Note that this definition of X∗
0 agrees with (2.5) and is valid regardless of the consis-

tency or inconsistency of the program (2.1). Since V ∗
0 is a singleton, we define the

vector v∗ by

{
v∗ } := V ∗

0 . (4.7)

Note the equivalence X∗
0 = {

x ∈ X0(v∗)
∣
∣ V (x) = { v∗ } }

.

Proposition 4.3 (Characterization of the set of saddle-points) The following hold:

(a) The primal optimal set X∗
0 is nonempty and compact.

(b) The dual optimal set V ∗
0 = V (x∗), irrespective of x∗ ∈ X∗

0 .
(c) The dual optimal point fulfils v∗ ∈ C.
(d) The dual optimal point fulfils ‖v∗‖ = 1.
(e) If the program (2.1) is linear then X∗

0 is polyhedral.

Proof The statements (a) and (e) followby identifying X∗
0×{ z∗ } = argmin(x,z)∈X×Rm{ ‖z‖2 ∣

∣ g(x) ≤ z
}
([2, Thm. 2.3.1]); by assumption, then { x ∈ X | g(x) ≤ 0m } = ∅

holds, implying that z∗ �= 0m . By Definition 4.1, V ∗
0 ⊆ V (x∗) holds for all x∗ ∈ X∗

0 ,
and by Lemma 4.2, V (x) is a singleton for any x ∈ X ; hence (b) holds. The statement
(c) follows from the definition of the sets C and V ∗

0 in Proposition 3.1 and (4.6),
respectively, while (d) follows from Lemma 4.2, Proposition 4.3(b), and (4.7). ��

123



68 M. Önnheim et al.

5 Convergence to the homogeneous dual optimal set in the inconsistent
case

We have characterized the Cartesian product set X∗
0 × { v∗ } of saddle-points of the

homogeneous Lagrange function L0 over X × V . Next, we will show that a sequence
of simply scaled dual iterates obtained from the subgradient scheme converges to the
point v∗.

To simplify the notation in the analysis to follow, we let

Lt := max
s=0,...,t

{ ‖us‖, 1 }
, ε := max

x,y∈X
{
f (x) − f (y)

}
,

and εt := ε + εt

Lt
, t = 0, 1, . . . , (5.1a)

where εt ≥ 0, t = 0, 1, . . .. In tandem with the iterations of the conditional εt -
subgradient algorithm (2.11) we construct the scaled dual iterate

vt := ut

Lt
, t = 0, 1, . . . . (5.1b)

Wenext show that the conditional (with respect toRm+) εt -subgradients g(xεt
f (ut ))−ηt ,

used in the algorithm (2.11), are also conditional (with respect to V ) εt -subgradients
of the homogeneous dual function θ0 at the scaled iterate vt , with εt = L−1

t (ε + εt ).

Lemma 5.1 (Conditional εt -subgradients of the homogeneous dual function) Let the
sequence { ut } be generated by themethod (2.11), (2.13a) applied to the program (2.4),
let the sequence { ηt } be bounded, and the sequences { εt } and { vt } be defined by (5.1).
Then,

g(xεt
f (ut )) − ηt ∈ ∂V

εt
θ0(vt ), t = 0, 1, . . . .

Proof From the definitions (2.2) and (2.3) (for ε = 0) follow that the relations

θ f (ut ) ≤ f (x00(u
t )) + (ut )Tg(x00(u

t )) = f (x00(u
t )) + θ0(ut ), t ≥ 0,

and

θ0(u) ≤ uTg(x0f (u)) = θ f (u) − f (x0f (u)), u ∈ R
m+,

hold. The combination of these relations with (2.8)–(2.9) (for ε = εt ), (2.10)–(2.11),
and the definition of ε in (5.1a) yield that the inequalities

θ0(u) − θ0(ut ) ≤ θ f (u) − f (x0f (u)) −
[
θ f (ut ) − f (x00(u

t ))
]

≤ [
g(xεt

f (ut )) − ηt
]T

(u−ut ) + ε + εt
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hold for all t ≥ 0 and all u ∈ R
m+, implying that g(xεt

f (ut )) − ηt ∈ ∂
R
m+

ε+εt
θ0(ut ). By

(2.8) and (5.1), the superlinearity of the function θ0, and since V ⊂ R
m+, it holds that

∂
R
m+

ε+εt
θ0(ut ) = ∂

R
m+

εt θ0(vt ) ⊆ ∂V
εt

θ0(vt ), and the result follows. ��
The following two lemmas are needed for the analysis to follow.

Lemma 5.2 (Normalized divergent series step lengths form a divergent series])
Assume that { αt }∞t=1 ⊂ R+. If Λt → ∞ as t → ∞, then

{ ∑t
r=1(1+ Λr )

−1αr
} →

∞ as t → ∞.

