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SUMMARY

To investigate the biological processes that are
altered in obese subjects, we generated cell-specific
integrated networks (INs) by merging genome-scale
metabolic, transcriptional regulatory and protein-pro-
tein interaction networks. We performed genome-
wide transcriptomics analysis to determine the global
gene expression changes in the liver and three adi-
pose tissues from obese subjects undergoing bariat-
ric surgery and integrated these data into the cell-
specific INs. We found dysregulations in mannose
metabolism in obese subjects and validated our pre-
dictions by detectingmannose levels in the plasma of
the lean and obese subjects. We observed significant
correlations between plasma mannose levels, BMI,
and insulin resistance (IR). We also measured plasma
mannose levels of the subjects in two additional
different cohorts and observed that an increased
plasmamannose level was associated with IR and in-
sulin secretion. We finally identified mannose as one
of the best plasma metabolites in explaining the vari-
ance in obesity-independent IR.

INTRODUCTION

Obesity is associated with an increased risk for a wide range of

morbidities, including insulin resistance (IR), type 2 diabetes

(T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovas-

cular disease (CVD). Although the prevalence of obesity con-

tinues to dramatically increase worldwide, a clear understanding
172 Cell Metabolism 24, 172–184, July 12, 2016 ª 2016 Elsevier Inc.
of the underlyingmolecular mechanisms involved in the progres-

sion of associated disorders is still lacking. Several attempts

have been made to reveal the metabolic processes that are

altered in obesity (Mardinoglu et al., 2013, 2015a, 2014b),

NAFLD (Hyötyläinen et al., 2016; Mardinoglu et al., 2014a), and

T2D (Väremo et al., 2015) through the use of genome-scale

metabolic models (GEMs). GEMs are collections of biochemical

reactions and their catalyzing protein-coding genes and they

have been widely used in the identification of biomarkers as

well as drug targets for the development of effective treatment

strategies for metabolism-related disorders (Björnson et al.,

2015; Bordbar et al., 2014; Mardinoglu and Nielsen, 2012,

2015; Mardinoglu et al., 2015b; O’Brien et al., 2015; Shoaie

et al., 2015; Uhlén et al., 2016; Yizhak et al., 2013, 2014a,

2014b; Zhang et al., 2015).

Metabolism is precisely regulated in response to internal and

external stimuli, and the expression of metabolic enzymes is

uniquely controlled by transcriptional regulation in each cell/tis-

sue. Hence, it is necessary to integrateGEMswith transcriptional

regulatory networks (TRNs) that control the transcription state of

the genome to increase their predictive ability. TRNs include in-

formation on the interactions between transcription factors (TFs)

and provide insights into network hubs, hierarchical organiza-

tion, and network motifs. The architecture of TRNs derived

from ENCODE data was studied by determining the genomic

binding information of 119 TFs (Gerstein et al., 2012). Moreover,

an additional TRN that includes the associations between 475

sequence-specific TFs has been presented and its dynamic

properties have been studied in different cell/tissue types

(Neph et al., 2012b). The robustness of the gene expression phe-

notypes of these highly cell- and tissue-specific TRNs has been

extensively studied (Pechenick et al., 2014), and the integration

of TRNs and GEMs may lead to improved reconstructions of hu-

man metabolism and its regulation.
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Interactions between proteins are central to all biological func-

tions, and protein-protein interaction networks (PPINs) provide

further insights into the functional organization of individual pro-

teins because proteins rarely act alone (Li et al., 2015). PPINs

have been widely used to identify potential drug targets and

study the effects of already known targets through the mapping

of protein expression data (Snider et al., 2015). Consistent PPINs

are currently available, and these networks are presented in a

number of databases constructed using community standards

(De Las Rivas and Fontanillo, 2010; Orchard et al., 2012; Szklarc-

zyk et al., 2015). The size of the PPINs continues to increase sub-

stantially with the development of high-throughput experimental

technologies, manual evaluations of relevant literature and pre-

dictions using computational methods (Szklarczyk et al., 2015).

Recently, Rolland et al. (2014) presented a systematic map of

14,000 human binary protein-protein interactions, and this

high-quality reference PPIN was used to generate the cell-spe-

cific PPINs used in our study.

While GEMs, TRNs, and PPINs can each provide new insights

as to the metabolic processes that become dysfunctional in

obesity, the integration of these networks can likely provide a

more complete and multifaceted understanding of these

biological processes. Such integration has not previously

been attempted. Here, we integrated functional GEMs for

hepatocytes (iHepatocytes2322) (Mardinoglu et al., 2014a), my-

ocytes (iMyocytes2419) (Väremo et al., 2015), and adipocytes

(iAdipocytes1850) (Mardinoglu et al., 2013, 2014b) with TRNs

and PPINs to generate cell-specific integrated networks (INs).

We employed these INs to explore the biological processes

that are altered in obesity in the context of whole-body functions

(Figure 1A).

RESULTS

Human Cell-Specific Regulatory Networks
The generation of INs by integrating TRNs, PPINs, and GEMs is

necessary for a more comprehensive understanding of the

mechanisms involved in the progression of chronic diseases.

To generate human cell-specific TRNs, we retrieved DNase

sequencing (DNase-seq) data from metabolically active cell

types, including hepatocytes, myocytes, and adipocytes, from

the ENCODE repository (ENCODE Project Consortium, 2012)

(Table S1). DNase-seq identifies regions of open (and hence

actively regulated) chromatin based on accessibility by the

DNase I endonuclease (Crawford et al., 2006). We also retrieved

DNase-seq data from hepatic stellate cells, skeletal myoblasts,

and myotubes to evaluate our cell-specific TRNs from hepato-

cytes and myocytes. We first checked the quality of the

DNase-seq samples and analyzed the DNase-seq data following

the pipeline introduced by the ENCODE consortium (Neph et al.,

2012c) (Figure S1A).

