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SUMMARY

The effective response of microstructures undergoing crack propagation is studied by homogenizing
the response of statistical volume elements (SVEs). Because conventional boundary conditions (Dirichlet,
Neumann and strong periodic) all are inaccurate when cracks intersect the SVE boundary, we herein use
first order homogenization to compare the performance of these boundary conditions during the initial stage
of crack propagation in the microstructure, prior to macroscopic localization. Using weakly periodic bound-
ary conditions that lead to a mixed formulation with displacements and boundary tractions as unknowns, we
can adapt the traction approximation to the problem at hand to obtain better convergence with increasing
SVE size. In particular, we show that a piecewise constant traction approximation, which has previously
been shown to be efficient for stationary cracks, is more efficient than the conventional boundary conditions
in terms of convergence also when crack propagation occurs on the microscale. The performance of the
method is demonstrated by examples involving grain boundary crack propagation modelled by conventional
cohesive interface elements as well as crack propagation modelled by means of the extended finite element
method in combination with the concept of material forces. © 2016 The Authors. International Journal for
Numerical Methods in Engineering Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

The search for accurate and cost effective ways to model the response of microheterogeneous
materials has attracted considerable interest for several years. The research efforts have lead to
development of computational homogenization techniques [1, 2], where numerical simulations on
a statistical volume element (SVE)‡ have emerged as a standard tool. A critical aspect of such
simulations, which is addressed in the present work, is the choice of suitable boundary condi-
tions (BCs) on the SVE. We remark that the choice of BCs is particularly important when damage
progression occurs in the microstructure, because the classical choices (Neumann, Dirichlet and
(strong) periodic BCs [3, 4]) are inadequate in this case. On the one hand, Neumann BCs lead
to spurious softening if damage evolves close to the SVE boundary, see [5] for an illustrative
example. On the other hand, Dirichlet BCs suppress crack opening and damage progression at the
SVE boundary, leading to overstiff predictions. Similarly, strong periodic BCs in standard form also
suppress crack opening and localization unless the localization band is aligned with the periodicity
directions, thereby leading to overstiff predictions in the general case. The overstiffening effect of
artificial crack closure on the boundary can be severe for both Dirichlet and strong periodic BCs. In
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‡We note that both Representative Volume Element, Statistical Volume Element and Microstructural Volume Element [5]
are used in the literature to denote a sample of the microstructure. To stress the fact that a sample of finite size may not
be truly representative, we prefer the notion Statistical Volume Element, cf. Ostoja-Starzewski [6].
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ON COMPUTATIONAL HOM. OF MICROSCALE CRACK PROP 77

fact, Talebi et al. [7] argue that strong periodic BCs should not be used at all when a crack intersects
the SVE boundary. Hence, good strategies are needed to overcome the deficiencies of conventional
BCs in the presence of damage progression.

Some strategies to alleviate the shortcomings discussed earlier are reported in the literature.
For example, if a single dominating failure path can be identified, a possibility is to apply
percolation-path-aligned BCs [5, 8] that are aligned with the localization direction. We remark,
however, that the application of such BCs requires that there is a unique localization direction to be
identified. In the present work, we instead aim to develop a method that is suitable even if a single
dominating failure path cannot be identified. This is the case when several boundary-intersecting
cracks are present in the microstructure, in particular, at the early stage of crack propagation.

In the following, we consider damage progression in the SVE prior to localization and restrict
ourselves to first order homogenization. Hence, we do not consider the related and difficult
issue of localization in the SVE, cf. Coenen et al. [5, 8] in the context of the percolation-path-aligned
BCs mentioned previously, or the multiscale aggregating discontinuities method by Belytschko et
al. [9]. Note, however, that an accurate representation of damage progression prior to localization is
a prerequisite for accurate modelling of localization.

Starting from the developments for stationary cracks in [10], we herein adopt the concept of
weakly periodic BCs [11]. Using a mixed variational format with displacements and boundary
tractions as unknowns, we consider the problem of adapting the traction approximation to the
problem at hand in order to gain improved convergence with increasing SVE size. Inspired by the
success of a piecewise constant traction approximation for stationary cracks [10], we extend this
formulation to the case when crack propagation occurs in the microstructure. It turns out that a
traction approximation that is piecewise constant between crack-boundary intersections and SVE
corners leads to superior convergence with increasing SVE size compared with conventional BCs.