Proof Since log(1 + d) ≤ d whenever d > −1, for any r ≥ 1, the relations

log(1+Λr+1)= log(1+Λr )+log
[
1+(1+Λr )

−1αr
] ≤ log(1+Λr )+(1+Λr )

−1αr

hold. Aggregating these inequalities for r = 1, . . . , t then yields the inequality

log(1 + Λt+1) ≤ log(1 + α0) +
t∑

r=1

[
(1 + Λr )

−1αr
]
,

and the lemma follows. ��
Lemma 5.3 (Projection onto V ) For any u ∈ R

m the equalities proj(u; V ) =
proj([u]+; V ) = (

max
{
1; ∥

∥[u]+
∥
∥ })−1[u]+ hold.

Proof The result follows by applying the optimality conditions (e.g., [2, Thm. 4.2.13])
to the convex and differentiable optimization problems defined by the projection oper-
ator in (2.12) for S = R

m+ and S = V , respectively. ��
We now establish the convergence characteristics of the scaled dual sequence {vt }

defined in (5.1b) to the dual part of the set of saddle-points for L0.

Theorem 5.4 (Convergence of a scaled dual sequence) Let the sequence { ut } be
generated by the method (2.11), (2.13a), (2.13c) applied to the program (2.4), let the
sequence { ηt } be bounded, let the sequence { vt } be defined by (5.1b), and let the
optimal solution to the homogeneous dual, v∗, be defined by (4.7). If { x ∈ X | g(x) ≤
0m } = ∅, then it holds that vt → v∗ as t → ∞.

Proof Let γ t := g(xεt
f (ut )) − ηt for all t ≥ 0. From the definition (2.11) and the

triangle inequality it follows that

‖ut‖ ≤ ‖u0‖ +
t−1∑

r=0

αr‖γ r‖, t ≥ 1. (5.2)

Since X is compact, g is continuous, and the sequence { ηr } is bounded, it holds that
Γ := L0 + supr≥0

{ ∥
∥γ r

∥
∥ }

< ∞. From the definition (5.1a) of Lt then follows that

1 ≤ Lt ≤ max
s=1,...,t

{
Γ (1 + Λs)

} = Γ (1 + Λt ), t ≥ 1,
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which implies that L−1
t αt ≥ [

Γ (1+Λt )
]−1

αt , t ≥ 1. It follows that L−1
t αt > 0 for all t

and, by Proposition 3.3, that
{
L−1
t αt

} → 0 as t → ∞. Since, by Assumption (2.13a),

Λt → ∞ as t → ∞ it follows from Lemma 5.2 that
{ ∑t−1

s=0(L
−1
s αs)

} → ∞ as
t → ∞. Consequently the sequence

{
L−1
t αt

}
fulfils the conditions (2.13a).

From Lemma 5.3 follows that

proj(vt + L−1
t αtγ

t ; V ) = proj(L−1
t [ut + αtγ

t ]+; V ) = proj(L−1
t ut+1; V ).

If ‖ut+1‖ ≤ Lt , then Lt+1 = Lt and proj(L−1
t ut+1; V ) = proj(vt+1; V ) = vt+1

hold. Otherwise, ‖ut+1‖ = Lt+1 > Lt and proj(L−1
t ut+1; V ) = L−1

t+1ut+1 = vt+1

hold. In both cases

v0 = L−1
0 u0 and vt+

1
2 = vt + L−1

t αtγ
t , vt+1 = proj(vt+

1
2 ; V ), t = 0, 1, . . . ,

hold. Further, by Lemma 5.1 the inclusion γ t ∈ ∂V
εt

θ0(vt ) holds for t ≥ 1. By (2.13c)
the sequence { εt } is bounded; from Proposition 3.3 and (5.1a) it then follows that
εt → 0. The theorem then follows from [26, Thm. 3]. ��

The main idea utilized in the proof of Theorem 5.4 is that the scaled sequence
{ vt } obtained from the subgradient method defines a conditional (with respect to V )
εt -subgradient algorithm, as applied to the homogeneous Lagrange dual (4.2). Hence,
by tackling the Lagrange dual (2.4) by a subgradient method, we receive—in the case
of an inconsistent primal problem—a solution to its homogeneous version (4.1).

Next follow two technical corollaries, to be used in the primal convergence analysis.

Corollary 5.5 (Convergence of a normalized dual sequence) Under the assumptions
of Theorem 5.4 it holds that

{ ‖ut‖−1ut
} → v∗ as t → ∞.

Proof By the superlinearity of the function θ0, it holds that θ0(‖ut‖−1ut ) ≥
θ0(L

−1
t ut ) = θ0(vt ), t ≥ 0. The corollary then follows since, by Theorem 5.4,

θ0(vt ) → θ
V ∗
0

0 . ��

Corollary 5.6 (Convergence to the optimal value of the homogeneous dual) Under

the assumptions of Theorem 5.4 it holds that
{
(v∗)Tg(xεt

f (ut ))
} → θ

V ∗
0

0 as t → ∞.

