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The structure and diversity of human,
animal and environmental resistomes
Chandan Pal1,2, Johan Bengtsson-Palme1,2, Erik Kristiansson2,3 and D. G. Joakim Larsson1,2*

Abstract

Background: Antibiotic resistance genes (ARGs) are widespread but cause problems only when present in
pathogens. Environments where selection and transmission of antibiotic resistance frequently take place are likely
to be characterized by high abundance and diversity of horizontally transferable ARGs. Large-scale quantitative data
on ARGs is, however, lacking for most types of environments, including humans and animals, as is data on resistance
genes to potential co-selective agents, such as biocides and metals. This paucity prevents efficient identification of risk
environments.

Results: We provide a comprehensive characterization of resistance genes, mobile genetic elements (MGEs)
and bacterial taxonomic compositions for 864 metagenomes from humans (n = 350), animals (n = 145) and
external environments (n = 369), all deeply sequenced using Illumina technology. Environment types showed
clear differences in both resistance profiles and bacterial community compositions. Human and animal microbial
communities were characterized by limited taxonomic diversity and low abundance and diversity of biocide/metal
resistance genes and MGEs but a relatively high abundance of ARGs. In contrast, external environments showed
consistently high taxonomic diversity which in turn was linked to high diversity of both biocide/metal resistance genes
and MGEs. Water, sediment and soil generally carried low relative abundance and few varieties of known ARGs,
whereas wastewater/sludge was on par with the human gut. The environments with the largest relative abundance
and/or diversity of ARGs, including genes encoding resistance to last resort antibiotics, were those subjected to
industrial antibiotic pollution and a limited set of deeply sequenced air samples from a Beijing smog event.

Conclusions: Our study identifies air and antibiotic-polluted environments as under-investigated transmission routes
and reservoirs for antibiotic resistance. The high taxonomic and genetic diversity of external environments supports the
hypothesis that these also form vast sources of unknown resistance genes, with potential to be transferred to pathogens
in the future.

Keywords: Antibiotic resistance, Biocide resistance, Metal resistance, Resistome, Metagenomics, Human microbiome,
Environmental microbiome

Background
Accelerating antibiotic resistance development in path-
ogens is a major threat to modern health care [1] and
has been estimated to cause more than 700,000 deaths
yearly [2]. This development has to a large extent been
enabled by the recruitment of antibiotic resistance
genes (ARGs) into bacterial pathogens via mobile

genetic elements (MGEs) such as integrons, transpo-
sons and plasmids [3]. Going back to the pre-antibiotic
era, plasmids were mostly devoid of ARGs [4, 5]. Simi-
larly, bacteria isolated from wild animals in remote
areas with no history of antibiotic exposure rarely
carried ARGs [6, 7]. However, the use and abuse of
antibiotics have increased the prevalence of resistance
genes in the human and animal microbiome over the
last 75 years [8]. Since the 1940s, significant increases of
ARGs have also been reported in farmland soils [9, 10].
The transfer of ARGs between bacteria of human and
animal origins has also been documented, and resistant
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bacteria in the animal microbiome can thus serve as reser-
voir of clinically important ARGs [11].
In the environment, resistance is ancient. Several

ARGs and genes similar to known ARGs can be found
in remote environments with minimal anthropogenic
impact across the globe, such as 30,000-year-old perma-
frost, isolated caves, Alaskan soil and glaciers [12–15].
There are also other lines of evidence suggesting that
many, perhaps the majority, of the ARGs found in path-
ogens today, have an environmental origin [16–18]. This
clearly emphasizes the importance of environmental bac-
teria as potential sources for clinically important forms
of resistance. Despite this, environmental resistomes are
still largely unexplored and little attention has been paid
to their intrinsic capacity to retain and transfer resist-
ance. Surveillance programs on antibiotic usage and
resistance characteristics of bacterial pathogens are in
place in different parts of the world [1]. Corresponding
environmental monitoring programmes are yet in their
infancy, although the need has been identified [19, 20].
Understanding of the environment as a source and