We compared the footprint occupancy scores (FOS) of poten-

tial TF-binding sites among the samples in a pairwise manner

and found that the samples with the same tissue of origin had

overall higher correlations (Figure 1B). After generating cell-spe-

cific reference TRNs for hepatocytes, myocytes, and adipocytes

(Figure S1; Table S1), we compared the contents of the TRNs

(Figure 1C) and observed that the interactions between the TFs

and target genes were specific to the cell type. Higher overlap
was observed between the TRNs for adipocytes and myocytes

compared to their overlaps with the TRNs for hepatocytes (Fig-

ures S1B and S1C). We also found that the TRNs of hepatocytes

and myocytes had higher similarities with the TRNs of the adja-

cent cells, including hepatic stellate cells and skeletal myoblasts

and myotubes (Figures S1D–S1F).

To evaluate the cell-specific TRNs for hepatocytes, myocytes,

and adipocytes, we compared the regulatory interactions of TFs

with the interactions in previously presented TRNs generated

based on ENCODE ChIP-seq data (Gerstein et al., 2012) and

published literature in the Pathway Commons database (Cerami

et al., 2011). We only compared the interactions among 64 TFs

that were consistently present in all three sources and compared

their corresponding regulatory interactions (Figure 1D). We

compared the regulatory interactions in our TRNs with the inter-

actions in the TRNs generated based on ENCODE ChIP-seq

data and found that 53.9% of the interactions in our TRNs (Jac-

card index [JI]: 0.125) were shared between these two networks.

We also compared the TRNs generated herein as well as the

TRNs generated based on ENCODE chromatin immunoprecipi-

tation sequencing (ChIP-seq) data with the TRNs retrieved from

the Pathway Commons database and found minor similarities

among these networks (JI: 0.0301 and JI: 0.0290, respectively).

The relatively low coverage of cell-specific regulatory interac-

tions in the knowledge-based databases illustrates the impor-

tance of generating cell-specific TRNs based on DNase-seq

and ChIP-seq data.

Refinement of Cell-Specific Networks Using Proteomic
and Transcriptomic Data
DNase-seq data can be used to identify the binding regions of

TFs; however, all of the regulatory interactions in the reference

TRNsmay not be observed in the biological samples. To remove

false-positive regulatory interactions from the reference TRNs,

we refined our cell-specific TRNs using cell-specific antibody-

based proteomic data from hepatocytes, myocytes, and adipo-

cytes as well as tissue-specific RNA-seq data from liver, muscle,

and adipose tissues obtained from healthy subjects in the Hu-

man Protein Atlas (HPA) (ver.14) (Uhlén et al., 2015) (Figure S2A).

The presence or absence of 17,005 unique proteins in each cell

type was evaluated using 25,039 antibodies, and the abundance

or absence of the proteins was evaluated as ‘‘high,’’ ‘‘medium,’’

‘‘low,’’ or ‘‘not detected.’’

We removed the TFs and target genes from the cell-specific

TRNs if there was negative evidence (Not detected) for the

presence of the protein in the cell type and lower mRNA abun-

dance (fragments per kilobase of exon per million fragments

mapped [FPKM] <1) in the corresponding tissues (Table S2).

We compared the overlap of the target genes in the TRNs with

the metabolism-related (metabolic) genes in the GEMs and

found that more than 26% of the metabolic genes were present

in the TRNs for each cell type (Figure 2A). Moreover, we analyzed

the topological characteristics of the TRNs by examining the

out-degrees of TFs and the in-degrees of target genes and

comparing their degrees across the cell types (Figures S2C–

S2H) and observed that while the out-degrees of the TFs re-

mained relatively stable across cell types, the in-degrees of

target genes revealed that TFs were binding to different sets of

target genes in each cell type.
Cell Metabolism 24, 172–184, July 12, 2016 173



Figure 1. Generation of Cell-Specific Regulatory Networks

(A) To create integrated networks (INs) for hepatocytes, myocytes, and adipocytes, we generated cell-specific regulatory networks (RNs) using DNase-seq data

and integrated these networks with cell-specific protein-protein interaction networks (PPINs) and genome-scalemetabolicmodels (GEMs).We refined the INs for

the healthy subjects based on the cell-specific antibody-based proteomic data and tissue-specific transcriptomic data in the Human Protein Atlas. We also

generated RNA sequencing data from liver tissue and three different adipose tissues of the obese subjects and used these data in the generation of the INs for the

obese subjects. We performed a comparative analysis between the INs of the lean and obese subjects and identified metabolic pathways with decreased or

increased co-regulation. Finally, we validated our network-based predictions in three different independent cohorts with varying BMI values, insulin resistance,

and insulin secretion values.

(B) We compared replicates of the DNase-seq samples based on their footprint occupancy scores (FOS) in a pairwise manner and found high correlations

between the cell-type replicates.

(C) After selecting potential TF-binding sites with high FOS scores over all of the replicates of a given cell type, we generated cell-specific TRNs based on the

irreproducible discovery rate (IDR). We compared the TFs, target genes and interactions in each cell-specific TRN.

(D) We evaluated our cell-specific TRNs with other TRNs generated based on ENCODE ChIP-seq data and manually curated knowledge from the literature in the

PathwayCommons database.We compared the corresponding regulatory interactions of 64 TFs that were consistently present in all three TRNswith other target

genes. We found that our TRN had a high overlap with the ENCODE ChIP-seq data (53.9%).