Proof For each t ≥ 0 and each x ∈ X , let ρt (x) := L−1
t f (x)+ (vt − v∗)Tg(x). Since

Lt → ∞, vt → v∗, and X is compact, it follows that ρt (x) → 0 for all x ∈ X . Using
the definition (2.2) and the equivalence (4.3), and by separating the minimization over
x ∈ X , it follows that

L−1
t θ f (ut ) = min

x∈X
{
(v∗)Tg(x) + ρt (x)

} ≥ min
x∈X

{
(v∗)Tg(x)

} + min
x∈X {ρt (x)}

= θ
V ∗
0

0 + min
x∈X { ρt (x) }. (5.3)
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On the other hand, since X0(v∗) ⊆ X , and (v∗)Tg(x) = θ
V ∗
0

0 for any x ∈ X0(v∗), we
have that

L−1
t θ f (ut ) ≤ min

x∈X0(v∗)

{
(v∗)Tg(x) + ρt (x)

} = θ
V ∗
0

0 + min
x∈X0(v∗)

{ ρt (x) }.

It follows that
{
L−1
t θ f (ut )

} → θ
V ∗
0

0 as t → ∞. By the left-most equality in (5.3)
and (2.3) the inequality (v∗)Tg(xεt

f (ut )) ≤ L−1
t θ f (ut ) − ρt (x

εt
f (ut )) + L−1

t εt holds.
The corollary follows. ��

6 Primal convergence in the case of inconsistency

We apply the conditional ε-subgradient scheme (2.11) to the Lagrange dual of the
program (2.1). In each iteration we construct an ergodic primal iterate xtf , according
to the scheme defined in (2.14). We here aim at analyzing the convergence of the
ergodic sequence { xtf } when the primal program (2.1) is inconsistent. In Sect. 6.1
we establish convergence of the ergodic sequence to the feasible set of the selection
problem (2.16) for the case of convex programming [i.e., Theorem 2.3(a)]. In Sect. 6.2
we specialize this result to the case of linear programming, in which case the stronger
result of convergence to optimal solutions to the selection problem (2.16) is obtained
[i.e., Theorem 2.3(b)].

The set of indices of the strictly positive elements of the vector v is denoted by

I+(v) := {
i ∈ I ∣

∣ vi > 0
} ⊆ I, v ∈ V .

6.1 Convergence results for general convex programming

To simplify the notation, we let the ergodic sequence, { γ t }, of conditional ε-
subgradients be defined by

γ t := 1

Λt

t−1∑

s=0

αs
[

g(xεs
f (us)) − ηs

]
, t = 1, 2, . . . ,

for some choices of step lengths αs > 0 and approximation errors εs ≥ 0, s =
0, 1, . . . , t − 1. We will also need the following technical lemma (see [21, p. 35] for
its proof).

Lemma 6.1 (A convergent sequence of convex combinations) Let the sequences
{ μts } ⊂ R+ and { es } ⊂ R

r , where r ≥ 1, satisfy the relations
∑t−1

s=0 μts = 1
for t = 1, 2, . . ., μts → 0 as t → ∞ for s = 0, 1, . . ., and es → e as s → ∞. Then,{ ∑t−1

s=0 μtses
} → e as t → ∞. ��

We are now set up to establish the first part of the main result of this article.
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Proof of Theorem 2.3(a) The case when { x ∈ X | g(x) ≤ 0m } �= ∅ is treated in
Proposition 2.2.

Consider the case when { x ∈ X | g(x) ≤ 0m } = ∅. We will show that the ergodic
sequence { xtf } converges to the set X∗

0 = argminx∈X { ‖[g(x)]+‖ }.
Since X is convex and compact, any limit point x∞

f of { xtf } fulfils x∞
f ∈ X . Then,

by the continuity of g and ‖ · ‖, and the equivalence in (4.5), the relations

θ
V ∗
0

0 = min
x∈X

{ ∥
∥[g(x)]+

∥
∥ } ≤ ∥

∥[g(x∞
f )]+

∥
∥ ≤ lim sup

t→∞
{ ∥
∥[g(xtf )]+

∥
∥ }

hold. From Lemma 4.2 and the definitions (4.6)–(4.7) follow that the vectors [g(x)]+
and v∗ are parallel, and that

∥
∥[g(x)]+

∥
∥ = θ

V ∗
0

0 hold for all x ∈ X∗
0 . Further, by

Proposition 4.3(d), ‖v∗‖ = 1 holds. Hence, it suffices to show that

lim sup
t→∞

{ [
g(xtf )

]
+

} ≤ θ
V ∗
0

0 v∗, (6.1)

which will imply the equivalence
∥
∥[g(x∞

f )]+
∥
∥ = θ

V ∗
0

0 and thus the sought inclusion
x∞
f ∈ X∗

0 .
Since { x ∈ X | g(x) ≤ 0m } = ∅, it follows from Proposition 4.3(d) that I+(v∗) �=

∅. Consider any i ∈ I+(v∗). When t ≥ 0 is large enough, by Corollary 5.5, uti > 0

holds, implying that ut+1
i = uit+

1
2 holds in the iteration formula (2.11). Hence, for

N ≥ 0 large enough, it holds that

uti = ui
N +

t−1∑

s=N

αs
[
gi (x

εs
f (us)) − ηsi

] = ui
N + Λtγ i

t − ΛNγ i
N , t ≥ N + 1.

