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Abstract
Recent molecular studies have identified substantial fungal diversity in indoor environments. Fungi and 
fungal particles have been linked to a range of potentially unwanted effects in the built environment, 
including asthma, decay of building materials, and food spoilage. The study of the built mycobiome is 
hampered by a number of constraints, one of which is the poor state of the metadata annotation of fungal 
DNA sequences from the built environment in public databases. In order to enable precise interrogation 
of such data – for example, “retrieve all fungal sequences recovered from bathrooms” – a workshop was or-
ganized at the University of Gothenburg (May 23–24, 2016) to annotate public fungal barcode (ITS) se-
quences according to the MIxS-Built Environment annotation standard (http://gensc.org/mixs/). The 36 
participants assembled a total of 45,488 data points from the published literature, including the addition 
of 8,430 instances of countries of collection from a total of 83 countries, 5,801 instances of building types, 
and 3,876 instances of surface-air contaminants. The results were implemented in the UNITE database 
for molecular identification of fungi (http://unite.ut.ee) and were shared with other online resources. Data 
obtained from human/animal pathogenic fungi will furthermore be verified on culture based metadata for 
subsequent inclusion in the ISHAM-ITS database (http://its.mycologylab.org).

Key words
Built environment, Indoor fungi, ITS, Annotation, Mycobiome

Introduction

Fungi are found throughout the biosphere, and the built environment is no excep-
tion. The taxonomic composition of indoor fungal communities tends to reflect the 
local outdoor communities, although the majority of fungal particles found indoors is 

mailto:kessy.abarenkov@ut.ee
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thought to represent spores, hyphal fragments, and other dormant and passively distrib-
uted stages (Seo et al. 2015). Although most of the fungi recovered from indoor envi-
ronments would not be able to live in the built environment for any extended period of 
time, a minority of these species are able to cope with, and will even thrive in, the harsh 
conditions that the built environment presents (Hamada and Abe 2010; Nevalainen et 
al. 2015; Zupančič et al. 2016). These species are mainly saprotrophic, and their degree 
of active growth largely depends on water availability (Adams et al. 2013). They can be a 
serious cause of decay and other concerns in water-damaged buildings, but they are also 
found in buildings not subject to moisture issues – and even in buildings where very 
strict sanitization and filtration regimes are applied (e.g., La Duc et al. 2012; Checinska 
et al. 2015). Exposure to aerosolized fungal particles has been linked to asthma onset 
in humans and may furthermore play a role in eczema development and other issues in 
human health (Reijula et al. 2003; Knutsen et al. 2012). Indoor fungi may also contrib-
ute to other unwanted processes, such as food spoilage and wall staining (Varga et al. 
2014). The built mycobiome is thus of interest to a range of scientific fields, including 
mycology, medicine, food biology, construction, and engineering.

Traditional, morphology-based studies of fungal spores and cultures derived 
from indoor sampling have recognized ca. 90 species of common indoor fungi (Flan-
nigan et al. 2002). Efforts based on high-throughput DNA sequencing, in contrast, 
have revealed a vast and hitherto unknown diversity of indoor fungi. In a global 
study of indoor dust samples, Amend et al. (2010) using next-generation sequenc-
ing found ca. 4,500 fungal operational taxonomic units (OTUs; Blaxter et al. 2005) 
approximately at the species level. Similarly, another next-generation sequencing-
powered study – Nonnenmann et al. (2012) – recovered 450 fungal species from 50 
indoor dust samples in Yakima valley, WA (USA). Although precise species delimi-
tation and species counts from next-generation sequencing data remain challenging 
(Nguyen et al. 2016), the taxonomic span of the fungal assemblages recovered in 
Amend et al. (2010) and Nonnenmann et al. (2012) is far larger than that occupied 
by the fungi traditionally thought of as common indoor fungi (cf. Flannigan et 
al. 2002). Thus, whereas these studies should not be used as estimates of the total 
number of indoor fungi, they do testify to the substantial diversity of fungi in the 
built environment. The lack of taxonomic reference sequences makes precise iden-
tification of many of these species problematic, and it is not unusual that a sizable 
proportion of the OTUs in environmental sequencing studies remain unassigned 
beyond the kingdom or phylum levels (e.g., Tedersoo et al. 2014; Grossart et al. 
2016; Fouquier et al. 2016; Nilsson et al. 2016). There is clearly a need to generate 
reliable reference sequences, most notably from type material, to address this issue 
(cf. Schoch et al. 2014). However, the estimated number of extant species of fungi 
– 1.5-6 million (Hawksworth 2001; Taylor et al. 2014) – stands in stark contrast 
to the number of described species (~130,000 as of March 2016; www.speciesfun-
gorum.org), and strongly suggests that molecular identification of fungi will remain 
challenging for the foreseeable future. In some cases, even reference barcode (nuclear 

