CHALMERS

UNIVERSITY OF TECHNOLOGY

Continuous Integration Beyond the Team: A Tooling Perspective on
Challenges in the Automotive Industry

Downloaded from: https://research.chalmers.se, 2025-10-14 08:09 UTC

Citation for the original published paper (version of record):

Knauss, E., Pelliccione, P., Heldal, R. et al (2016). Continuous Integration Beyond the Team: A
Tooling Perspective on Challenges in the Automotive

Industry. International Symposium on Empirical Software Engineering and Measurement,
08-09-September-2016: Article number a43-. http://dx.doi.org/10.1145/2961111.2962639

N.B. When citing this work, cite the original published paper.

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)

Continuous Integration Beyond the Team: A Tooling
Perspective on Challenges in the Automotive Industry

Eric Knauss?, Patrizio Pelliccione!, Rogardt Heldal'?, Magnus Agren:,
Sofia Hellman?, Daniel Maniette*
*Chalmers University of Technology | University of Gothenburg
. 2Bergen University College
3AF Technology Embedded West
4 Cybercom Group
{eric.knauss,patrizio.pelliccione}@cse.gu.se, {heldal,magnus.agren}@chalmers.se,
sofia.hellman@afconsult.com, daniel.maniette@cybercom.com

ABSTRACT

The practice of Continuous Integration (CI) has a big impact
on how software is developed today. Shortening integration
and feedback cycles promises to increase software quality,
feature throughput, and customer satisfaction. Thus, it is
not a surprise that companies try to embrace CI in domains
where it is rather difficult to implement.

In this paper we present our findings from two rounds
of interviews with a car manufacturer on the use of tools
in system engineering and how these tools would support
wider adoption of CI. Our findings suggest a complex tool
landscape with immense requirements that are not easily
fulfilled by existing tools; this holds also for tools that well
support CI in other domains. From this notion, we fur-
ther explore what makes the automotive domain challeng-
ing when it comes to CI (namely complexity of system and
value chain). We hope that our findings will help address
such challenges.

Keywords

continuous integration, automotive systems engineering

1. INTRODUCTION

Continuous Integration (CI) is a practice that promises
to shorten integration and feedback cycles [9, 19]. CI is re-
ported to increase software quality and speedup feature de-
velopment [19]. However, many implementations of CI have
been on a team level, where this practice works exceptionally
well [9, 17]. In order to fully leverage the potential advan-
tages, CI should be implemented organization-wide [16, 17]

*This work was funded by the Vinnova FFI projects Next
Generation Electronic Architecture and Next Generation
Electronic Architecture step 2.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

ESEM '16, September 08-09, 2016, Ciudad Real, Spain

ACM 978-1-4503-4427-2/16/09.
http://dx.doi.org/10.1145/2961111.2962639

or even lead to continuous delivery of value to the customer
[15, 14].

Many categorizations of software development domains
exist. We found the categorization in services, enterprise,
and product domains by Bass particularly helpful [3]. Ac-
cordingly, a company providing software-based services on-
line will have the easiest task of implement CI, whereas
companies that develop software embedded into a physical
product will struggle more with CI adoption (in the scope of
this paper we omit discussion of enterprise software). This
notion is supported by our literature review: while good ex-
periences with these practices have been reported in some
domains [9, 5], there has been also reports on challenges
with implementing these practices especially in embedded
and automotive domains [6].

Today, the automotive business is rapidly changing, for ex-
ample because of to the appearance of new major players in
the field (Google [10], Apple [1, 2], UBER and others need to
be seen as competitors to more traditional automotive com-
panies). Thus, automotive companies have a strong motiva-
tion to embrace organization-wide CI to yield improvements
in flexibility and cycle time, despite the challenges.

In this paper, we rely on two batches of interviews on
tooling (i) for system engineering and (ii) for CI to explore
the underlying challenges and impediments for CI in the
automotive domain. Through the understanding of require-
ments for systems engineering tooling that supports these
practices, we gain an understanding of the underlying chal-
lenges that make it so difficult to introduce organization-
wide — or at least system-wide — implementations of them.
Particularly, we explore the following research questions:

RQ1: How well do tools used at the moment support CI in
the automotive domain?

RQ2: What new needs towards tooling exist in the auto-
motive industry?