See also Figures S1 and S7, Tables S1–S3, and Data S1.
We obtained a recently published generic human PPIN (Roll-

and et al., 2014) and refined this reference network using cell-

specific antibody-based proteomic data and tissue-specific

RNA-seq data in HPA (Uhlén et al., 2015). We generated cell-

specific PPINs for healthy hepatocytes, myocytes, and adipo-

cytes by removing genes without protein abundance (‘‘Not

detected’’ in the corresponding cell) or low mRNA abundance

(FPKM <1) in the corresponding tissue (Table S2).

We compared the protein-coding genes in the resulting cell-

specific PPINs and GEMs and found that 381 genes were shared
174 Cell Metabolism 24, 172–184, July 12, 2016
between the PPIN for hepatocytes and iHepatocytes2322, 408

genes were shared between the PPIN for myocytes and

iMyocytes2419, and 322 genes were shared between the PPIN

for adipocytes and iAdipocytes1850 (Figure 2B). Although

there was relatively good overlap between the genes in the cell-

specific PPINs and the TFs and target genes in the cell-specific

TRNs (Figure 2C), we detected almost no overlap between the in-

teractions in these networks (Figure 2D), which suggests that

PPINs and TRNs should be integrated with GEMs to elucidate

all of themolecularmechanisms that govern cell/tissue behaviors.
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Figure 2. Generation of Cell-Specific Integrated Networks

(A) We investigated the overlap between the target genes of cell-specific regulatory networks (RNs) and metabolic genes in their corresponding cell-specific

genome-scale metabolic models (GEMs) for hepatocytes (iHepatocytes2322), myocytes (iMyocytes2419), and adipocytes (iAdipocytes1850).

(B) Similarly, we examined the overlap between the protein-coding genes in the cell-specific protein-protein interaction networks (PPINs) with the metabolic

genes in the corresponding cell-specific GEMs.

(C) A comparison of the protein-coding genes in the cell-specific PPINs with TFs and target genes in the cell-specific TRNs showed relatively good overlap

between the genes.

(D) However, when we examined the overlap of interactions between the cell-specific TRNs and PPINs, we found almost no overlap between these networks.

(E) After integrating the cell-specific TRNs and PPINs, we examined the overlap between the protein-coding genes with the metabolic genes in the GEMs and

found relatively higher overlap between them.

(F) We analyzed the co-regulation of all enzymes in the cell-specific integrated networks (INs) by establishing a weighted edge betweenmetabolic genes that had

co-regulating TFs and/or proteins.

(G)We identified highly co-regulatedmetabolic pathways from a co-regulation analysis performed using themetabolic genes involved in eachmetabolic pathway

by a Bonferroni-adjusted Kolmogorov-Smirnov one-sided test. Fructose and mannose metabolism, glycerophospholipid metabolism, and cholesterol biosyn-

thesis were highly co-regulated in the hepatocytes; fructose and mannose metabolism, leukotriene metabolism, and glycolysis were highly co-regulated in the

myocytes; and fructose and mannose metabolism, propionate metabolism, and glycolysis were highly co-regulated in the adipocytes.

See also Figures S2–S4, Table S4, and Data S1.
Highly Co-regulated Metabolic Pathways in Healthy
Subjects
We first integrated the TRNs and PPINs for hepatocytes, myo-

cytes, and adipocytes (Table S2) and found that 37.3%

of the genes in iHepatocytes2322, 58.2% of the genes in

iMyocytes2419, and 38.4% of the genes in iAdipocytes1850

were regulated by TFs or other target genes in the TRNs and

PPINs (Figure 2E). To gain further insights into the metabolism

of cells and tissues, we generated cell-specific INs for

hepatocytes, myocytes, and adipocytes by integrating the cell-
specific GEMs, TRNs, and PPINs (Table S2). We examined the

degree to which each metabolic pathway in a cell-specific GEM

was concurrently regulated by TFs and targets in the TRNs and

PPINs by analyzing the co-regulated functions (Figure 2F). We es-

tablished a weighted edge between the metabolic genes that we

call the co-regulation strength (counting the number of co-regu-

lating TFs and proteins asweight) and examined the co-regulation

strengths of the metabolic pathways of each cell type.

We identified the highly co-regulated metabolic pathways in

each cell type based on the co-regulation strengths and then
Cell Metabolism 24, 172–184, July 12, 2016 175



Table 1. Clinical Characteristics of the 12 Obese Subjects

Undergoing Bariatric Surgery

Clinical Variable Obese Subjects

Number of subjects 12

Age (years) 39.3 ± 10.9

Weight (kg) 122.9 ± 12.8

BMI (kg/m2) 43.6 ± 3.6

Fasting plasma glucose (mmol/l) 5.6 ± 0.6

Fasting plasma insulin (FPI) (pmol/l) 128.7 ± 49.9

HOMA-IR 4.7 ± 1.9

Plasma triglycerides (TG) (mmol/l) 1.5 ± 0.5

Total cholesterol (mmol/l) 5.1 ± 0.7

LDL cholesterol (mmol/l) 3.1 ± 0.7

HDL cholesterol (mmol/l) 1.3 ± 0.3

Alanine aminotransferase (ALT) (U/l) 25.3 ± 16.3

g-Glutamyl transferase (mGT) (U/l) 30.7 ± 23.2

The data are presented as the mean ± SD.
examined the global characteristics of the co-regulation strengths

of all gene pairs in the INs (Figure S3) and tested each metabolic

pathway to see if its co-regulation strength was greater than or

less than the overall co-regulation of the INs (Figure 2G; Data

S1A) (see the Experimental Procedures). For each cell type, we

found different sets of highly co-regulated pathways (adjusted p

value < 0.05). During the co-regulation analysis, we used the

metabolic genes involved in a specific pathway and their sur-

rounding TFs or proteins in the cell-specific INs. We found that

fructose and mannose metabolism, glycerophospholipid meta-

bolism, and cholesterol biosynthesis were highly co-regulated in

hepatocytes; fructose and mannose metabolism, glycolysis,

and leukotriene metabolism were highly co-regulated in myo-

cytes; and fructose and mannose metabolism, glycolysis, and

propionate metabolism were highly co-regulated in adipocytes.

