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Abstract

In this paper, we study a novel approach to the design of an output feedback switched
controller with an arbitrary switching algorithm for continuous-time invariant systems that
is described by a novel plant model as a gain-scheduled plant using the multiple quadratic
stability and quadratic stability approaches. In the proposed design procedure, there is no
need to use the notion of the ”dwell time”. The obtained results are in the form of bilinear
matrix inequalities (BMI). Numerical examples show that, in the proposed method, the
design procedure is less conservative and gives more possibilities than that described in the
papers published previously.
Keywords: Switched system, continuous-time system, output feedback, quadratic stability,
multiple quadratic stability

1 Introduction

Switched systems have played an important role in the past decade. Motivation for studying
switched systems comes from two facts:

• switched systems have numerous applications in the control of real plants, and

• in real control, there are dynamic systems that cannot be stabilized by any continuous
static output/state feedback control law, but a stabilizing switching control scheme can be
found.

Switched systems constitute an important class. The switched system consists of a continuous-
time or discrete-time system and a switching law that specifies the switching between them.
It has been pointed out [1, 2, 3, 4] that the stability of switched systems plays an important
role in the analysis and design of switched controllers. There are at least two approaches to the
stability analysis of switched systems: The quadratic stability approach with a common Lyapunov
function gives the stability under an arbitrary switching law and Multiple Lyapunov functions,
which is less conservative. A huge number of references can be found on the switched control
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of linear discrete-time invariant systems, but, in the field of linear continuous-time invariant
systems, the number of references is rather small. Representatives are the following references
[5, 6, 7, 8, 9]. In the first paper, the authors introduce, into the switched controller design
procedure, the notion of dwell time Td (minimal time interval between switching). In the stability
analysis condition of switched systems, the dwell time is in the term eAcTd (Ac-closed-loop matrix
(4)). The proposed design procedure for stability analysis and switching controller design for
the real switching time interval T ≥ Td becomes rather conservative. The above ”dwell time
term” complicates the switched controller design procedure for continuous-time systems. In [6],
sufficient conditions are given for the stability of linear systems with a dwell time and with
polytopic type parameter uncertainty. A Lyapunov function, in quadratic form for each mode,
which is non-increasing at the switching instants, is assigned to each mode. During the dwell
time this function varies piecewise linearly in time after switching occurs. The proposed method
was applied to stabilization via the state feedback for both nominal and uncertain cases. Since,
within the dwell time the Lyapunov function varies piecewise linearly and the real switching time
interval T > Td, the switching controller design procedure becomes rather conservative. In [7],
the stability analysis problem for a class of switched positive linear systems with average dwell
time switching was investigated. [8] investigated the stability of a class of switched linear systems
and proposes a number of new results on the stability analysis. A novel analysis method has
been developed via the 2-norm technique, and several stability results have been obtained based
on the new analysis method. It is shown that the main results obtained in this paper not only
guarantee the stability of the systems under arbitrary switching but also provide an algorithm
to find the minimum dwell time with which switches make the switched systems stable. Dwell-
time switching is a logic for orchestrating the switching between controllers in order to control a
process with a highly uncertain model [9]. The idea of dwell-time switching is to use a parameter
tuner, which switches controller parameter values rather than continuously adjusting them. Such
a switched system consists of two interconnected subsystems, namely a ”continuous part” and a
”dwell-time switching logic”. Together these two subsystems constitute a parameter tuner, which
is a bona fide hybrid (switched) system. The above system generates ”switching logic” to make
estimation error (performance) ”small” in some sense [9]. Note that implementation of dwell-time
switching logic requires the capability of minimizing some performance over the set of controllers
in real time. In this paper, the proposed switched controller design procedure for continuous-time
systems has none of the aforementioned drawbacks due to dwell time consideration. An overview
of switched systems can be found in [1, 3, 10].
In this paper, new quadratic stability and multi quadratic stability conditions of closed-loop
switched systems for arbitrarily switching [3] are given using a new model of switched continuous-
time linear systems. In the proposed approach to switching controller design for continuous-time
systems, there is no need to use the approach of the ”dwell time” [5, 6]. The proposed switched
controller design procedure can be expanded to the case of robust switched controller design [12]
with multi parameter dependent quadratic stability.