Regarding the modelling of damage progression in the SVE, we note that models based on (local
or nonlocal) continuum damage as well as discrete cracks are available. Restricting our attention to
discrete cracks, we note that the kinematic description can be realized through element embedded
discontinuities [12], cohesive interface elements (i.e. inter-element cracks) [13], a discontinuous
Galerkin formulation [14] or the extended finite element method (XFEM) [15–17]. In the present
work, we consider grain boundary crack propagation modelled with cohesive interface elements and
arbitrary crack propagation modelled by means of XFEM. The kinematic crack representation needs
to be combined with a model describing crack propagation. To this end, we will consider material
forces (see e.g. [18–20]) in combination with XFEM and cohesive zone models in combination with
cohesive interface elements.

The remainder of the paper is organized as follows: in Section 2, we state the variational format
of the single scale (fully resolved) problem (i.e. prior to the introduction of computational homog-
enization). We state the expression for the homogenized stress in Section 3 and discuss the mixed
variational format pertinent to the microscale problem, including models for crack propagation and
suitable choices for the traction approximation, in Section 4. The numerical studies in Section 5 lead
us to the conclusions presented in Section 6.

2. SINGLE SCALE PROBLEM

To establish the weak form of the (quasistatic) momentum balance and to introduce the necessary
notation, we consider a two dimensional domain§ � with external boundary � and internal bound-
aries �int, the latter representing cracks in the material. The internal boundaries consist of two-sided
surfaces with predefined normal nint as shown in Figure 1. We remark that no particular simplic-
ity requirements are imposed on the cracks; they may branch and intersect each other as well as
the domain boundary. Because the internal boundary consists of two-sided surfaces, it has a positive

§In the present work, we restrict ourselves to two-dimensional problems to simplify the representation of the cracks and
the traction mesh. Note, however, that weakly periodic boundary conditions [21] as well as XFEM [22] are applicable
to three-dimensional problems.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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78 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

Figure 1. Domain � with external boundary �ext and internal boundaries �int. A statistical volume element
with domain �� and boundary �� is also shown.

side �Cint and a negative side ��int. In the following, we let superscripts C and � denote quanti-
ties on �Cint and ��int, respectively. For later use, we introduce the displacement jump over �int

as �u� D uC � u�. We also introduce the small strain tensor � D Œu˝ r �sym, where r is the
gradient operator.

Assuming quasistatic loading, small strains and neglecting the body force allow the equilibrium
equations to be written in standard fashion as

�� � r D 0 in �;

tC C t� D 0 on �int;

t
def
D � � n D Ot on �ext;N ;

u D Ou on �ext;D;

(1)

where � D � .�/ is the Cauchy stress, n is the outwards pointing normal vector, Ot is a prescribed
traction and Ou is a prescribed displacement. On the internal boundaries, we have

tC D �� j
�
C
int
� nint and t� D nj��int

� nint; (2)

where the traction t D tC D �t� is given by a cohesive zone model in terms of the jump �u�. Here,
nint is defined as the outwards normal on ��int. In the case of traction free crack surfaces, we have
t D 0.

The weak solution to Equation (1) is obtained by finding u 2 U such thatZ
�

� W ı�d� �
Z
�
C
int

t � �ıu�d� D
Z
�ext;N

Ot � ıu d� 8ıu 2 U0;

U D
°
v W v 2

�
H1.�/

�d
; v D Ou on �ext;D

±
;

U0 D
°
v W v 2

�
H1.�/

�d
; v D 0 on �ext;D

±
;

(3)

where ı� D Œıu˝ r �sym, H1.�/ denotes the (Sobolev) space of functions with square integrable
gradients on �, and d denotes the dimension of the problem. We note that u and ıu do not need to
be continuous across �int. In particular, discontinuities across �int will be taken into account on the
microscale as discussed later.