By rearranging this equation and dividing the resulting terms by ‖ut‖, it follows that
{ ∥

∥ut
∥
∥−1

Λtγ i
t
}

=
{ ∥

∥ut
∥
∥−1(

uti − ui
N + ΛNγ i

N ) }
→ v∗

i as t → ∞, (6.2)

since, by Proposition 3.3, { ‖ut‖ } → ∞ and, by Corollary 5.5, { ‖ut‖−1uti } → v∗
i . By

Corollary 5.6 it holds that
{
(v∗)Tg(xεt

f (ut ))
} → θ

V ∗
0

0 as t → ∞. ApplyingLemma6.1
with the identifications

r = 1, μts = Λ−1
t αs, es = (v∗)Tg(xεs

f (us)), and e = θ
V ∗
0

0

then yields that
{
(v∗)Tγ t } → θ

V ∗
0

0 as t → ∞. Since v∗
j = 0 for j ∈ I\I+(v∗), it

follows by utilizing (6.2) that

{
(v∗)Tγ t‖ut‖−1Λt

} → ‖v∗‖2 = 1 as t → ∞,
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which implies that

{ ‖ut‖−1Λt
} = {

(v∗)Tγ t‖ut‖−1Λt
[
(v∗)Tγ t ]−1 } → (

θ
V ∗
0

0

)−1 as t → ∞.

By combining this result with (6.2) it then follows that

γ i
t → θ

V ∗
0

0 v∗
i as t → ∞, i ∈ I+(v∗).

By the convexity of the functions gi , for each i ∈ I+(v∗) it then holds that

lim sup
t→∞

{
gi (xtf )

} ≤ lim sup
t→∞

{
1

Λt

t−1∑

s=0

αsgi (x
εs
f (us))

}
≤ lim sup

t→∞
{
γ i

t } = θ
V ∗
0

0 v∗
i .

(6.3)
From (5.2) follows that the inequality ‖ut‖ ≤ ‖u0‖ + ΛtΓ holds for every t ≥ 1,

where Γ = L0 + supr≥0
{ ∥
∥g(xεr

f (ur )) − ηr
∥
∥ }

< ∞. By Proposition 3.3, for a large

enough N ≥ 1, ‖ut‖ > ‖u0‖ holds for each t ≥ N , which implies the inequalities

Λ−1
t ≤ Γ

(‖ut‖ − ‖u0‖)−1
, t ≥ N . (6.4)

Then, for each j ∈ I\I+(v∗) and all t ≥ N , the relations

g j (xtf ) ≤ 1

Λt

t−1∑

s=0

αsg j (x
εs
f (us)) ≤ 1

Λt

t−1∑

s=0

(
us+1
j − usj

) = 1

Λt

(
utj − u0j

)

≤ Γ
utj − u0j

‖ut‖ − ‖u0‖

hold,where the first inequality follows from the convexity of g j , the second from (2.11)
and the fact that ηtj ≤ 0, the equality by telescoping, and the final inequality by (6.4).

As t → ∞, by Proposition 3.3, ‖ut‖ → ∞, and by Corollary 5.5,
{ ‖ut‖−1utj

} →
v∗
j = 0. It follows that

lim sup
t→∞

{
g j (xtf )

} ≤ 0, j ∈ I\I+(v∗). (6.5)

From (6.3) and (6.5) we then conclude (6.1). The theorem follows. ��
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6.2 Properties of and convergence results for the linear programming case

We now analyze the special case when the program (2.1) is a linear program, i.e., when
the program can be formulated as the problem to

minimize cTx, (6.6a)

subject to Ax ≥ b, (6.6b)

x ∈ X, (6.6c)

where c ∈ R
n , A ∈ R

m×n , b ∈ R
m , and X ⊂ R

n is a nonempty and bounded
polyhedron. The aim of this subsection is to provide a proof of Theorem 2.3(b), stating
that the ergodic sequence { xtf } [defined in (2.14)] converges to the optimal set of the

selection problem (2.16).2 For this linear case, the Lagrangian subproblems in (2.2)
can be solved exactly in finite time; hereafter we thus let εt := 0, t ≥ 0.

Let Ai denote the i th row of the matrix A and let x0 ∈ X0(v∗). The selection
problem (2.16) can then be expressed as the linear program to

minimize cTx, (6.7a)

subject to Aix = bi − [bi − Aix0]+, i ∈ I+(v∗), (6.7b)

Aix ≥ bi , i ∈ I\I+(v∗), (6.7c)

x ∈ X0(v∗). (6.7d)

Using that [bi−Aix0]+ = 0 for all i ∈ I\I+(v∗), we define the (projected)Lagrangian
dual function, θ+

c : Rm �→ R, to the program (6.7) with respect to the relaxation of
the constraints (6.7b) and (6.7c), as

θ+
c (u) := min

x∈X0(v∗)

{
cTx + uT(

b − Ax − [b − Ax0]+
) }

, u ∈ R
m . (6.8)

Defining the radial cone to Rm+ at v ∈ R
m+ as

R(v) := {
u ∈ R

m
∣
∣ ui ≥ 0, i ∈ I\I+(v)

}
, (6.9)

the corresponding Lagrange dual is then given by the problem to

maximize
u∈R(v∗)

θ+
c (u). (6.10)

We will show that when applying the conditional ε-subgradient optimization algo-
rithm (2.11) to the Lagrange dual (2.4) of the inconsistent linear program (6.6) with
respect to the relaxation of the constraints (6.6b), a subgradient scheme is obtained for

2 For the linear program (6.6), the selection problem (cf. 2.16) is defined as minx∈X∗
0
{ cTx }, where the set

X∗
0 is the subset of X possessingminimum infeasibility in the relaxed constraints (6.6b), i.e., inmathematical

notation, X∗
0 = argminx∈X

{ ∥
∥[b − Ax]+

∥
∥ }

.
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the Lagrange dual (6.10) of the selection problem (6.7), which is a consistent linear
program. We will then deduce that the ergodic sequence { xtf } converges to the set
of optimal solutions to (6.7). But first we introduce some definitions needed for the
analysis to follow.