The organization of the paper is as follows. Section 2 includes problem formulation of the
switched controller design using the novel proposed model, and some preliminary results are
given. In Section 3, sufficient stability conditions in the form of BMI for the case of quadratic
and multi quadratic approach are given, and, in Section 4, the obtained results are illustrated
on some examples.

Hereafter, the following notational conditions will be adopted. Given a symmetric matrix
P = PT ∈ Rn×n, the inequality P > 0 denotes matrix positive definiteness. Symbol ∗ denotes a
block that is transposed and complex conjugated to the respective symmetrically placed one. I
denotes the identity matrix of corresponding dimensions.
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2 Preliminaries and problem formulation

Let us consider a class of linear continuous-time invariant switched systems:∑
σ : ẋ(t) = A(θ)x(t) +B(θ)u(t)

y(t) = Cx(t)

x(0) = x0

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control vector, y(t) ∈ Rl is the output vector
of the system to be controlled, and σ ∈ S = {1, 2, . . . , p} is an arbitrarily switching algorithm.
The arbitrary switching algorithm σ is a piecewise constant, right continuous function that
specifies at each time the index of the active closed-loop system [3, 11], p is the number of
switched modes of linear systems, and

A(θ) = A0 +

p∑
i=1

Aiθi , B(θ) = B0 +

p∑
i=1

Biθi (2)

where
∑p
i=1 θi = 1, θi ∈ 〈0, 1〉 ∈ Ωθ, i = 1, 2, . . . , p are switching parameters. For calculation

of all the above matrices in (1) see the example. Note that, for switching systems, the stable
steady state points of switching parameters θi, i = 1, 2, . . . , p are equal to 0 or 1. If the switching
parameter θi, i = 1, 2, . . . , p differs from 0 or 1, it is moving to one of the stable points with the
rate of θi change θ̇i, i = 1, 2, . . . , p. There are two possibilities for switching parameters:

• the rates of change of switching parameters are infinite, that is θi = 1 holds for the i-th
mode and θj = 0 for j = 1, 2, . . . , p, j 6= i (quadratic stability approach), or

• the rates of change of switching parameters are finite, assuming that the system switched
from i to j mode. For this case one has θi + θj = 1, θ̇i + θ̇j = 0 and θk = 0, k 6= i, j
(multiple quadratic stability approach).

For both cases, θi, i = 1, 2, . . . , p are known and the number of system mode or the number of
vertices is equal to ”p”. Note that, number of vertices for a polytopic system is 2p.
The switched output feedback control law is considered in the form:

u(t) = F (θ)y(t) = F (θ)Cx(t) (3)

where

F (θ) = F0 +

p∑
i=1

Fiθi

The structure of matrices Fi, i = 0, 1, . . . , p can be prescribed, for the decentralized control
structure Fi is a block diagonal matrix and so on. The closed-loop system is obtained from Eqs.
(1) and (3):

ẋ(t) = (A(θ) +B(θ)F (θ)C)x(t) = Ac(θ)x(t) (4)

To access the system performance, we consider a standard positive definite quadratic cost function
with respect to state x and control u:

J =

∫ ∞
0

(
x(t)T (t)Qx(t) + uT (t)Ru(t)

)
dt =

∫ ∞
0

J(t)dt (5)

Let us recall some results on the optimal control of time varying systems.
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Lemma 1 [13] Let there exist a scalar positive definite function V (x, t) such that lim
t→∞

V (x, t) =

0, which satisfies

min
u(t)∈Ωu

{
∂V

∂x
Ac(θ) +

∂V

∂t
+ J(t)

}
= 0 (6)

The control algorithm u(t) = u∗(x, t) ∈ Ωu obtained from (6) ensures closed-loop stability and
the optimal value of the cost function (5) as J∗ = J(x0, t0) = V (x(0), t0).