3. MACROSCALE PROBLEM

The variational format presented in Section 2 is valid for the single scale problem, where all
microscale features are explicitly resolved. Aiming for multiscale modelling based on homogenizing
the response of SVEs, we note that an expression for the effective macroscale stress needs to be

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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ON COMPUTATIONAL HOM. OF MICROSCALE CRACK PROP 79

derived. We neglect cracks on the macroscale and define N�
def
D � [ �int, where N� is the homoge-

neous counterpart of �, not containing internal boundaries. We then introduce a running average
according to

Z
�

yd� �
Z
�
C
int

´d� !
Z
N�

1

j��j

 Z
��

yd� �
Z
�
C

�;int

´d�

!
d�; (4)

where�� is an SVE, and �C�;int D �
C
int\�� is the part of the internal boundary located inside��.

By applying the smoothing approximation given by Equation (4) to Equation (3), we obtain

Z
N�

1

j��j

 Z
��

� W Œıu˝ r � d� �
Z
�
C

�;int

t � �ıu�d�

!
d� D

Z
�ext;N

Ot � ıud�; (5)

where we note that � W ı� D � W Œu˝ r �sym D � W Œu˝ r � due to the symmetry of n.
To establish the macroscale problem, we define the homogenized variables

Nx D
1

j��j

Z
��

xd�; Nu
def
D

1

j��j

Z
��

u d�; Nu˝ r
def
D

1

j��j

Z
��

u˝ n d�; (6)

where we note that Nu˝r is not equal to the volume average of u˝r due to the presence of internal
boundaries in the SVE. In standard fashion, the solution field in an SVE is split into a smooth
macrofield part and a subscale fluctuation: u D uM C us. Using first order homogenization, it is
assumed that the macrofield uM varies linearly in the SVE, so that it can be expanded in terms of the
macroscopic displacement Nu and the macroscopic displacement gradient Nu˝r in the (macroscopic)
point Nx as uM D Nu C . Nu˝ r/ � Œx � Nx� for any x in the SVE. Here, the homogenized field and
its gradient thus define the macroscale field inside the SVE. We may now derive the macroscale
problem by testing Equation (5) with test functions ıuM D ı Nu C .ı Nu˝ r/ � Œx � Nx� inside each
SVE. The task is then to find Nu 2 NU that solvesZ

N�

N� W Œı Nu˝ r � d� D
Z
�ext;N

Ot � ı Nu d� 8ı Nu 2 NU0;

NU D
°
v W v 2

�
H1
�
N�
��d

; v D Ou on �ext;D

±
;

NU0 D
°
v W v 2

�
H1
�
N�
��d

; v D 0 on �ext;D

±
;

(7)

where the effective macroscale stress is then given by

N�
def
D

1

j��j

Z
��

�d�: (8)

In order to derive Equation (7), we have also assumed smooth boundary data in the sense thatR
�ext;N

Ot � ıud� D
R
�ext;N

Ot � ı Nud� and u D Nu on �ext;D .

4. MICROSCALE PROBLEM

4.1. Mixed variational format

Section 3 specifies how to compute the effective stress based on the solution of the SVE problem.
Here, we will specify the mixed variational format pertinent to the SVE problem. To facili-
tate imposition of weakly periodic BCs [10, 11], we divide the SVE boundary into an image

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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80 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

Figure 2. Statistical volume element with boundary divided into image and mirror parts.

part �C� and a mirror part ��� as shown in Figure 2. Furthermore, we introduce a mapping
'per W �

C
� ! ��� such that points on �C� and ��� are associated to each other according to

x� D 'per.x
C/. We also define the jump between a point xC on �C� and the associated point

x� D 'per.x
C/ on ��� as¶

�u��
def
D u

�
C

�

� u��
�
: (9)

We may now state the requirements for periodicity as

�u�� D N� � �x � Nx�� on �C� ; (10)

tC C t� D 0 on �C� ; (11)

1

j��j

Z
��

u d� D 0; (12)

where N�
def
D Œ Nu˝ r �sym is the effective strain. In the case of strong periodicity, Equations (10) and

(11) are required to hold pointwise on �C� . In the present work, we will only require weak fulfilment
of Equation (10) (whereas Equation (11) will be fulfilled pointwise by construction). Thus, we
introduce an independent discretization for the boundary traction. The SVE problem is then to find
u 2 U� and t� 2 T� such that

a� .u; ıu/ � d� .t�; ıu/ D 0 8ıu 2 U�;