Our key findings include that tooling that did work well in
a V-model context is causing friction in a continuous engi-
neering environment, especially because it encourages silo
thinking and does not support cross-functional aspects. In
addition, existing tools that do work well in other domains
cannot be easily adapted to automotive systems engineering.
From these findings for RQ1 and RQ2, we derive specific
impediments around the complexity of automotive systems
engineering and complexity of value chains.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2961111.2962639&domain=pdf&date_stamp=2016-09-08

Some of these challenges are specific to automotive, others
might very well apply to any product company embracing
CI. The paper is organized as follows. Section 2 describes the
complexity of the automotive domain. Section 3 describes
the research method, Section 4 presents and discusses our
findings. Finally, the paper concludes with final remarks
and directions for future research in Section 6.

2. CONTEXT

The automotive domain is extremely interesting to in-
vestigate at this point in history, since automotive com-
panies are encumbered with the development of electrical,
autonomously driving, and connected cars. Moreover, new
players, like Google, Apple, and Tesla, are entering the auto-
motive domain, and this is influencing the way and speed of
producing cars. Historically, software was introduced in cars
to optimize the control of the engines. Since then the growth
of software within the car has been exponential for each year
and today not a single function is performed without the in-
volvement of software. According to industry experts, 80%
to 90% of the innovation within the automotive industry is
based on electronics, as mentioned for instance by Peter van
Staa - Vice-President Engineering of Robert Bosch GmbH
at the European Technology Congress in June 2014!. A big
part of electronics is software. Moreover, the most advanced
cars have more (or at least a comparable amount of) software
than fighter airplanes®. Vehicles are also produced in higher
volumes than airplanes, which leads to harder requirements
on the technology cost.

A modern car is driven by a network of often more than

100 small computers (ECUs - Electrical Control Units), run-
ning thousands of (software) components to fulfil user visi-
ble functions and to control sensors and actuators in a dis-
tributed fashion. The high level of connectedness through-
out the car network characterizes the complexity of automo-
tive engineering and it is interesting to investigate how such
an organization can adopt CI.
Organization challenges: The complexity of the auto-
motive domain leads to having different abstraction levels,
where some organizational sections take care of top level re-
quirements, other sections produce the architecture, others
yet the design, and still others develop the software, hard-
ware and mechanical parts for the product. Even on the
development level there are many components that can be
done by only a few specialized teams, such as controlling
the engine, or making the software for the braking system.
Thus, specialized teams exist both on the same abstraction
level, as well as on different abstraction levels. As we will
see in the result all these different organizational sections
have an impact when it comes to tools and toolchains.

Moreover, it is very impractical to produce all parts com-
prising a vehicle in-house. For this reason OEMs normally
ask suppliers to produce parts of the vehicle, and the num-
ber of suppliers involved in parallel development can eas-
ily reach a count of 50 different suppliers. That means
that the knowledge and competence of building a car is di-
vided among many companies. Consequently, there can be

"http:/ /www.etcwroclaw.eu/files/presentations/peter_van_
staa.pdf

2 As said by Alfred Katzenbach, the director of information
technology management at Daimler: http://spectrum.ieee.
org/transportation/systems/this-car-runs-on-code

E High-level Vehicle
2 Requirements Test
=)
@a
£
@
&
w
>
n
el
3
wv
-
=
7]
<
b=
=1
£
(=
(@]

El E2 E3 P

Figure 1: V-model used within Automotive industry

very many companies with different organizations, objec-
tives, competences, constraints, cultures, languages, and ge-
ographical placements, involved in a car project. The agree-
ments between these companies are currently mainly based
on contracts. Contracts are a killer for Agile development.
Different speeds within the same company: Mecha-
tronic development, such as for a modern car, involves soft-
ware, hardware and mechanical development. The widely
adopted model for this distributed development is the V-
model, see Figure 1. The V-shape represents the journey
from requirements to a complete car.