http://www.speciesfungorum.org
http://www.speciesfungorum.org
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ribosomal internal transcribed spacer, ITS) sequences from type material will not be 
enough. Several fungal genera regularly recovered from built environment samples - 
such as Aspergillus, Cladosporium, Fusarium, and Penicillium - show little or no ITS 
variation across sets of two to several species (Bensch et al. 2012; Samson et al. 2014; 
Visagie et al. 2014; O’Donnell et al. 2015). Additional genetic markers are needed 
for robust species-level identification in these cases.

A second problem that compounds the scientific understanding of the built my-
cobiome has been the lack of a standardized vocabulary for sequence annotation. The 
International Nucleotide Sequence Database Collaboration (INSDC; Cochrane et al. 
2016) holds more than 5,000 Sanger-derived fungal ITS (barcode) sequences from 
the built environment, but their level of metadata annotation differs widely. This un-
fortunately applies to most available fungal ITS sequences (cf. Nilsson et al. 2014); 
for example, a modest 43% are known to be annotated with something as simple and 
straightforward as country of collection (Tedersoo et al. 2011). In addition, where 
metadata exist they are not always provided in standardized and searchable formats, 
making precise queries difficult. There is, for instance, no straightforward way to 
download all fungal ITS sequences from bathrooms, or to target the substrate of gyp-
sum board. It is reasonable to think that analysis of fungi recovered from bathrooms 
may prove a rewarding scientific enterprise, as indeed should be the case for fungi col-
lected on specific building materials, under different moisture regimes, or any other 
particular parameter or setting. The full potential of such searches cannot presently be 
utilized due to the poor state of sequence annotation – primarily omitted by the origi-
nal sequence authors – in the public sequence databases.

The new MIxS-Built Environment annotation standard (Glass et al. 2014; http://
gensc.org/mixs/) addresses the need for a thorough, standardized vocabulary for mi-
crobiological analysis of the built microbiome. If all relevant fungal ITS sequences in 
the INSDC were annotated according to this standard, then this would open up the 
body of extant molecular data to detailed, precise scientific queries in the context of 
the built mycobiome. Going through and annotating large sequence sets is a daunt-
ing effort for any researcher, but fortunately such efforts are easy to split among a set 
of individual researchers. This paper presents the outcome of a sequence metadata 
annotation workshop (University of Gothenburg, May 23-24, 2016) to annotate the 
~6,500 public fungal ITS sequences from the built environment according to the most 
relevant parts of the MIxS-Built Environment annotation standard. In recognition of 
the fact that fungi found indoors are typically found outdoors as well, the workshop 
also annotated closely related outdoor sequences according to basic geo-ecological pa-
rameters. The workshop was organized jointly with the UNITE and ISHAM databases 
(Kõljalg et al. 2013; Irinyi et al. 2015). UNITE is a general-purpose sequence manage-
ment environment seeking to reconcile molecular ecology and taxonomy of fungi and 
fungal communities. The ISHAM database centers on identification of human and 
animal pathogenic fungi to guide antifungal treatment choices. Both databases focus, 
at least for the time being, on the ITS region and share views on the importance of 
openness, free accessibility, and community participation.

http://gensc.org/mixs/
http://gensc.org/mixs/
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Materials and methods

