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Abstract. The dynamics of collisionless plasmas can be modelled by the Vlasov-Maxwell system of equa-
tions. An Eulerian approach is needed to accurately describe processes that are governed by high energy
tails in the distribution function, but is of limited efficiency for high dimensional problems. The use of an
adaptive mesh can reduce the scaling of the computational cost with the dimension of the problem. Here,
we present a relativistic Eulerian Vlasov-Maxwell solver with block-structured adaptive mesh refinement
in one spatial and one momentum dimension. The discretization of the Vlasov equation is based on a high-
order finite volume method. A flux corrected transport algorithm is applied to limit spurious oscillations
and ensure the physical character of the distribution function. We demonstrate a speed-up by a factor of
7× in a typical scenario involving laser pulse interaction with an underdense plasma due to the use of an
adaptive mesh.

1 Introduction

The Vlasov-Maxwell system of equations describes the dy-
namics of a collisionless plasma whose component species
interact through self-consistent electromagnetic fields. It
is of critical importance to the fundamental understand-
ing of non-equilibrium processes in collisionless plasmas,
as well as many practical applications, for example laser
plasma acceleration [1,2], inertial confinement fusion [3–5],
high harmonic generation [6] and shocks in astrophysical
plasma [7].

Numerical approaches to solve this system are pri-
marily divided into particle-in-cell (PIC) methods, which
approximate the plasma by a finite number of macro-
particles, and methods that discretize the distribution
function on a grid: so-called Eulerian methods [8]. As PIC
methods do not require a grid in momentum space, they
are efficient at handling the large range of scales associated
with relativistic laser-plasma interaction. They are there-
fore suitable for modelling high dimensional problems [9].
However, the approximation of the distribution function
by a finite number of particles introduces statistical noise,
making it difficult to resolve fine velocity space structures
and high energy tails within the distribution function.

The ability to resolve fine structures related to low
density tails in the distribution function is of critical im-
portance to topics in laser plasma acceleration, e.g. mod-
elling of collisionless shock acceleration (CSA). In laser
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plasma induced CSA, a small fraction of the ion popula-
tion is reflected by an electrostatic potential barrier set
up by laser plasma interaction. This low density tail of
the distribution function has been suggested to play an
important role for the dynamics [10], indicating that high
resolution is needed.

Eulerian methods, which discretize the distribution
function on a grid have very low levels of numerical noise.
They are therefore appropriate for the detailed study of
processes where a small number of high energy particles
play a significant role. The most widely used method for
solution of the Vlasov equation is time-splitting, first sug-
gested by Knorr and Cheng [11]. The method involves
splitting the Vlasov equation into lower dimensional ad-
vection equations that are alternately advanced. Second
order accurate time splitting methods have been used to
solve the Vlasov-Poisson and Vlasov-Maxwell system of
equations in references [11–17]. In these references the dis-
tribution function is represented on a fixed uniform grid,
which leads to large computational costs, especially for
multidimensional simulations.

To increase the computational efficiency and be able
to treat problems with a wide range of scales, the Vlasov-
Maxwell system can be represented on an adaptive mesh
in combination with higher order methods. For this ap-
proach, high-order finite volume discretizations can be
used to solve the Vlasov-Maxwell equation system, see for
example reference [18]. The adaptive mesh then evolves
as the characteristics of the distribution function develop,
which allows higher resolution to be applied to those parts
of phase space that exhibit complicated behaviour. At the
same time, the distribution function remains well-resolved
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in regions with a coarse mesh through the use of high-order
numerical schemes. This means that the use of adaptive
meshing limits the computational effort to regions with
small scales but still maintains a high degree of accuracy
in the full domain.

Adaptive Mesh Refinement (AMR) is not a new con-
cept, and has been used extensively to minimise compu-
tational overhead in a variety of systems. Some exam-
ples focusing on laser plasma research include: the PIC
code Warp [19], which implements AMR for its Poisson
solver; Dorr et al. [20] investigates speckles and fila-
mentation in inertial confinement fusion by solving the
Poisson-Euler equations coupled to Maxwell equations;
reference [21] which solves the Boltzmann equations us-
ing a hybrid octree–AMR approach. AMR has also been
used in reference [22] to simulate the Vlasov-Poisson sys-
tem, i.e. the electrostatic and non-relativistic limit of the
Vlasov-Maxwell equations. Finally, Besse et al. [9] use
a wavelet based adaptive grid to solve the relativistic
Vlasov-Maxwell system.

In this paper we present the open source block-
structured Eulerian Vlasov-Maxwell solver veritas
(Vlasov EuleRIan Tool for Acceleration Studies) [23].
The solver is based on a high-order finite volume method,
implementing the flux corrected transport algorithm to
limit spurious oscillations in the distribution functions, in
the presence of steep gradients. veritas offers the capabil-
ity to study realistic laser–plasma problems in two dimen-
sions (1D1P), with a complete electrodynamic framework
(i.e. Vlasov-Maxwell) at relativistic speeds. To our knowl-
edge, veritas is the first complete, relativistic Vlasov-
Maxwell solver using AMR which shows a significant per-
formance increase. This advancement moves continuum
solvers towards the category of capable simulation tools
alongside their PIC counterparts.

The paper is organized as follows. Section 2 describes
the Vlasov-Maxwell equations. Section 3 presents the nu-
merical scheme for veritas, including a description of the
mesh structure, information flow, regridding procedure, fi-
nite volume discretization of the Vlasov equation and the
discretization of Maxwell’s equations. Section 4 describes
benchmarking with comparison to results from analytical
theory and PIC simulations, and demonstrates the im-
proved performance of the adaptive mesh approach. Con-
clusions are summarized in Section 5.

2 The Vlasov-Maxwell system

The Vlasov-Maxwell equation system describes the time
evolution of the electron and ion distribution functions,
which interact self-consistently with the electromagnetic
fields in a collisionless plasma. For the case of a plasma
with spatial variation in one direction, the Vlasov-Maxwell
equations can be reduced to a two dimensional 1D1P
problem:

∂fs

∂t
+

px

msγ

∂fs

∂x
+ qs

[
Ex +

1
γms

(p × B)x

]
∂fs

∂px
= 0, (1)

where fs is the distribution function of a species (e.g. elec-
trons or ions), E and B are the electric and magnetic
fields, x is a spatial coordinate, px is a momentum coordi-
nate in the direction of x, q is the charge, m denotes the
rest mass of the charged particles (electrons or ions) and
γ =

√
p2/m2c2 + 1 is the relativistic factor. The single-

particle Hamiltonian

H = mc2

[
1 +

(Π − qA)2

m2c2

]1/2

+ qφ (2)

yields conservation relations for the transverse canonical
momentum (orthogonal to the direction of variation of the
plasma): Π⊥ = qA⊥ + p⊥ = 0 [24,25]. The conservation
of Π⊥ stems from the fact that the perpendicular coor-
dinates y and z do not enter the Hamiltonian. Here, c is
the speed of light and φ and A are the electrostatic and
vector potentials, respectively.

For a one-dimensional system, Maxwell’s equations
take the form

∂Bx

∂x
= 0,

∂Bx

∂t
= 0,

∂By

∂t
=

∂Ez

∂x
,

∂Bz

∂t
= −∂Ey

∂x
,

∂Ex

∂x
= ρ/ε0, ε0μ0

∂Ey

∂t
= −μ0Jy − ∂Bz

∂x

and
ε0μ0

∂Ez

∂t
= −μ0Jz +

∂By

∂x
.