As shown in Figure 1, the overall system development pro-

cess at automotive companies is a sequential process with a
number of points in time where artifacts need to be deliv-
ered. There are three tracks of parallel development: (a) the
software components (SWC), (b) the hardware like ECU,
and (c) mechanical parts. E1-E3 are electronic integration
points and P is where the software should be production
ready. This is probably one of the main differences between
service and product companies: in a service company, as
soon as some software is ready it can be deployed, since
hardware and mechanical parts are not part of the picture.
In contrast, product companies are forced to develop new
ways of working to reach agile development and CI. We will
discuss this both in the results section, i.e. Section 4 and in
the discussion section, i.e. Section 5.
Challenges coming from variability and safety: Typ-
ically, several cars are built on the same platform according
to a product-line engineering approach; this inevitably cre-
ates a lot of variation and a lot of variants. In addition,
customers can choose from a multitude of variants and reg-
ulations differ between countries, leading to even more vari-
ation. Consequently, the distributed software within a car
can be configured in a million ways. This requires some up-
front work: without a good architecture it is not possible
to handle the variants. There are papers claiming that it
would be hard to succeed without product line development
[4]. Interestingly, even though agile development and Soft-
ware Product Line Engineering (SPLE) have similar claims
for what concerns productivity, these approaches are very
different; in fact SPLE involves significant upfront commit-
ment and a disciplined approach [13].

Safety is an unavoidable constraint of the automotive in-
dustry. The ISO26262 standard [11] influences organization
structure, development process, adopted tools, artifacts that
should be produced and released, etc. Such safety concerns
require quite a bit of upfront work and limit agility.

3. METHOD

To answer the research questions we used an exploratory
case study design. We collected qualitative data from semi-
structured interviews within one Automotive OEM . We had
in total 26 interviews in two related, but separate scopes.

In the first scope, 10 interviews mainly focused on tool
aspects and specifically on how tools are used for system
engineering, as well as challenges the company is encoun-
tering when moving towards company wide CI. We inter-
viewed practitioners from four different departments in the
organization, namely: FElectrical Systems Architecture, In-
fotainment, Powertrain, and Body Electronic Software. We
selected these sections since they have responsibilities at dif-
ferent abstraction levels in the V-model.

In the second scope, 16 interviews focused on CI in soft-
ware developing teams within the company. We recruited
interviewees from 8 departments (including the ones cov-
ered in the first scope) and talked to two representatives
from each department. Each interview lasted around one
hour.

In both scopes, we validated the collected data by sending
notes taken during the interviews back to the interviewees,
and by having the case company do a final, thorough, re-
view of the compiled notes. We then discussed common ob-
servations and extracted themes through several workshops
between the authors.

4. RESULTS

An important factor of CI is that it requires automation,
especially when it comes to building and integrating. Such
automation is useful for the automotive industry as well,
yet as discussed in Section 2 it is difficult to achieve. Chal-
lenges include that flexibility and speed of software devel-
opment need to be balanced with production and mainte-
nance cost of long-living, physical products. In addition,
building an automotive system requires contributions from
many disciplines (such as mechanics and mechatronics) as
well as a large number of suppliers. Thus, how to design a
change and how to adjust the architecture of the system is
an important consideration of CI beyond the team-level in
automotive. It is an open, but relevant question of how to
support agile ways of working, i.e. short cycle times based
on small changes of the system in order to satisfy a customer
request as well as the ability to apply those changes to a live
system.

4.1 RQ1: How Well Do Tools Used at the Mo-
ment Support CI in the Auto. Domain?

The answers from our interviewees with respect to this
research question can be categorized in two themes: (Theme
1.1) impact from organizational specialization on tools, and
(Theme 1.2) tools themselves as show stoppers for increased
agility.

4.1.1 Theme 1.1: Impact from Organizational Spe-
cialization on Tools

In order to allow a large organization to function, shared
tooling platforms need to be provided. For this reason, the
Automotive OEM made a decision to use System engineer-
ing tool 12 for managing system engineering data, which is a

3In this study we generalize from concrete tool names, since
we are interested in the underlying needs when adopting CI,

domain specific, internal tool. However, the ways of working
are highly optimized and specialized in the different depart-
ments and thus require different capabilities of tools. This
has lead to the use of different tools for similar purposes
in the different departments which constantly strive for in-
creased excellence. For example, Body Electronic Software,
a department that develops software in-house, has special
needs and requests towards version control and branching,
handling of component interfaces, and backwards compati-
bility. In Electrical Systems Architecture tools such as Ar-
chitecture model tool are used, see Figure 2; the focus is on
tools providing visualizations. Figure 2 gives an overview of
the different tools we encountered in our study.