Equation (6) is known as the Bellman-Lyapunov equation, and function V (x, t), which satisfies
(6) is the Lyapunov function. For a particular structure of the Lyapunov function, the optimal
control algorithm reduces from ”if and only if” to ”if”, and for switched systems, robust control
and so on to a guaranteed cost.

Definition 1 Consider System (1) and Controller (3). If there exist a control law u∗(x, t) and
a positive scalar J∗ such that the respective closed-loop system (4) is stable and the value of
the closed-loop cost function (5) satisfies J ≤ J∗, then J∗ is said to be the guaranteed cost and
u∗(x, t) is said to be the guaranteed cost control law for System (4).

Definition 2 [4] The switched linear closed-loop system (4) is said to be quadratically stabilizable
via output feedback if there exists a Lyapunov function of the form V = x(t)TPx(t), P > 0, a
positive number ε > 0, and an arbitrary switching rule σ such that

dV

dt
≤ −εx(t)Tx(t) (7)

Definition 3 The switched linear closed-loop system (4) is said to be multiple quadratically stabi-
lizable via output feedback if there exists a Lyapunov function of the form V (θ) = x(t)TP (θ)x(t),
P (θ) > 0, a positive number ε > 0, and an arbitrary switching rule σ such that

dV (θ)

dt
≤ −εx(t)Tx(t) (8)

Lemma 2 [14], [3] Consider a closed-loop system (4) with a control algorithm (3). Control
algorithm (3) will be a cost guaranteed algorithm if there exists a positive scalar ε such that, for
the time derivative of the positive definite Lyapunov function, the following condition holds

Be = max
u(t)∈Ωu

{
∂V

∂x
Ac(θ) +

∂V

∂t
+ J(t)

}
≤ −εx(t)Tx(t) (9)

when ε→ 0.

The following lemma plays an important role in the next development [15].

Lemma 3 Consider a scalar quadratic function of θi

f(θ) = a0 +

p∑
i=1

aiθi +

p∑
i=1

p∑
j=i

bijθiθj (10)

and assume that f(θ) is multiconvex, that is

∂2f(θ)

∂θ2
i

≥ 0, i = 1, 2, . . . , p (11)

Then f(θ) is negative in the hyper rectangle θi ∈ 〈0, 1〉, i = 1, 2, . . . , p, if and only if it takes
negative values at the corners, that is if and only if f(θ) < 0 for θi = 0 or θi = 1, i = 1, 2, . . . , p.
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3 Switched controller design

In this paragraph, two methods of switched controller design for linear continuous-time invariant
systems are presented. The first method is connected with the notion of quadratic stability
with respect to θ. We will assume that the rate of θ change is infinite. Most of the literature
on switched controller design concentrates on the case where switching can occur immediately,
making the rate of change of the switching signal infinite (ideal switching). In some real cases,
the rate of change of the switching signal is finite (non ideal switching). This assumption will be
used in the second approach to obtain the switched controller design procedure. In the references
on the design of switched controllers for continuous-time systems, there are no solutions for the
case of a finite rate of change of switching signal. In this paper, we set up the case of the
finite rate of change of the switching signal using the multi quadratic stability approach to the
closed-loop switched systems. In the proposed approach to the switching controller design for
continuous-time systems, there is no need to use the approach of the ”dwell time” [5, 6], which
complicates the switched controller design procedure considerably.

3.1 Quadratic stability approach

The quadratic stability approach to the design of the switched controller for continuous-time and
discrete-time systems is well established. Because of the new model for continuous-time systems
(1), in this part of the paper, the proposed method is connected with the notion of quadratic
stability with respect to θ. We will assume that the rate of θ change is infinite (ideal switching).
From (9), the following lemma is obtained.