Here, the currents and charge density are determined by
the distribution functions, according to

J⊥ =
∑

s

qs

ms

∫
p⊥s

γs
fs dpx (3)

and
ρ =

∑
s

qs

∫
fs dpx, (4)

where the summation ranges over all species s in the
plasma. The transverse vector potential A⊥ is obtained
by E⊥ = −∂A⊥/∂t and is used together with the con-
servation of canonical momentum Π⊥ to calculate the
relativistic factor γ and the transverse components of the
current.

3 Numerical scheme

The distribution function is represented on a block struc-
tured mesh, which is adapted during time evolution to
ensure that regions of phase space with more complex
dynamics are associated with a finer resolution in the
mesh [26]. We use a finite volume scheme which is fourth-
order accurate, making it possible to use a very coarse
representation of the distribution function in regions with
less complex dynamics, without introducing numerical
instabilities.
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The electromagnetic fields are defined on a mesh asso-
ciated with the finest spatial resolution of the distribution
function, using a fourth-order discretization of Maxwell’s
equations and a staggered grid for the electric and mag-
netic fields. As the fields are one dimensional, the use of
a mesh with the finest spatial resolution as opposed to
using adaption to adjust the resolution comes at only a
moderate cost.

Distribution functions, for one or multiple plasma
charge species, are time advanced together with the elec-
tromagnetic fields, yielding an overall self-consistent solu-
tion to the Vlasov-Maxwell system. In the following, we
describe the mesh structure, the representation of the so-
lution, the adaption and information flow from one mesh
to another, as well as the discretizations used in veritas.

3.1 Mesh structure

To resolve the different scales of the distribution function
f(x, px), the domain D = [xmin, xmax] × [px,min, px,max]
is discretized using a block structured mesh. The mesh
consists of a number of levels Li of different resolution,
where i = 0, . . . , nmax, ranging from coarsest to finest.
Each level is a union of rectangular patches, i.e. Li =
∪jRi,j , where Ri,j denotes a rectangular patch on level i.
Each rectangular patch, which is disjoint from all other
rectangular patches on the same level, consists of a number
of rectangular cells of side lengths Δxi = Δx0/ri and
Δpx,i = Δpx,0/ri, where r is the refinement ratio.

The distribution function is described by cell-averaged
values f̃m,n

k,l :

f̃m,n
k,l =

1
ΔxmΔpx,n

∫ xm

k+1
2

xm

k− 1
2

∫ pn

x,l+ 1
2

pn

x,l− 1
2

f(x, px) dxdpx (5)

where m, n are indices for the level of refinement along the
spatial and momentum dimension, respectively, and xm

k± 1
2
,

pm
x,l± 1

2
are the bounding dimensions of the cell. Through-

out this paper we indicate a cell-averaged value with a
tilde (˜). Concerning the representation of the distribu-
tion function on the block structured mesh, the indices
m and n always take the same value. The use of cells in
the mesh with different m and n would correspond to inde-
pendently adapting in the x and px direction. Although in
principle possible, this would complicate the mesh struc-
ture and is currently forbidden. On the other hand, in the
calculation of the current and charge densities, the distri-
bution function is interpolated to the finest spatial mesh;
which may result in values in cells with different indices
for m and n.

The coarsest level L0 consists of a single rectangle and
finer levels are nested in coarser levels Li+1 ⊂ Li. Fig-
ure 1 shows a rectangular patch on level Li+1 which is
partially overlapped by a rectangular patch at level Li.
The finer rectangular patch is shaded blue with a blue
dot at the center of each cell and the coarser cells are
indicated by black dots at the cell centers. Blue dots out-
side the blue shaded region represent ghost cells which

Fcoarse

Ffine,1

Ffine,2

Li+1 Li

Fig. 1. Coarse rectangular patch on level Li that partially
overlaps with finer rectangular patch at level Li+1. Cell-centers
of coarse and fine cells are denoted by black and blue dots,
respectively. The finer rectangular patch has an interior region
(shaded blue), which is complemented by a set of ghost cells
(identified by blue dots outside the shaded region) used for flux
calculations. At a coarse-fine interface, we define fluxes Ffine,1,
Ffine,2 and Fcoarse, where Fcoarse is inferred from Ffine,1, Ffine,2

in order to ensure particle conservation.

are used to time advance the interior cells. Ghost cells
are interpolated from the cell-centered values in the over-
laid coarser level, as will be described in Section 3.3, or
read from an adjacent rectangle on the same level (i.e.
interior ghost cells). Values of the distribution function
on a coarser level which is overlaid by a finer level, e.g.
the black dotted cells inside the blue shaded region, are
defined by the average of the values on the finer level
f̃ i,i

k,l = 1/r2
∑r−1

n=0

∑r−1
m=0 f̃ i+1,i+1

rk+n,rl+m.
The division of the mesh into levels and rectangles

leads to the following synchronization procedure at each
time step:
1. From the finest to coarsest level, for each pair of levels

Li, Li+1, use values at the finer level Li+1 to calculate
the values for the overlaid cells in the coarser mesh.

2. For a given rectangle, a ghost cell may either belong to
another rectangle on the same level or be interpolated
from the next coarser level. For each level Li, update
the value for the ghost cells which are interior to the
level.

3. From the coarsest to the finest level, for each pair of
levels Li, Li+1, interpolate ghost cells for rectangles in
Li+1 which are not interior, using values from Li.

The time stepping procedure itself is outlined in
Section 3.7.

3.2 Adaptive mesh refinement

Figure 2 shows a plasma which has interacted with a laser
pulse. The distribution function is represented on five lev-
els which are divided into rectangles, with high resolution
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p

x

Fig. 2. Laser pulse interacting with an electron plasma slab,
which is represented using a five level adaptive mesh. The color
map shows the 10 largest orders of magnitude for the distribu-
tion function on a log10 scale. The rectangular patches in each
level are indicated by colored boxes. The coarsest level is not
highlighted via a rectangle, but extends over the entire figure.
The levels are nested, with each level (with yellow being the
finest) contained within the next coarser level.

in regions with higher densities and more complex dynam-
ics. To track these regions, the mesh structure is updated
in the following way:

1. For each level Li, mark each cell that belongs to a
rectangle in the level and has an error indicator ex-
ceeding some threshold δthres, discussed in Section 3.8.
The marked points Mi are used to generate a new level
and rectangle structure L′

i where i = 0, . . . , n′
max.

2. Let n′
max − 1 be the largest integer such that Mn′

max−1

is non-empty and create a new level L′
n′

max
such that

Mn′
max−1 ⊂ L′

n′
max

.
3. For i = n′

max − 1, . . . , 1, construct a new level L′
i such

that L′
i+1 ∪ Mi−1 ⊂ L′

i.

Furthermore, upon adapting the mesh, the representation
of the solution on the old mesh structure must be trans-
formed into a representation of the solution on the new
one. Information contained in a cell in the new level L′

i
may originate from Li or a subset of a cell in Lj for some
j < i. In the former case, the cell-averaged value in L′

i is
taken directly from Li, whereas in the latter case an inter-
polation is performed. This operation is performed for all
L′

i before interpolating those values that cannot be copied
from Li. As the coarsest level is the same in both the old
and new mesh, all values in L′

0 are determined from values
in L0. Values in cells of L′

i that are not a subset of Li can
then be interpolated from L′

i−1 for i = 1, . . ., n′
max.