�d� .ıt�;u/ D �d� .ıt�; N� � Œx � Nx�/ 8ıt� 2 T�;
(13)

U� D ¹v W v 2
�
H1.��/

�d
;

Z
��

vd� D 0º; (14)

T� D
°
v W v 2

�
L2
�
�C�

��d±
; (15)

where we introduced the expressions

a� .u; ıu/
def
D

1

j��j

"Z
��

� W � Œıu� d� �
Z
�
C

�;int

t � �ıu�d�

#
; (16)

¶Note that �u� denotes the jump across an internal boundary �int, whereas �u�� denotes the jump over the external SVE
boundary ��.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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ON COMPUTATIONAL HOM. OF MICROSCALE CRACK PROP 81

d� .t�; ıu/
def
D

1

j��j

Z
�
C

�

t� � �ıu��d�; (17)

and L2
�
�C�

�
denotes the space of square integrable functions on �C� .

Before proceeding, we remark that the Hill-Mandel macrohomogeneity condition is fulfilled for
the weakly periodic BCs described previously [11]. To show that the Hill-Mandel condition indeed
holds, we need to ensure that the volume average of the virtual work on the microscale equals the
virtual work on the macroscale, that is,

a� .u; ıu/ D N� W ı N�: (18)

To see this, insert the expansion ıu D ı NuC.ı Nu˝ r/ � Œx � Nx�Cıus in the expression for a� .u; ıu/
and note that ı Nu and ı Nu˝ r are constant inside each SVE to obtain

a� .u; ıu/ D N� W ı N�C a� .u; ıu
s/ : (19)

Hence, we need to show that a� .u; ıus/ D 0. Using ıus D ıu � ı Nu � .ı Nu˝ r/ � Œx � Nx� and
Equation (13) gives the desired result.

4.2. Crack representation

To account for the presence of cracks in the SVE, we consider two strategies: XFEM and interface
elements. For a discussion on interface elements, see e.g. [13]. As for XFEM modelling, we follow
standard procedures (see e.g. the review in [17]) and use Heaviside enrichment in elements com-
pletely cut by a crack, whereas elements containing a crack tip are enriched with the asymptotic
functions first proposed in [23]. In order to preserve the Kronecker-ı property of the discretization,
we employ a shifted enrichment as first suggested in [24].

Regarding modelling of intersecting cracks, we remark that it is insufficient to add enrichments
for each crack separately, without considering the other crack. To properly account for intersecting
cracks, we use the same approach as Daux et al. [25], where junction functions are introduced at the
intersection.

To model crack propagation, we consider (i) XFEM cracks in combination with the concept
of material forces and (ii) cohesive zone elements. Next, we describe the material force crack
propagation model used in the present work, followed by the cohesive zone model adopted.

4.3. Crack propagation based on material forces

The possibility to combine an XFEM representation of cracks with different models for crack prop-
agation was the topic of the classical work in [15] and has attracted considerable research interest
in recent years. Here, we consider crack propagation driven by material forces, see e.g. [26], the
algorithmic treatment in [19] or the discussion on different propagation strategies in [20]. Using the
domain integral method and assuming that the bulk material is elastic, the material force Fmat is
given by

Fmat D �

Z
!

M � Œ� ˝ r � d�; (20)

where M is the Newton–Eshelby stress tensor, � is a weight function and ! is a suitable region
around the crack tip. In a small strain setting, the Newton–Eshelby stress is given by (see e.g. [27])

M D  I �H T � � ; (21)

where  is the strain energy in the material andH D u˝ r is the displacement gradient.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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82 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

Crack propagation models based on material forces can be formulated in different ways, see [20]
for a few examples. Letting �a denote the motion of a propagating crack tip during a time step and
aiming for a simple propagation model, we choose to compute the crack increment as

�a D ˇH
�
jFmat j � F

crit
mat

� Fmat
jFmat j

; (22)

where ˇ is a predefined increment length, F critmat is a material parameter determining the onset of
crack propagation and H.�/ is the Heaviside function. In short, the choice in Equation (22) implies
that cracks propagate in the direction of the material force if the magnitude of the material force
exceeds a critical value. If the update specified by Equation (22) is performed explicitly, that is, if
the crack is propagated at the end of each time step, this model is very similar to the model denoted
explicit proportional extension in [20], the only difference lies in the choice of increment length.
In the present work, we make a modification in order to reduce the time step dependency: if crack
propagation occurs during a time step, we recompute the time step as many times as needed for the
cracks to stop growing.