Lemma 4 Closed-loop Ac(θ) is quadratically stable with guaranteed cost if there exists a positive
definite Lyapunov matrix P such that the following inequality holds:

ATc (θ)P + PAc(θ) +Q+ CTF (θ)TRF (θ)C ≤ 0 (12)

Substituting Ac(θ) (4) to (12) and using Lemmas 2 and 3, the following quadratic stability
conditions are obtained.

Theorem 1 Closed-loop system (4) is quadratically stable with guaranteed cost if there exists a
Lyapunov matrix P > 0 and matrices Q ≥ 0, R > 0 such that, for an arbitrarily switching rule
σ, the following matrix inequalities hold:

a)

(A0 +B0F0C)TP + P (A0 +B0F0C)

+Q+ CTFT0 RF0C = M0 ≤ 0
(13)

b)
M0 +Mi +Mii ≤ 0, i = 1, 2, . . . , p (14)

where

Mi = (Ai +B0FiC +BiF0C)TP

+ P (Ai +B0FiC +BiF0C)

+ CTFTi RF0C + CTFT0 RFiC

(15)

and
Mii = (BiFiC)TP + PBiFiC + CTFTi RFiC (16)

5



c)
Mii ≥ 0, for i = 1, 2, . . . , p (17)

provided that θi = 0 or θi = 1

Proof 1 The proof is based on (9), Lemma 2, and Lemma 3 and goes along the same line as the
proof of Theorem 2.

Equation (14) implies that, for stability analysis of the switched system, we have obtained linear
matrix inequalities (LMI) but, for the switched controller design, we have obtained bilinear
matrix inequalities (BMI).

3.2 Multiple Lyapunov function approach

In this subsection, we will assume that, for some realistic cases, the switching signal rate of
change is finite (non ideal switching). As we mentioned above, in the references, there is no
solution for these cases. The obtained results for a finite rate of change of switching signal open
the new possibilities for the designer (practical realization) and for the theory of the switched
controller design procedure, i.e., the design of a switched robust controller, design of a switched
controller for some type of nonlinear systems and so on. Specifically,

• for switching parameters it holds that
∑p
i=1 θi = 1, θi ∈ 〈0, 1〉 ∈ Ωθ.

• the rate of switching parameter variation θ̇i is clear at all times and satisfies known bound-
aries

θ̇i ∈ Ωt =
{
θ̇i ∈

〈
θ̇i, θ̇i

〉
, i = 1, 2, . . . , p

}
(18)

p∑
i=1

θ̇i = 0.

The main results for the switched controller design using the multiple quadratic stability approach
are given in the next theorem.

Theorem 2 Closed-loop system (4) is multiple quadratically stable with guaranteed cost if there
exist p + 1 symmetric matrices P0, P1, . . . , Pp such that P0 +

∑p
i=1 Piθi > 0 is positive definite

for all switching parameters θi ∈ Ωθ, θ̇i ∈ Ωt switched controller parameters F (θ) satisfying

W (θ) ≤ 0

Wii ≥ 0, i = 1, 2, . . . , p
(19)

for an arbitrary switching rule σ, where

W (θ) = W0 +

p∑
i=1

Wiθi +

p∑
i=1

p∑
j=1

Wijθiθj

W0 =

[
w110 w120

wT120 w220

]
;Wi =

[
w11i w12i

wT12i w22i

]
Wij =

[
w11ij w12ij

wT12ij w22ij

]
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w110 = N1 +NT
1 , w11i = w11ij = 0

w120 = P0 +N2 −NT
1 Ac0, w12i = Pi +N2 −NT

1 Aci

w12ij = N2 −NT
1 Acij

w220 =

p∑
k=1

Pkθ̇k −NT
2 Ac0 −ATc0N2 +Q+ CTFT0 RF0C

w22i = −NT
2 Aci −ATciN2 + CTFT0 RFiC + CTFTi RF0C

w22ij = −NT
2 Acij −ATcijN2 + CTFTi RFjC + CTFTj RFiC

Ac0 = A0 +B0F0C, Aci = Ai +B0FiC +BiF0C

Acij = BiFjC

Proof 2 For the first derivative of the Lyapunov function, V (θ) = x(t)TP (θ)x(t), one obtains:

dV (θ)

dt
= ẋ(t)TP (θ)x(t) + x(t)TP (θ̇)x(t) + x(t)TP (θ)ẋ(t) =

[ẋ(t)T x(t)T ]