These top co-regulated metabolic pathways are highly rele-

vant for tissue-specific functions. For example, glycerophospho-

lipid metabolism and cholesterol biosynthesis, which were found

to be significantly and specifically co-regulated in hepatocytes,

are known to be regulated by the liver through lipoprotein secre-

tion (Tijburg et al., 1989). Similarly, leukotriene metabolism and

glycolysis, which were found to be significantly and specifically

co-regulated in myocytes, are known to play a major role in

triggering and fueling muscle contractions (Balsom et al., 1995;

Setoguchi et al., 2001). Moreover, propionatemetabolism, which

was found to be significantly and specifically co-regulated in

adipocytes, is known to control the lipid-buffering capacity of

adipose tissue (Canfora et al., 2015). These findings strongly

suggest that co-regulation strength is a good indicator of tis-

sue-specific metabolism regulation.

Dysregulation of Fructose and Mannose Metabolism in
Obese Subjects
After generating the detailed INs for healthy subjects, we next

sought to determine how INs differed in obesity. To generate

obese-specific INs, we obtained liver samples and three

different adipose tissue depots, including subcutaneous,

omental, and mesenteric, from 12 morbidly obese (BMI >40)
176 Cell Metabolism 24, 172–184, July 12, 2016
subjects undergoing bariatric surgery. We then performed global

gene expression profile analyses using RNA sequencing. The

clinical characteristics of all of the subjects involved in our study

are presented in Table 1.

As we did previously for the healthy subjects, we generated

cell-specific TRNs and PPINs for the obese subjects by refining

the reference networks using the mRNA expression levels of the

genes in the liver and adipose tissue samples. Genes with low

mRNA expression (FPKM <1) were excluded from the reference

networks for the hepatocytes and adipocytes (Table S2). During

the generation of adipocyte-specific networks for the obese

subjects, we accounted for differences in the three adipose tis-

sue depots, including subcutaneous, mesenteric, and omental

fat (Figure S4A) and excluded genes from the reference networks

only if the RNA expression level of the genes was low (FPKM <1)

in all three adipose tissue samples in all of the obese subjects

(Table S2).

We performed a co-regulation analysis for each metabolic

pathway in the healthy and obese subjects based on the network

topology provided by the cell-specific INs. Next, we compared

their co-regulation strengths in the hepatocytes (Figure 3A) and

adipocytes (Figure 3B) based on the number of co-regulators

and identified the metabolic pathways for which co-regulation

decreased or increased. We found that the co-regulation of fruc-

tose andmannosemetabolismwas significantly decreased (Kol-

mogorov-Smirnov [KS] one-sided test, p < 0.05) in the hepato-

cytes of the obese subjects (Figure 3A; Data S1B), whereas the

co-regulation of propionate metabolism was slightly increased

in the adipocytes of the obese subjects (Figure 3B; Data S1C).

Moreover, we compared the mRNA expression levels of the

protein-coding genes from the human liver and subcutaneous

adipose tissue samples obtained from 12 obese subjects (Table

1) with seven liver and five subcutaneous adipose tissue samples

obtained from the healthy subjects (previously described in Uh-

lén et al., 2015). We first clustered the biological samples using

the mRNA expression level of the protein-coding genes and

found that the liver samples from the obese and healthy subjects

as well as the adipose tissue samples from the obese and

healthy subjects clustered together (Figure S4B). We identified

differentially expressed genes (adjusted p value < 0.05) to reveal

the global biological differences between the liver and subcu-

taneous adipose tissue of the obese and healthy subjects, and

the results indicated that 6,496 genes in the liver tissue (Data

S1D) and 1,298 genes in the subcutaneous adipose tissue

(Data S1E) were differentially expressed. To gain greater insight

into the biological processes altered in the liver and adipose tis-

sue of the obese subjects relative to the healthy individuals, we

performed a gene set analysis (GSA) for gene ontology (GO) bio-

logical process (BP) terms. We found that the gene sets that

included the terms regulation of cellular metabolic process,

post translational protein modification, negative regulation of

biological process and immune response were associated with

downregulated genes, whereas the metabolism-related BP

terms, including lipidmetabolic process, phospholipidmetabolic

process, phosphoinositide metabolic process, and fatty acid

b-oxidation, were associated with upregulated genes in the liver

tissue of the obese subjects (Figure S5). We also found that the

gene sets that included the terms regulation of RNA metabolic

process, regulation of cell proliferation, and positive regulation



Figure 3. Revealing Biological Processes Altered between Healthy and Obese Subjects

We refined the reference cell-specific networks using transcriptomic data from the obese subjects and compared the co-regulations of the metabolic pathways

between the (A) hepatocytes and (B) adipocytes of the healthy and obese subjects. We also compared the number of regulated enzymes in the INs of hepatocytes

and adipocytes from the healthy and obese subjects and did not observe significant differences. Among the significantly co-regulated metabolic pathways

(Kolmogorov-Smirnov [KS] test, Bonferroni-adjusted p value < 0.05) in Figure 2G, we examined the changes in co-regulation strength between the healthy and

obese subjects based on the number of co-regulators. We found that the highly co-regulated metabolism of fructose and mannose presented substantially

decreased co-regulation in the hepatocytes (KS one-sided test p < 0.05), whereas propionate metabolism presented weakly increased co-regulation in the

adipocytes. Reporter metabolites were identified in the (C) liver and (D) adipose tissues of the lean and obese subjects. Detailed metabolic differences between

the lean and obese subjects were investigated through a comparative analysis of the gene expression profiles (RNA-seq) of the liver and adipose tissues and cell-

specific genome-scale metabolic models (GEMs). P values for each reporter metabolite were calculated for the upregulated and downregulated genes.