The covering of M ′
i ≡ L′

i+1 ∪ Mi−1 with rectangles
closely follows the AMR implementation pioneered by
Berger et al. [26,27], with specific extensions outlined in
their follow-up papers [28,29]. To keep dependencies to a
minimum, and integration tight & efficient, no external
libraries are called here and the AMR infrastructure out-
lined below has been implemented directly into veritas.
For each level, from the finest to coarsest, we identify a
minimum bounding box Ri,bb, such that all marked cells
on level i are extant within the rectangle’s boundaries.
Ri,bb is then split into smaller rectangles Ri,j through a

recursive process until a minimum efficiency, defined as the
proportion of marked cells in each rectangle, is reached:

N [M ′
i ∩ Ri,j ]

N [Ri,j ]
≥ εmin. (6)

Here, N [·] denotes the number of cells within a given set,
and εmin is a user-set parameter for the minimum effi-
ciency. The specific value of the parameter will affect the
overall runtime of the program. A low value for εmin leads
to a larger mesh with more degrees of freedom, with a cor-
responding increase in computational work. On the other
hand, a high value leads to a more complicated mesh struc-
ture, with larger overheads, which in addition must be
updated more frequently to accurately represent the solu-
tion. Values for εmin between 60% and 80%, are found to
give reasonable performance, although optimal values are
problem dependent.

To split a rectangle, we introduce signatures Σx,k and
Σpx,l, which are functions of the discrete x and px coordi-
nates, respectively. For a given rectangle, Σx,k is defined
as the number of cells in the intersection of the rectangle
and marked cells M ′

i that have the spatial index k. Σpx,l

is defined similarly, but with the spatial and momentum
coordinates exchanged. A rectangle can be split into two
smaller rectangles at an index, either k or l, at which the
corresponding signature is zero. If neither signatures con-
tain a zero, the signature’s derivatives Δx and Δpx are
used, and rectangle edges are identified where zero cross-
ings occur. In the case of more than one zero crossing,
the crossing with largest rate of change in Δ is chosen for
the partition; if two crossings have the same magnitude,
the one closest to the rectangle center is chosen to pre-
vent thin rectangles which reduce efficiency. If none of the
above partitioning criteria are met and the efficiency ra-
tio still has not satisfied the εmin value, the rectangle is
bisected along its longest dimension.

3.3 Coarse to fine interpolation

High-order interpolation of the distribution function from
a coarser level to a finer level is performed (1) to calcu-
late cell-averaged values in ghost-cells, (2) to interpolate
charge and current densities to the finest level of the grid
and (3) to interpolate data to a refined cell after perform-
ing mesh adaption. For high-order discretizations, which
are needed (for example) to treat the disparate scales of
the discretization in an adaptive solver, low order slope
limited interpolation is not suitable. Instead methods such
as filtered high order interpolations [30], Weighted Es-
sentially Non-Oscillatory (WENO) techniques [31–33] and
least squares methods [34] can be used.

In this work, we use a simple fourth-order conserva-
tive least square interpolation method. Coarse to fine in-
terpolation of the distribution function, i.e. interpolation
from f̃ i,i

k,l to f̃ i+1,i+1
rk+m,rl+n, where m, n = 0, . . . , r − 1, is per-

formed in two steps, by first interpolating f̃ i,i
k,l to f̃ i+1,i

rk+m,l

and then to f̃ i+1,i+1
rk+m,rl+n. Hence, it is sufficient to describe

http://www.epj.org
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only the interpolation step from f̃ i,i
k,l to f̃ i+1,i

rk+m,l, because
the interpolation in the other coordinate is analogous.
This is performed by first introducing

h(x) =
1

Δpx,i

∫ pi

x,l+ 1
2

pi

x,l− 1
2

f(x, px) dpx (7)

which is interpolated using a third degree polynomial
q(x) =

∑3
j=0 ajx

j . Defining I(a, b) = 1/(b− a)
∫ b

a
q(x) dx,

q(x) is determined by the least squares solution to
f̃ i,i

k+m,l = I(xi
k+m− 1

2
, xi

k+m+ 1
2
) for m = ±1,±2 under the

condition f̃ i,i
k,l = I(xi

k− 1
2
, xi

k+ 1
2
), ensuring particle number

conservation. The values for f̃ i+1,i
rk+m,l are calculated from

I(xi+1
rk+m− 1

2
, xi+1

rk+m+ 1
2
), where xi+1

rk+m± 1
2

are the end-points
of the cells in the refined level.

3.4 Discretization of the Vlasov equation

We introduce a finite volume method which decomposes
the discretized advection operator into fluxes across cell
boundaries. On each level i in the mesh, the Vlasov equa-
tion is averaged over cells

Δi
k,l =

[
xi

k− 1
2
, xi

k+ 1
2

]
×
[
pi

x,l− 1
2
, pi

x,l+ 1
2

]
(8)

in the mesh, resulting in a set of ordinary differential equa-
tions (ODEs):

df̃ i,i
k,l

dt
= − 1

Δxi

(
〈Fxf〉ik+ 1

2 ,l − 〈Fxf〉ik− 1
2 ,l

)

− 1
Δpx,i

(
〈Fpxf〉ik,l+ 1

2
− 〈Fpxf〉ik,l− 1

2

)
(9)

where f̃ i,i
k,l is the cell-averaged value of the distribution

function, and 〈Fxf〉i
k± 1

2 ,l
, 〈Fpxf〉i

k,l± 1
2

denote fluxes. The
fluxes are defined as:

〈Fxf〉ik+ 1
2 ,l =

1
Δpx,i

∫ pi

x,l+ 1
2

pi

x,l− 1
2

Fx

(
xi

k+ 1
2
, px

)
f
(
xi

k+ 1
2
, px

)
dpx

(10)
and

〈Fpxf〉ik,l+ 1
2
=

1
Δxi

∫ xi

k+1
2

xi

k− 1
2

Fpx

(
x, pi

x,l+ 1
2

)
f
(
x, pi

x,l+ 1
2

)
dx,

(11)
where

Fx =
px

mγ
and Fpx = q

[
Ex +

1
mγ

(p × B)x

]
.

The ODEs (9) are exact and the numerical approxima-
tions enter in the calculation of the flux terms 〈Fxf〉i

k+ 1
2 ,l

and 〈Fpxf〉i
k,l+ 1

2
. Despite the gain from the fast conver-

gence of high-order methods in the calculation of the flux

terms, high-order methods suffer from spurious oscilla-
tions in regions with under-resolved gradients that could
trigger numerical instabilities. To avoid this, we use a
flux corrected transport (FCT) algorithm in the calcu-
lation of the advective terms in the Vlasov equation as
suggested in reference [18]. The implementation of FCT,
which is described in Section 3.7, mixes low and high-
order fluxes in such a way as to maximize the high-order
flux without introducing unphysical properties in the dis-
tribution function. Whilst investigations of modified and
refined FCT methods to limit spurious oscillations associ-
ated with high-order methods are underway [35], we use
the original implementation in reference [36]. The reduc-
tion in order of accuracy for the limited solution in regions
with under-resolved gradients is compensated by the use
of a finer grid in exactly these regions.

We evaluate each flux in two different ways, using a
low and a high-order method, respectively. The low or-
der fluxes, denoted 〈Fxf〉i,L

k+ 1
2 ,l

, 〈Fpxf〉i,L
k,l+ 1

2
, are evalu-

ated using first order upwinding, i.e. as the product of the
face-averaged force terms 〈Fx〉ik+ 1

2 ,l
or 〈Fpx〉ik,l+ 1

2
and the

cell-averaged value of the distribution function in the up-
wind cell. In Section 3.7, the advection operator is calcu-
lated by blending these with high-order fluxes 〈Fxf〉i,H

k+ 1
2 ,l

,

〈Fpxf〉i,H
k,l+ 1

2
, using the FCT algorithm, to obtain a stable

scheme which does not create unphysical extrema in the
distribution function.