A decomposition of any vector u ∈ R
m into two vectors being parallel and orthog-

onal, respectively, to v∗, is given by the maps β : Rm �→ R and ω : Rm �→ R
m ,

according to

u = v∗β(u) + ω(u), β(u) := uTv∗, and ω(u) := u − v∗β(u). (6.11)

Here, β(u) equals the length of the projection of u ∈ R
m onto v∗, while ω(u) equals

the projection of u onto the orthogonal complement to v∗. Both maps β and ω define
projections onto linear subspaces.

Property 6.2 (Properties of maps) The following properties of the maps β and ω

hold.

(a) ω(u)Tω(v) = ω(u)Tv = uTω(v) for all u, v ∈ R
m,

(b) β(u + 
v∗) = β(u) + 
 for all u ∈ R
m and all 
 ∈ R, and

(c) ω(u + 
v∗) = ω(u) for all u ∈ R
m and all 
 ∈ R. ��

Using the fact that ω(b − Ax) = b − Ax − [b − Ax0]+ for any x0 ∈ X∗
0 , we can

rewrite the Lagrangian dual function, defined in (6.8), as

θ+
c (u) = min

x∈X0(v∗)

{
cTx + uTω(b − Ax)

}
.

The following lemma follows from Property 6.2(a) and establishes that the value of
θ+

c at u ∈ R
m depends solely on the component ω(u) of u that is perpendicular to v∗.

Lemma 6.3 (A characterization of a projected dual function) For any u ∈ R
m, the

equivalence θ+
c (ω(u)) = θ+

c (u) holds. ��

Given constants δ > 0, p > 1, and q > (p − 1)−1 p, we define the set

U δ
pq := {

u ∈ R
m

∣
∣β(u) ≥ qδ2, β(u) ≥ pδ2‖ω(u)‖ }

(6.12)

of vectors possessing a large enough norm and a small enough angle with the direction
of v∗. The following lemma ensures that after a finite number N of iterations, all of
the dual iterates ut are contained in the set U δ

pq ; it follows from Proposition 3.3 and
Corollary 5.5.

Lemma 6.4 (The dual iterates are eventually in the setU δ
pq ) Let the sequence { ut } be

generated by the method (2.11), (2.13a) applied to the program (2.4), let the sequence
{ ηt } be bounded, and let { εt } = { 0 }. Then, for any constants δ > 0, p > 1, and
q > (p − 1)−1 p there is an N ≥ 0 such that ut ∈ U δ

pq for all t ≥ N. ��
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Propositions 6.5–6.7 below demonstrate that, for p > 1, q > (p − 1)−1 p, and a
large enough value of δ > 0, the condition u ∈ U δ

pq implies certain relations between
the function values θ f (u) and θ+

c (u), as well as between their respective conditional

subdifferentials. First we establish the inclusion X0
f (u) ⊆ X0(v∗)whenever u ∈ U δ

pq .

We then show that the value θ f (u) of the Lagrangian dual function equals β(u)θ
V ∗
0

0 +
θ+

c (u) whenever u ∈ U δ
pq .

Proposition 6.5 (Inclusion of the solution set) Let p > 1 and q > (p−1)−1 p. There
exists a constant δ > 0 such that X0

f (u) ⊆ X0(v∗) holds for all u ∈ U δ
pq .

Proof For the case when X0(v∗) = X the proposition is immediate. Consider the case
when X0(v∗) ⊂ X . Denote by PX , PX0

f (u), and PX0(v∗) the (finite) sets of extreme

points of X , X0
f (u), and X0(v∗), respectively. From (2.3) and [32, Ch. I.4, Def. 3.1]

follow that X0
f (u) and X0(v∗) are faces of X , implying the relations PX0

f (u) ⊆ PX ,

u ∈ R
m , and PX0(v∗) ⊆ PX ⊂ X . Hence, it suffices to show that PX0

f (u) ⊆ PX0(v∗)

holds whenever u ∈ U δ
pq . Let x∗

0 ∈ PX0(v∗) and x ∈ PX\PX0(v∗) be arbitrary. Since

the set PX is finite there exists a δ > 0 such that the relations

cT
(
x − x∗

0

) ≥ −δ, (6.13a)

−(v∗)TA(x − x∗
0) ≥ δ

−1
, (6.13b)

‖A
(
x − x∗

0

) ‖ ≤ δ (6.13c)

hold. For any u ∈ U δ
pq it then follows that

L f (x, u) − L f (x∗
0, u) = cT(x − x∗

0) − β(u)(v∗)TA(x − x∗
0) − ω(u)TA(x − x∗

0)

(6.14a)

≥ −δ + β(u)δ
−1 − δ‖ω(u)‖ (6.14b)

≥ δ
(
qp−1[p − 1] − 1

)
> 0, (6.14c)

where (6.14a) follows from (6.11), (6.14b) from (6.13) and Cauchy-Schwartz inequal-
ity, and (6.14c) from the definition (6.12) and the assumptions made. It follows that
x /∈ X0

f (u), which then implies that X0
f (u) ⊆ X0(v∗). The proposition follows. ��

In the analysis to follow we choose δ > 0 such that the inclusion in Proposition 6.5
holds.

