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ORTHOGONAL BASES OF BRAUER SYMMETRY CLASSES
OF TENSORS FOR GROUPS HAVING CYCLIC SUPPORT
ON NON-LINEAR BRAUER CHARACTERS*

MAHDI HORMOZI' AND KIJTI RODTES#

Abstract. This paper provides some properties of Brauer symmetry classes of tensors. A
dimension formula is derived for the orbital subspaces in the Brauer symmetry classes of tensors
corresponding to the irreducible Brauer characters of the groups whose non-linear Brauer characters
have support being a cyclic group. Using the derived formula, necessary and sufficient condition are
investigated for the existence of an o-basis of dicyclic groups, semi-dihedral groups, and also those
things are reinvestigated on dihedral groups. Some criteria for the non-vanishing elements in the
Brauer symmetry classes of tensors associated to those groups are also included.

Key words. Brauer symmetry classes of tensors, Orthogonal basis, Semi-dihedral groups,
Dicyclic groups.
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1. Introduction. During the past decades, there are many papers devoted to
study symmetry classes of tensors, see, for example, [I]-[9]. One of the active re-
search topics is the investigation of a special basis (called an o-basis) for the classes.
This basis consists of decomposable symmetrized tensors that are images of the sym-
metrizer using an irreducible character of a given group. In [I0], Randall R. Holmes
and A. Kodithuwakku studied symmetry classes of tensors using an irreducible Brauer
character of the dihedral group instead of an ordinary irreducible character and gave
necessary and sufficient conditions for the existence of an o-basis. A classical method
to provide the conditions applies the dimension of the orbital subspaces in order to
find an o-basis for each orbit separately. A main tool for computing the dimension
of symmetry classes using ordinary characters is the Freese’s theorem [9]. Unfortu-
nately, the symmetrizer using Brauer characters is not (in general) idempotent, so
the Freese’s theorem can not be applied directly. However, for the case of non-linear
Brauer characters of dihedral groups, the authors in [I0] decomposed them into a
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sum of ordinary characters and used the generalized Freese’s theorem to bound the
dimension.

One common property for all non-linear Brauer characters of dihedral groups is
their vanishing outside some cyclic subgroups. Many finite groups, including dicyclic
groups and semi-dihedral groups, satisfy this property. In this paper, we investigate
the existence of an o-basis of Brauer symmetry classes of tensors associated with the
groups having the stated property. Some properties of symmetry classes of tensors
symetrized using a complex value function are stated. For the non-linear Brauer
characters, we decompose the orbital subspaces of Brauer symmetry classes of tensors
into an orthogonal direct sum of smaller factors and then provide a dimension formula
for each of them. The necessary and sufficient condition for the existence of an o-basis
for dicyclic groups, semi-dihedral groups and dihedral groups are investigated and
reinvestigated as an application of the formula. Some criteria for the non-vanishing
elements in the Brauer symmetry classes of tensors associated to these groups are also
included.

2. Preliminaries. Let G be a subgroup of the full symmetric group S,, and p
be a fixed prime number. An element of G is p-regular if its order is not divisible by
p. Denote by G the set of all p-regular elements of G. Let IBr(G) denote the set of
irreducible Brauer characters of G. A Brauer character is a certain function from G to
C associated with an FG-module where F' is a suitably chosen field of characteristic
p. The Brauer character is irreducible if the associated module is simple. A conjugacy
class of G consisting of p-regular elements is called a p-regular class. The number of
irreducible Brauer characters of G equals the number of p-regular classes of G. Let
Irr(G) denote the set of irreducible characters of G. (Unless preceded by the word
Brauer, the word character always refers to an ordinary character.) If the order of
G is not divisible by p, then G = G and IBr(G) =Irr(G). Let S be a subset of G
containing the identity element e and let ¢ : S — C be a fixed function. Statements
below involving ¢ hold if ¢ is a character of G (in which case S = G) and also if ¢
is a Brauer character of G (in which case S = G) During the last few years, many
very interesting results on the topic of Brauer characters have been found (see e.g.
[13] and [15]-[22)).

Let V' be a k-dimensional complex inner product space and {es,...,ex} be an
orthonormal basis of V. Let I'}" be the set of all sequences o = (a1, ..., ), with
1 < a; < k. Define the action of G on I'}" by

a0 = (aa(l)a s aaa(m))'

We denote by G, the stabilizer subgroup of a, ie., G4, = {0 € Glac = a}. The
space V®™ is a left CG-module with the action given oe, = e,,—1 (0 € G,y € I'}?)
extended linearly. The inner product on V induces an inner product on V®™ which
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is G-invariant and, with respect to this inner product, the set {eq|a € T'}'} is an
orthonormal basis for V™ where e, = €4, ® - -+ ® Ean -

The symmetrizer corresponding to ¢ and S C G is the element s4 of the group
algebra CG given by

0= 203 oo )
oceS
Corresponding to ¢ and a € I'}", the standard (or decomposable) symmetrized tensor
is

6 _
e = sgeq |S|Z¢ )eao-1- (2.2)

The symmetry class of tensors associated with ¢ and S C G is
Vo(G) = s5VE™ = (el € TT).

If ¢ is a Brauer character, we refer to V4(G) as a Brauer symmetry class of tensors.
The orbital subspace of V(G) corresponding to o € T'}* is

VE(G) = (ed,lo € G).

An o-basis of a subspace W of V,4(G) is an orthogonal basis of W of the form
{eal, .. .,eﬁt} for some a; € I'['. By convention, the empty set is regarded as an
o-basis of the zero subspace of V4(G). Let A = Ag be a set of representatives of the
orbits of I'* under the action of G.