dissemination route for ARGs is fundamental in order to
identify risk scenarios for human health [21]. In this
context, both the abundance and diversity of resistance
genes need to be considered. Environments with a large
diversity of resistance genes not generally present in the
human microbiome are potential sources for recruit-
ment of ARGs to pathogens [22]. High abundances of
resistance genes in a particular environment may also
reflect selection for resistance determinants, directly or
indirectly, in that environment. Alternatively, it may
reflect contamination with antibiotic-resistant bacteria
and hence risks for their transmission [23]. That said,
the diversity of any type of genes, including ARGs, is
likely to be associated with taxonomic diversity of the
community. Finally, fast turnaround of ARGs and taxa
in an environment suggests certain robustness to pertur-
bations through establishment of such transient ARGs
and taxa under favourable conditions, such as antibiotics
exposure [24].
Shared ecological adaptations among bacteria are

known to be important for the ability to engage in hori-
zontal gene transfer [25]. Defining specific bacterial taxa
that thrive in several different habitats is therefore
important, as they may serve as mediators for ARGs in
crossing ecological dispersal barriers. However, to com-
prehend the flow of ARGs between environments, iden-
tifying ARGs that are widespread in both the human
microbiome and other habitats is important. These are
also less likely to contribute substantially to future
health risks associated with novel recruitments of resist-
ance determinants from the environment [22].
Antibacterial biocides and metals may also contribute

to the promotion of antibiotic resistance via co-selection

[26]. Resistance genes to such compounds are occasion-
ally co-located with ARGs on MGEs such as plasmids,
integrons and transposons [27], which enable their
transfer within bacterial cells, between bacterial species
and between environments with sufficient ecological
connectivity. However, the abundance and diversity of
MGEs and resistance genes to biocides and metals in
environmental, animal and human microbial communi-
ties are poorly investigated to date. Tracking of ARGs,
MGEs and resistance genes to potentially co-selective
agents across human, animal and external environments
can contribute to the understanding of the ecology and
epidemiology of antibiotic resistance and uncover the
relevance of environmental bacteria in the spread and
transfer of antibiotic resistance to humans.
Earlier efforts have estimated the distribution and rela-

tive abundance of ARGs across multiple environments
using 32 [28] and 71 [29] metagenomic datasets gener-
ated on 454 and Sanger sequencing platforms. Such
small sample sizes, low sequencing depth and/or non-
stringent criteria for resistance gene detection make it
difficult to generalize results. Recently, Fitzpatrick and
Walsh [30] reported the distribution and relative abun-
dance of ARGs across environments using 432 metage-
nomic datasets with highly variable sequencing depths
generated by a range of different sequencing platforms.
However, comparisons of datasets generated on different
sequencing platforms is not trivial as properties such as
total read number, base pair volume, and average read
length produced by different sequencing platforms vary
substantially and indirectly influence the abundance
counts, making comparisons ambiguous [29].
In contrast, we have in this study characterized broad

types of environments with regard to abundance and
diversity of resistance genes to antibiotics, biocides and
metals, as well as markers of MGEs, with the ultimate aim
to identify environments which could act as transmission
routes and sources for ARGs to pathogens. To achieve
this, we have also identified similarities and differences of
antibiotic resistomes and bacterial taxa distributions
between environments. To allow a comprehensive and
comparable analysis, we conducted a large-scale metage-
nomic survey and quantitative comparison using 864
deeply sequenced metagenomes, all generated on Illumina
sequencing platforms, from humans, animals and a range
of external environments.

Results
The abundance and richness of ARGs across
environments
The presence and relative abundance of 325 known
ARG types, 131 known biocide/metal resistance gene
types and 17 known MGEs were investigated in 864
metagenomes. The median relative abundance of ARGs
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was 0.035 copies per 16S ribosomal RNA (rRNA). The
median richness, calculated as the total number of
unique resistance genes per 10 million reads, was 5. The
relative abundance and richness showed large variability,
both between and within environments (Fig. 1).