During our interviews, we found it striking that differ-
ent tools were used for similar or at least comparable tasks.
Also, tools like Architecture model tool are successfully used
in other domains to cover similar use cases as System en-
gineering tool 1, i.e. modeling the architecture of the car
and defining the system design. Architecture model toolis
highly adaptable, e.g. through defining profiles and does
allow defining the system design in sophisticated graphical
models. In contrast, System engineering tool 1 does not
provide graphical models. This allows this tool to scale for
the whole organization and to cover the whole system under
development in sufficient detail to support CI organization
wide. This makes it a great tool for managing and dissem-
inating design and architecture, despite its limitations of
graphical modeling. Thus, we found that tools like Architec-
ture model toolare used for drafting the architecture within
the local scope of a department. Such architectural models
often express the planned architecture. In contrast, System
engineering tool 1 is the reference for every implementation
activities in CI and accurately represents the current archi-
tecture. Even if a more homogeneous tool landscape should
be established, it would still be necessary to allow parallel
work on both planned and current architecture to support
CI beyound the team.

4.1.2 Theme 1.2: Tools Themselves as Show Stop-
pers for Increased Agility

The previous theme covered Architecture model tool and
System engineering tool 1. These tools are very complex,
and hard to learn and use. Worse, they have more func-
tionality than needed in many cases. Still, neither of them
are satisfactory for the (whole) job, even when combined.
Dealing with variants requires involving other tools; deal-
ing with safety requires involving yet further tools. The
Automotive OEM that we have interviewed has a product
life-cycle management tool — PLM tool — which keeps the
specifications produced by the different tools in one place.

The use of different tools in this way adds an extra layer
of complexity, as can be seen in Figure 2, which gives an
overview of the complex distribution of tools over the de-
velopment process. The figure depicts that the electrical
systems architecture is not really included in the rest of the
development part of the V-model. Parts of the electrical
architecture, such as the logical topology, are included in
System engineering tool 1, but the UML models are neither
in System engineering tool 1 nor in PLM tool. Informa-
tion transfer between PLM tool and Architecture model tool
is handled as knowledge transfer between individuals, and
where there is data transfer between tools, it is often manual.

not in the tools themselves.

Knowledge transfer =—: =

Semi- Automatic transfer ...

Architecture model tool
[UML-model |

L
I* -

T |

/
S £ A
Wreq) SW req //
- ' /
System Engineering Ay s
Tool 1 uppliers In-house

development

Manual transfer ---—--
PLM tool Verification
‘| “‘Feature requirements Feature
" {'Function requirements Function
Electrical Systems N\ { Elggtﬂm| W
Favti il EIIECI:R!CAL ARQH#?:ECWRE
X |) 7 |
Function realization Fungﬁmrsaﬂzaﬁan Vo |
v \ |\ System | |
System requirement System rapumm \ A f /
, SWrequirements /- SW Wﬁﬁémmﬁ Cdmpone}m ; /
HW requirements ‘ y \ f |

System 'Engmeermg‘
Tool 1

Other tool

Figure 2: Current tool usage over the development process.

For development done by external suppliers, requirements on
hardware and software are manually extracted from PLM
tool. For development done in-house, similarly purposed
requirements are extracted, still manually, from System en-
gineering tool 1. This points to the need expressed by the
interviewees for connections between tools, for example by
open APIs, and for coherence in the toolchain.

System engineering tool 1 supports producing boxes as
placeholders for code. Input and output signals of the boxes
can be seen and how the boxes fit together can be studied;
it is not possible to run anything, though, since the boxes
do not contain any behavior. This could be a hindrance to
agility, but also an opportunity, since the resulting parts to
be implemented are isolated.

Using many different tools is fine as long as they can be
plugged together. Currently, though, the tool vendors of-
ten offers single tools covering the whole development pro-
cess, leading to multiple overlapping tools with different
strengths. Having one tool that fits all the needs might
be a solution, however, it is not a likely scenario and also
comes with the problem of vendor lock-in. What is needed
is better ways of combining tools. It is not only a tool prob-
lem, though: different sections within the company have to
find better ways of working. For example, in order to sup-
port continuous integration, Electrical Systems Architecture
needs to more strongly influence the development and when
changes are needed by development, architects should also
be involved.