The following critical theorem is used to reduce the task of investigation on the
existence of an o-basis.

THEOREM 2.1. We have an orthogonal sum decomposition

G) =D ViG)
acA
Proof. See [10, Thm. 1.1]. O

The induced inner product on V4(G) can be calculated via the formula below,
which is an adaptation from the Theorem 1.2 in [10].

THEOREM 2.2. For every a € I'}' and 01,02 € G, we have

< [ [ _
aoy) ozcrg |S|2

Z > (1) p(noy 'ro2). (2.3)

HESTEULU. 1So, 'NGa
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Proof. For a € I'}" and 01,02 € G, we have

<egalaeg02 - |S|2 Z Z¢ eaalu*%eaagp*l)

,LLGSﬂES

|S|2 ZZ¢ Caoiu=1poy ! »€a)
,LLGSﬂES

|S|2 Z 3 $(1)d(p)
#GspeS o1plpoy te€Ga

|5|2 BSOS switee ),

HES reoi - 1So5 ' NGy
where 7 = oyt poy b O
The following is an immediate consequence of Theorem

COROLLARY 2.3. Let 01,00 € G, S C G and ¢ = 9 |g, where ¥ is a linear
character of G. If Go = {e} and A={pu € S|ecou'Soy'}#0, then

<eft0'1 I eft0'2> 7é 0

In the following sections, we also need the lemma and propositions below.

LEMMA 2.4. Assume that S is closed under conjugation by elements of G and

that ¢ is constant on the conjugacy classes of G. For each oo € I'[' and 0 € G, we

6 _ ¢
have oef, =e_ _:.

Proof. See [10, Lem. 1.3]. O
As an immediate consequence of this lemma, we have the following proposition.

ProposSITION 2.5. Let ¢ : S — C be a fized function equipped the assumption
of Lemma 24 If B = {eagl, Sgar s agk} is an o-basis of V.(G), then, for each
geG,

¢
g9-B= {eaglg l’eigzg e .7604914771}
is also an o-basis of V.2(G).

PROPOSITION 2.6. Let ¢ : S — C be a fixed function. Also, let C' contained in
S be a subgroup of G. If G, = {e} and ¢(s) =0 for all s € S — C, then

VAG) = (ey | geC) @ (e2, | ge G~ O).
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Proof. If we choose 01 € C and o9 € G\ C in (23], we get nonzero term only
if u € C and M0'1_10'2 € C, which is impossible, since C' is a group. Thus, the two
spaces are orthogonal. O

ProposiTION 2.7. Let S be a subgroup of G and ¢ : S — C be a nonzero
constant function on S. Then, for each a € I'}} 1/,

VL(G) = (el,lo € G)
has an o-basis and so does Vy(G).

Proof. Suppose ¢(s) = ¢ € C for all s € S. Since S is a group and by Theorem
22 we have that, for 0,7 € G,

<eﬁa7 cm' - |C| Z Z |C|2

nES Scop—1ST1-1NG,

C _
%ZM'ST 1ﬁGa|

nes
~efleSTT N Ga|
5] '

We have G, NoST ! =0 or Go NoST™1 # 0, for each 0,7 € G. For the latter case,
we have our~! € G, for some p € S. Thus, for each b € S,

aob = a(opr™ ) (T~ b)) = arg, for some g =p b e S.

Hence, {aob|b € S} = {a7blb € S}. Since S is a group and ¢(s) = ¢ for all s € S, we
have

acr |S| Zeas = a‘r'

This implies that, for 0,7 € G, €2, = e2_or (e2,,e?_ ) = 0, which yields that V.?(G)

has an o-basis and by Theorem 2.1l we complete the proof. O

3. Dimension formula. In this section, we let G be a finite group, S C G and
C be a subgroup of G contained in S. Let ¢ : G — C be a function such that
¢(o) # 0 for each o € C but ¢(S\ C) = 0. Thus, under this assumption, the induced
inner product (Z3]) becomes

<€£0.1 ) eﬁo’g = |S|2 Z Z (;S(M)QS(uU;lTUQ) (31)

pnel T€01Co, NGa
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for every o € I']" and 01,00 € G. If 010051 NGy = 0, then <e¢ e® ) = 0. This

ao1? Yoo
motivates us to define a relation on G: for each a € A,

01 ~q 09 <= 01 € G(XO'QC (32)

for all 01,09 € G. It is not hard to check that ~, for each a € A, is an equivalent
relation.

Now, we set [0] as the equivalent class containing o, RS the set of representative
of G/ ~q and V2([o]) := (e2,|g € [0]). Tt is clear that V,?([o]) is a subspace of VZ(G).

LEMMA 3.1. The space V.2(G) has an o-basis if and only if for each o € RS,
V2([o]) has an o-basis.

«

Proof. Suppose that V.¢([¢]) has an o-basis, for each o € RS. To show that the
space V.?(G) has an o-basis, it suffices to prove that V,?([o])’s are orthogonal. Now,
let 01,00 € Gand o € A. If alcaglﬂGa # (), then 01 € Go02C. Hence, if o1 », 09,
then 01Coy "' N Go = 0. In other words, if [01] # [02], then (e, e, ) = 0. The
other implication is clear. O

For the following propositions, denote <e$g|g € C) by Vj’(C’).

PROPOSITION 3.2. The space V4 (G) has an o-basis if and only if for each v € A,

V2(C) has an o-basis.