See also Figures S5 and S6 and Data S1.
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of biological process were associated with downregulated

genes, whereas metabolism-related BP terms including carbox-

ylic acid metabolic process and lipid metabolic process were

associated with upregulated genes in the subcutaneous adipose

tissue of the obese subjects (Figure S6). Taken together, our data

indicated an increased activity in lipid metabolism in both the

liver and fat in obese subjects as well as novel differences in

pathways such as the immune response and RNA metabolism.

To evaluate the detailed metabolic differences between the

lean and obese subjects, we identified reporter metabolites (Patil

and Nielsen, 2005) using the differentially expressed genes in the

liver and adipose tissue aswell as the network topology provided

by the cell-specific GEMs. Reporter metabolite analyses are

used as statistical tests to determine whether a significant

change has occurred in the expression of the genes surrounding

a metabolite. We identified mannose, mannose-1-phosphate,

mannose-6-phosphate, GDP-mannose involved in fructose,

and mannose metabolism as well as other metabolites involved

in inositol phosphate, glycerophospholipid, and vitamin E meta-

bolism as reporter metabolites in the liver tissue (Figure 3C; Data

S1F). We also identified the metabolites involved in leukotriene,

vitamin E, and lipid metabolism as reporter metabolites in adi-

pose tissue (Figure 3D; Data S1G).

Plasma Mannose Levels Are Increased in Response to
Obesity
We observed that the co-regulation of the highly co-regulated

metabolism of fructose and mannose was significantly

decreased in the liver of the obese subjects compared with

that of the lean subjects. Moreover, mannose, an essential hex-

ose that is required for glycoprotein synthesis (Davis and Freeze,

2001), as well as other associated metabolites were identified as

top-ranked reporter metabolites in the liver tissue of the obese

subjects. We examined the expression of genes associated

with the utilization of mannose and found significant (adjusted

p value < 0.05) differences in the expression of these genes in

the liver tissue of the obese subjects compared with that of the

lean subjects (Figure 4A). The expression levels of HK1 and

HK2, which convert mannose to mannose-6-phosphate, were

significantly downregulated in the liver tissue of the obese sub-

jects (Figure 4B). However, we found that the expression of en-

zymes involved in the metabolism of glucose into fructose and

mannose (e.g., PMM1) was significantly upregulated. Notably,

when we analyzed the co-regulations among these enzymes,

we found that PMM1, PFKL, GMPPB, and GMPPA were highly

co-regulated (Figure 4C) and the expression levels of these reg-

ulators were significantly changed (Figure 4D). Hence, we

observed that there was a shift in the utilization of carbohydrates

in the liver tissue of the obese subjects. Because the liver is one

of the main organs responsible for plasma mannose consump-

tion (Davis and Freeze, 2001), we hypothesized that due to the

downregulation of genes responsible for mannose processing

in the liver, the levels of mannose in the plasma would be

increased.

To evaluate our hypothesis, we detected the plasma levels of

mannose, glucose, and fructose in 399 subjects involved in the

Relationship between Insulin Sensitivity and Cardiovascular

Disease (RISC) Study (Balkau et al., 2008; Hills et al., 2004).

The RISC Study is being conducted in 19 European recruiting
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centers, and the insulin sensitivity (IS) of each subject is

measured with the euglycemic clamp technique. The clinical

characteristics of all of the lean, overweight, and obese subjects

involved in the study are presented in Table 2. We measured the

plasma mannose, fructose, and glucose levels in these subjects

by liquid chromatography-mass spectrometry and found that

the mannose and glucose plasma levels were significantly

(p value < 0.05) higher in the obese subjects compared with

the lean subjects, whereas significant changes were not

observed in the fructose plasma levels (Figure 5A).

Moreover, we calculated Spearman’s correlation coefficient (r)

between the BMI and plasma mannose levels as well as the

glucose levels in 399 subjects and found that the BMI was signif-

icantly correlated with the plasma mannose levels (r = 0.43,

p value < 0.05) and plasma glucose levels (r = 0.28, p

value < 0.05), whereas significant correlations were not observed

with the plasma fructose levels (Figure 5B). Considering

the negative correlation between the BMI and IS (r = �0.42,

p value < 0.05) (Figure 5B), we also examined the correlations

between IS and the plasma mannose and glucose levels. Our

correlation analysis indicated that slightly lower negative correla-

tions occurred between the IS and themannose levels (r=�0.19,

p value < 0.05) relative to the IS and the glucose levels (r =�0.15,

p value < 0.05) (Figure 5B).

Moreover, we found significantly high correlations between

glucose and mannose (r = 0.64, p value < 0.05). To eliminate

the effect of glucose, we performed partial correlation analysis,

which can control confounding variables’ effect (i.e., glucose)

removed within ordinary correlation analysis. Partial correlation

analysis showed that mannose was significantly correlated

with both BMI (r= 0.34, p value < 0.05) and IS (r=�0.13, p value <

0.05) without the effect of glucose in the RISC study (399 lean

and obese subjects). In contrast, we found that glucose is not

significantly correlated with BMI and IS after eliminating the ef-

fect of mannose (p values = 0.83 and 0.44, respectively).