Proposition 6.6 (A decomposition of the dual function) Let p > 1 and q > (p −
1)−1 p. For every u ∈ U δ

pq the identity θ f (u) = β(u)θ
V ∗
0

0 + θ+
c (u) holds.
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Proof The result follows since Proposition 6.5, (6.11), (4.3), and Property 6.2(a) yield
the equalities

θ f (u) = min
x∈X0(v∗)

{
cTx + uT(b − Ax)

}

= min
x∈X0(v∗)

{
cTx + (

v∗β(u) + ω(u)
)T

(b − Ax)
}

= θ
V ∗
0

0 β(u) + min
x∈X0(v∗)

{
cTx + ω(u)T(b − Ax)

} = θ
V ∗
0

0 β(u) + θ+
c (u).

��
We next establish that if γ is a conditional (with respect to Rm+) subgradient to θ f

at u ∈ R
m+, where u has a sufficiently large norm and a sufficiently small component

ω(u) (being orthogonal to v∗), then ω(γ ) is a conditional [with respect to R(v∗);
see (6.9)] subgradient of θ+

c at ω(u) ∈ R(v∗).

Proposition 6.7 (Conditional subgradients of a projected dual function) Let p > 1

and q > (p − 1)−1 p. For each u ∈ U δ
pq and γ ∈ ∂

R
m+

0 θ f (u) the inclusion ω(γ ) ∈
∂
R(v∗)
0 θ+

c (ω(u)) holds.

Proof Let v ∈ R(v∗) and choose 
 ≥ 0 such that v + 
v∗ ∈ U δ
pq . From Lemma 6.3,

Proposition 6.6, and Property 6.2(c) follow that the equalities

θ f (v + 
v∗) − θ f (u) = [
β(v + 
v∗) − β(u)

]
θ
V ∗
0

0 + θ+
c (v + 
v∗) − θ+

c (u)

(6.15a)

= [
(v − u)Tv∗ + 


]
θ
V ∗
0

0 + θ+
c (ω(v)) − θ+

c (ω(u)) (6.15b)

hold. Since u ∈ U δ
pq ⊂ R

m+, v + 
v∗ ∈ U δ
pq , and γ ∈ ∂

R
m+

0 θ f (u) it follows that

θ f (v + 
v∗) − θ f (u) ≤ γ T (
v + 
v∗ − u

)
(6.16a)

= γ T[
ω(v + 
v∗) − ω(u)

] + γ T[
β(v + 
v∗) − β(u)

]
v∗

(6.16b)

= ω(γ )T
[
ω(v) − ω(u)

] + γ T[
(v − u)Tv∗ + 


]
v∗,

(6.16c)

where (6.16a) follows from (2.8), (6.16b) from (6.11), and (6.16c) from Property 6.2.
Combining the relations in (6.15) and (6.16) yields the inequality

θ+
c (ω(v)) − θ+

c (ω(u)) ≤ ω(γ )T
[
ω(v) − ω(u)

] + [
(v − u)Tv∗ + 


](
γ Tv∗−θ

V ∗
0

0

)
.

(6.17)

Since γ ∈ ∂
R
m+

0 θ f (u) and (according to Proposition 6.5) X0
f (u) ⊆ X0(v∗), it then

follows that θ
V ∗
0

0 = minx∈X
{
(b − Ax)Tv∗ } = γ Tv∗. By inserting this into (6.17),
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and utilizing Property 6.2(a) and (c), and Lemma 6.3, we then receive the inequality

θ+
c (v) − θ+

c (ω(u)) ≤ ω(γ )T
[

v − ω(u)
]
.

The proposition then follows since v ∈ R(v∗). ��
We now define the sequences { ωt } and { ωt+ 1

2 } according to

ωt := ω(ut ) and ωt+ 1
2 := ωt + αtω(b − Ax0f (u

t ) − ηt ), t = 0, 1, . . . . (6.18)

In each iteration, t , the intermediate iterate ωt+ 1
2 is the result of a step in the direction

of ω(b − Ax0f (u
t ) − ηt ). The vector b − Ax0f (u

t ) − ηt ∈ R
m is a conditional (with

respect toRm+) subgradient to the Lagrangian dual function (2.2), so by Proposition 6.7
the vector ω(b − Ax0f (u

t ) − ηt ) is a conditional [with respect to R(v∗); see (6.9)]
subgradient to the dual function (6.8) for large enough values of t . To show that
the formula (6.18) actually defines a conditional [with respect to R(v∗)] subgradient
algorithm, we must also show that ωt+1 = proj(ωt+ 1

2 ; R(v∗)).