Proof. For each [o] € G/ ~, we have that
V(o)) ehglg € [o])

edylg € GaoC)

eﬁah|h € C>

efh|h eC); y=ao

Ve(C).

(
(
(
(

By Lemma Bl and (21I), we finish the proof. O

To determine the dimension of Vj)(C), for each v € A, we introduce a relation
~Z on C by: for each 01,02 € C,

o1~ 02 = 0102_1 €G,. (3.3)

It is obvious that ~7 is an equivalent relation. Now, we have:

ProposITION 3.3.  If C/ ~= {[o1],[02],...,[01,]}, then dim(VZ(C)) =
rank(My ), where (M,)ij := 3 pcong., ¢(hoios) and 1 <i,j < 5.

Proof. For each j € {1,2,...,t,} and g1,92 € [o;], we have that g1 = cgy for
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some ¢ € G,. Thus,

e?)?gl = % ZO’EC d)(o—gl)e'ya*l

= (7596‘) ZO’EC ¢(UC‘92)67071
- ¢‘(;‘) ZTC*IEC d)(TgQ)eryc»,-fl;T = OocC

|
- (ZT‘(;‘) ZTGC (b(TgQ)e’YT—l = e£g2.

Hence, Vj’(C’) = <e$aj |7 =1,2,...,ty). Moreover, note that €hgt = €yt if g1,g92 €
[0:]. This yields

1 D DIRC] P

i=1 \oeloi]

for each g € C. However, Zae[ai] ¢(og) = ZheCva ¢(hoig). So, we have

t'Y
e .
eﬁ"'j = % Z Z ¢(ha-la-]) e»yo—;la 1 S J S t'y-

i=1 \heCnG,
The result follows by (M, )ij := 3 cong, ¢(hoio;) for 1 <id,j <t,. 0

In particular, as a special case of Proposition 3.3} i.e., if C' is a cyclic subgroup of
G, we obtain a dimension formula for V.?(C).

THEOREM 3.4. Let C = (1) C S be a cyclic subgroup of G such that C/ ~3=
{lr],[7%],...,[7"]}. Denote v; = ZheCﬂGw ¢(htt=9) and

ty—1
J 2msji

dy=145€{0,1,2,...,t, — 1} | Z”]’e = — 0
7=0

Then t, = gt and dim(V(C)) =ty — d.

Proof. Note that under the equivalent relation ~% with C/ ~*= {[7],[7%],...,
[7%4]}, we have that [7*] = {¢ € C | o77% € G,} = {h7* | h € CNG,}. So,
|

™) =|CNG,| forall k =1,2,...,t,, and hence,

€l

By rank nullity theorem and Proposition [3.3]
dim(V?(C)) = rank(M,) = t, — nullity(M,) = t, — d.,

where d,, := nullity (M, ).
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To determine d.,, we observe that, if C' is a cyclic subgroup of G, then M, can
be reduced to a circulant matrix M;‘”' by swamping some columns of M,,. Precisely,
M,?" = (vo,v1,...,v¢, 1), where, for each j =0,1,...,t, — 1,

v; = Z (hrt 7).

heCna.,

It is well known that (see e.g. [12]).
nullity (M) = degged(Py (), 2" —1)],

where P,(x) = ;”:61 vjz’. Note that the set of all roots (over field C) of 2t — 1 is
2msi

U:={e®™ |0<s<t,}. Thus, common factors of P,(z) and ' — 1 must have
roots in U and hence,

{s€Z]|0<s<tyand Pv(ezz%i) = O}|

{s€Z|0<s<tyand Y0 ve ™ =0}

deglged (P, (z), zt — 1)]

Since the rank is invariant under column operations, d, = nullity(Ms") and thus the
result follows. O

4. Dicyclic group T4,. The dicyclic group T}, is defined as follows:

Ty = (r,s]r?" = e,r™ = 5% s rs =r~1).

Explicitly, all elements of the group Ty, may be given by Ty, = {r, sr*|0 < i < 2n}.
By the classical Cayley theorem, Ty, can be embedded in Sy,. Precisely,

123 -+ 2n)(2n+1 2n4+2 2n+3 --- 4n )

1 2n+1 n4+1 3n+1)(2 4n n+2 3n)

3 4n—-1 n+3 3n—-1)---(n—-1 3n+3 2n—-1 2n+3)
n 3n+2 2n 2n+2).

Tun has n + 3 conjugacy classes which are
{e}, {rF P 1<k <m, {sr?* |0<k<n—1}, {sr?*" T 0<k<n-—1}

and the ordinary irreducible character of Ty, are given by (see [4]):
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Table I: The character table for Ty,, when n is even.

Characters | (0 <k <n) | s | rs |

X0 1 11
X1 (—1)k 1 -1
X2 1 -1 -1
X3 (—1)k 11

1, where 2 cos (kJ—”) 0] 0
1<j<n—1

Table II: The character table for Ty,, when n is odd.

Characters | r*(0 <k <n) | s | rs |

Xb 1 1] 1

X (-1)* =

b 1 1] 1

X5 (=D* SN

Y%, where 2 cos (kf—;r) 0] 0
1<j<n-1

Write 2n = Ip! with [ an integer not divisible by p (where p is our fixed prime
number). We have

. {Tj”:,srk|0 <j<l1<k<2n}, ifp#2;
{riv |0 <j <}, if p=2.
Thus, the p-regular classes of G are

{rir* pU=0p"Y. 0 < j < Lsr?* |1 <k <nm}, {sr?0<k<n-1}, ifp#2;
{ijt,r(l—j)pt}; 0<j< 1—71 if p=2.