4.2 RQ2: What New Needs Towards Tooling
Exist in the Automotive Industry?
The answers from our interviewees with respect to this re-

search question can be categorized in four themes: (Theme
2.1) one tool does not fit all needs, (Theme 2.2) scalabil-

ity by simulation and visualization, (Theme 2.8) fit tools to
processes, not the other way around, and (Theme 2.4) don’t
always blame the tools.

4.2.1 Theme 2.1: One Tool Does Not Fit All Needs

With the tools used and the work procedures differing
between sections of the organization, it may be difficult to
have only one tool environment covering the entire electrical
systems development and verification. Many of the tool sup-
pliers studied in this work aim to cover the entire V-model
with their tools, but parts are still missing. This, together
with the different needs of the sections within the company
confirms the need for section specific tools.

The views on having a single tool environment differs be-
tween the interviewed sections. Whilst all seem to agree on
the need of the same line of thought through the toolchain,
Electrical Systems Architecture argues that as long as the
tools have open APIs and well documented file formats there
need not be interfaces between the tools, whereas another
section argues that the tools need to have good interfaces
between each other.

4.2.2 Theme 2.2: Scalability by Simulation and Vi-
sualization

One main request has been mentioned in all interviews:
the possibility to use model based development instead of
document or text based requirements. This includes having
model based requirements that can be used through the en-
tire toolchain, being able to model the system at different
levels, and having the models at different levels connected
to each other. Consequently, the models and modeling tools
have to be scalable as well.

Executable models, such as Simulink, play an important
role in the automotive industry, since they are used for soft-

ware development, but also for simulation of hardware and
mechanical parts. Therefore, executable models need to be
continuously integrated and tested. Simulation and virtual
verification promises to offer a scalable and efficient solution
in such a model-driven systems engineering environment.

One problem today is that the tools do not always han-
dle enough simultaneous users for this high level of inter-
connectedness. For example, modeling tools at the Auto-
motive OEM need to support more than 250 simultaneous
users, limiting the choice of suitable tools significantly. We
argue that this huge amount of simultanuous users not only
shows the huge complexity of automotive systems engineer-
ing, but also is a crucial enabler for CI beyond the team
level by providing real-time information about the current
architecture (which is constantly evolving through continu-
ously integrated changes). We discuss modeling further in
Section 5.

In order to support continuous integration over all ab-
straction levels, Electrical Systems Architecture has the need
for a tool where it is possible to get an overview of the electri-
cal system without seeing all the details in System engineer-
ing tool 1, to avoid information overload. There is a need for
connecting the planned architecture and current electrical
architecture [8]. One way forward is to have tools to visual-
ize the architecture produced with System engineering tool
1 in a suitable level of abstraction to allow for architectural
decisions on the complete system under development.

4.2.3 Theme 2.3: Fit Tools to Processes,
Not the Other Way Around

CI is an advanced, flexible way of working that, if scaled
beyond individual teams, promises to accelerate collabora-
tion between organizations. It is important that the toolchain
supports this, but we found that at least in the complex
domain of automotive systems engineering further research
about how to fit tools better to CI in complex product or-
ganizations is needed.

Due to the lack of suitable tooling, in-house development
seems to be a natural strategy. However, the Automotive
OEM does not wish to become widely involved in tool build-
ing. Sometimes this cannot be avoided and we found several
domain specific tools that were developed in-house to over-
come a lack of existing tools. An alternative strategy is hav-
ing a strong collaboration between the company and the tool
vendor, as is the case for the large tool System engineering
tool 1 within the Automotive OEM.

4.2.4 Theme 2.4: Don’t Always Blame the Tools

The interviewees have indicated that many of the tools are
complex to use. To do complex things, however, the tools
themselves often need to be complex; not all problems can be
blamed on the tools — the support around the tools is equally
important. Our paper [20] discusses this issue in detail. We
can find one concrete example in System engineering tool 1
where agility is stopped by the process, not by the tool: For
the network in the car, the specification of sendable signals
can only be changed 4 times a year, a restriction imposed
by the process, not by the tool.