Proposition 6.8 (A subgradient method for the projected dual function) Let the
sequence { ut } be generated by the method (2.11), (2.13a) applied to (6.6), and the

sequences { ωt } and {
ωt+ 1

2
}
by (6.18); let the sequence { ηt } be bounded and let

{ εt } = { 0 }. Then, there exists an N ≥ 0 such that proj(ωt+ 1
2 ; R(v∗)) = ωt+1 for all

t ≥ N.

Proof By (6.18), (6.11), and (2.11), ωt+ 1
2 = ω(ut+ 1

2 ) holds for all t ≥ 0. Define

ωt := proj(ωt+ 1
2 ; R(v∗)) and note that ωi (u) = ui − v∗

i (v
∗)Tu holds for all i ∈ I

and all u ∈ R
m .

Consider i ∈ I\I+(v∗), so that v∗
i = 0. By (6.9), (6.11), (2.11), and (6.18) follow

that

ωt
i = [

ωi
t+ 1

2
]
+ = [

ωi (ut+ 1
2 )

]
+ = [

ui
t+ 1

2
]
+ = ut+1

i = ωi (ut+1) = ωt+1
i , t ≥ 0.

Consider i ∈ I+(v∗), so that v∗
i > 0. Due to (6.9) and (6.11) it then holds that

ωt
i = ωi

t+ 1
2 = ωi (ut+ 1

2 ) = ui
t+ 1

2 − v∗
i (v

∗)Tut+ 1
2

= ui
t+ 1

2 − v∗
i
∑

j∈I+(v∗) v∗
j u j

t+ 1
2 , t ≥ 0.

For all t ≥ N , where N ≥ 0 is large enough, the relations 0 < ut+1
i = ui t+

1
2 hold,

implying that ωt
i = ut+1

i − v∗
i

∑
j∈I+(v∗) v∗

j u
t+1
j = ωt+1

i , where the latter identity is
due to (6.18).

We conclude that ωt = ωt+1 for all t ≥ N , and the proposition follows. ��
We summarize the development made in this section. Associated with the sequence

{ ut } ⊂ R
m+ of dual iterates resulting from a conditional subgradient scheme for
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maximizing θ f over Rm+, we define in (6.18) a sequence { ωt } ≡ { ω(ut ) } ⊂ R(v∗)
of iterates corresponding to the function θ+

c . Proposition 6.7 shows that a conditional
(with respect to R

m+) subgradient of θ f at ut ∈ R
m+ can be mapped to a conditional

[with respect to R(v∗)] subgradient of θ+
c at ωt ∈ R(v∗). Then, Proposition 6.8 shows

that for a large enough value of t the projection of ut+ 1
2 onto R

m+ in (2.11) has a

one-to-one correspondence with the projection of ωt+ 1
2 onto the set R(v∗) [defined

in (6.9)].
We are now prepared to establish the remaining part of themain result of this article.

Proof of Theorem 2.3(b) The case when { x ∈ X | Ax ≥ b } �= ∅ is treated in Propo-
sition 2.2.

Assume that { x ∈ X | Ax ≥ b } = ∅. By Lemma 6.4 and Propositions 6.5–6.8,
there is an integer N ≥ 0 such that the sequence { ωt }t≥N is the result of a conditional
[with respect to R(v∗)] subgradient method applied to the Lagrangian dual (6.10)
of the linear program (6.7), which has a nonempty and bounded feasible set. It then
follows from Proposition 2.2 that dist(xtf ; X∗

f ) → 0 as t → ∞. The theorem follows.
��

This proof of Theorem 2.3(b) contains no explicit reference to any particular choice
of the weights defining the ergodic sequence (2.14). Although this article is written
with reference to the formula (2.14), the result of Theorem 2.3(b) will be valid for any
ergodic sequence of primal iterates that is convergent for consistent programs (see,
e.g., [14]), assuming that the corresponding version of Theorem 5.4 can be established.

7 Illustrations and a separation result

We next present an example which numerically illustrates the main findings made in
this article and, finally, a separation result following from our analysis.

7.1 A numerical example

Consider the linear programming instance of the program (2.1) given by that to

minimize 4x1 + 2x2, (7.1a)

subject to x1 − x2 ≥ 2, (7.1b)

− x1 + 2x2 ≥ 4, (7.1c)

x ∈ X := [0, 4]2. (7.1d)

Here
{

x ∈ X
∣
∣ Ax ≥ b

} = ∅; see illustration in Fig. 1; the corresponding cone
C = {

w ∈ R
2+

∣
∣ 2w2 < 3w1 < 12w2

}
is illustrated in Fig. 2. It is straightforward to

show that

X∗
0 = X∗

f =
{

(4, 18
5 )T

}
, v∗ = 1√

5
(2, 1)T, and θ

V ∗
0

0 = 4√
5
.
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We computed the sequence {ut } by the method (2.11), with u0 = ηt = (0, 0)T and
αt = 10

1+t .
Figure 2 illustrates the dual iteratesut (left) and the scaled dual iterates vt (right), for

t = 0, . . . , 30; the dashed lines indicate (the direction of) the vector v∗ = 1√
5
(2, 1)T.