For each j and h, denote
Vi =Vilas Xn = xnlg and ' = Vila Xh = Xules

4, ifp#£2;
ﬁ — b )
and define € { 1 ifp—2.

PROPOSITION 4.1. The complete list of irreducible Brauer characters of Ty, for
even n is

N l
Xn 0<h<e), ¥ (1§j<5),
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and for odd n is

Xn (0<h<e), 9, <1§j<—)-

Proof. We first note that the restriction of a character of Ty, to ﬁn is a Brauer
character and the number of all the irreducible Brauer characters is the number of
p-regular classes of Ty,. Also, since Ty, is solvable, by the Fong-Swan theorem,
any irreducible Brauer character of Ty, is the restriction of an ordinary irreducible
character of Ty,.

The linear characters ¥j’s and X 's are obv1ously irreducible and distinct, by the
character tables above. For characters, wj and w , of dimension two we claim that
they are all distinct and irreducible for all 1 < j < 5. By the character tables above,
there is no need to separate the proof into the case of odd n, even n or p =2, p # 2,

k>

since ¢; and ¢’; are agree on the columns 7*’s and their values are zero outside these

columns.
For the irreduciblity issue, we suppose for a contradiction that
Vi = Xn + Xk

for some 0 < h, k<eand1<]<— Slnce1<3< l>2andr2”t Gim. So, we
can evaluate both sides of the above equation at r2v’ and obtain that

2ptj
2005( p]ﬂ-) =2,
n

which is impossible because cos (2#%) <lforalll<j< %

Analogously, for the issue of distinction, we suppose for a contradlctlon that
1/)] = 1/)1, for some 1 < i < 5 < 5. We now evaluate both sides by P , which yields

that
(’”””) (%)
cos| —— | =cos| — | .
n n
It implies that, for pt% and pt%, their difference or their sum must be a multiple of

2. However, this is not the case because 1 <i < j < % a

THEOREM 4.2. Let G =Ty, 0 < h<ewheree=4ifp#£2ande=1ifp=2,
and put ¢ = xp or )E’h . The space Vg(G) has an o-basis if and only if at least one of
the following holds:

(i) dimV =1,
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(i) p=2,
(#i) 2n is not divisible by p.

Proof. (i) If dimV = 1, then Vy(G) = (e% | @ € I'{") has only at most one
generator, namely, e where o = (1,1,1...,1). So, dim Vy(G) < 1, and thus, Vy(G)
has an o-basis.

(ii) If p = 2 then G= (r”t). Since G is a subgroup of G and ¢ is constant on G ,
it follows by Proposition [Z7] that V,(G) has an o-basis.

(i) Assume p # 2 and 2n is not divisible by p. Then G = G and consequently,
these characters will be ordinary linear characters. Thus, V4 (G) has an o-basis.

Conversely, we assume that dimV > 1 and p # 2 and 2n is divisible by p.
So, v ¢ Gand G = {ri*" sk | 0 < j < 1,1 <k<2n} =G We wil show
that Vi(G) does not have an o-basis. For o = (1,2,...,2,2) € I'4" .. we have
G. = {e}. Now, we concentrate on (e®_,e?), for each ¢ € G. We observe that
A={peGlecouG} ={ueG|oeGu} Sinceri = (sr")(sr') € G for each
0<i<2n, GC G2 and hence A # (. Thus, by Corollary 2.3, we have

(€2, e2) # 0 for each o € G. (4.1)

Qo) T

Next, we claim that {€2,,e?} C V.?(G) is a linearly independent set. We can set

ejjé = Zﬁ cses and e = Y sdses as {es|d € T4 |/} forms a basis for V4", Since
G ' =G,

eﬁ = @ Z ¢(U_1)eaa-

|G| 066

Since G = {e}, the elements ao with o € G are distinct. Also, since r ¢ G, ao # ar
for all ¢ € G, which yields that ¢, = 0. On the other hand, G, = 1" 1G,r = {e}, so
for r € G, (ar)o = ar if and only if ¢ = e. This implies that d, = ﬁ # ¢, = 0, which
implies that {e2,,e2} C V.¢(G) is a linearly independent set. Hence, dim V.?(G) > 2.

ar’) o

By Proposition 23] if V.?(G) has an o-basis, then it has an o-basis containing
e, but, by (@), this is not the case. So, V.?(G) does not have an o-basis, and by
Theorem 2], we complete the proof. O

For higher dimensional irreducible Brauer characters ¢ : G — C, we see that if
dimV = 1, then V4(G) = (e | a € T{") has only at most one generator, namely,
e® where a = (1,1,1...,1). So, dimV,(G) < 1, and thus, V,4(G) has an o-basis.
If dimV > 1, we investigate a necessary condition of the existence of an o-basis for
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dicyclic groups as follows.

PROPOSITION 4.3. For G = Tty with C NG, =< rto?" > where ty = |le—G|,
vyeA andd):d}b,l[)’b, where 1 <b < L

5, we have that

bty
dim<V$<c>>={ kg

T

Proof. Since G has cyclic support with C' =< ' > and C' N G, =< piap’ >, for
each ¢, we can compute the dimension by using Proposition 3.4l By character tables
and basic trigonometry identities, we compute that

v = S hecna, $hT ) = St p(r(mts =P
= 2%212005( (th”) (—J 7r>

)
{ 2(%)005((2?)#) ; ?

l
TG
b
0, P ¢

So, if % ¢ Z, then d, = t, and thus dim(V.¢(C)) = t., — t, = 0.

