Design of transition from WR-15 to inverted microstrip gap waveguide

Downloaded from: https://research.chalmers.se, 2019-08-19 06:13 UTC

Citation for the original published paper (version of record):
Liu, J., Uz Zaman, A., Kildal, P. (2016)
Design of transition from WR-15 to inverted microstrip gap waveguide
2016 Global Symposium on Millimeter Waves, GSMM 2016 and ESA Workshop on Millimetre-Wave

N.B. When citing this work, cite the original published paper.
Design of Transition from WR-15 to Inverted Microstrip Gap Waveguide

Jinlin Liu
Antenna Division
Chalmers University of Technology
Gothenburg, Sweden.
jinlin.liu@chalmers.se

Ashraf Uz Zaman
Antenna Division
Chalmers University of Technology
Gothenburg, Sweden.
zaman@chalmers.se

Per-Simon Kildal
Antenna Division
Chalmers University of Technology
Gothenburg, Sweden.
per-simon.kildal@chalmers.se

Abstract—Currently gap waveguide technology has revealed strong competitiveness for millimeter wave wireless applications. Specifically, this new topology of waveguide technology provides advantages of low loss, high quality factor and easy RF packaging. In this paper we present the design methodology of millimeter-wave transition from standard WR-15 rectangular waveguide to inverted microstrip gap waveguide. Furthermore, a more practical power divider from standard WR-15 rectangular waveguide to inverted microstrip gap waveguide is also introduced. Both structures are vertical and there is no additional need for any complex modification of the waveguide structure to achieve compatibility between the two structures. The proposed two transitions cover the whole unlicensed 60 GHz band from 57 to 66 GHz in order to be widely utilized as an interface between gap waveguide feed networks and equipment components with WR-15 ports. The simulated results show promising S-parameters.

I. INTRODUCTION

Recently, there is a growing amount of interest and attention for wireless applications at 60-GHz frequency band [1-3]. Traditional planar circuit technologies such as microstrip are typically applied for integration of active and passive components, and designing planar array antennas. However, the losses become especially critical for designing microstrip feed networks as increasing of frequency. On the other hand, hollow waveguide shows advantage of low loss. Nevertheless, as the frequency increases the size of the rectangular waveguide becomes smaller and the tolerance requirements for good conducting joints between the split metal blocks become impossible to satisfy. Therefore, a new guiding structure called gap waveguide [4-5] was proposed to overcome the abovementioned limitations of traditional technologies at millimeter-wave frequencies. Theoretically, gap waveguides consist of parallel PEC (Perfect Electric Conductor) and -PMC (Perfect Magnetic Conductor) plates separated by an air gap [6]. This PMC layer is usually realized by a high impedance surface which is able to create a stopband over a specific frequency range. Until now this ideal concept can be built up in four major forms: ridge, groove, inverted microstrip [4] and microstrip-ridge gap waveguide [7]. In this paper we particularly deal with the inverted microstrip gap waveguide, whose fundamental illustration is shown in Fig. 1. In addition, we have synthesized the geometrical parameters of pins in order to obtain a stopband covering the unlicensed 57-66 GHz frequency band. Fig. 2 shows the corresponding dispersion diagram with a stopband from 48 to 72 GHz. As shown in Fig. 2, this large stopband allows a quasi-TEM mode to propagate in the air gap above the metal strip and this single quasi-TEM mode can correspondingly be utilized for microwave and millimeter wave circuits. Until now there are already some useful applications of gap waveguide technologies. References
[8-9] present several different types of bandpass filters based on inverted microstrip and groove gap waveguide. In [10] a novel V-band diplexer based on groove gap waveguide technology is presented. In [11-12] we have already succeeded in design and manufacture two different transitions from normal microstrip and coaxial line to ridge gap waveguide. Furthermore, there are also some completed research on design new gap waveguide radiating slot array antennas introduced in [13-16]. Therefore, the gap waveguide approach is able to merge the benefits of traditional millimeter-wave technologies. In this paper we present two specific transitions from standard WR-15 to inverted microstrip gap waveguide at the 60-GHz band: one is a geometrically symmetric 2-way divider transition and the other is an asymmetric transition. These two structures will be very helpful to us when designing antennas, filters and other microwave components at the 60-GHz band because it covers the band of a standard V-band rectangular waveguide (e.g. WR-15).