[
0 P (θ)

P (θ) P (θ̇)

]
[ẋ(t)T x(t)T ]T

where

P (θ̇) =

p∑
i=1

Piθ̇i ≤
p∑
i=1

Piθ̇i

assuming Pi > 0, i = 1, 2 . . . , p. For the closed-loop system (4), one can write (x(t) = x)

[ẋTNT
1 + xTNT

2 ][ẋ−Ac(θ)x] + ([ẋTNT
1 + xTNT

2 ][ẋ−Ac(θ)x])T = 0 (20)

where N1, N2 ∈ Rn×n are auxiliary matrices. Summarizing the above two equations, for the first
derivative of the Lyapunov function it holds that

dV (θ)

dt
= [ẋT xT ]

[
u11 u12

uT12 u22

]
[ẋT xT ]T (21)

where
u11 = NT

1 +N1, u12 = P (θ) +N2 −NT
1 Ac(θ),

u22 = P (θ̇)−NT
2 Ac(θ)−Ac(θ)TN2

Substituting the control algorithm (3) into the system performance (5) for J(t), one obtains:

J(t) = xT (Q+ CTF (θ)TRF (θ)C)x (22)

Rewriting the Bellman-Lyapunov equation (9) to the form

Be =

{
dV (θ)

dt
+ J(t)

}
≤ 0 (23)

or using Equations (21) and (22) for Be it holds that

Be =

[
ẋ
x

]T [
u11 u12

uT12 u22 +Q+ CTF (θ)TRF (θ)C

] [
ẋ
x

]
(24)
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Inequalities (23), (9) hold if the inner matrix of (24) is negative definite (semidefinite), that is

W (θ) =

[
u11 u12

uT12 u22 +Q+ CTF (θ)TRF (θ)C

]
≤ 0 (25)

Due to the quadratic function of W (θ) with respect to θ, Lemma 2 gives the stability conditions
in the form of (19), which proves the sufficient stability conditions of Theorem 2.

For the switched controller design procedure, the last term of W (θ) needs to be symmetrized as
follows:

p∑
i=1

p∑
j=1

Wijθiθj =

p∑
i=1

Wiiθ
2
i+ (26)

p∑
i=1

p∑
j>i

(Wij +Wji)θiθj

where

Wii =

[
0 −NT

1 Acii
ATciiN1 −NT

2 Acii −ATciiN2 + CTFTi RFiC

]
(27)

Remarks:

1. Note that the dwell time determines the minimal time interval between switching. If the
real switching time interval is greater, T ≥ Td, the switched controller design procedure
for arbitrarily switching proposed in [5, 6] becomes more complicated and conservative.
Previous considerations imply that, for an arbitrarily switching algorithm, the number
of active switching plant modes generates the value of the switching variable σ to deter-
mine which controller will be active. Switched controller parameters calculations are made
off-line by minimizing a given performance. Dwell-time switching s another switching al-
gorithm, which in real time (on-line) ”t” requires an algorithm capable of minimizing some
performance like output estimation errors over the switching controllers. As a results of
minimization the dwell-time switching logic generates the switching variable σ to determine
which controller will be active in time ”t” [9].

2. To obtain a feasible solution, in the switched controller design procedure proposed in this
paper, one can use a free and open source BMI solver, PenLab.