2msji

For d, in which %2 € Z, we have that Z 10 v] e » =0 if and only if

Z<<—>> o ((22) ) a3 (22 ) (22) ).

are simultaneously zero. Since th” € Z, the second sum is always zero and the first
sum is zero for all 0 < s < t., except for 9 i € Z; (i.e., except for s =ty — Yy or

1
s-bt—V) because 0 < 2 +—<2and—1<———<1 Hence, d, = t, — 2, and thus,

the results follow. O

There is no surprise with the assertion that dim(V#(C)) = 0 for which 2 ” ¢ Z

because:

PROPOSITION 4.4. For G = Tz(lp ). with C =< 1P > cmd NG, =< rtvp’ >
where t, = \CmG Y€ A and ¢ = wb,w b, Where 1 < b < 5, we have that, for each
oceC,

e =0 if and only zf T ¢ 7.

Yo
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Proof. Let 0 € C and v € A. By (31,

¢ o _ e
<eyaae'ya> |§| ZMEC ZTECHG ¢( )QS(/”_)
— 4ls@l? l/t 2jbm bt 2jbm
= ABEE Y Sl cos (B ) cos (26 () 7+ 22)
() (LeaE >zj:1 cos? (2), i Y e z;
0, if % ¢ 7,

which completes the proof. O
Now, by the above propositions, we achieve the main conclusion.

THEOREM 4.5. Let G = Ty, where 2n = Ip with | an integer not divisible by
p and let ¢ = iy, o', where 1 < b < % Then, V4(G) has an o-basis if and only if
1/2( ) < 0.

Proof. By Proposition [3.2] it is enough to focus on Vj)(C’). Also, in the proof of
Proposition B3, we have V#(C) = (e ol =1,2,...,ty), where 0; = 77" and ty =

|C‘OG‘ - Again, by (B1) and the Character tables, we compute that, for 1 <14,j <t.,

=0 2gec Pgoi)P(99;) =

<e$0'7, ) e?)%aj> —
-1
— Zk O¢( (k+4)p
=
=

By Proposition 3} dim(V.?(C)) = 2 for each ~ such that bt” € Z. So, it V4(G) con-
tains an o-basis, then there exist v and distinct 1 < 14,5 <ty such that cos ((z — j) )
= 0, which clearly 1mphes that 1/2( %) < 0. On the other hand, suppose 1/2(2lb) —k:,
for some k € N. Then 7= 2k+1 for some odd integer m. Since the existence of an
o-basis depends on v for which 2 ” € Z, 281 is always a divisor of ty. Thus, we can
choose ig = 2¥=1 4+ 1 and jy = 1 so that cos ((zo — ]0) ) = 0. By Propositionlﬂ,

6%1 and eﬁgj are non zero and hence, by the above fact {e ¢7‘pt} forms

an o-basis for V.#(C). O

r@F=141)pt?

5. Dihedral group D,,,. We first collect some facts about the Brauer characters
of the dihedral groups D, from [10]. We follow the notions of [10] in this section. A
presentation of the dihedral groups D,, having order 2m, is given by D,, =< r,s |

r™ =52 =1,srs = r~' >. The ordinary character table of D,, is:



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 31, pp. 263-285, April 2016
http:/repository.uwyo.edu/ela

276 M. Hormozi and K. Rodtes

Table III: The character table of D,,.

Characters rk srk
Yo 1 1
(o 1 -1
V2 (=1D)* —1)*
¢2 (_1)k (_1)k+1
Xh 2 cos % 0
(1<h<%)

We write m = Ipt, where [ is not divisible by prime number p, as before. The set
of all p-regular elements of D,,, are

oo st 0 <10k <B) pA
{0 <)<}, p=2.

The complete list of irreducible Brauer characters of D,, is, [10],
b (0<j <o), (1<h<yg),

where ¢; =4 5=, Xj = xn |5 and

4, leven, p#2;
e=<¢ 2, lodd, p#2;
1, p=2.

Necessary and sufficient condition for the existence of an o-basis for Brauer characters
of dimension one is provided in [I0]. Precisely, for ¢ = 1;, Y’ ;, where 0 < j <€, the
space V,(D,,) has an o-basis if and only if dimV =1 or p = 2 or m is not divisible
by p.

Necessary and sufficient condition for the existence of an o-basis for Brauer char-
acter of dimension two for D,, can be found in [I0]. But it can also be obtained by
very similar method applied on Ty, as we presented in §4. This is because ¢ has a
cyclic support for each ¢ = xp, where 0 < h < %,
tables of both groups are consistent on C' =< 7* >. Thus, by changing m to 2n and
h to b, each step of the computation for dimensions of V,f(Dm) and the condition for

the existence becomes the same. This yields

and all values in the character

THEOREM 5.1. Let G = D,,, where m = Ip* with | an integer not divisible by

p and let ¢ = Xp, where 1 < h < % Then, V4(G) has an o-basis if and only if

1/2(%) < 0. Also, for each o € C, eﬁa # 0 if and only if h% e Z.
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6. Irreducible Brauer character of SDg,. A presentation for SDsg,, for n > 2
is given by SDg, =< a,b | a®™ = b* = e,bab = a®*"~! >. All 8n elements of SDg,
may be given by

SDg, = {e,a,d?,...,a*" 1 b, ba,ba?, ... ba*""1}.