4.4. Cohesive zone model

When interface elements are used to study crack propagation, we consider a damage-plasticity type
of cohesive zone model. Before proceeding, we would like to remark that the present work does not
rely on the use of a particular cohesive zone model, any model that incorporates damage could be
used in principle. Hence, we only give a brief overview of the model chosen. Following [28], we
adopt a scalar damage model and express the traction as t D .1 � ˛/ Qt;where ˛ 2 Œ0; 1� represents
the damage in the cohesive zone and Qt is the nominal traction vector related to the undamaged
material. Adopting a plasticity model allows us to express the nominal traction vector as Qt D K �
.d � dp/ ; where K is the (elastic) stiffness of the cohesive zone, d is the total displacement jump
and dp is the plastic part of the displacement jump. To complete the description of the cohesive zone
model, a flow rule and a damage evolution rule need to be specified. We define the yield function of
the cohesive zone material as

F D �f

�
Qtt

��f

�2
C �f

 ˝
Qtn
˛

�f

!2
� �f ; (23)

where �f and � are material parameters. Furthermore, Qtt and Qtn denote the tangential and normal
components of the nominal traction vector, respectively. We use an associative flow rule given by
Pd
p
D 	 @F

@Ot
; where 	 is the plastic multiplier. The damage evolution in the cohesive zone is given by

P̨ D 	=S; where S is a material parameter that is calibrated such that the mode I fracture energy gI
is correct, see [29] for details. For the simple version of the cohesive zone model considered here,
the fracture energies in mode I and mode II are equal.

4.5. Traction approximation

Having established the variational format including models for crack propagation, it remains to
specify suitable choices for Uh

� and Th�. We construct Uh
� using a conventional finite element mesh.

For the construction of Th�, we first note that strong periodicity is fulfilled in the continuous setting,
because the second identity in Equation (13) is fulfilled for all ıt� 2 T� so that u D N� � �x � Nx��
holds pointwise on �C� in this case. If we instead consider the type of BC applied on the SVE as
a modelling choice, we note that coarsening of U� and T� allows different modelling choices.
In particular, Dirichlet and Neumann BCs are obtained by restricting the spaces U� and T�,
respectively. More precisely, Neumann BCs are obtained as the coarsest possible traction discretiza-
tion, with piecewise constant traction on each face of the SVE. Furthermore, BCs with attractive
convergence properties can be constructed by adapting the coarsening of T� to the problem at hand.
Noting that the Hill-Mandel macrohomogeneity condition is fulfilled for arbitrary choices of Uh

�

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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ON COMPUTATIONAL HOM. OF MICROSCALE CRACK PROP 83

and Th� [11], we follow [10] and construct Th� by creating a traction mesh on the SVE boundary
as shown in Figure 3. We consider traction approximations that are piecewise linear or piecewise
constant on each traction element. More precisely, we create the traction mesh based on the loca-
tions of some or all of the (displacement) nodes on the SVE boundary and points where cracks or
grain boundaries intersect the SVE boundary as indicated in Figure 3. This approach allows different
traction approximations to be created, ranging from a fine traction mesh if all traction nodes are
retained (yielding results close to strong periodic BCs), to the coarsest possible traction mesh
with nodes only at the SVE corners (corresponding to Neumann BCs). Two different traction
discretizations on this form will be studied in detail in the numerical examples:

(1) A piecewise linear traction discretization, with traction nodes at all crack-boundary inter-
sections and displacement node locations on the boundary, as shown in Figure 4(a). This
approximation is stable [11] and gives a solution close to strong periodic BCs. It will be
denoted dense in the following.