Plasma Mannose Levels Are Associated with Insulin
Resistance
We observed a significantly positive correlation between the

plasmamannose levels and BMI and a significantly negative cor-

relation between the plasmamannose levels and IS. To reveal the

distinct association between the plasma mannose levels and IS

without the effect of BMI, we recruited an additional 79 male

and female obese patients involved in the Leipzig study (Klöting

et al., 2010). The IS of each subject involved in the study was

measured with the euglycemic clamp technique, and the clinical

characteristics of all of the obese subjects involved in the study

are presented in Table 2. We separated the obese subjects into

two groups based on their IS using previously described criteria

(Klöting et al., 2010) and then measured their plasma glucose,

mannose, and fructose levels. We found that plasma mannose

and glucose levels were significantly higher in the IR obese sub-

jects compared with the IS obese subjects, whereas we did not

detect significant differences in the plasma fructose levels be-

tween the two groups of obese subjects (Figure 5C).

We calculated the correlations between the IS and plasma

mannose, fructose, and glucose levels. We observed that the

IS was negatively correlated with the plasma mannose level

(r = �0.28, p value < 0.05), whereas significant correlations



Figure 4. Substrate Shifts in the Liver Tissue of the Obese Subjects
(A) We identified ametabolic pathway for the utilization of mannose and glucose in the liver tissue. Upregulated and downregulated enzymes and reactions in the

obese subjects are represented as red and blue, respectively. The changed reactions implied that the consumption of mannose was decreased and the utilization

of carbohydrates was altered (A).

(B) Fold changes of the corresponding enzyme expression levels.

(C and D) We found that the enzymes involved in mannose and glucose utilization were highly co-regulated with each other, and their regulators (TFs or proteins

physically interacting with them [green rectangle]) were differentially expressed. Non-expressing regulators (FPKM <1) in the obese subjects or healthy subjects

were identified as a maximal fold change of 10 or �10, respectively.
were not observed between the IS and plasma glucose and fruc-

tose levels in the obese subjects (Figure 5D). After eliminating the

effect of glucose, we found that mannose is significantly corre-

lated with IS (r = �0.20, p value < 0.05), whereas glucose is

not significantly correlated with IS after eliminating the effect of

mannose (p value = 0.95). Hence, we observed that the plasma

mannose levels could be used to identify obese subjects with

high risk factors.

Plasma Mannose Levels Are Associated with Insulin
Secretion
We also detected the plasma levels of mannose, glucose, and

fructose in another independent cohort of 80 male and female

subjects involved in the population-based EUGENE2/Kuopio

Study, where the phenotype of individuals with impaired fasting

glucose and/or impaired glucose tolerance with regard to insulin
secretion and IR was examined (Laakso et al., 2008). Evaluations

of insulin secretion (InsAUC0-30/GlucAUC0-30) and IS have

been previously described (Matsuda and DeFronzo, 1999;

Stancáková et al., 2009). The subjects presented varying dispo-

sition indices (DIs), which were calculated as the product of the

indices of IS and insulin secretion (InsAUC0-30/GlucAUC0-30).

The characteristics of the study participants are presented in

Table 2.

We classified the patients as low or high DI and found that the

plasma glucose and mannose levels were significantly higher in

the subjects with low DI relative to the subjects with high DI. Sig-

nificant changes were not observed in the plasma fructose levels

(Figure 5E). Moreover, we calculated the correlations (r) between

the BMI, IS, DI, and plasma mannose, glucose, and fructose

levels and found that the plasmamannose level was significantly

correlatedwith the IS (r =�0.27, p value < 0.05) andDI (r =�0.25,
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p value < 0.05) (Figure 5F). In addition, significant correlations

were not observed between the DI or IS and glucose or fructose

in this subject group. We finally observed that mannose is signif-

icantly correlated with BMI (r = 0.34, p value < 0.05) and IS (r =

�0.25, p value < 0.05) after eliminating the effect of glucose

whereas glucose is not significantly correlated with BMI or IS af-

ter eliminating the effect of mannose (p values = 0.89 and 0.72,

respectively).

The Use of Plasma Mannose Level in Explaining the
Variance in IR
We performed relative importance analysis (Lindeman et al.,

1980) to estimate how much various plasma metabolite levels

contributed in explaining the variance in IR (as measured with

the euglycemic clamp technique). During the analysis, we

included the plasma measurements of mannose, glucose, fruc-

tose, and 20 amino acids (available in the datasets) as well as

a-hydroxybutyrate (AHB). The plasma levels of some amino

acids, including branched-chain amino acids, leucine, isoleu-

cine, and valine, have already been associated with IR (Newgard

et al., 2009). AHB has also been proposed as an early biomarker

of IR and glucose intolerance in a nondiabetic subjects (Gall

et al., 2010). The contributions of the metabolites were summed

up to 100 and divided up per metabolite so that the relative

contribution to explain the variance in IR (as percentage of the to-

tal explained variance) is displayed in lean and obese subjects

(Figure 5G) in obese subjects with IR and IS (Figure 5H) and in

subjects with varying DIs andmatched BMI (Figure 5I). We found

that mannose is the best metabolite whose plasma level can be

used in explaining the variance of IR in subject groups with

matched BMI (Figures 5H and 5I).

Plasma levels of mannose, glucose, and other metabolites al-

lowed us to compare not only mannose and glucose levels, but

also the level other potential markers of IR. Considering that

plasma mannose levels outperformed the level of metabolites

that have been associated with IR, we suggested to use of

plasma mannose levels in stratification of the obese subjects

with high risk factors independent of BMI.