Antibiotic-polluted environments have the highest
abundances of ARGs
Environments affected by pollution from pharmaceutical
manufacturing were not only rich in ARGs but also

carried the highest relative abundance of ARGs of all inves-
tigated environments (Fig. 1a). In particular, we identified
exceptionally high relative abundances of the sulfonamide
resistance gene sul2 and aminoglycoside resistance genes
aph(6)-Id and aph(3”)-Ib together with a set of resistance
genes to quinolones (qnr) and beta-lactams (Additional file
1: Figure S1). The exact quantitative estimates of resistance
genes should, however, be interpreted with caution
since DNA from 7 out of 11 metagenomes from
pharmaceutically polluted environments were amplified

a b c

d e f

Fig. 1 Relative abundance and richness of resistance genes to antibiotics, biocides and metals, as well as mobile genetic elements across environments.
The upper row shows the relative abundance of a antibiotic resistance genes (ARGs), b biocide/metal resistance genes (BMRGs) and c mobile genetic
elements (MGEs). The plots in the second row show the richness of d antibiotic resistance genes, e biocide/metal resistance genes and fmobile genetic
elements. The relative abundance and richness are presented with the median (central black horizontal line); 25th and 75th percentiles (box) and
whiskers extend from each end of the box to the most extreme values within 1.5 times the interquartile range from the respective end. Whiskers data
points beyond this range are displayed as small black circles
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before sequencing, which can potentially introduce bias.
The relative abundances of ARGs in wastewater/sludge
were also higher (0.17 copies per 16S rRNA on average)
compared to most other environmental habitats (sedi-
ment, water, soil and mine; 0.002–0.02 copies per 16S
rRNA on average) all of which are likely less impacted by
human faecal residues. Air from Beijing smog (see below),
pharmaceutically polluted (38.9 different ARG types) and
wastewater/sludge (19.4 different ARG types) environ-
ments carried more diverse sets of ARGs than did meta-
genomes from other external environments (1.6–3.3
different types of ARGs), animals (11.8 different ARG
types) and humans (1.0–16.6 different ARG types)
(Fig. 1d). Note that these estimates only refer to genes
identical or highly similar to known ARGs.

Urban air has high abundance and diversity of ARGs
Microbial communities from Beijing smog harboured
the highest richness of known ARGs (64.4 different ARG
types), as well as the highest bacterial richness of all
environments (Fig. 2a). The relative abundance was
however on the same level as the human gut and waste-
water/sludge (0.3 copies of ARGs per 16S rRNA). To
investigate if the high ARG richness was a general fea-
ture of air microbiomes, we compared the resistome
profile of Beijing smog samples to indoor and outdoor
air samples (generated on the 454 sequencing platform)
from houses, office buildings and hospitals located in

New York and San Diego [31]. After normalizing for the
very large differences in sequencing depth between the
two datasets (using down-sampling), the air micro-
biomes from the US cities showed comparable relative
abundances of ARGs. However, the richness of ARGs
was higher in Beijing smog than in the air samples from
US cities with the exception of office indoor air samples
(Additional file 1: Figure S2). Notably, the Beijing smog
metagenomes contained several resistance genes to car-
bapenems, a class of last resort antibiotics, including
IND, GES, IMP, OXA-50, OXA-51 and OXA-58 beta-
lactamase gene types (Additional file 2: Table S1).

Human microbiota has high abundance and diversity of
ARGs but low taxonomic diversity
The human microbiomes carried on average higher relative
abundances of ARGs than most of the investigated external
environments, with the exceptions of wastewater/sludge,
pharmaceutically polluted environments and Beijing smog.
Within human body sites, relative abundances and richness
of ARGs were highest in the gut (Fig. 1a, d). Notably, the
human gut also contained a higher ARG richness (16.6
different ARG types) compared to samples from animal
sources (11.8 different ARG types), but their relative abun-
dance level was similar (0.26 copies ARGs per 16S rRNA).
Taxonomic richness, measured as the unique number of
genera per 10 million reads, was consistently low in human
microbiota (Fig. 2a). When looking at all types of

a b c

Fig. 2 Diversity (richness) of taxa and relationship between richness of bacterial genera and resistance genes expressed per 10 million reads. a
Richness of bacterial genera is presented with the median (central black horizontal line); 25th and 75th percentiles (box) and whiskers extending
from each end of the box to the most extreme values within 1.5 times the interquartile range from the respective end. Whiskers data points beyond this
range are displayed as small black circles. b Genus richness versus richness of antibiotic resistance genes (Spearman’s correlation coefficient = 0.073, p=
0.0319). c Genus richness versus richness of biocide/metal resistance genes (Spearman’s correlation coefficient = 0.462, p< 0.001). Richness values were log-
transformed before performing Spearman’s rank correlation. A value of 1 was added to the richness matrix to avoid zeros in log-transformed richness
values in the correlation test
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environments together, the ARG and taxonomic richness
showed a weak correlation (Fig. 2b; Spearman’s correlation
coefficient = 0.073, p = 0.0319).