The embedding of SDg,, into the symmetric group Sy, is given by T'(a)(t) := t + 1
and T'(b)(t) := (2n — 1)t, where T is the remainder of m divided by 4n. We write
4n = Ip* with prime p and integer I not divisible by p and denote by S/D; the set of
all p-regular elements of SDsg,. It is not hard to see that

Sho _ {aj”t,bak|0§j<l;0§k<4n}, if p #£2;
T {adP |0< <1}, if p = 2.
By direct calculation, we have the following property.

PROPOSITION 6.1. The p-reqular classes of SDg,, n > 2 and 4n = Ipt, are as
follows:

Case 1: p is odd prime.

e Ifn is even (i.e., é € Z), then there are %Jr 3 p-regular classes. Precisely,

— 2 classes of size one being {e} and {a2?'},

— L1 classes of size two being [aiP'] = {ai?" a=DP'};j € {2,4,6,. . ., -
2l}’ . . .t .t 1\t . !

— g classes of size two being [a’P' | = {a’? ,alz=P )5 € {1,3,5,. e
1},

— L classes of size two being [a??'] = {a?",a(T P} 5 e {L 41,1 +
8 ) ) 2 1)

3,5+ % —1} and
— 2 classes of size 2n being [b] = {ba*" | i =0,1,2,...,2n — 1} and [ba] =
{ba?*1 |i=0,1,2,...,2n — 1}.
e Ifn is odd (ie., % is odd), then there are % + 6 p-regular classes. Precisely,
— J classes of size one being {e}, {a3?'}, {a2?"} and {a%7'},

— L1 classes of size two being [aj”t] = {ajpt,a(l_j)pt};j €{2,4,6,..., Lt
2},

— 2 classes of size two being [ai?'] = {ai?" az=DP"}: 5 € {1,3,5,. .., —
2}’ st st 31 ot

— L2 classes of size two being [a??'] = {a?? 0T P} 5 e {L+1,L 4

3., +4 -2} and
— 4 classes of size n being [b] = {ba*" | i = 0,1,2,...,n — 1}, [ba] =
{ba**1 | i =0,1,2,...,n — 1}, [ba®] = {ba**? | i =0,1,2,...,n — 1}
and [ba’] = {ba**3 | i =0,1,2,...,n— 1}.
141

Case 2: p = 2. There are == p-reqular classes. Precisely, there is 1 class of size

. ot At .
one, {e}, and there are 51 classes of size two, {a/? ,a!=9P"'}; 1 < j < 5L
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The ordinary irreducible character of SDs,, are given by (see [L1]):

Table IV: The character table for SDsg,, when n is even.

Conjugacy classes, [a"]; [a"]; (0] | [bal
Characters reCh re Cidd
Yo 1 1] 1
Y1 1 1 1
Y2 1 1| -1
Ya 1 1 1
1y, where 2 cos ( hQ’;Zr) 2 cos ( hQ’;Zr) 0 0
h€Clyen
Py, where 2 cos (}12%) 27 sin (}12%) 0 0
heCly

Table V: The character table for SDg,, when n is odd.

Conjugacy classes, [a"]; [a"]; [b] | [ba] | [ba?] | [ba®]
Characters reCy r e C9y
Xh 1 1 1] 1] 1 1
X, 1 1 1 1| 1| 1
" 1 1 1] 1] 1 | 1
" L 1 T 1 | 1| 1
X4 (—1)2 ir 1] i -1 —i
X5 (—1)% ir 1| =i 1 i
X (—1)% (=) 1| =i | 1| i
X C0f [ o [ [ 1]
1y, where 2 cos (%) 2 cos (hQ’;l”) 0 0 0 0
h E Cl-’Ue”L
Uy, WhTere 2 cos (hQ’;l”) 21 sin (hz’;f) 0 0 0 0
h € Cota
where Cy ={0,2,4,...,2n}, Cf,.,, :== C1\{0,2n}, C8%" = {1,3,5,...,n,2n+1,2n+

3,2n+5,...,3n}, Cl  ={1,3,5,...,n—1,2n+1,2n+3,2n +5,...,3n — 1}.

For each k and h, put Xx = x& |gp, » X'x = Xi |l5p,, and ¥x = ¥r |55,

&’k =, |§58 . Moreover, for odd prime p and 4n = Ip' such that [ is not divisible
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by p, we define F := {2,4,6,...,%—2},0E ::{1,3,5,...,%—.{}7 (o) ::{%—l—l,%—i—
3,...,%+i—e},wheree=1ifnisevenande:Zifnisodd.

PROPOSITION 6.2. Let IBr(SDsy,,) be the set of all distinct irreducible Brauer
characters of SDgy,. Then,

{)?k,lszt |0<k<3,j€ EUO]UO:}, if p# 2 and n is even;
{)?kvw/jpi |[0<k<T7,j€EUOIUO3}, ifp+#2 andn is odd;
{5/(:071/)/]\'17‘ [0<j< 1—71}7 if p=2 and n is even.
{X 0¥ jpt 1055 < 1_71}, if p=2 and n is odd.

IBr(SDsy) =

Proof. We first note that the restriction of a character of SDsg, to §l\)gn is
a Brauer character and the order of the set IBr(SDs,) is the number of p-regular
classes of S Dg,,. Also, since SDg, is solvable, by Fong-Swan theorem, any element in
IBr(SDs,,) is the restriction of an ordinary irreducible character of SDsg,,.