DISCUSSION

Recent advances in sequencing technologies and methods for

genomic analyses (e.g., digital genomic foot printing) have al-

lowed for the massive profiling of in vivo regulatory events in

human cells and tissues. In our study, we examined the regu-

latory events in hepatocytes, myocytes, and adipocytes and

generated cell-specific TRNs. We integrated the TRNs with

GEMs and PPINs and eventually generated cell-specific INs

to investigate the biological processes that are altered in the

patients presenting obesity and IR based on the network

topology provided by the networks. We refined the topology

of the cell-specific INs using the cell-specific antibody

proteomic and tissue-specific transcriptomic data in the HPA

(Uhlén et al., 2015). Moreover, we generated RNA-seq data

from the liver samples and three different adipose tissue de-

pots obtained from the obese subjects and used these

data in the generation of INs for the obese subjects. We

performed a comparative analysis between the lean and

obese subjects to reveal the biological processes that are
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Figure 5. Detection of Plasma Mannose Levels in Obese Subjects

(A) We detected the plasma glucose, mannose, and fructose levels in the lean and obese subjects and found that glucose, mannose levels were significantly

upregulated in the obese subjects compared with the lean subjects.

(B) We observed significant correlations between the BMI and the plasma mannose levels as well as the plasma glucose levels. We also calculated the cor-

relations between insulin resistance (IR) and the plasma mannose levels as well as the plasma glucose levels and found significantly higher correlations between

IR and the plasma mannose levels.

(C) We detected the plasma glucose, mannose, and fructose levels in the obese subjects with and without insulin resistance (IR). We found that the plasma

glucose and mannose levels were significantly upregulated in the obese subjects with IR compared with the obese subjects with insulin sensitivity (IS).

(D) We observed significantly higher correlations between IR and the plasma mannose levels relative to the correlations between IR and the plasma glucose

levels.

(E) We detected the plasma glucose, mannose, and fructose levels in the subjects with varying disposition indices (DIs). We found that the plasma glucose and

mannose levels were significantly upregulated in the subjects with low DIs compared with the subjects with high DIs.

(F) We observed significantly correlations between IS and DIs and the plasma mannose levels and did not observe correlations between the DI or IS and glucose

or fructose in this subject group.

(G–I) The results of the relative importance analysis that has been performed to estimate howmuch various plasmametabolite levels contributed in explaining the

variance in IS. Plasmameasurements ofmannose; glucose, fructose, and 20 amino acids (available in the datasets) as well as a-hydroxybutyrate (AHB) were used

in the analysis and the importance of mannose in (G) lean and obese subjects (H) obese subjects with IR and IS (I) in subjects with varying DIs was presented.
altered in response to obesity and validated our predictions by

performing a metabolomic analysis in three independent co-

horts of subjects.
The power of the IN strategy allowed us to take a more com-

plete look at the role metabolism plays in obesity across multiple

tissues. We compared the cell-specific INs between lean and
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obese subjects and investigated the biological differences in

response to obesity. The integration of complex biological net-

works enables the elucidation of metabolic adaptations as well

as other hallmarks of IR. We found that the co-regulation of fruc-

tose andmannosemetabolismwas decreased in the obese sub-

jects, and metabolites involved in fructose and mannose meta-

bolism were identified as a reporter metabolite. This finding

implies that mannose may be used as a marker in identification

of obese subjects with high risk factors, e.g., insulin resistance

and secretion. We also found a significant downregulation of

mannose phosphorylation (HK1 and HK2) in the liver tissue,

which may lead to decreased plasma mannose utilization in

the liver tissue. The downregulation of HK1 and HK2 might

also lead to decreased glucose utilization. However, this

decrease could be compensated for by the upregulation of

glucose-specific phosphorylase GCK in obese patients. GCK

is an enzyme with a relatively high half-saturated concentration

(KM) (GCK = �10 mM) compared with other hexokinases

(�0.1 mM) (Ahn et al., 2009; Magnani et al., 1988; Xu et al.,

1995). Thus, the utilization of glucose in the liver tissue was not

decreased in the obese patients as previously reported (Caro

et al., 1984). This finding can help explain why mannose had bet-

ter correlation with IR than glucose.

The liver has been reported as the main organ for mannose

consumption (Davis and Freeze, 2001). Therefore, altered

mannose utilization in the liver tissue could lead to differences

in plasma mannose levels. To validate our predictions, we first

measured the plasma mannose levels in the lean and obese

subjects and found that the plasma mannose levels were

significantly upregulated in the obese subjects. Alterations in

mannose metabolism may affect glycoprotein synthesis and

secretion since mannose is the main source of glycoprotein

synthesis (Panneerselvam et al., 1997; Panneerselvam and

Freeze, 1996). Abnormal glycosylation could also affect the in-

sulin receptors in the liver tissue and increase the resistance of

liver tissue to insulin (Caro et al., 1984). Therefore, we specu-

lated that the plasma mannose levels could potentially play a

supplementary role in the development of IR. In accordance

with this hypothesis, we found that the plasma mannose levels

were significantly negatively correlated with the IS of lean and

obese subjects. In addition, we investigated whether plasma

mannose level was significantly different between IR and IS in-

dependent of BMI and measured the plasma mannose levels

of 79 obese subjects classified into two groups based on their

IR and IS. We found that the plasma mannose levels were

significantly higher in the IR obese subjects compared with

the IS obese subjects, and this level was significantly nega-

tively correlated with the patient’s IS. We also measured the

plasma mannose levels of 80 subjects classified into two

BMI matched groups based on their DI. We found that the

plasma mannose levels were significantly higher in the sub-

jects with low DI compared with the subjects with high DI,

and this level was significantly negatively correlated with the

patient’s DI and IS. Finally, we compared the plasma mannose

levels with the levels of glucose, fructose, AHB and amino

acids in three independent cohorts of subjects and found

that mannose outperformed most other metabolites across a

variety of conditions in explaining the variance in obesity-inde-

pendent insulin resistance.
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It has been previously shown that plasma mannose levels