The workshop comprised 20 physical participants, mainly local Ph.D. students and post-
docs – but also other researchers – in systematics and ecology. In addition, another 16 re-
searchers participated remotely through Skype, Google Docs, and email. The participants 
focused on the public fungal ITS sequences of the INSDC as mirrored in the UNITE 
and ISHAM databases. To single out INSDC sequences associated with the built environ-
ment, we used a set of 24 keywords such as “dust”, “gypsum”, and “floor” (Suppl. material 
1). Keyword matches were made to the title of the underlying publication (the INSDC 
field “title”), the INSDC fields “source” and “tissue type”, and the UNITE field “sequence 
source”. We refer to this set of sequences as the built mycobiome set (BMS). To single out 
outdoor sequences with a direct relation to the BMS, we extracted all UNITE species hy-
potheses with at least one BMS sequence. We then built the outdoor mycobiome set (OMS) 
from all sequences that did not match any of our keywords but that were found in the 
same species hypothesis as at least one BMS sequence. Sequences that initially were as-
signed to the BMS set, but that on closer inspection turned out not to qualify as the built 
mycobiome (“collected outside hospital”, for example), were transferred to the OMS set.

For each BMS sequence we tried to locate any underlying publication through the 
INSDC fields TITLE, JOURNAL, and PUBMED. If these were not informative, we 
resorted to ISI Thompson, Google/Google Scholar, and ResearchGate searches. We 
examined the publications for the nine items of the MIxS-Built Environment annota-
tion standard that we felt were the most relevant and the most likely to be covered by 
the studies: building occupancy type, indoor space, indoor surface, surface material, 
surface-air contaminant, space typical state, substructure type, ventilation type, and 
filter type (http://gensc.org/mixs/). In addition we also targeted the country and host 
of collection and the nature of the fungus-host association (e.g., “plant: wood”, “plant: 
leaf”, and “human/animal: skin”), as applicable, for all sequences. We only targeted 
metadata and information that was clearly and unequivocally specified in the paper. A 
research professional (G. Bok) from a building-related technical institute was present 
to assist with technical, analytical, and construction-related questions in the context 
of the built environment. For the OMS we similarly retrieved the underlying publica-
tions and annotated the sequences to country and host of collection plus host associa-
tion (as applicable, and if and when these data were missing). All results were entered 
into an Excel sheet for upload into UNITE and ISHAM (after culture-based verifica-
tion in the case of the latter), and for sharing with other online resources.

Results

A total of 6,526 BMS and 11,574 OMS sequences from a total of 255 separate studies 
were annotated with at least one metadata item. A total of 45,488 annotations were 
made during the workshop. For example, “building occupancy type” was established for 
5,801 sequences, and “ventilation type” was established for 2,235 sequences (Table 1; 

http://gensc.org/mixs/
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Figures 1–3). The results were uploaded into UNITE via its data management system 
PlutoF (https://plutof.ut.ee; Abarenkov et al. 2010) for open query by the scientific 
community and was shared with the INSDC as an Excel sheet (Suppl. material 2).

Discussion

The workshop compiled a total of 45,488 metadata items, making them available for 
scientific query through UNITE and other venues. These metadata, although typi-
cally “published” and thus “available”, were previously not open for direct query. This 
highlights the wealth of relevant scientific information that lies buried in the last few 
decades’ worth of scientific publications – formally available, yet only available to those 
who know where to look, and reachable only to those with access to that literature. 
Fortunately, we live in a digital age where the infrastructure for recovering and sharing 
such information is falling into place (Martin and Martin 2010). Furthermore, there 
is a growing awareness of the need to annotate newly generated sequences beyond the 
barest minimum when these are first deposited into public sequence databases (Hyde et 
al. 2013; Schoch et al. 2014). Such annotations unlock significant scientific potential 
of those molecular data, increase the citability of the underlying scientific studies, and 

Figure 1. Analysis of the BMS sequences for country of collection. Country centroids marked with 
bubbles of different size on the global map indicate the number of BMS sequences originating from these 
countries (54 distinct countries, sequence count ranging from 1 to 2,914). For an additional 2.9% of 
the sequences, country information could not be restored during the workshop. The figure includes pre-
existing data plus the data added during the workshop, such that these charts indicate the scientific state 
of ITS-based Sanger-derived sequencing of the built mycobiome as of spring 2016. Sequences that were 
not annotated with a single built environment-related term in the INSDC were not included in this effort, 
and are not represented in these charts.