5. DISCUSSION

In this section, we discuss some of the aspects that will
play an important role for having CI in the automotive in-
dustry. Specifically: in Section 5.1 we discuss the impor-

tance of managing data across a toolchain; in Section 5.2 we
discuss Model Driven Engineering (MDE) as an enabler for
early feedback and integration; and finally, in Section 5.3 we
investigate how the relationship between OEM and suppliers
should change.

5.1 Flexible Data Management Toolchain

As outlined above products become more complex and
developed by larger and distributed teams. This calls for
more unified, controlled, and consistent data. Shahrokni
et al. [18] discuss a new paradigm called organic evolution
of development organizations. In this paradigm, the data
management toolchain is conceived to be configurable and
flexible so to enable an agile way of working and structuring
on low and detailed levels of the process, while providing
control and progress tracking on managerial levels.

5.2 MDE as an Enabler for Early Feedback

To be able to obtain quicker feedback in the automotive in-
dustry, Model Driven Engineering (MDE) has become pop-
ular [12, 7]. Executable models, in the form of Simulink
models, are utilized to introduce feedback early in the de-
velopment process. To be able to run these models at an
early stage there is a need for models of hardware, software,
and mechanical parts, as raised in our interviews, and shown
in Figure 1. This enables different kinds of simulations, typ-
ically refereed as MIL (model in the loop), SIL (software in
the loop), and HIL (hardware in the loop), corresponding to
which parts of the mechatronic system that are physically
available, and which are instead represented as models. In
the long run, complete virtual cars can be considered.

This will give the opportunity to perform different types
of verification and validation with the car immersed in vir-
tually generated environments. That will then enable for in-
stance the verification and validation of the behavior of the
car in a system of systems setting, i.e. the car interacting
with other cars, with pedestrians, cyclists and with a smart
city. It will also facilitate early verification and validation of
software updates within the virtual car. It will, however, de-
mand good techniques and tools. Whether current tools can
provide what they promise in form of simulations remains
to be seen.

The use of models opens another interesting opportunity:
exploiting them to facilitate collaboration between the OEM
and the suppliers. Models representing mechanical and hard-
ware parts might be exploited to test early the integration
between software developed concurrently by different com-
panies and/or organizations. CI could thus be possible even
between separate companies. An additional related aspect
is to have a tight connection between models and code so to
effectively exploit the confidence gained on the virtual vehi-
cle. Promising techniques for enabling this tight connection
are model-to-model or model-to-code transformations.

5.3 A New Way of Working With Suppliers

CI calls for a new way of working between OEM and its
suppliers. The relation between the OEM and its suppliers
should change from a contract-based relationship to a more
collaborative one where the OEM and suppliers are part
of the same ecosystem and collaborate for mutual benefit.
More transparency and less contract-based working will then
be some of the key enablers for CI.

6. CONCLUSIONS AND FUTURE WORK

In this study, we aimed at investigating from a tool per-
spective which impediments exist for implementing CI in the
automotive industry. By investigating how current tooling
supports adoption of organization-wide CI, we have a unique
opportunity to understand how the needs of a car manufac-
turer change during adoption of CI. Our main finding here is
that existing tooling is the result of old specializations and
silos (see Themes 1.1 and 1.2). In order to allow quicker cy-
cle times, these silos need to be overcome to support cross-
functional collaboration (see Theme 2.3). This will entail
major changes in the current toolchain. Secondly, we in-
vestigated which new needs towards tooling exist and we
found scalability to be a driving force here (see Theme 2.2).
Models and model-driven engineering are important for au-
tomotive software development, and in CI such models need
to be integrated on the system level, thus bringing together
knowledge about application software, ECU hardware/basic
software, and mechanics.

Based on these findings, we suggest that a new way of

working needs to also investigate new business models. Knowl-

edge about the different domains is distributed over several
organizations in the automotive value chain, including sup-
pliers and consultants. In order to facilitate CI, ways have
to be found to quickly create a realistic environment where
changes can be integrated. Construction of shared plant
models in a particular value chain as a target for CI can
be valuable future research. Further, in order to address
the need for scalability and cross-functional collaboration,
we anticipate the need to establish suitable transparency
between the actors in the automotive value chain, to avoid
bottlenecks as well as information overload.

7. REFERENCES
[1] Apple gears up to challenge tesla in electric cars. Wall

Street Journal, Feb 13, 2015. Last visit:
2015-March-10.