4 Examples

The first example is taken from [16]. This plant has been constructed to include the technical
challenge of the control of models in practice, such as models like the air induction system of a
turbocharged diesel engine. After a small simplification, one obtains a simple linear time-varying
plant with parameter varying coefficients:

ẋ(t) = a(α)x(t) + b(α)u(t)

y(t) = x(t)
(28)

where α(t) ∈ R is an exogenous signal that changes the parameters of the plant as follows

a(α) = −6− 2

π
arctan

( α
20

)
b(α) =

1

2
+

5

π
arctan

( α
20

) (29)
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Let the problem be to design a switched PI controller that will guarantee the closed-loop stability
and guaranteed cost for System (28), where α(t) is changing in steps between 0, 30, and 100. In
these working points, the calculated transfer functions are as follows:

Gs1|α=0 = 0.5
s+6 , Gs2|α=30 = 2.064

s+6.626

Gs3|α=100 = 2.686
s+6.874 ,

(30)

We transform the above transfer functions into the time domain to obtain a gain-scheduling
model in the form (1). Matrices Ai, Bi, i = 0, 1, 2, . . . , p for the case i = 0 are calculated as
middle values of all corresponding matrices, and, for i = 1, 2, . . . , p, one can use the standard
approach. The obtained model is extended by one state variable for PI controller design. The
extended model is given as follows:

A0 =

[
−6.5 0

1 0

]
, A1 =

[
0.5 0
0 0

]
,

A2 =

[
−0.126 0

0 0

]
, A3 =

[
−0.374 0

0 0

]
,

B0 =

[
1.75

0

]
, B1 =

[
−1.25

0

]
,

B2 =

[
0.314

0

]
, B3 =

[
0.936

0

]
,

C =

[
1 0
0 1

]
, D = 0

Using Theorems 1 and 2 with weighting matrices Q = qI, q = 1 × 10−6, R = rI, r = 1 and
ρU = 1 × 107, ρL = 1 × 10−5 which are the upper/lower constraint of the Lyapunov matrix

( ρLI < P (θ) < ρUI), θ̇i = 1000 [1/s] is the maximal rate of switched parameter change for
multi-quadratic stability approach, and with θ ∈ 〈0, 1〉, we obtain switched controllers in the
form (3) where, for the case of quadratic stability (Theorem 1), one has

F0 = [ −0.8213 −5.2172 ] = [−0.8213− −5.2172
s ]

F1 = [ −0.4868 −3.0799 ]
F2 = [ −2.6625 −16.8453 ]
F3 = [ 0.8072 5.1071 ]

(31)

and for the case of multi-quadratic stability approach (Theorem 2), one has

F0 = [ −0.3412 −10.9588 ]
F1 = [ −0.0475 −0.3355 ]× 10−8

F2 = [ 0.0186 0.1315 ]× 10−7

F3 = [ 0.0637 0.4492 ]× 10−8

(32)

In simulations, α will be switched between values 0, 30, and 100, and a particular arbitrarily
switching algorithm in simulations is shown in Figs. 3 and 5. The switched parameters are

calculated from signal α and switched with a maximal rate of change θ̇i. Simulation results
(Figs. 1, 2 and 3) confirm that Theorems 1 and 2 hold; thus, the closed-loop switched system is
stable for a prescribed rate of switching signal change.

Other switched controllers are designed using Theorems 1 and 2 with weighting matrices

Q = qI, q = 10, R = rI, r = 1, ρU = 1 × 107, ρL = 1 × 10−5, θ̇i = 2000 [1/s] as the maximal
rate of switched parameters change for multi-quadratic stability approach and with θ ∈ 〈0, 1〉.
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Figure 1: Simulation results w(t), y(t) with switched controller (31) – QS

Figure 2: Simulation results w(t), y(t) with switched controller (32) – MPQS

Figure 3: Calculated switched parameters θ(t) and the switching signal α(t) for the case of

θ̇i = 1000 [1/s]

The obtained controllers are in the form (3), where, for the case of quadratic stability (Theorem
1), one has

BMI solver failed.
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and for the case of multi-quadratic stability approach (Theorem 2), one has

F0 = [ −540.8653 −1.3937 ]
F1 = [ −0.2596 −0.0003 ]× 10−10

F2 = [ 0.1033 0.0001 ]× 10−9

F3 = [ 0.3467 0.0005 ]× 10−10

(33)

For this case, in simulations, α will be switched between the same values 0, 30, and 100, as shown
in Fig. 5. The switched parameters are calculated from this signal and switched with maximal

rate of change θ̇i = 2000 [1/s]. Simulation results (Figs. 4, 5) confirm that the multi-quadratic
stability approach is less conservative than the quadratic stability approach. This example implies
that, for higher values of weighting matrix Q = qI, q > 0.1 (higher weight for quality) quadratic
stability with BMI solver fails but, with the multi-quadratic stability approach, we can obtain
the controller up to q = 15.