To obtain a second order accurate calculation of
〈Fxf〉i,H

k+ 1
2 ,l

and 〈Fpxf〉i,H
k,l+ 1

2
, the cell-averaged and face-

averaged quantities can be approximated by their cell and
face centered values. However, for a finite volume scheme
beyond second order accuracy it is necessary to distin-
guish cell-centered and averaged values as well as using
accurate quadrature rules for the face-integrals. Here, we
follow reference [37] and add corrections to the midpoint
approximation of the face-integrals using the transverse
derivatives, yielding:

〈Fxf〉i,H
k+ 1

2 ,l

= 〈Fx〉ik+ 1
2 ,l〈f〉ik+ 1

2 ,l +
1
48

(
〈Fx〉ik+ 1

2 ,l+1 − 〈Fx〉ik+ 1
2 ,l−1

)

×
(
〈f〉k+ 1

2 ,l+1 − 〈f〉k+ 1
2 ,l−1

)
(12)

and

〈Fpxf〉i,H
k,l+ 1

2

= 〈Fpx〉k,l+1
2
〈f〉ik,l+ 1

2
+

1
48

(
〈Fpx〉ik+1,l+1

2
−〈Fpx〉ik−1,l+ 1

2

)

×
(
〈f〉ik+1,l+ 1

2
− 〈f〉ik−1,l+ 1

2

)
(13)

respectively. This is a fourth-order accurate expression for
the flux-integrals. Here, the face-averaged values of Fx
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and Fpx are defined as

〈Fx〉ik+ 1
2 ,l =

1
Δpx,i

∫ pi

x,l+ 1
2

pi

x,l− 1
2

Fx

(
xi

k+ 1
2
, px

)
dpx, (14)

〈Fpx〉ik,l+ 1
2

=
1

Δxi

∫ xi

k+ 1
2

xi

k− 1
2

Fpx

(
x, pi

x,l+ 1
2

)
dx, (15)

and the distribution functions

〈f〉ik+ 1
2 ,l =

1
Δpx,i

∫ pi

x,l+ 1
2

pi

x,l− 1
2

f
(
xi

k+ 1
2
, px

)
dpx, (16)

〈f〉ik,l+ 1
2

=
1

Δxi

∫ xi

k+ 1
2

xi

k− 1
2

f
(
x, pi

x,l+ 1
2

)
dx, (17)

which are used to evaluate the fluxes.
The Hamiltonian for a particle is

H = mc2γ(px, A⊥(x)) + qφ(x). (18)

Using Hamilton’s equations ∂H/∂px = Fx and
−∂H/∂x = Fpx , the face-averaged force terms take the
forms

〈Fx〉ik+ 1
2 ,l =

mc2

Δpx,i

[
γ
(
pi

x,l+ 1
2
, A⊥

(
xi

k+ 1
2

))

− γ
(
pi

x,l− 1
2
, A⊥

(
xi

k+ 1
2

))]
(19)

and

〈Fpx〉ik,l+ 1
2

= qẼx,k − mc2

Δxi

[
γ
(
pi

x,l+ 1
2
, A⊥

(
xi

k+ 1
2

))

− γ
(
pi

x,l+ 1
2
, A⊥

(
xi

k− 1
2

))]
. (20)

This indicates that the vector potential must be evaluated
on the spatial faces. For the electric field, we can directly
evaluate its cell-averaged value through the electrostatic
potential for which we solve.

To evaluate 〈f〉i
k+ 1

2 ,l
(and similarly for 〈f〉i

k,l+ 1
2
) an

upwind biased WENO-type reconstruction is used [18,31].
The WENO scheme makes use of a four cell stencil involv-
ing the nearest and next nearest neighbours in the normal
direction of the (k + 1

2 )-face. These four cells are divided
into two sub-stencils, defining two third order interpolants

pL = (−f̃ i,i
k−1,l + 5f̃ i,i

k,l + 2f̃ i,i
k+1,l)/6 (21)

and
pR = (2f̃ i,i

k,l + 5f̃ i,i
k+1,l − f̃ i,i

k+2,l)/6. (22)

A weighted interpolant is then obtained by setting

〈f〉ik+ 1
2 ,l = βLpL + βRpR, (23)

where βL + βR = 1. The values βL = βR = 1/2 result in a
fourth order central difference approximation of 〈f〉i

k+ 1
2 ,l

.

Following the WENO procedure, βL, βR are calculated
based on estimates for the smoothness of the interpolant
and approach βL = βR = 1/2 in the limit of a smooth
distribution function. However, in contrast to the conven-
tional WENO algorithm [31], we follow reference [18], so
that the largest weight is assigned to the value of pL or
pR that is associated with the upwind stencil.

Up to this point, we have not considered the effect of
coarse-fine interfaces in the calculation of fluxes. Coarse to
fine interfaces are illustrated in Figure 1. At the cell faces
which constitute a coarse-fine interface, i.e. the exterior
boundary of a fine level Li+1, fluxes on the fine level and
coarser level Li must be defined consistently in order to
obtain conservation of particle number. Conservation up
to machine error is critical due to the feedback of the
charge density through the longitudinal electric field. For
a spatial face (k + 1/2, l) in level Li, the flux is defined
using the fluxes calculated on the r constituent finer cell
faces:

〈Fxf〉ik+ 1
2 ,l = 1/r

r−1∑
m=0

〈Fxf〉i+1
(r+1)k− 1

2 ,l+m
. (24)

This enforces that the number of particles flowing from
the fine cells is the same as the number of particles that
enter the coarse cell. Faces associated with the momentum
coordinate are treated similarly.

3.5 Evaluation of charge and current densities

To evaluate a general moment

M(x) =
∫

m(x, px) dpx, (25)

a reduction operation is performed over the different levels
and rectangles, yielding a sum of the form:

M(x) =
∑
Li

∑
l

χ(x, l, i)I(x, l, i). (26)

Here, χ(x, l, i) is equal to one if i is the finest level contain-
ing {x}× [pi

x,l− 1
2
, pi

x,l+ 1
2
] or is otherwise zero, and I(x, l, i)

approximates

∫ pi

x,l+ 1
2

pi

x,l− 1
2

m(x, px) dpx, (27)

using solution quantities at the level Li.
To evaluate the cell-averaged charge density, values

of the distribution function, represented on different lev-
els i, are interpolated using least-square interpolation to
the finest spatial level nmax. The interpolated values are
denoted f̃nmax,i

k,l and the charge density is then calculated
by the reduction:

ρ̃k =
∑
Li

∑
l

Δpx,iχ(k, l, i)f̃nmax,i
k,l . (28)
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The only source of error introduced in this relation is due
to the interpolation to the finest grid with respect to the
spatial coordinate.

Accurate calculation of the current density is more
challenging as the integrand in equation (3) has a
more complicated dependence on x and px (through
γ(px, A⊥(x)), f(x, px) and A⊥(x)), but is of critical im-
portance for the interaction between the plasma and
the electromagnetic field. Using the interpolated values
f̃nmax,i

k,l , the spatial cell averaging is made to second-order
accuracy by commuting the cell averaging and evaluation
of the integrand with respect to the spatial coordinate:

J̃k = −qÃ⊥,k

∫
1

γ(px, Ã⊥,k)
f̃nmax

k (px) dpx

:= −qÃ⊥,kL̃k (29)

As for the charge density, L̃k is evaluated using equa-
tion (26), but in contrast to equation (28), the inte-
grand I(Ã⊥,k, l, i) needs further consideration and use of
a quadrature formula based on cell averaged quantities.
The situation is similar to the flux calculation in 3.4 and
the fourth order scheme:

∫ pi

x,l+ 1
2

pi

x,l− 1
2

1
γ(px, Ã⊥,k)

f̃nmax
k (px) dpx =

Δpx,i

γ̃nmax,i
k,l (Ã⊥,k)

f̃nmax,i
k,l

+
Δpx,i

48

(
1

γ̃nmax,i
k,l+1 (Ã⊥,k)