Each Xi’s and )?’ s are obviously irreducible and clearly distinct, by the character
tables above. For characters of dimension two, {p\jpt where p is an odd prime and n
is even, we claim that those are irreducible. We suppose for a contradiction that
ﬂ)\jpt = Xi + X for some j € EUOI UO2 and 0 < i,k < 3. Evaluating both sides at
a?r’ yields that

; t.2 t
ZCosu:Z
2n

That is cos 4j’l’t” =1, so 2j is a multiple of I. However, since 2j < [ for j € EU O}
and [ < 2j < 2[ for j € O}, this is a contradiction. We use similar arguments to show
that all the remaining cases, 1;,:’s are irreducible.

Next, we aim to show that all elements in IBr(SDs,) shown in the proposition
are distinct. For the case odd prime p and even n, we suppose that ;,: = 1, for
some i,7 € EUOI UO]. Tt is clear (by the character table) that i, either both are
even or both are odd. If 7, j are even, we evaluate both sides at a?" and then we get

t 7 ; t(a —
g PTG

l l

Since ged(l,pt) = 1 and HTJ and % can not be positive integers for each i,j € F,
i =j. If 4,7 are odd, we evaluate both sides at a”t, and then we get
t(s — t(s 7
sinp U ) cosp G +im =0.

l l

Since ged(l,pt) = 1 and # % %, % for i,5 € O UOJ and % can not be positive

integer, ¢ = j. Again, similar arguments work for all the remaining cases. O
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7. Existence of an o-basis for the class of tensors using a Brauer char-
acter of the SDg,. In the following theorem, we denote

3 if p#£2, n even
e=4¢ 7 if p#2, n odd
1 if p=2.

THEOREM 7.1. Let dimV > 2, G = SDg,, 0 < j <€, and put ¢ = x; or )2'3‘ .
Then, space V4(G) has an o-basis if and only if p = 2 or 4n is not divisible by p.

Proof. If p = 2 then G = (apt>. Since G is a subgroup of G and ¢ is constant on
é, by Proposition 27, V(G) has an o-basis. Assume p # 2 and 4n is not divisible by
p. Then G = G and consequently, these characters will be ordinary linear characters.
Thus, V,(G) has an o-basis.

Conversely, suppose that p # 2 and 4n is divisible by p. We aim to show that
V,(G) does not have an o-basis by showing that there exists a € '} such that V.2(G)
does not have an o-basis and then apply Theorem 2.1 to conclude the results.

Let a = (1,2,2,...,2,3). Since dimV > 2 and 4n > 4, o € I'{? .. We also
choose a representative A so that &« € A. We observe that to fix «, each 0 € G
must fix the first and the last position of a. It is clear that element of the form a*
satisfying the condition is only e. For elements of the form ba”, they must satisfy
T(ba*)(1) = 1 and T(ba*)(4n) = 4n. By using T(ba*)(t) = (2n —1)(k +1), we

conclude that G, = {e}. Since ¢ is a restriction of a linear character and G, = {e},

by Corollary 23] to show that (e®,e?) # 0 for each o € G, it suffices to show that

={pe G|e Eop 1G} 7é Q] This is simple because p 7é 2 and 4n is divisible by P, SO

= {ba*|0 < k < m} = Uand then A = {y € Glo € Gu}. Since e € op'G if and

only ifoeG! w= Gu and thus for arbitrary 0 < k < 4n, we have a* = ba’ba* € G2
and ab® = a®ba* € GQ, so G C G2. That is A #0. So,

(€2 ,e2) #0 for each o € G. (7.1)

Next, to show that {e2,,e2} C V.?(G) is a linearly independent set, we set
26 cses and e, = Y sdses, as {es|d € I'"} forms a basis for V™. Since

eq =
G !'=aG,
i: ¢ _1 ecw
5

Since G, = {e}, the elements ao with o € G are distinct. Also, since a ¢ é, ao # aa
for all ¢ € G, which yields that ¢, = 0. On the other hand, Go, = a 'Gaa = {e},
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so for a € é, (aa)o = aa if and only if o = e. This implies that d, = ﬁ # caq = 0.
Thus, {e2,,el} C V.#(G) is a linearly independent set, and hence, dim V.#(G) > 2.

By Proposition 5] if V.(G) were to have an o-basis, then it would have an o-
basis containing e, but, by (TI)), this is not the case. So, V.¢(G) does not have an
o-basis, which completes the proof. O

Remark 7.2. Theorem [1] shows that if dimV > 2, unlike the case for an
irreducible character, it is possible that V;(G) has no o-basis when ¢ is a linear
Brauer character. This holds when dimV = 2 as well. To observe this, we let p # 2
and 4n is divisible by p and ¢ = xg or )E’O . Consider o = (1,2,...,2,2) € T4 1.
Thus, for such a, we have G, = {1,a*"*2b}. Now by similar calculations done in
Theorem [Tl we have (ef, ,e® ) # 0.

a1 ooy

For the remaining of this section, we denote

{jptlj € EUOIUOL}, if p#2and n even;
=< {jptlj € EUO? U032}, ifp+#2andn odd;
{ip'0 < j < 5} if p=2.

For V4(SDs,), where ¢ = ’L&h,lﬁlh such that h € II is even, the condition for the
existence can be obtained in the same manner as T}, and D,,. This is because ¢ has
a cyclic support and all values in the character tables of those groups are consistence
on C' =< a” > if h is even. Then, we have:

THEOREM 7.3. Let G = SDs,, where 4n = Ip* with | an integer not divisible by
p and let ¢ = Py, '), such that h € II be even. Then, V4(G) has an o-basis if and
only if VQ(%) < 0. Also, for each o € C, ef‘jg %0 if and only if hlﬁ e 7.

For the case where h € II is odd, we first compute the dimension of V7¢(SD8n).