Figure 4: Simulation results w(t), y(t) with switched controller (33) – MPQS

Figure 5: Calculated switching parameters θ(t) and the switching signal α(t) for the case of

θ̇i = 2000 [1/s]

The second example is borrowed from [17]. Consider a simplified manual transmission model:

ẋ1 = x2

ẋ2 = [−a(x2)/v + u]/(1 + v)
(34)
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where x1 is the ground speed, x2 is the acceleration, u ∈ 〈0, 1〉 is the throttle position, and
v ∈ {1, 2, 3, 4} is the gear shift position. Function a(.) is positive for a positive argument. Model
(34) can be transformed into this form:[

ẋ1

ẋ2

]
︸ ︷︷ ︸

ẋ

=

[
0 1
0 −a

v+v2

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+

[
0
1

1+v

]
︸ ︷︷ ︸

B

u (35)

Substituting a = 5 and v = [1, 2, 3, 4] we can transform (35) into the form (1):

A0 =

[
0 1
0 −1

]
, A1 =

[
0 0
0 −1.5

]
A2 =

[
0 0
0 0.1667

]
, A3 =

[
0 0
0 0.5833

]
A4 =

[
0 0
0 0.75

]
, B0 =

[
0

0.3208

]
B1 =

[
0

0.1792

]
, B2 =

[
0

0.0125

]
B3 =

[
0

−0.0708

]
, B4 =

[
0

−0.1208

]
C =

[
1 0
0 1.75

]
Using Theorems 1 and 2 with weighting matrices Q = qI, q = 0.1, R = rI, r = 208 and

ρU = 1 × 105, ρL = 1 × 10−5, θ̇i = 1000 [1/s], we obtain a switched controller in the form (3)
where, for the case of quadratic stability (Theorem 1), one has

BMI solver failed. (36)

and, for the case of multi-quadratic stability approach (Theorem 2), one has

F0 = [ 24.0495 76.9511 ]
F1 = [ −25.1832 −80.2151 ]
F2 = [ −24.8145 −79.0407 ]
F3 = [ −24.6836 −78.6237 ]
F4 = [ −24.5773 −78.2853 ]

(37)

Figure 6: Simulation results w(t), y(t) with switched controller (37) – MPQS

In the simulations, we switched the gear shift as follows v = 1 if x1 ∈ 〈0, 0.3〉, v = 2 if
x1 ∈ (0.3, 0.6〉, v = 3 if x1 ∈ (0.6, 0.8〉, and v = 4 if x1 ∈ (0.8,∞), and the switching rate of v is
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Figure 7: Calculated switching parameters θ(t) and the controller output with switched controller
(37) – MPQS

established with θ̇i = 10 [1/s]. From the simulation results (Figs. 6 and 7), it follows that the
theorems hold, that the multi-parameter quadratic stability approach is less conservative than
the quadratic stability, and that, with the weighting matrices, we can impact the performance
quality and tune the system to the desired conditions.

For the third example, we know that control systems over data networks are commonly
referred to as networked control systems (NCSs). For the NCSs, the sampled data and controller
signals are transmitted through a network. As a result, this leads to a network-induced delay in
a networked control closed-loop system. The existence of such a kind of delay in a network-based
control loop can induce instability or poor performance of control systems. Assume that a linear
system with transfer function G(s) is integrated into NCSs, which inevitably leads to a change
of the plant transfer function as G(s)e−Tds, where Td is a variable plant time delay. The value
of Td depends on the load of the communication network. Assume that, for four communication
network loads, one can define four middle values of time delays Tdi, i = 1, 2, 3, 4.