− 1
γ̃nmax,i

k,l−1 (Ã⊥,k)

)

×
(
f̃nmax,i

k,l+1 − f̃nmax,i
k,l−1

)
(30)

is used. In this expression, the momentum average values
for 1/γ are calculated analytically:

1
γ̃nmax,i

k,l (Ã⊥,k)
=

1
Δpx,i

∫ pi

x,l+ 1
2

pi

x,l− 1
2

1
γ(px, Ã⊥,k)

dpx (31)

=
mc

Δpx,i
log

⎛
⎝γ(pi

l+ 1
2
, Ã⊥,k) + pi

l+ 1
2
/mc

γ(pi
l− 1

2
, Ã⊥,k) + pi

l− 1
2
/mc

⎞
⎠ . (32)

3.6 Discretization of Maxwell’s equations

To solve the Vlasov-Maxwell system self-consistently, we
perform a spatial discretization of the equations for the
transverse fields, resulting in a set of ODEs which are si-
multaneously time stepped with the kinetic equation. We
discretize Ey, Ez , Ay and Az using the cell-centered val-
ues Ẽy,k, Ẽz,k, Ãy,k and Ãz,k, i.e. averages over the same
spatial cells as for the kinetic equation. To avoid odd-even
decoupling, we represent By and Bz as cell-centered aver-
ages B̃y,k+ 1

2
and B̃z,k+ 1

2
, at a staggered grid. The fields

are discretized on the finest level for the distribution func-
tion. This is motivated by the fact that Maxwell’s equa-
tions only depend on the spatial coordinate making the

computation cheap compared to the computation for the
Vlasov equations, in spite of the use of a fine mesh.

The equations for the transverse fields are cell averaged
and the spatial derivatives are discretized to fourth order,
yielding

∂B̃y,k+ 1
2

∂t
=

−Ẽz,k+2 + 27Ẽz,k+1 − 27Ẽz,k + Ẽz,k−1

24Δxnmax

,

(33)

∂B̃z,k+ 1
2

∂t
= −−Ẽy,k+2 + 27Ẽy,k+1 − 27Ẽy,k + Ẽy,k−1

24Δxnmax

,

(34)

ε0μ0
∂Ẽy,k

∂t
=

−
−B̃z,k+ 3

2
+ 27B̃z,k+ 1

2
− 27B̃z,k− 1

2
+ B̃z,k− 3

2

24Δxnmax

− μ0J̃y,k, (35)

ε0μ0
∂Ẽz,k

∂t

=
−B̃y,k+ 3

2
+ 27B̃y,k+ 1

2
− 27B̃y,k− 1

2
+ B̃y,i− 3

2

24Δxnmax

− μ0J̃z,k, (36)

and
∂Ãy,k

∂t
= −Ẽy,k,

∂Ãz,k

∂t
= −Ẽz,k. (37)

Here, J̃k denotes the cell-averaged current density. In sim-
ulations of laser matter interaction, a laser pulse is imple-
mented as a Dirichlet boundary condition at the left hand
side of the simulation box.

Regarding the use of the transverse fields to evalu-
ate the coefficients in the Vlasov equation, we note that
equations (19) and (20) depend on the point values of
the transverse vector potential at xnmax

k+ 1
2

. To calculate the
vector potential on the spatial faces from its cell-averaged
values, we use a fourth order WENO interpolation, similar
to the one that was used for face interpolation of the distri-
bution function, but in this case without upwind biasing of
the smoothness indicators. Including a non-linear scheme
here is primarily done for the sake of safety: to squelch
numerical sources of noise. Being a one dimensional inter-
polation, the computational overhead is minimal.

For the equation with the longitudinal electric field Ex,
we introduce φ, such that Ex = −∂φ/∂x. The potential φ
satisfies the Poisson equation Δφ = −ρ/ε0. A fourth order
discretization is given by reference [22]:

30φ̃k − 16(φ̃k+1 + φ̃k−1) + (φ̃k+2 + φ̃k−2)
12Δx2

nmax

= ρ̃k/ε0 (38)

where φ̃k is the cell-averaged potential and ρ̃k is the cell-
averaged charge density.

For simulations of laser matter interaction, where no
charge leaves the simulation box, we take the electric field
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at both boundaries of the simulation box to be zero.
The boundary conditions are implemented by splitting
the potential in two parts φ = φ1 + φ2 where φ1 satis-
fies equation (38) with periodic boundary conditions and
hence makes it possible to avoid modification of the dis-
cretization at the boundary points. Furthermore, we take
φ2 = −E0x, which satisfies the homogeneous Poisson
equation and choose E0 such that the homogeneous Neu-
mann condition is fulfilled at the right boundary.

The cell-averaged electric field, which is used to eval-
uate Fpx , is then obtained to fourth order from:

Ẽx,k =− 1
12Δxnmax

[
8(φ̃k+1−φ̃k−1)−φ̃k+2+φ̃k−2

]
+ E0.

(39)

3.7 Time advancement

For time advancement of the ODEs in the discretization
of the Vlasov-Maxwell system we use the Runge-Kutta
method ARK4(3)6L[2]SA, which is a six stage, fourth-
order accurate method [38]. It is a suitable choice for fu-
ture extensions involving a Fokker-Planck diffusion oper-
ator. In such extensions the advection operator would be
treated explicitly and the diffusion term implicitly [37].

The combined set of ODEs for the transverse electro-
magnetic fields and the distribution function can be re-
garded as a system of equations of the form

∂F (t)
∂t

= L(F ), (40)

where L stands for the respective right hand sides of
equations (9) and (33)–(37). Denoting the solution at
time step tn by F (tn), a sequence of solutions, F i(tin) =
F (tn) + ΔtnLi, at intermediate times tin = ciΔt + tn are
constructed, for i = 1, . . . , 6. Here, Li is a linear combi-
nation of L(F ) at the previous intermediate time steps:

Li =
i−1∑
j=1

aijL
(
F j(tjn)

)
. (41)

Once L
(
F i(tin)

)
has been calculated for i = 1, . . . , 6, the

solution at time step tn+1 = tn + Δt is calculated from

F (tn+1) = F (tn) + Δt

6∑
j=1

bjL
(
F j(tjn)

)
, (42)

where the values of aij , bj and ci can be found in refer-
ence [38].

The part of L(F ) that corresponds to Maxwell’s
equations is evaluated using the discretization in Sec-
tion 3.6. On the other hand, for the Vlasov part, the
FCT algorithm is applied in order to limit anti-diffusive
fluxes, which may cause unphysical extrema and is the
reason behind introducing the low-order

(
〈Fxf〉i,L

k+ 1
2 ,l

,

〈Fpxf〉i,L
k,l+ 1

2

)
and high-order

(
〈Fxf〉i,H

k+ 1
2 ,l

, 〈Fpxf〉i,H
k,l+ 1

2

)

fluxes in Section 3.4. Although the FCT algorithm is found
to be necessary to obtain a stable scheme, its use comes
at the expense of introducing a source of hyper-diffusivity
in regions with under-resolved gradients. To mitigate this,
the criterion for refinement in Section 3.8 involves terms
proportional to derivatives of the distribution function.