[2] Apple hiring automotive experts to work in secret
research lab. Financial Times, Feb 14, 2015. Last
visit: 2015-March-10.

[3] M. Bass. Software engineering education in the new
world: What needs to change? In 2016 IEEE 29th
Conf. on Software Engineering Education and
Training. IEEE, 2016.

[4] L. Brownsword and P. Clements. A Case Study in
Successful Product Line Development. Standard
CMU/SEI-96-TR-016,ESC-TR-96-016, 1996.

(5] A. Debbiche, M. Diener, and R. B. Svensson.
Challenges when adopting continuous integration: A
case study. In A. J. et al., editor, Proc. of the 15th Int.
Conf. of Product Focused Software Development and
Process Improvement (Profes), volume 8892 of LNCS,
pages 17-32, Helsinki, Finland, 2014. Springer.

[6] U. Eklund and J. Bosch. Applying agile development
in mass-produced embedded systems. In C. Wohlin,
editor, Proc. of Int’l Conf. on Agile Softw. Dev. (XP),
volume 111 of LNBIP, pages 31-46, Malm¢, Sweden,
2012. Springer.

[7] U. Eliasson, R. Heldal, J. Lantz, and C. Berger. Agile
model-driven engineering in mechatronic systems - an
industrial case study. In Model-Driven Engineering

Languages and Systems - 17th Int. Conf., MODELS
2014, Valencia, Spain, September 28 - October 3,

2014. Proceedings, pages 433-449, 2014.

[8] U. Eliasson, R. Heldal, P. Pelliccione, and J. Lantz.
Architecting in the automotive domain: Descriptive vs
prescriptive architecture. In Software Architecture
(WICSA), 2015 12th Working IEEE/IFIP Conf. on,
pages 115-118. IEEE, 2015.

[9] M. Fowler. Continuous integration. Technical report,
2006. http://martinfowler.com/articles/
continuousIntegration.html last visit: 2016-01-12.

[10] E. Guizzo. How the google self-driving car works.
IEEFE Spectrum, Oct 18, 2015. Last visit:
2015-March-10.

[11] Road vehicles — Functional safety. Standard ISO
26262, 2011.

[12] J. Lantz. Using models to scale agile mechatronics
development in cars: case studies at volvo car group.
In 18th Int. Software Product Line Conf., SPLC 14,
Florence, Italy, September 15-19, 2014, page 20, 2014.

[13] K. Mohan, B. Ramesh, and V. Sugumaran.
Integrating software product line engineering and agile
development. IEEE Software, 27(3):48-55, 2010.

[14] S. Neely and S. Stolt. Continuous Delivery? Easy!
Just Change Everything (well, maybe it is not that
easy). In Proc. of Agile Conf., pages 121-128,
Nashville TN, USA, 2013. IEEE.

[15] O. Rissanen and J. Miinch. Transitioning Towards
Continuous Delivery in the B2B Domain: A Case
Study. In C. L. et al., editor, Proc. of 16th Int. Conf.
on Agile Processes in Software Engineering and
Extreme Programming (XP), volume 212 of LNBIP,
pages 154-165, Helsinki, Finland, 2015. Springer.

[16] M. Roberts. Enterprise continuous integration using
binary dependencies. In Extreme Programming and
Agile Processes in Software Engineering, pages
194-201. Springer, 2004.

[17] R. Rogers. Scaling continuous integration. In Extreme
Programming and Agile Processes in Software
Engineering, pages 68-T76. Springer, 2004.

[18] A. Shahrokni, P. Gergely, J. Soderberg, and
P. Pelliccione. Organic evolution of development
organizations - an experience report. In SAFE 2016
World Congress and Ezhibition - Model-Based
Controls and Software Development, 2016.

[19] D. Stahl and J. Bosch. Modelling continuous
integration practice differences in industry software
development. Systems and Software, 87:48-59, 2014.

[20] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden,
and R. Heldal. Industrial Adoption of Model-Driven
Engineering: Are the Tools Really the Problem? In
A. Moreira and B. Schaetz, editors, MODELS 20183,
16th Int. Conf. on Model Driven Engineering
Languages and Systems, Miami, USA, 2013.

	1_Page_1
	1_Page_2
	1_Page_3
	1_Page_4
	1_Page_5
	1_Page_6