correlate with glucose levels but that the level of mannose is un-

like glucose not different between fasting and postprandial state

(Sone et al., 2003). This observation coupled with the closer cor-

relation of mannose to IR could indicate that using plasma

mannose levels instead of glucose as a marker of IR in the clinic

could have the potential of both improving the accuracy of as-

sessing IR and being independent of meal-timing. In conclusion,

through the integration of biological networks, we revealed the

biological processes altered in response to obesity and

observed an association between plasma mannose levels and

BMI as well as insulin sensitivity and secretion. Moreover, we

demonstrated a strategy for how cell-specific INs can be em-

ployed to identify dysregulation of biological functions in

response to a disease, to reveal the consequences on relevant

metabolites in plasma and eventually to identify new candidate

disease biomarkers.

EXPERIMENTAL PROCEDURES

Identification of Genomic Footprints from DNase-Seq Data

We retrieved DNase-seq data from the hepatocytes of liver tissue (two sam-

ples), myocytes of skeletal muscle tissue (three samples), adipocytes of sub-

cutaneous adipose tissue (four samples) and stellate cells (two samples), skel-

etal myoblasts (three samples), and myotubes (two samples) from the

ENCODE repository (ENCODE Project Consortium, 2012) (Table S1). Wemap-

ped the DNase-seq data with the unaligned reads (i.e., FASTQ files) to the

reference human genome (build GRCh37/hg19) by Bowtie (ver. 1.1.1) (Lang-

mead et al., 2009) as previously described by the ENCODE Consortium

(Neph et al., 2012c) (Figure S1A). We verified the quality of the DNase-seq

samples using SPOT scores that were calculated by the HOTSPOT program

(John et al., 2011) and found that all of the samples had SPOT scores >0.4

(average 0.608 per sample) (Table S1). After counting the DNase I cleavages

per base from the mapped reads, we identified genomic footprints with their

footprint occupancy scores (FOS), and a low FOS score indicated a strong

footprint site. We found optimized footprints with a 6–40 base pair (bp) central

component and 3–10 bp flanking component. Finally, we selected footprints

within highly DNase I-sensitive regions (hotspot regions) as identified by the

HOTSPOT program (false discovery rate [FDR] <0.01) (John et al., 2011) and

selected the overlapping footprints with hotspot regions using the BEDOPS

program (Neph et al., 2012a) (see the Supplemental Experimental Procedures).

Transcript Profiling—RNA-Seq—of Liver and Adipose Tissue

Samples

Patients had low calorie diet weight reduction run in prior to the day of surgery.

The human liver and subcutaneous, omental, and mesenteric tissue samples

were obtained from 12 obese subjects undergoing bariatric surgery and

then used for the mRNA expression analyses. The tissue samples were

collected and handled in accordance with the laws and regulations of the

Netherlands as part of the sample collection. All of the human samples used

in the present study were anonymized in accordance with the approval and

advisory report from the Ethical Review Board.

A total of 48 samples from the four tissue types of the obese subjects were

sequenced using Illumina HiSeq 2000 and HiSeq 2500 systems with the stan-

dard Illumina RNA-seq protocol. The healthy samples included seven liver

samples and five adipose (subcutaneous) samples from the lean subjects (Fa-

gerberg et al., 2014; Uhlén et al., 2015), and they were compared to the 12 liver

samples and 36 adipose (12 subcutaneous, 12 mesenteric, and 12 omental)

samples from the obese subjects. Consequently, the fragments per kilobase

of exon model per million mapped reads (FPKM) values were obtained for

19,709 genes for all samples. Throughout this study, the genes with an expres-

sion level of FPKM <1 were considered to have no expression.

A differential expression (DE) analysis was performed following a standard

protocol using the differential expression sequencing (DESeq) v2.0 package

(Anders and Huber, 2010). In brief, the DE analysis was performed between



obese and lean tissue (obese liver versus lean liver and obese adipose [subcu-

taneous] versus lean adipose [subcutaneous]). In this study, expression differ-

ences with a p value < 0.05 (after Bonferroni correction) were regarded as

significantly changed.

Detection of Plasma Metabolite Levels

Measurement of plasma levels of glucose, mannose, fructose, amino acids,

and AHB was performed. Briefly, the liquid chromatography-tandem mass

spectrometry (LC-MS/MS) platform was based on a Waters ACQUITY ultra-

performance liquid chromatography (UPLC) system and a Thermo-Finnigan

LTQ mass spectrometer operated at nominal mass resolution, which was

equipped with an electrospray ionization (ESI) source and a linear ion trap

(LIT) mass analyzer.
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Väremo, L., Scheele, C., Broholm, C., Mardinoglu, A., Kampf, C., Asplund, A.,

Nookaew, I., Uhlén, M., Pedersen, B.K., and Nielsen, J. (2015). Proteome- and

transcriptome-driven reconstruction of the humanmyocytemetabolic network

and its use for identification of markers for diabetes. Cell Rep. 11, 921–933.

Xu, L.Z., Harrison, R.W., Weber, I.T., and Pilkis, S.J. (1995). Human beta-cell

glucokinase. Dual role of Ser-151 in catalysis and hexose affinity. J. Biol.

Chem. 270, 9939–9946.

Yizhak, K., Gabay, O., Cohen, H., and Ruppin, E. (2013). Model-based identi-

fication of drug targets that revert disrupted metabolism and its application to

ageing. Nat. Commun. 4, 2632.
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