When applying the Runge-Kutta method, the flux that
is used to calculate the solution at an intermediate or fi-
nal state in the time stepping algorithm is a linear com-
bination of the fluxes calculated from the intermediate
solutions at earlier stages. The generic structure of an ad-
vancement of the distribution function takes the form

f1
k,l = f0

k,l − Fx(k + 1/2, l) + Fx(k − 1/2, l)

− Fpx(k, l + 1/2) + Fpx(k, l − 1/2), (43)

where f0
k,l, f1

k,l is the solution before and after time ad-
vancement, respectively, and Fx, Fpx denote linear com-
binations of flux terms calculated from intermediate solu-
tions. Here, we have simplified the notation by ignoring
the level in the mesh, on which the quantities are defined.
The combined flux terms Fx, Fpx can be evaluated using
either the low or high order fluxes, denoted FL

x , FL
px

and
FH

x , FH
px

, respectively. For the high order flux, the weights
of the fluxes at intermediate steps are those according to
the Runge-Kutta method. However, to ensure that the
low order solution is positive, the upwind flux at time tn
is used.

Following reference [36], we first calculate an approxi-
mation to f1

k,l using the low order fluxes

f1,L
k,l = f0

k,l − FL
x (k + 1/2, l) + FL

x (k − 1/2, l)

− FL
px

(k, l + 1/2) + FL
px

(k, l − 1/2). (44)

This is followed by defining anti-diffusive fluxes

Ak+ 1
2 ,l = FH

x (k + 1/2, l)− FL
x (k + 1/2, l) (45)

and

Ak,l+ 1
2

= FH
px

(k, l + 1/2)− FL
px

(k, l + 1/2). (46)

Based on these, the total amount of anti-diffusive fluxes
into (P+

k,l) and out (P−
k,l) of a cell is defined by

P+
k,l = max(0, Ak− 1

2 ,l) − min(0, Ak+ 1
2 ,l)

+ max(0, Ak,l− 1
2
) − min(0, Ak,l+ 1

2
) (47)

and

P−
k,l = max(0, Ak+ 1

2 ,l) − min(0, Ak− 1
2 ,l)

+ max(0, Ak,l+ 1
2
) − min(0, Ak,l− 1

2
). (48)

Furthermore, for cells that share faces with the cell with
indices k and l, we define fmax

k,l and fmin
k,l to be the max-

imum and minimum values, respectively, of both f1,L
k,l

and f0
k,l. The maxima and minima are used to define
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Q+
k,l = fmax

k,l −f1,L
k,l and Q−

k,l = f1,L
k,l −fmin

k,l , which describe
the maximum allowed increase/decrease that is compati-
ble with not creating unphysical extrema. Based on this,
a maximum fraction of the anti-diffusive flux that can be
allowed to enter/exit a cell is given by

R+
k,l = min(1, Q+

k,l/P+
k,l) and R−

k,l = min(1, Q−
k,l/P−

k,l).

Depending on the sign of the anti-diffusive flux across the
different faces, the fraction of the anti-diffusive flux that
can be admitted is given by

Ck+ 1
2 ,l =

{
min(R+

k+1,l, R
−
k,l) if Ak+ 1

2 ,l ≥ 0
min(R+

k,l, R
−
k+1,l) if Ak+ 1

2 ,l < 0
(49)

and

Ck,l+ 1
2

=

{
min(R+

k,l+1, R
−
k,l) if Ak,l+ 1

2
≥ 0

min(R+
k,l, R

−
k,l+1) if Ak,l+ 1

2
< 0.

(50)

These fractions are finally used to add the maximum al-
lowed contribution from the higher order fluxes

f1
k,l = f1,L

k,l − Ck+ 1
2 ,lAk+ 1

2 ,l + Ck− 1
2 ,kAk− 1

2 ,k

− Ck,l+ 1
2
Ak,l+ 1

2
+ Ck,l− 1

2
Ak,l− 1

2
. (51)

For an explicit time-stepping scheme to be stable, the time
step must fulfill a Courant-Friedrichs-Lewy (CFL) con-
dition. Here, the time step is determined by enforcing a
user provided maximum CFL number such that the worst
case coefficients (which scale with a0) in the simulation do
not exceed this value. The available range of CFL num-
bers is dictated by the stability region of the Runge-Kutta
algorithm.

3.8 Refinement indicator

To concentrate finer resolution to parts of phase-space
where the distribution function has a complicated struc-
ture, we choose a refinement indicator which depends on
the magnitude of the distribution function as well as its
first and second derivatives:

δ = wx,1|f̃ i,i
k+1,l − f̃ i,i

k−1,l| + wpx,1|f̃ i,i
k,l+1 − f̃ i,i

k,l−1|
+ wx,2|f̃ i,i

k+1,l − 2f̃ i,i
k,l + f̃ i,i

k−1,l| + wpx,2|f̃ i,i
k,l+1

− 2f̃ i,i
k,l + f̃ i,i

k,l−1| + wf f̃ i,i
k,l. (52)

Here, the constants wx,1r
−i/2, wpx,1r

−i/2, wx,2r
−2i,

wpx,2r
−2i, wf r−i are chosen such that they are all in-

versely proportional to fmax, where fmax is the maximum
value of the distribution function, which is determined
from the initial condition.

In addition to the criteria for mesh refinement, we have
implemented the possibility to specify a minimum level of
refinement as a function of the phase space coordinates.
This makes it possible to guarantee that parts of phase-
space which are known to carry important information
about the distribution function, and have complex dynam-
ics a priori, are sufficiently resolved. The plasma-vacuum
interface is an example of such a region, where most of the
laser-plasma interaction occurs.

4 Numerical benchmarking

To benchmark veritas, we present results from Vlasov-
Maxwell simulations in two cases. In the first case we con-
sider a situation with a circularly polarized (CP) laser
pulse impinging on an overdense electron plasma. In this
case, it is possible to derive analytical solutions for the
electron density by using fluid theory, and these analyti-
cal results in turn can be compared with numerical results
of veritas.

The second benchmarking example will be a study of
laser plasma interaction in three different regimes of laser-
plasma interaction. Here we will make a comparison with
results of the well-established PIC code epoch [39].

4.1 Circularly polarized light impinging on a plasma
slab – comparison to analytic theory

We study a circularly polarized laser pulse interacting with
an overdense plasma, i.e. a plasma with a density n0 higher
than the critical density nc = ω2meε0/e2, where ω is the
laser frequency. In particular, we are interested in com-
paring analytical and numerical solutions in the regime of
total reflection for a cold electron plasma (Te 	 mec

2)
under the assumption of immobile ions. In this regime a
standing wave is formed by the interference of the incom-
ing and reflected pulses, while penetration of the pulse into
the plasma is limited to the skin depth. Using cold fluid
theory, analytical solutions can be derived that describe
the quasistationary state reached by the plasma and elec-
tromagnetic fields [40–42]. Here we follow the notation of
reference [43].

In our simulations, we consider a laser pulse incident
from vacuum (x < 0) on a semi-infinite plasma slab
(x > 0). The initial distribution function of the electrons is

f(x, px) =
n0√

2πTeme

exp
(−p2

x/2meTe

)
Θ(x) (53)

where Θ(x) is the Heaviside function. We introduce the
normalized vector potential of the incoming laser pulse
to be aL(x, t) = |qe|A(x, t)/mec. For circularly polarized
light

aL(x, t)
= a(t − x/c) [cos (ωt − kx) ŷ + sin (ωt − kx) ẑ] , (54)

where ŷ and ẑ denote unit vectors forming an orthonor-
mal basis in the plane transverse to the laser propagation
direction. The envelope is

a(t − x/c) =

{
(a0/

√
2) sin2

(
π
8 (t − x/c)

)
, if t < 4T,

a0/
√

2, otherwise,
(55)

where T is the laser period and a0 is the incident laser
field amplitude. The laser pulse is imposed as a boundary
condition for the transverse magnetic field on the left side
of the simulation box, which is obtained by taking the
derivatives B = ∇× A.
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The analytical theory is based on the assumption that
the plasma-vacuum interface is pushed up to a point xb

where the ponderomotive force −mec
2∂γ/∂x of the laser

pulse is balanced by the electrostatic field qeEx due to
charge separation. Assuming that an equilibrium has been
reached, px = 0 and the relation between the Lorentz
factor and the normalized laser amplitude is γ(x) =√