The sequence {ut } diverges in the direction of v∗ and the sequence {vt } converges to
v∗.

In Figure 1 the ergodic primal iterates xtf [defined in (2.14)] are illustrated for

t = 1, . . . , 30. The sequence {xtf } converges to the singleton set X∗
0 = {

(4, 18
5 )T

}
.

The appearence of the solution set X∗
0 = argminx∈X { ‖[g(x)]+‖ } depends on the

scaling of the constraints in (2.1b), as demonstrated next. The set X∗
0 = {

(4, 18
5 )T

}

is illustrated in Fig. 3 (left). Scaling the constraint (7.1c) to “− 1
4 x1 + 1

2 x2 ≥ 1” yields
the solution set X∗

0 = {
(4, 12

5 )T
}
, which is illustrated in Fig. 3 (right).

Fig. 1 Illustration in the primal
space for the linear
programming instance (7.1) of
the program (2.1). The primal
ergodic iterates xtf ,
t = 1, . . . , 30, (circle) tend to
the optimal set
X∗
0 = {

(4, 18
5 )T

}
(bullet)

Fig. 2 Illustration in the Lagrangian dual space of the instance (7.1) of (2.1). Left the cone C (shaded), the
dual iterates ut , t = 1, . . . , 30, (circle) and the direction of v∗ (dashed line). Right the scaled dual iterates
vt , t = 1, . . . , 30, (circle) and the vector v∗ (dashed line)
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Fig. 3 Illustrationof the set X∗
0 (bullet) for two scalings of the constraint (7.1c) of the problem instance (7.1).

Left X∗
0 = {

(4, 18
5 )T

}
. Right X∗

0 = {
(4, 12

5 )T
}

7.2 Finite attainment of a separating hyper-surface

For the case when the set X is nonempty, closed, and convex, and all functions gi are
affine, we have previously, in [24, Cor. 6.4] (see also Cor. 3.24 in the survey [27]),
utilized ergodic sequences of subgradient optimization based underestimating affine
functions to finitely detect inconsistency and identify a separating hyper-plane.

We now return to our original setting of convex functions f and gi , i ∈ I, and a
nonempty, convex and compact set X . Provided that the feasible set { x ∈ X | g(x) ≤
0m } is empty and that the sets X and Y := {

x ∈ R
n
∣
∣ g(x) ≤ 0m

}
are both nonempty,

a hyper-surface that strongly separates the sets X and Y can be identified in a finite
number of steps.

Theorem 7.1 (Finite attainment of a separating hyper-surface) Let the sequence { ut }
be generated by the method (2.11), (2.13a), (2.13c) applied to the program (2.4), the
sequence { ηt } be bounded, and the sequence { vt } be defined by (5.1b). Suppose that
the sets X and Y are nonempty, but X ∩ Y = ∅. Then there exists an integer N ≥ 0

such that the hyper-surface H(vt ) := {
x ∈ R

n
∣
∣ g(x)Tvt = 1

2θ
V ∗
0

0

}
strongly separates

the sets X and Y for all t ≥ N.

Proof Since vt ≥ 0m for all t , it holds that g(x)Tvt ≤ 0 for all x ∈ Y and all t . From
(2.4) and (2.2) it follows that g(x)Tvt ≥ θ0(vt ) for all x ∈ X . From Proposition 3.1
it follows that the relations ∅ �= C ⊂ R

m+ hold and also that the strict inequality

θ0(w) > 0 holds for all w ∈ C . Since C ∩ V �= ∅, (4.2) yields that θ
V ∗
0

0 > 0.

Moreover, by Theorem 5.4, θ0(vt ) → θ
V ∗
0

0 as t → ∞. Hence, there is an N ≥ 0 such

that θ0(vt ) > 1
2θ

V ∗
0

0 for all t ≥ N , and it follows that g(x)Tvt > 1
2θ

V ∗
0

0 > 0 for all
x ∈ X and all t ≥ N . The theorem follows. ��
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8 Conclusions and further research

In thisworkwe apply a conditional subgradient optimization algorithm to theLagrange
dual of a (possibly) inconsistent convex program and compute an associated pri-
mal ergodic sequence. We establish the convergence of the resulting dual and primal
sequences to the set of saddle-points for the Lagrange function; for the special case
of linear programming the primal ergodic sequence converges to the minimum of the
primal objective function over the primal part of the set of saddle-points. The stronger
result for the case of linear programming is explained by the fact that the corresponding
selection problem (6.7) is guaranteed to possess Lagrange multipliers.3

The convergence rate for both the primal and the dual sequences can probably be
improved viamore careful choices of weights for the sequence of weighted averages of
primal subproblem solutions, e.g., as suggested in [14] for consistent convex programs.

Another interesting subject for further study is the behavior of the primal–dual
sequences when applying other solution schemes, such as bundle methods (see,
e.g., [30]) and augmented Lagrangian methods (see, e.g., [6,38]), to the Lagrangian
dual problem.
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