II. NON-SYMMETRIC TRANSITION FROM WR-15 TO INVERTED MICROSTRIP GAP WAVEGUIDE

As described in the previous section, the inverted microstrip gap waveguide technology constitutes an attractive alternative to standard microstrip. However, a critical obstacle has been the absence of good transitions that allow connection of the inverted microstrip gap waveguide to measurement equipment and input signals at millimeter wave frequencies. Up to now we can mainly distinguish three types of transitions: inline transitions, vertical transitions and aperture coupled patch transitions. The best selection for our case would be the vertical transitions. The main reason for this is that any possible higher order modes are eliminated by the gap waveguide. In addition, the transition is easily integrated into the rectangular waveguide and no complex modifications of the waveguide are needed. The whole transition structure is composed by three major parts — WR-15 rectangular waveguide, cavity backshort and inverted microstrip feeding circuits, as shown in Fig. 3. First of all, a Printed Circuit Board (PCB) is located over a bed of pins and it contains a feeding line \(W_{50} \) terminated by a two-step tapered matching microstrips. These two-step tapered-line sections work as an impedance transformer and are properly placed over the rectangular waveguide opening. Secondly, the transition geometry is complemented by adding a cavity backshort on the upper metallic lid. This cavity should theoretically be placed at a distance equal to \(\lambda/4 \) from the inverted microstrip in order to establish an open boundary condition on the PCB plane. In this way, we force \(TE_{10} \) mode from WR-15 to propagate along the microstrip circuits as Quasi-TEM mode. Thereby, the cavity backshort together with the tapered line contained in the PCB contributes to provide field matching as well as impedance matching over a wide bandwidth. The layout and simulation of the transition structure are carried out by CST Microwave Studio and all parameter values are listed on Table I. Additionally, it is suitable to utilize a PMC shielding port for gap waveguide technology in numerical simulator because the high impedance surface of the metallic pins supply PMC boundary condition [17]. In order to certify the effect of cavity backshort we have accordingly added an S-parameter chart obtained by same transition structure without cavity backshort, as shown in Fig. 4(b). According to the comparison with Fig. 4(a) the cavity backshort radically improves the transition from WR-15 to inverted microstrip. The reflection coefficient \(S_{11} \) is even below -30 dB from 57 to 66 GHz. This result is promising that the structure is able to be utilized in most passive microwave components based on this type of gap waveguide structures.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>DESIGN PARAMETERS OF THE STRUCTURE IN FIG. 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>Height of air gap</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>Height of the pin</td>
<td>1.05 mm</td>
</tr>
<tr>
<td>Width of the pin</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>Thickness of substrate</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>Length of Cavity Backshort (L_{cbx})</td>
<td>2.998 mm</td>
</tr>
<tr>
<td>Width of Cavity Backshort (L_{cbw})</td>
<td>1.785 mm</td>
</tr>
<tr>
<td>(h_x)</td>
<td>0.575 mm</td>
</tr>
<tr>
<td>(w_x)</td>
<td>0.767 mm</td>
</tr>
<tr>
<td>(w_{probe})</td>
<td>0.754 mm</td>
</tr>
<tr>
<td>(l_{probe})</td>
<td>1.398 mm</td>
</tr>
<tr>
<td>(W_{50})</td>
<td>0.7278 mm</td>
</tr>
</tbody>
</table>

Fig. 3. (a) Top view transition geometry. In order to observe the microstrip and waveguide open details the substrate is hidden. (b) Cross-sectional view for complete non-symmetric transition geometry.
III. SYMMETRIC TRANSITION FROM WR-15 TO INVERTED MICROSTRIP GAP WAVEGUIDE

In the previous section we have already introduced a single vertical transition from WR-15 to inverted microstrip gap waveguide. In practice it is more convenient for us to have a symmetric transition from WR-15 to inverted microstrip gap waveguide instead of the asymmetric one so that we save power divider layer and thereby can get a lower overall input reflection coefficient. The overall geometry of the symmetric transition introduced in this work is illustrated in Fig. 5. It is obvious that the symmetric transition has two output ports whose phases are 180° different from each other, as shown in Fig. 7. The table II shows the critical parameter values of the structure in this work. By tuning of the geometry of the cavity backshort in the upper metallic lid we are able to obtain the desired bandwidth and reflection coefficient at frequency band from 57 to 66 GHz. The simulated S-Parameters are shown in Figs. 4.

![Fig. 4](image1)

(a) S-parameters obtained from an asymmetric transition from WR-15 to inverted microstrip gap waveguide shown in Fig. 3. (b) S-parameters obtained from same transition structure shown in Fig. 3 but without cavity backshort.

![Fig. 5](image2)

(a) Top view transition geometry. In order to observe the microstrip and waveguide open details the substrate and upper metallic lid are hidden. (b) Cross-sectional view for complete symmetric transition geometry.

![Fig. 6](image3)

Fig. 6. The reflection coefficient $S_{11} < 20$ dB in the frequency band 57-66 GHz. This transition structure can be employed to design feed-network in inverted microstrip gap waveguide for slot array antenna at 60 GHz. Similarly, the geometrical size of structure is possibly modified so that it can be applied either at another corresponding frequency band.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_{x,1}$</td>
<td>0.815 mm</td>
</tr>
<tr>
<td>$W_{x,2}$</td>
<td>0.961 mm</td>
</tr>
<tr>
<td>Height of air gap</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>Height of the pin</td>
<td>1.05 mm</td>
</tr>
<tr>
<td>Width of the pin</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>Thickness of substrate</td>
<td>0.25 mm</td>
</tr>
<tr>
<td>Length of Cavity Backshort (L_{cbx})</td>
<td>3.130 mm</td>
</tr>
<tr>
<td>Width of Cavity Backshort (L_{cby})</td>
<td>1.820 mm</td>
</tr>
<tr>
<td>Height of Cavity Backshort (L_{cbz})</td>
<td>0.375 mm</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

In this work we have presented two transitions from WR-15 to inverted microstrip gap waveguide. The numerical simulation of asymmetric transition shows that the reflection coefficient S_{11} is lower than -30 dB from 57 to 66 GHz. This makes it very useful as an input port to passive microwave
components based on inverted microstrip gap waveguide excited by WR-15. Furthermore, a symmetric 2-way divider transition has also been presented and the numerical simulated result shows that the reflection coefficient S_{11} is lower than -22 dB from 57 to 66 GHz. This transition can also be very useful in future works.

ACKNOWLEDGEMENT

This work has been supported by European Research Council (ERC) via an advanced investigator grant ERC-2012-ADG 20120216, and Sweden’s innovation agency VINNOVA within the VINN Excellence Center Chase at Chalmers.

REFERENCES