For PI switched controller design and simulation, we will use a laboratory model of a DC-
motor, which is one of the real processes built for control education and research at our institute.

We have identified the DC motor system, and the following transfer function has been ob-
tained

Sys =
0.0627s+ 1.281

2.081s2 + 2.506s+ 1
(38)

For the defined 4 middle values of the induced time delays Td = [0.1, 0.2, 0.3, 0.4] s and using the
first order Pade approximation, we computed 4 plant transfer functions, which are transformed
to the state space. The obtained 4 plant models are extended with one state for the switched PI
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controller design. Finally, one obtains the plant models in the form (1):

A0 =


0 1 0 0
0 0 1 0

−5.0006 −13.0218 −11.6208 0
1 0 0 0


A1 =


0 0 0 0
0 0 0 0

−4.6005 −11.5382 −9.5832 0
0 0 0 0


A2 =


0 0 0 0
0 0 0 0

0.2001 0.5018 0.4168 0
0 0 0 0


A3 =


0 0 0 0
0 0 0 0

1.8001 4.5147 3.7498 0
0 0 0 0


A4 =


0 0 0 0
0 0 0 0

2.6003 6.5218 5.4168 0
0 0 0 0



B0 =


−0.0308
0.0498
4.1652

0

 , B1 =


−0.0002
0.5833
−4.5362

0


B2 =


−0.0002
−0.0261
2.1004

0

 , B3 =


0.0008
−0.2288
1.5999

0


B4 =


−0.0003
−0.3284
0.8360

0

 , C =

[
1 0 0 0
0 0 0 1

]

For switched controller design, Theorem 2 with weighting matrices Q = qI, q = 0.01, R = rI,

r = 2 and ρU = 10, ρL = 1 × 10−5, θ̇i = 10 [1/s] will be used. The obtained switched PI
controller is the form (3)
The case of multi-quadratic stability approach (Theorem 2)

F0 = [ −0.3296 −0.1352 ]
F1 = [ −0.4460 −0.1981 ]
F2 = [ −0.0589 −0.0293 ]
F3 = [ −0.0217 −0.0106 ]
F4 = [ 0.1439 0.0908 ]× 10−10

(39)

Simulation results (Figs. 8, 9, and 10) confirm that, Theorem 2 holds. In the simulation, the
switching algorithm (middle time delay) is shown in Fig. 10, from which the scheduled parameters
are calculated.
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Figure 8: Simulation results w(t), y(t) with switched controller (39)

Figure 9: Switched Controller output (39)

Figure 10: Time delay changes

Conclusion

The paper addresses the problem of the switched controller design with an arbitrarily switching
algorithm, which ensures the closed-loop stability and guaranteed cost for a prescribed rate
of change of system switching. A novel gain-scheduling plant model is presented for linear
continuous-time invariant switched systems. The first proposed method is connected with the
notion of quadratic stability with respect to switched parameter θ. In this case, we assume that
the rate of θ change is infinite. In some real cases, the rate of change of the switching signal is
finite. This assumption was used in the second approach to obtain the switched controller design
procedure. The advantages of the proposed method are

• one can obtain less conservative results with respect to using the dwell time approach,

• for the switched controller design, there is no need to use the approach of the ”dwell time”,
which markedly complicates the design procedure,

• the rate of the switching signal change can be prescribed by the designer, which opens new
possibilities for practical realizations and development of new theoretical approaches,

15



• the obtained design procedure for output/state feedback ensures the closed-loop stability
of switched systems and guaranteed cost,

• the obtained design procedure can be implemented easily to the standard LMI or BMI
approaches,

• the obtained design procedure can be easily transformed to the case of robust switched
controller design for continuous-time switched systems with arbitrarily switching.

Numerical examples illustrate the effectiveness of the proposed approach.
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