(2) A piecewise constant traction discretization, with traction discontinuities only at SVE corners
and where cracks or grain boundaries intersect the SVE boundary, as shown in Figure 4.
This discretization is stable and has shown promising results for stationary cracks in previous
investigations by the authors [10]. It will be denoted piecewise const. in the following.

4.6. Updating the traction approximation upon crack propagation

Because crack propagation is considered in the present work, we remark that the traction discretiza-
tion must be updated during the simulation as new cracks intersect the SVE boundary. Neglecting
the traction discretization update may lead to spurious softening if a piece of the structure becomes

Figure 3. Example of a traction mesh created from (displacement) node locations on the boundary and
positions of crack-boundary intersections.

Figure 4. Traction meshes considered in the numerical examples.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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84 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

completely cut loose by the propagating cracks. This observation is easily verified by starting
with the coarsest possible traction discretization, corresponding to Neumann BCs. If the traction
discretization is not updated when a propagating crack intersects the boundary, we have the case
of Neumann BCs in combination with damage progression in the SVE, leading to a risk of
spurious softening.

5. NUMERICAL EXAMPLES

In this section, we investigate the performance of different BCs when crack propagation occurs in
the microstructure. The first example deals with a grain structure undergoing intergranular fracture
modelled with cohesive zone elements, showing the overstiffening effect caused by Dirichlet BCs
and strong periodic BCs, as well as the spurious softening caused by Neumann BCs. Next, we show
an example of crack propagation modelled with XFEM and material forces, thus allowing us to study
arbitrary crack propagation resulting in complex crack patterns. For the numerical implementation,
we use the open source software package OOFEM [30, 31].

5.1. Grain structure with intergranular fracture

We consider a grain structure where the grains are elastic and cracks may propagate along the grain
boundaries. For pre-processing, the open source software packages Neper [32, 33] and Phon [34] are
used to generate grain structures and insert cohesive zone elements between the grains. We choose
to model the grains as linear elastic with Poisson’s ratio 
 D 0:3 and Young’s modulus varying
randomly within the range E0=100 6 E 6 100E0, where E0 is a suitable reference modulus. The
grain boundaries are modelled using the cohesive zone model described in Section 4.4, with initial
stiffness K D 1000E0, yield traction �f D E0=400, fracture energy gI=E0 D 1:0 � 10�7 m and
� D 0:5. For the loading of the SVEs, we apply a uniaxial macroscopic strain of N�xy D 0:1% in
100 load steps and monitor the effective stress component N�xy .

A typical FE mesh of a microstructure with grains is shown in Figure 5(a). The correspond-
ing effective stress response is shown in Figure 5(b), where substantial nonlinearity due to the
grain boundary damage evolution can be seen. (Recall that the bulk material is linear elastic
in this example, hence all nonlinearity in Figure 5(b) stems from plasticity and damage in the
grain boundaries.)

To investigate the average microstructure response, we consider different grain structure realiza-
tions like the one shown in Figure 5 and compute the average effective stress using both direct and
inverse sampling. More precisely, direct sampling is obtained by computing the average as

N�Dij D
1

N

NX
kD1

N�ij;k; (24)

Figure 5. Example of a grain structure and the corresponding effective response.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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ON COMPUTATIONAL HOM. OF MICROSCALE CRACK PROP 85

Figure 6. Average effective response of grain structures computed with weakly periodic boundary conditions
and Dirichlet boundary conditions for different statistical volume element sizes.

where N�ij;k is the ij -component of the k W th realization. Inverse sampling is given by

N�Iij D

 
1

N

NX
kD1

N��1ij;k

!�1
: (25)

The motivation for studying both direct and inverse sampling is the following: direct sampling is
completely analogous to (upper bound) Voigt sampling for given strain. Inverse sampling, on the
other hand, ‘mimics’ the (lower bound) Reuss sampling strategy, which formally should be com-
puted for given stress. Hence, the inverse sampling strategy can be expected to be closer to a lower
bound estimate. For more details on Voigt and Reuss sampling, cf. [35].