1 + a2(x). In the following, we express length in the in-
verse wave number k−1 = c/ω and density in terms of the
critical density. Letting ab denote the value of the vector
potential (envelope) at the equilibrium point xb, it can be
shown that

2a2
0 + a4

b

1 + a2
b

= 2n0

(√
1 + a2

b − 1
)

. (56)

This relation can be solved numerically for ab and the
value xb is then calculated from

xb =
ab

n0

√
2a2

0 − a2
b

1 + a2
b

. (57)

Using these values for xb and ab, the normalized vector
potential in the vacuum and plasma regions become

a(x) =
√

2a0 sin
[
arcsin

(
ab√
2a0

)
− (x − xb)

]
(58)

and

a(x) =
2
√

n0(n0 − 1) cosh[(x − x0)/λs]
n0 cosh[(x − x0)/λs] − (n0 − 1)

, (59)

respectively, where λs = 1/
√

n0 − 1 is the skin depth and
x0 is determined by ensuring the continuity of the vector
potential at x = xb. The electron density is finally calcu-
lated from ne = n0 + ∂2γ/∂x2 [43].

Figure 3 shows, that the analytical solutions for the
electron density and vector potential given above agree
well with solutions obtained using veritas, for a plasma
of density n0 = 2nc and the four different laser intensities
a0 = 0.25, 0.50, 0.75 and 1.00. In the numerical simu-
lations, the semi-infinite cold plasma was represented by
a finite plasma slab of length 5λ. The dimensions of the
simulation box were [−3, 7]λ× [−8, 8]mec. The mesh con-
sisted of five levels with refinement ratio r = 2 and, on
the coarsest level, nx = 76, np = 50 points in the spatial
and momentum direction respectively. The temperature
of the electrons was taken to be Te = 5 × 10−4mec

2. The
finite temperature and additional heating due to the finite
rise time of the laser pulse results in a slightly less peaked
structure in the electron density at the vacuum plasma in-
terface compared to analytical theory which neglects these
effects. However, reducing the temperature significantly
would increase the number of points in momentum space
that are needed to resolve the px dependence of the dis-
tribution function.

4.2 Comparison to PIC simulations in different
interaction regimes

We performed simulations in order to study the per-
formance of our code in three different interaction

-0.5 -0.3 -0.1 0.1 0.3 0.5
0

0.5

1

1.5

2

a2 ne

2nc

x/λ

Fig. 3. Comparison of analytical solutions for density (dashed
lines) and squared normalized vector potential (solid lines) and
solutions that are calculated using veritas (black markers), for
a circularly polarized laser pulse that impinges on an overdense
plasma. The density has been normalized by 2nc, to fit on
the same scale as the squared vector potential. The analytical
results for different intensities are labelled with the colours red
(a0 = 0.25), blue (a0 = 0.50), green (a0 = 0.75) and purple
(a0 = 1.00).

regimes: underdense plasma, the relativistic self-induced
transparency (SIT) regime and the hole-boring regime.
For relativistic laser pulses with a0 � 1 propagating in in-
finite plasma the classical critical density nc = ω2meε0/e2,
introduced in Section 4.1 has to be modified in order to
take into account the dependence of the electron effec-
tive mass on the γ-factor. Using the normalizations of
Section 4.1 for CP pulses and taking into account con-
servation of canonical momentum, this leads to the rela-
tivistic critical density neff

c =
√

1 + a2
0/2nc [44,45]. The

possibility for propagation of a relativistic pulse in a clas-
sically overdense plasma is known as self-induced trans-
parency. However, as we have seen in Section 4.1, for
semi-infinite plasma – a local density peak is formed at
the plasma-vacuum interface, leading to a critical den-
sity departing from neff

c [41,42]. The situation is compli-
cated by kinetic effects [43] and ion motion [46,47] and
the threshold for transition from the transparent to the
opaque regime has to be determined numerically. In par-
ticular, when ion motion effects are taken into account one
studies the transition between SIT and the so-called hole-
boring regime [48–52] in which the ions are accelerated in
the charge-separation-induced electrostatic field and the
whole plasma-vacuum interface recedes deeper into the
plasma.

We performed simulations in order to study the inter-
action of plasmas with different densities and a laser pulse
with normalized laser intensity a0 = 2. Figure 4 shows
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Fig. 4. The distribution function for electrons, calculated by
veritas, at time t = 15T after the front of the laser pulse has
reached the plasma, for the densities (a) ne = 0.3nc (in the un-
derdense plasma regime), (b) ne = 1.5nc (in the SIT regime)
and (c) ne = 2.6nc (in the hole-boring regime). The corre-
sponding distribution function (grey) from PIC simulations is
also shown.

the distribution function for electrons at time t = 15T
after the front of the laser pulse has reached the plasma,
for the densities ne = 0.3nc (in the underdense plasma
regime), ne = 1.5nc (in the SIT regime) and ne = 2.6nc

(in the hole-boring regime). The ne = 0.3nc case is in the
regime where the relativistic Raman and modulational in-
stabilities merge [53,54] as evidenced by particle trapping
and acceleration, the ne = 1.5nc case develops electron
vortices on the front side which is in agreement with dy-
namics of the SIT regime [43,47,55] and the ne = 2.6nc is
identified with characteristics of the hole-boring regime.
Figure also shows the distribution function calculated by
the PIC code (grey) at the same instant of time. We ob-
serve remarkable agreement between epoch and veritas
simulations.

In the veritas simulations presented above, the di-
mensions of the simulation box were [0, 20]λ× [−8, 8]mec
for electrons and [0, 20]λ × [−400, 400]mec for ions. Fur-
thermore, the mesh consisted of five levels with refinement
ratio r = 2 and nx = 292, np = 150 points in the spatial
and momentum directions respectively, on the coarsest
level. The temperatures of both electrons and ions were
taken to be Te = Ti = 5 × 10−4mec

2. For epoch, a grid
resolution of 200 cells per wavelength was used, with each
cell spawning 8000 third order B-spline particles.

4.3 Efficient modelling of laser plasma interaction

The performance of the adaptive solver veritas is evalu-
ated by comparing to the performance of using a uniform
grid, i.e. when the adaptive solver is operated with a sin-
gle level. To identify how the performance depends on the
problem, we consider the three cases ne = 0.3nc, 1.5nc and
2.6nc, which were described in Section 4.2. The case with
lowest density has the most complex electron dynamics
and will hence be the most computationally heavy prob-
lem per time step (having the most degrees of freedom)
– even with an adaptive mesh. The higher densities have
simpler and more localized electron dynamics, which de-
mands a fine mesh with high resolution in only a small
region of phase space.

In each case, simulations were performed for ten laser
periods once the front of the laser pulse had reached the
vacuum-plasma interface. For the adaptive solver, we used
the adaption parameters wx,1 = wpx,1 = 0.5 × ri/2/fmax,
wx,2 = wpx,2 = 0.5× r2i/fmax, wf = 6.25× 10−6 · ri/fmax

and δthres = 10−8. These result in a relatively strongly
refined mesh, even in regions with small values of the dis-
tribution function. Furthermore, the mesh was adapted
every 20 time steps. In all cases, the code was compiled
using the Intel compiler with -O3 optimizations and ran
on a desktop PC using an Intel Xeon E3-1231 (3.4 GHz,
4 cores) CPU.