https://plutof.ut.ee
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Figure 2. Krona chart of the taxonomic affiliation of the BMS sequences down to order level. The 
Krona chart lists all annotated BMS sequences except those classified as Fungi sp. (36.4%) and those of 
non-fungal origin (0.9%). An interactive version of the Krona chart is provided as Suppl. material 3. The 
figure includes pre-existing data plus the data added during the workshop, such that these charts indicate 
the scientific state of ITS-based Sanger-derived sequencing of the built mycobiome as of spring 2016. 
Sequences that were not annotated with a single built environment-related term in the INSDC were not 
included in this effort, and are not represented in these charts.

fulfill funding agencies’ demands for openness and maximum scientific use of research 
funding. We certainly hope that the mycological community will be quick to embrace 
a more integrative approach to sequence annotation. The public sequence databases 
can similarly make it even easier and faster to provide such metadata upon sequence 
submission. We speculate that excessive time consumption is the primary reason why 
some sequence depositors do not annotate their sequences as well as they could have.

We managed to process nearly all BMS sequences – for which we could retrieve the 
underlying publication(s) – for at least one metadata item. A total of 4,985 sequences 
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were false positives – our keywords indicated them to belong to the BMS whereas in 
reality they did not. A sequence could stem from “outside city hospital” (keyword 
“hospital”), for instance. These sequences were annotated for country and host of sam-
pling, plus the nature of the relation to the host, whenever the underlying scientific 
study could be retrieved and interpreted. It is reasonable to assume that our initiative 
suffered from a fair number of false negatives as well – sequences that should have been 
a part of the BMS, but that were not. Although we used no fewer than 24 keywords in 
our efforts to capture the built environment, we presumably missed one or more im-
portant terms in the field. We similarly missed out on all built-environment sequences 
that featured no relevant annotation whatsoever – perhaps just a species name and the 
country of origin were available. Thus, whereas we managed to do at least something 
about nearly all BMS sequences we recovered, we do not claim to have annotated all 
public fungal ITS sequences from the built environment.

The workshop identified several potential venues for amendments to the MIxS-BE 
standard. For example, “floor” was found to be a common place for sampling of, e.g., 
dust, yet the data point of “floor” could not easily be fitted into any extant MIxS-BE 
category. Similarly, “air” could not be represented in a straightforward way in the 
MIxS-BE standard (but rather applied to other packages of the MIxS standard). We 
also felt the need for a “laboratory” flag to indicate that a sequence stemmed from 
sampling in a laboratory. In addition, we were surprised by the number of fungal se-
quences generated from environments that must be considered to qualify as “built” or 
at least altered by man, but that nevertheless were difficult to fit into the present MIxS-
BE categories. The examples included tombs, crypts, and mummies (Šimonovičová et 

Figure 3. Analysis of the MIxS-BE “building occupancy type” (type of building where the underlying 
sample was taken).
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al. 2015), tumuli and other prehistoric remains (e.g., Kiyuna et al. 2011; Fernandez-
Cortes et al. 2011), spacecraft (Satoh et al. 2011), and indoor historical paintings or 
artifacts such as the Turin shroud (López-Miras et al. 2013; Barcaccia et al. 2015). In 
these cases, we tried to capture the essence of the underlying sequence entries to the 
extent that the MIxS-BE standard allowed. We used our free-text field “Comment” to 
provide additional information that we felt was important with respect to future que-
ries of these entries. These potential venues for improvements of the MIxS-BE standard 
have been communicated to MIxS-BE representatives from the Genomic Standards 
Consortium’s MIxS Compliance and Implementation working group (http://gensc.
org/mixs/mixs-compliance-and-implementation/).