Tetracycline resistance dominates human and animal
microbiomes
We also analysed the abundance distribution of the classes
of ARGs across humans, animals and external environ-
ments (Fig. 3). Overall, genes providing resistance to tetra-
cycline were the most common type of ARGs across
environments. The human gut, oral and urogenital anti-
biotic resistomes were dominated by resistance genes to tet-
racyclines and macrolides, while the resistome of skin and
airways had a wide distribution of resistance gene classes.
Notably, over 90 % of the resistance genes identified in
animal-associated metagenomes provided resistance to tet-
racyclines. Furthermore, in contrast to human and animal
sources, external environments harboured much higher
relative abundances of beta-lactam resistance genes. Waste-
water/sludge and pharmaceutically polluted environments
had higher relative abundances of sulfonamide resistance
genes than other types of environments did. Notably, more
than 99 % of the ARGs from pharmaceutically polluted en-
vironments provided resistance to sulfonamides, aminogly-
cosides and quinolones, but behind this dominance, a large
diversity of ARGs was still present. Urban air from Beijing
harboured a comparatively even distribution of resistance
genes to different classes of antibiotics.

Many ARGs are widespread across environments
Out of the 325 horizontally transferable ARG types ana-
lysed, 203 ARG types were detected at least once in this

study (Additional file 3: Table S2). Out of these 203
ARG types, 12 (6 % of the detected ARGs) were found
in at least 9 out of 13 investigated environments and
could therefore be considered ‘widespread’. These
included resistance genes to aminoglycosides [ant(3”)-
Ia, aph(3’)-Ib, aph(3’)-IIa and aph(6)-Id], macrolides
[erm(B)], beta-lactams (TEM) and tetracyclines [tet(32),
tet(M), tet(O), tet(Q), tet(W) and tet(X)]. Furthermore,
genes widespread in the human microbiome (four out
of five body sites) included the aminoglycoside resist-
ance genes [aph(3’)-Ia, aph(3’)-Ib and aph(6)-Id], tetra-
cycline resistance genes [(tet(Q), tet(W), tet(O), tet(M),
tet(32) and tet(37)] and macrolide resistance genes
[erm(B) and erm(X)] (Additional file 3: Table S2). Simi-
larly, a set of resistance genes to aminoglycosides
[ant(2”)-Ia, ant(3”)-Ia, aph(3”)-Ib and aph(3”)-IIa],
beta-lactams (TEM and CMY2), quinolones (qepA), tet-
racyclines [tet(32), tet(C), tet(O), tet(W), tet(X) and
tetB(P)] and macrolides [vat(F)] were widespread (de-
tected in five out of seven) across external environ-
ments. Over half of the ARGs were only detected in
external environments (57.5 %), while 20.5 % were
found in human, animal and at least one of the external
environments (Additional file 1: Figure S3). Interest-
ingly, only 4.5 % of the ARGs were only found in the
microbiomes of animals and/or humans. However,
3.5 % of all detected ARGs were found both in animals
and at least one of the external environments, whereas
14 % of the detected ARGs were found in both humans
and at least one external environment.

Biocide and metal resistance genes are most common in
external environments
The relative abundances of biocide and metal resist-
ance genes were, in contrast to ARGs, higher in most
external environments than in human and animal
microbiomes (Fig. 1b). Similarly, the richness of bio-
cide and metal resistance genes was higher in all in-
vestigated external environments than in human body
sites and animals, with Beijing smog having the highest
richness of biocide and metal resistance genes (Fig. 1e).
Within the human microbiome, oral and skin habitats
showed higher richness of biocide/metal resistance
genes than other body sites did. There was a strong
correlation between the richness of biocide/metal re-
sistance genes and the genus richness (Spearman’s cor-
relation coefficient = 0.469, p < 0.001) (Fig. 2c). We
observed no correlation between the richness of ARGs
and biocide/metal resistance genes (Spearman’s correl-
ation coefficient = −0.015, p = 0.645), even after con-
trolling for the effect of taxonomic richness (partial
correlation coefficient = −0.056, p = 0.097) (Additional
file 1: Figure S4).
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Human microbiota carries low abundance and richness of
MGEs
The relative abundances of known MGEs were found to
be highest in environments polluted by discharges from
pharmaceutical production and in wastewater/sludge
(Fig. 1c). In contrast, human and animal microbiomes
carried much lower abundances of MGEs. Similarly, the
richness of MGEs was found highest in pharmaceutically
polluted environments and wastewater/sludge and lowest
in humans and animals (Fig. 1f). Notably, the MGE rich-
ness was especially low in the human microbiome, which
was dominated by the transposases ISCR2, ISCR5 and
ISCR8 and integron-associated integrase class 1 (intI1).
However, some other classes of ISCRs, such as class of 1, 4,
6, 7 and 14, and most classes of integrases (except intI1),
were found in very low frequencies (Additional file 1:
Figure S5). This was in contrast to the external environ-
ments where almost all types of investigated, known MGEs
were detected in relatively high abundances.