The number of realizations for each SVE size is chosen such that the 95% confidence interval for
the area under the effective stress–strain curve is within ˙5% of the mean value. We compute the
effective response for different SVE sizes, ranging from L� D 4Lg to L� D 32Lg , where Lg is
the average grain size and L� is the side length of the SVE. From the results shown in Figure 6,
we note that Dirichlet BCs are severely overstiff: the curves predicted with L� D 4Lg and
L� D 8Lg are far above the corresponding curves computed with weakly periodic BCs. Using
Dirichlet BCs, L� needs to be as large as 16Lg to obtain results that are similar to the response
obtained with weakly periodic BCs. Weakly periodic BCs perform much better: using L� D 4Lg
and a piecewise constant traction approximation gives results similar to using L� D 16Lg in
combination with Dirichlet BCs. We also note that weakly periodic BCs with a coarse, piece-
wise constant traction approximation performs better than weakly periodic BCs with dense traction
approximation (corresponding to strong periodic BCs), in particular for the smaller SVE sizes
(L� D 4Lg and L� D 8Lg ).

We conclude this example by noting that Neumann BCs (as expected) lead to spurious softening
as shown in Figure 7. The severity of the spurious softening increases with increasing SVE size.
Hence, weakly periodic BCs are more effective than Neumann, Dirichlet and strong periodic BCs
when crack propagation occurs in the microstructure.

5.2. Propagating XFEM cracks

In the second example, we consider crack propagation in a linear elastic bulk material using XFEM
and material forces. The purpose of the example is to investigate the performance of different BCs in
situations where the final crack pattern, including the points where growing cracks will intersect the
SVE boundary, cannot be determined a-priori. To this end, we consider randomly distributed cracks
that are initially straight with an initial length Lc . A set of SVEs are generated by first creating a
large microstructure sample and then cutting out SVEs of different sizes from the sample as shown
in Figure 8. As can be seen, no extra regularity requirements are imposed on the crack pattern:

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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86 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

Figure 7. Average effective response of grain structures computed with Neumann boundary conditions and
inverse sampling for different tatistical volume element sizes.

Figure 8. Statistical volume elements of different sizes for the random microstructure considered in
Example 5.2.

Figure 9. One of the statistical volume elements used in Example 5.2.

the orientations and positions of the cracks are completely random. Note that even though the cracks
are (for simplicity of statistical sample generation) initially straight, they may propagate in arbitrary
directions and will therefore not remain straight.

For the material parameters, we choose Young’s modulus E D E0 and Poisson’s ratio 
 D 0:3.
Furthermore, cracks propagate according to Equation (22) when the magnitude of the material force
exceeds F critmat =E0 D 1:0 � 10�7 m2, and we set the increment length to ˇ D 0:05Lc . A uniform
mesh size of h D 0:025Lc is used for all SVE sizes. This is a relatively fine mesh resolution, as
shown in Figure 9(a), with 6400 elements for the smallest SVE with a side length of L� D 2Lc ,
and 4 � 105 elements for the largest SVE with side length L� D 16Lc . To improve the accuracy
of the material force computation, we use branch enrichment in elements containing a crack tip as

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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ON COMPUTATIONAL HOM. OF MICROSCALE CRACK PROP 87

described previously. We remark that a much finer mesh would be required if only step enrichment
were used.

As for the loading of the SVEs, we choose to apply a uniaxial macroscopic strain of N�xx D 0:25%
in 25 load steps and monitor the effective stress component N�xx. An example of a deformed SVE is
shown in Figure 9(b).

Before presenting the main results of this section, we make a few remarks on the qualitative
behaviour of the model. Because we consider growth of traction free cracks in an elastic material,
the SVE will typically respond elastically for some load steps, until the crack driving force reaches
the critical value. When the critical value is reached, one or several cracks start to propagate. The
cracks will continue to grow until they reach a stable configuration or cross the SVE boundary. This
results in a sudden drop in the effective stress when a crack propagates. The expected response of
a single SVE is therefore an elastic response interrupted by sudden drops due to crack propagation.
An example showing this type of response can be seen in Figure 10, which was computed using the
SVE shown to the left in Figure 8. The crack pattern at different stages of the simulation is shown
in Figure 11, where we note that the two large drops in the effective stress (seen in Figure 10) cor-
respond to growth of a crack to the SVE boundary. When several SVE realizations are considered,
averaging over many SVEs will produce a smoother response than that shown in Figure 10. For the
same reason, we expect a smoother response if a single sufficiently large SVE is considered.