Conclusions

The present study used a workshop-style approach to accomplish a task that would 
have taken several months for a single researcher to accomplish. Costs were kept low 
by recruiting many of the participants among local Ph.D. students and postdocs in 
systematics and ecology, and workshop participation was made attractive by provid-
ing the opportunity to contribute to this workshop report. We can recommend this 
model when tackling projects of a similar kind, such as data assembly and analysis in 
molecular ecology and systematics. As an added benefit, the more junior participants 
obtain experience in scientific collaboration and communication as well as in carry-
ing out scientific projects (cf. Ryberg et al. 2016). The workshop was funded by an 
Alfred P. Sloan foundation grant to improve the support for the built mycobiome 
in UNITE and elsewhere. Other events include a forthcoming (2017) taxonomic 
sequence annotation workshop and the generation and public release of sequences 
from type material. We invite feedback and participation in these events, and we 
welcome any other idea to take molecular identification of the built mycobiome to 
the next level.
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Supplementary material 1

Keywords used to identify fungal sequences from the built environment in the INSDC
Authors: Kessy Abarenkov Rachel I. Adams Irinyi Laszlo Ahto Agan, Elia Ambro-
sio, Alexandre Antonelli, Mohammad Bahram, Johan Bengtsson-Palme, Gunilla Bok, 
Patrik Cangren, Victor Coimbra, Claudia Coleine, Claes Gustafsson, Jinhong He, To-
bias Hofmann, Erik Kristiansson, Ellen Larsson, Tomas Larsson, Yingkui Liu, Svante 
Martinsson, Wieland Meyer, Marina Panova, Nuttapon Pombubpa, Camila Ritter, 
Martin Ryberg, Sten Svantesson, Ruud Scharn, Ola Svensson, Mats Töpel, Martin 
Unterseher, Cobus Visagie, Christian Wurzbacher, Andy F.S. Taylor Urmas Kõljalg 
Lynn Schriml R. Henrik Nilsson
Data type: text
Explanation note: Keywords used to identify fungal sequences from the built environ-

ment in the INSDC.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Supplementary material 2

Annotations made during the workshop
Authors: Kessy Abarenkov Rachel I. Adams Irinyi Laszlo Ahto Agan, Elia Ambro-
sio, Alexandre Antonelli, Mohammad Bahram, Johan Bengtsson-Palme, Gunilla Bok, 
Patrik Cangren, Victor Coimbra, Claudia Coleine, Claes Gustafsson, Jinhong He, To-
bias Hofmann, Erik Kristiansson, Ellen Larsson, Tomas Larsson, Yingkui Liu, Svante 
Martinsson, Wieland Meyer, Marina Panova, Nuttapon Pombubpa, Camila Ritter, 
Martin Ryberg, Sten Svantesson, Ruud Scharn, Ola Svensson, Mats Töpel, Martin 
Unterseher, Cobus Visagie, Christian Wurzbacher, Andy F.S. Taylor Urmas Kõljalg 
Lynn Schriml R. Henrik Nilsson
Data type: metadata
Explanation note: The annotations made during the workshop shown with original 

INSDC data. For the BMS, we targeted nine MIxS-BE items plus country of col-
lection, host of collection, host association, and a general “Comment” field. For the 
OMS, we targeted country of collection, host of collection, host association, and a 
general “Comment” field.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Supplementary material 3

Krona chart
Authors: Kessy Abarenkov Rachel I. Adams Irinyi Laszlo Ahto Agan, Elia Ambro-
sio, Alexandre Antonelli, Mohammad Bahram, Johan Bengtsson-Palme, Gunilla Bok, 
Patrik Cangren, Victor Coimbra, Claudia Coleine, Claes Gustafsson, Jinhong He, To-
bias Hofmann, Erik Kristiansson, Ellen Larsson, Tomas Larsson, Yingkui Liu, Svante 
Martinsson, Wieland Meyer, Marina Panova, Nuttapon Pombubpa, Camila Ritter, 
Martin Ryberg, Sten Svantesson, Ruud Scharn, Ola Svensson, Mats Töpel, Martin 
Unterseher, Cobus Visagie, Christian Wurzbacher, Andy F.S. Taylor Urmas Kõljalg 
Lynn Schriml R. Henrik Nilsson
Data type: html
Explanation note: Interactive Krona chart for visualizing the taxonomic distribution 

of annotated BMS sequences down to order level. Sequences classified as Fungi sp. 
(36.4%) or non-fungal (0.9%) were excluded from this dataset.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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