Resistance profiles and taxonomic compositions are
structured by environment
The resistomes and the taxonomic compositions of the
different environments were further analysed using
principal component analyses (Fig. 4). Most investigated

environmental, human and animal samples clustered dis-
tinctly but with some overlap. Samples from similar envi-
ronments mostly clustered together independently of their
geographical locations. Soil samples showed a higher degree
of variation than did samples from other environments. In
terms of ARG profiles, human and animal samples clus-
tered together (Fig. 4a). Similarly, ARG profiles of wastewa-
ter/sludge and environments with pharmaceutical pollution
clustered together while Beijing smog had distinctly isolated
profiles. Within humans, the ARG profiles of gastrointes-
tinal, oral and urogenital samples separated from each
other, whereas skin and airways samples clustered together
but separately from other habitats (Fig. 4d). For biocide and
metal resistance gene profiles, oral samples formed an iso-
lated cluster while samples from external environments
clustered separately from humans and animals (Fig. 4b, e).
However, samples from humans and animals overlapped
extensively.
Similar to the biocide and metal resistance gene

profiles, the taxonomic profiles of human and animal
samples partially overlapped but were separated from
environmental samples (Fig. 4c). In contrast, human
body sites were clustered by habitat. Notably oral and
gastrointestinal samples were separated from skin, air-
ways and urogenital samples (Fig. 4f ).

a

d

b

e

c

f

Fig. 4 Principal component analysis of resistance genes and bacterial genera. The upper row shows the variation of a antibiotic resistance genes,
b biocide/metal resistance genes and c bacterial taxa (genus level) among samples from all investigated environments, including human body
sites and animals. The plots in the second row show the variation of d antibiotic resistance genes, e biocide/metal resistance genes and f bacterial
genera among samples from the human microbiota only
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Beta-diversity of resistance genes and taxa
The between-sample diversity (i.e. beta-diversity) of both
ARGs and taxa differed between environments, but there
was no consistent difference between human and exter-
nal environments (Fig. 5; Additional file 4: Table S3). In
contrast, the beta-diversity of biocide and metal resist-
ance genes was lower in external environments, except
for soils. Furthermore, soil had a higher beta-diversity of
taxa than all other environments. The low beta-diversity
of both pharmaceutically polluted environments and
Beijing smog reflects that the same, diverse set of ARG
were present across all samples, which for both environ-
ment types came from a limited geographical region.
Beta-diversity was further partitioned into ‘turnover’

(i.e. replacement of genes or taxa between samples) and
‘nestedness’ (i.e. loss of nested genes or taxa between
samples) components [32]. For ARGs, turnover ex-
plained the most of the beta-diversity in soil, sediment,
wastewater/sludge and airways (Fig. 5). Turnover also
explained most of the biocide and metal resistance gene
beta-diversity in soil. In contrast, for most of the human
and animal microbiomes, nestedness contributed more
to beta-diversity than turnover. This suggests that the
resistome varies across soil and wastewater/sludge mi-
crobial communities due to the presence of new individ-
ual resistance genes in each additional sample taken
from the same environment type, whereas a larger set of

resistance genes are shared between samples from hu-
man and animal microbiomes.