The performance of the adaptive solver can be quanti-
fied by the reduction of its memory footprint as well as the
speedup compared to a uniform case. Figure 5a compares
the memory footprints against system time, and Figure 5b
shows the time it takes to perform a single time step, as
a function of the time during the simulation (measured
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Fig. 5. (a) Memory footprint as a function of system time and
(b) the time it takes to advance the solution a time step as a
function of time in laser periods (T ), when using an adaptive
mesh to simulate a circularly polarized laser pulse impinging
on plasmas with densities ne = 0.3nc (underdense plasma),
ne = 1.5nc (SIT) and ne = 2.6nc (Hole Boring), as well as
when using a uniform (Non-Adaptive) mesh.

in laser periods). The reduction in memory footprint is
time varying, but is at least a factor of 3 in all of the adap-
tive cases compared to the non-adaptive case. In all cases
we observe a speedup of at least 4× (worst case, however
for 50% of the simulation time we see ∼7×). The differ-
ence in time per time step is caused by a larger number
of degrees of freedom in the lower density cases, however
this difference is modest.

To compliment the results in Figure 5, we make a more
in depth comparison of run time for the hole-boring case
ne = 2.6nc, with and without adaption. The total run-
time and division of the computational work between dif-
ferent parts of the solver is reported in Table 1. The run-
time has been divided into four categories: (1) a time step
category which includes the time for advancing the dis-
tribution function; (2) a category for the calculation of
charge and current densities, (3) a category for the regrid-
ding procedure and (4) a category for the calculation of

Table 1. A summary of the computational costs in key parts
of veritas, with and without adaptive mesh refinement. Here,
we limit the meaning of time step to only include the contribu-
tion from time advancement of the distribution functions and
exclude any electromagnetic field or potential updates.

Category Uniform (s (%)) AMR (s (%))
Time step 10 360.1 (32.6) 1514.1 (40.5)

Charge and currents 21 228.7 (66.8) 2000.1 (53.5)
Update potential 127.1 (0.4) 149.5 (4.0)

Regridding 0.0 (0.0) 56.1 (1.5)
Total 31 779.4 (100.0) 3738.5 (100.0)

the electrostatic potential. The greatest proportion of the
runtime, in all cases, was spent in one of these categories.

In both the uniform and adaptive cases, most of the
run time is spent either on time stepping or calculating
the charge and current. The contribution to the run time
from the solver for the transverse electromagnetic fields is
marginal compared to the time spent in the above regions.
Furthermore, we notice that the work load distribution is
mostly unaffected by the use of adaption.

Notice that the computational cost associated with re-
gridding was modest (<2%). However, there is a trade-off
between choosing small adaption parameters, resulting in
a large number of points in the mesh, and high frequency
for adaption, resulting in large computational costs for
regridding. For example, in reference [22] a higher rate
for adaption is used, with the consequence that a larger
amount of the runtime is spent in regridding procedures.
Optimal choices for the adaption parameters and regrid-
ding rate is an area to investigate to further optimize the
accuracy and speed of the adaptive code.

5 Conclusions

The study of the Vlasov-Maxwell system of equations has
long been of interest for modelling collisionless plasma dy-
namics. Eulerian methods are suitable for cases where high
resolution of the distribution function is needed, but have
so far been restricted by the computational expense. Here,
an open source adaptive solver for the relativistic Vlasov-
Maxwell system in one dimension, veritas, is presented.
We have successfully demonstrated the solvers capabili-
ties, leading to a speed-up of a factor of 7× in a typical
scenario. It is shown that the adaptive approach is well
suited for problems where a small component of the elec-
tron or ion populations are accelerated to high velocity.

The discretization of the Vlasov-equation in veritas is
based on a high-order finite volume method, implementing
the flux corrected transport algorithm to limit spurious
oscillations in the distribution functions, in the presence
of steep gradients. The use of efficient limiters is of critical
importance to obtain a stable numerical scheme over a
wide parameter range for self-consistent simulations with
ultra intense fields, such as laser-plasma interactions.

The reduction of runtime and memory footprint using
adaption comes from the reduction in the total number
of cells in which the computation is performed, although
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with some additional overheads related to more compli-
cated mesh structure and calculation of charge and cur-
rent densities. In the cases and parameter sets considered
in this paper, the overheads due to adaption were found
to be minor. However, performance of the adaptive solver
is also connected to the optimization of adaption param-
eters, e.g. the efficiency of the covering of marked cells
using rectangles, and the threshold for as well as form
of the refinement indicator. The optimal choices of these
parameters are problem dependent.

Note that the local character of the explicit discretiza-
tion in veritas makes it well suited for parallelization,
resulting in an efficient tool for simulations of moder-
ate laser intensities (with a0 ∼ 1). However, in simu-
lations of interaction of a plasma with ultra-relativistic
fields (with a0  1), performance for explicit methods
is strongly limited by CFL-restrictions on the time step.
Extensions to higher field strengths may therefore bene-
fit from a more robust approach such as an explicit local
time-stepping method [56] or the use of semi-Lagrangian
methods which put fewer restrictions on the timestep [57].
A third option may be an implicit treatment of the mo-
mentum derivatives in the Vlasov-equation, which would
remove the severe scaling of the CFL-restriction due to
the field strength; although this method will pose chal-
lenges for a parallel implementation. The small number
of degrees of freedom in the adaptive mesh could be a
significant advantage for the implicit approach.

Finally, concerning the extention of veritas from a
1D1P code to 2D2P: all numerical methods presented here
are equally applicable. Based on the performance of the
1D1P code, we are optimistic about the potential perfor-
mance gains that can be achieved by the use of an adaptive
mesh in 2D2P. On the other hand, some further investiga-
tion is still needed with regard to the scaling of overheads
and effect of managing the more complicated mesh struc-
ture in a distributed memory context.

The authors are grateful to S. Buller, O. Embréus, E. Highcock,
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arXiv:1603.06436 (2016)

48. A. Macchi, F. Cattani, T.V. Liseykina, F. Cornolti, Phys.
Rev. Lett. 94, 165003 (2005)

49. O. Klimo, J. Psikal, J. Limpouch, V.T. Tikhonchuk, Phys.
Rev. ST Accel. Beams 11, 031301 (2008)

50. A.P.L. Robinson, M. Zepf, S. Kar, R.G. Evans, C. Bellei,
New J. Phys. 10, 013021 (2008)

51. X.Q. Yan, C. Lin, Z.M. Sheng, Z.Y. Guo, B.C. Liu, Y.R.
Lu, J.X. Fang, J.E. Chen, Phys. Rev. Lett. 100, 135003
(2008)

52. N. Naumova, T. Schlegel, V.T. Tikhonchuk, C. Labaune,
I.V. Sokolov, G. Mourou, Phys. Rev. Lett. 102, 025002
(2009)

53. S. Guerin, G. Laval, P. Mora, J.C. Adam, A. Heron,
A. Bendib, Phys. Plasmas 2, 2807 (1995)

54. S. Guerin, P. Mora, J.C. Adam, A. Heron, G. Laval, Phys.
Plasmas 3, 2693 (1996)

55. A. Ghizzo, D. DelSarto, T. Reveille, N. Besse, R. Klein,
Phys. Plasmas 14, 062702 (2007)

56. M.J. Grote, T. Mitkova, J. Comput. Appl. Math. 234,
3283 (2010)

57. M. Shoucri, J.P. Matte, F. Vidal, Laser Part. Beams 31,
613 (2013)

http://www.epj.org
http://arxiv.org/abs/math.NA/1506.02999v1
http://arxiv.org/abs/1603.06436

	Introduction
	The Vlasov-Maxwell system
	Numerical scheme
	Numerical benchmarking
	Conclusions
	Author contribution statement
	References