PROPOSITION 7.4. Let G = SDsg,, where 4n = Ip' with pt1 and let ¢ = p, 9},

such that h € II be odd. For v € A such CNG, =< at"?" >, where iy = ‘Cm—lG‘, then

4, if e z;

dim(V2(C)) = |
(V7(©) {0, if M ¢ 7.

Proof. Since G has cyclic support with C' =< a?’ > and C'N G, =< atr?’ >, for
each ¢, we can compute the dimension by using Proposition[3.4l By character tables,
we compute v; = ZthmGV @(hrtr=79), for the different case of j and t,. If ¢, is odd,
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then, for even j,

uo= Sy $rm )
= YV 9gin ((2k — 1) (Htay %)w)

! [
+ 2 2cos ((28) (2)m — (2)r)
= 0’

and for odd j,

v = T e(rmh )
= Z/:Q?QCOS ((Zk— 1)(2}1%)77— (#)7‘(‘)
+i Y2 9gin ((Qk)(%%)w — (#)w)
= 0,
since tht” ¢ Z (because h,t, are odd and then 4 | [). So, if ¢, is odd (i.e., h% ¢ 7),
then d, = ¢, and thus dim(V?(C)) = t, —t, = 0.

Similarly, if ¢ is even, we compute that

ht
0, e X
vj = —%—” sin (@ﬂ') , h% € Z and j odd

j ht )
7, cos (TTF> , % € Z and j even.

So, if ¢, is even and h% ¢ Z, then d = t, and thus dim(V.¢(C)) = t, — t, = 0. For

_ 2nsji
d- in which ¢, is even and hlﬁ € Z, we have that Z;lol vje + =0 if and only if
t_}*l t—éL—l
LS o () Y con (25 ) 3 (2220 ) (2220 ) |
= ! by k=0 l Ly
and
29 o

L o () ) (52)) - 35 (22522 o (22222) )

are simultaneously zero. Since h% € Z, the second sum is always zero and the first

sum is zero for each 0 < s < t, except for 2 (% + & ) €Zor?2 (% - ) € Z. Since
v v
0< 2 <1,
v

2h h 2h 2h h 2h
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Precisely, if s belongs to

ty hty tW 2h ht7 L b hty, t, 2h ht.,

o 2 - = S - B B 2 - 2 By s B 2 Ty 2

then the first sum will be not zero. Here, [r] and |r] are the ceiling function and
floor function of the real number r, respectively. Since ¢, > 0 and % ¢ Z for each

odd h € II, 51,82, 83,54 are all distinct. Hence, d, = ¢, — 4, and thus, the results
follow. O

Now, we have:

THEOREM 7.5. Let G = SDg,, where 4n = Ip' with p 11 and let ¢ = @h,ﬁ’h,
where h € II be odd. If dim(V) > 1, then Vs(G) does not have an o-basis. Also, for
eachoEC’e 7é0'Lfandonlyzf ”GZ

Proof. By Proposition B.2] it is enough to focus on V,f(C). Also, in the proof

of Proposition 3.3, we have Vj)(C) = (eﬁaj 7 =1,2,...,ty), where 0; = P and

ty =1 clnccl:v\' By (3I) and the character tables, we compute that, for even 4, j such

2gec d)(gai)@
S $(a™ I p(a Py = 0
? [zé;; 2cos ((2k + ) Ftm) cos ((2k + j)%)}

1_
+2 [2,3:01 2sin ((2k + 1 +49)227) cos (2k + 1 +5)27)| =0

111

= 2 {Zé;ol cos ((4k +1 +])27 ) + Zé;ol cos ((z — ])Th )

L L
+2 [El?:ol cos ((i — j)2n) — Z;?:ol cos ((4k +1i + j)%ﬂ')} =0
<= 2lcos((i—j)&w) =0 (since & ¢ 7).

Similar arguments work well for the remaining cases. Thus, we can conclude that
( ® ) =0 { cos ((z 7) Lﬂ) 0, if,j are both even or both odd; (7.2)
T

ey el ol
R sin ((i — j)3*m) =0, if ortherwise.

We consider v = (1,2,2,...,2) € I’ﬁ?m(v). Since dim(V) > 1, v € A and it
is not hard to see that G, = {e}. So, ¢, = [ and then % € Z. By Proposition

4 dim(V¢(C)) = 4. Thus, if V.?(C) has an o-basis, then there exist distinct 1 <

i1,12,13, 14 < t, such that {e‘ﬁcr 76%12 , eﬁalg , ew , } forms an o-basis. Since h is odd
and 4 | I, V(%) = —k, for some positive integer k. Hence, if there are at least three of

i1,12,13,14 which are all even or all odd, say i1, 19, i3, then, by (Z2]), there must exist
odd integers 01, 02, 03 such that

il—i2201'2k71, il—i3=02-2k71, and ’L'Q—’L'3:03-2k71.



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 31, pp. 263-285, April 2016

http:/repository.uwyo.edu/ela

284 M. Hormozi and K. Rodtes

This implies that oo — 03 = 01, which is a contradiction. If there are exactly two
of i1,12,43,44 which are all odd, say i1,i2, then, by (Z2), there must exist integer s
such that i1 — i3 = s - 2F. This implies that i1, = i35 + s - 2¥ is even (because i3 is
even), which is a contradiction. Therefore, V.?(C)) does not have an o-basis and by
Proposition 3.2, we finish the proof for the first statement. The second statements is
a consequence of Proposition [C4] and a direct calculation as in Proposition 4l O
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