Resistome and taxonomic similarity between
environments
Though ARGs detected in the human gut were often
shared with animals (71 %, 37 ARGs) and wastewater/
sludge (62 %, 32 ARGs), just over 40 % of ARGs de-
tected in wastewater/sludge were shared with the human
gut (32 ARGs) and animals (36 ARGs) (Fig. 6a). More-
over, soil, water and sediment microbial communities
shared much lower numbers of ARGs with the human
microbiome than with other investigated habitats. For
example, around 25 % of ARGs detected in the human
gut microbiome was shared with soil (12 ARGs) and
water (14 ARGs) microbiomes.
Large numbers of bacterial genera (48–84 % of total

detected genera) were shared between external environ-
ments (Fig. 6b). In contrast, only 31 % of the total de-
tected genera were shared between environmental and
human microbiotas (Additional file 1: Figure S3). The
taxonomic composition of the human microbiota largely
resembled that described previously [33]. Interestingly,
only 28.5 % of the genera found in wastewater/sludge
were shared with the human gut (237 genera), whereas
65 % of genera found in wastewater/sludge were shared
with animals (542 genera) (Fig. 6b). Two thirds of the
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Fig. 5 Beta-diversity of resistance genes and taxa. The figure showing beta-diversity of a antibiotic resistance genes (ARGs), b biocide/metal resistance
genes (BMRGs) and c bacterial taxa (family level) across environments. Beta-diversity is expressed as the Sørensen-based multiple-site dissimilarity and
is further partitioned into turnover and nestedness

Pal et al. Microbiome  (2016) 4:54 Page 7 of 15



genera found in the human gut or animals were shared
with wastewater/sludge. It should be noted that a large
proportion of bacteria from external environments (on

average, 63.9 %) and animals (56.3 %) could not be
classified even to the genus level (Additional file 1:
Figure S6 and S7).
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Fig. 6 Shared resistance genes and taxa between environments. Each number in the co-ordinate grid shows the absolute number of a antibiotic
resistance genes or b bacterial genera that are shared between the environments listed on the horizontal axis and the environments listed along
the vertical axis. The colour scale reflects the degree of sharing (percent of resistance genes or taxa from the environment on the horizontal axis
present in the environment on the vertical axis)
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Discussion
To the best of our knowledge, this is the most compre-
hensive characterization to date of antibiotic, metal and
biocide resistomes, as well as markers of MGEs, cover-
ing human, animal and external environments. Environ-
ments polluted with discharges from pharmaceutical
production and Beijing smog carried the largest relative
abundance and diversity of ARGs, followed by wastewa-
ter/sludge, human and animal microbiomes with inter-
mediate figures, and considerable lower counts in other
external environments. The explanation behind the high
relative abundance of ARGs in pharmaceutically polluted
environments is most likely an exceptionally strong, pre-
vailing antibiotic selection pressure, whereas the high di-
versity of resistance genes, taxa and MGEs found in
smog is more likely a consequence of air coming into
contact with many different environments with different
types of bacteria. Conceivably, depending on the host
bacterium, ARGs could have other functions that are not
directly related antibiotic resistance, which could contrib-
ute to their abundance in different environments [34, 35].
Regardless of the causes, our observations suggest that
urban air and pharmaceutically polluted environments
warrant further investigation of their roles as reservoirs
and point sources of ARGs. Previous meta-analyses of the
diversity of ARGs in metagenomes from different environ-
ment types have not included air and pharmaceutically
polluted environments. Hence, their potential importance
has largely gone unobserved [28–30]. Human and animal
microbiomes stood out by having the lowest relative abun-
dance and diversity of both MGEs and biocide/metal re-
sistance genes. This may, at least partially, be explained by
lower taxonomic diversity in these communities. The
much larger taxonomic diversity, together with a multi-
tude of mechanisms for genetic mobility and larger beta-
diversity of ARGs in external environments, supports the
hypothesis that these form vast sources of unknown resist-
ance genes, with potential to be transferred to pathogens
in the future.
Recurring smog events in Beijing and other megacities

are already growing public health issues [36, 37]. We in-
terpret the high relative abundances of ARGs in smog as
a reflection of that air comes into direct contact with
many other types of environments, thereby accumulates
a highly diverse collection of bacteria, including resistant
ones. This is further supported by a very high taxonomic
richness in these samples. We are not aware of any other
deeply sequenced shotgun data from air, preventing us
from generalizing our results to other air environments.
When we investigated metagenomes of air samples from
the USA, albeit produced by 454 technology to a consid-
erably smaller sequencing depth, we found preliminary
support for similarly large relative abundances of ARGs.
However, the diversity in the US air samples was overall