After these introductory remarks, we are now ready to proceed and study statistical properties of
the microstructure. For this example, we will not consider Neumann BCs, because they predict zero
effective stress as soon as a piece of the SVE is completely cut loose by cracks. Because this will
always happen for a sufficiently large SVE, Neumann BCs converge to the (useless) lower bound of

Figure 10. Response of a single statistical volume element. Crack propagation causes sudden drops in the
otherwise elastic response.

Figure 11. Crack pattern at different stages of the simulation.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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88 E. SVENNING, M. FAGERSTRÖM AND F. LARSSON

Figure 12. Average response of a microstructure with propagating cracks, computed with different boundary
conditions and statistical volume element sizes.

zero stress for this example. In fact, Neumann BCs will predict zero effective stress for a random
crack pattern even for stationary cracks (i.e. even if crack propagation is not considered), cf. [10].

As output from the simulations, we monitor the effective stress averaged over several SVEs, using
both direct and inverse averaging. The number of realizations for each SVE size is chosen such that
the 95% confidence interval for the area under the effective stress–strain curve is within ˙10% of
the mean value. The average effective stress, computed with different BCs and SVE sizes, is shown
in Figure 12. We first note that the curves are not perfectly smooth. Because a typical SVE will
respond as shown in Figure 10, a very large number of SVEs would be necessary to obtain perfectly
smooth curves.

Comparing the results in Figure 12 for different BCs, we note that Dirichlet BCs give the stiffest
response, as expected. Weakly periodic BCs with dense traction discretization (roughly correspond-
ing to strong periodic BCs) perform slightly better, but the response is notably overstiff. Weakly
periodic BCs with piecewise constant traction converge faster than both Dirichlet BCs and weakly
periodic BCs with dense traction discretization. For example, using Direct sampling, the response
predicted with L� D 4Lc and piecewise constant traction approximation is closer to the converged
solution than the response predicted with L� D 8Lc and dense traction approximation. Using
inverse sampling, a piecewise constant traction approximation convergences faster with increasing
SVE size compared with using direct sampling. Hence, the results suggest that the SVE only needs
to be less than half as large to obtain accurate results if a piecewise constant traction approximation
is used, compared with using a dense traction approximation.

6. SUMMARY AND CONCLUSIONS

Computational homogenization of microstructures undergoing crack propagation is studied by
homogenizing the response of SVEs. In particular, we are interested in finding suitable BCs on the
SVE for the early stage of crack propagation in the microstructure (prior to macroscopic localiza-
tion). We remark that the choice of BCs on the SVE is critical in this case, because conventional
BCs (Dirichlet, Neumann and strong periodic) are inaccurate if cracks intersect the SVE boundary.
As a remedy, we employ the concept of weakly periodic BCs [10, 11], leading to a mixed varia-
tional format with displacements and boundary tractions as unknowns. Following the developments
for stationary cracks in [10], we employ a piecewise constant traction approximation that is dynami-
cally updated as cracks propagate in the SVE. To be specific, the traction approximation is piecewise
constant between crack-boundary intersections and SVE corners, thereby representing the smallest
possible refinement of Neumann BCs.

The performance of the proposed method is demonstrated by numerical examples including con-
ventional cohesive zone elements as well as crack propagation modelled by XFEM in combination

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.
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ON COMPUTATIONAL HOM. OF MICROSCALE CRACK PROP 89

with the material force concept. The results show that weakly periodic BCs with piecewise con-
stant traction approximation yield superior convergence with increasing SVE size compared with
Dirichlet, Neumann and strong periodic BCs. The results thereby indicate that a more efficient
homogenization procedure can be obtained if the proposed BCs are utilized because a smaller SVE
can be used for the same level of accuracy.

As for future developments, we believe that the challenging transition from damage to localization
can be addressed within the framework employed here. In particular, we believe that the possibility
to adapt the BCs to the evolving crack pattern by adapting the traction discretization, without having
to identify a single dominating crack path, will be advantageous. Furthermore, the proposed frame-
work does not require a periodic mesh. This is a clear advantage when crack propagation in the
microstructure is considered.
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