lower than in Beijing smog. Using culture-based ap-
proaches, air samples from wastewater treatment plants,
animal slaughter houses and swine feeding operations have
earlier been shown to carry resistant bacteria [38–40]. In
addition, aerial transport of antibiotic-resistant bacteria
from cattle feed yards was recently proposed [41], but in
general, the primary sources and the importance of resist-
ant bacteria in urban air are not clear. Taken together, this
highlights that air transmission is, to this point, an under-
investigated route for the spread of resistance. Although we
do not know the proportion of live bacteria in smog,
neither the bacterial hosts of the ARGs, we think that
the finding of resistance genes such as IND, GES, IMP,
OXA-50, OXA-51 and OXA-58 carbapenemases calls
for concern given the growing global threat of
carbapenem-resistant Enterobacteriaceae [42, 43]. That
said, the Beijing smog samples were collected from a single
smog event that lasted for 5 days (January 10–14, 2013)
[36], and thus, air samples from more types of environ-
ments with different potential sources of bacteria taken at
other locations would provide a clearer picture regarding
air as a dissemination route of antibiotic resistance.
It seems unlikely that antibiotic selection is an import-

ant factor shaping the air resistome, given the limitations
for most bacteria to grow in air. In other environments,
the ARG profiles may be more influenced by direct
selection from antibiotics or other chemicals. This
includes environments polluted by wastewater from the
manufacturing of antibiotics [44]. Recent culture-
dependent and culture-independent studies suggest that
these indeed are the most extreme environments
described to date on earth, not only when it comes to
multi-resistance to antibiotics but also in terms of carry-
ing integrons of classes 1 and 2, known to often be asso-
ciated with ARGs [45–47]. Bacteria from a polluted lake
had the ability to transfer novel resistance plasmids to E.
coli, stressing the potential role of industrial antibiotic
pollution in the emergence of resistance in pathogens
[48]. This raises strong concerns about the risks for
human health associated with discharges of high levels
of antibiotics and warrants both actions to reduce dis-
charges [49] and deeper investigation of the role of
pharmaceutical pollution in the emergence and trans-
mission of resistance.
Humans and domesticated animals are regularly ex-

posed to selective concentrations of antibiotics during
therapy, inevitably driving resistance. Accordingly, the
strong dominance of tetracycline resistance genes in the
animal microbiomes, also identified by Durso et al. [28],
may partially be explained by current and historical ex-
posure to selective concentrations of tetracyclines, as
this is the most commonly used antibiotic class for ani-
mals worldwide [50, 51]. Whereas tetracycline is known
to promote enrichment of tet-genes in communities to a
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larger extent than it promotes other classes of ARGs
[52], co-selection between classes may also be important.
Thus, based on the type of ARGs found, it is not
straightforward to conclude which classes of antibiotics
that could have provided a selection pressure. Back-
ground knowledge of resistance genes that usually occur
in a given environment type allows identification of devi-
ations from the norm. Therefore, overrepresentation of
resistance genes could provide clues to what selective
agents that could be present. In environments other
than human, animal and pharmaceutically polluted ones,
it is considerably less clear if the levels of antibiotics, or
for that sake also metals and biocides, are sufficiently
high to select for ARGs. Relatively strong correlation be-
tween richness of genera and biocide/metal resistance
genes does not support a role of environmental-specific
selection pressures, but does of course not exclude that
it occurs in individual cases. Note that the correlation
with taxonomic diversity is considerably lower for
(known) ARGs, as ARG diversity can be low despite very
large taxonomic diversity. In contrast to ARGs, relative
abundance and diversity of biocide/metal resistance
genes were higher in environmental microbiomes than
in the human microbiome, which is highly consistent
with our previous study of antibiotic, biocide and metal
resistance genes on plasmids from bacterial isolates of
multiple environments [27]. Analyses of metagenomes
as performed here, compared to studies of isolates, allow
insight also into the uncultivable portion of different
communities but pays the price of not providing the
genetic context of resistance genes. Short-read metage-
nomic assembly approaches for determining the genetic
context of resistance genes in complex metagenomes
still face many technical limitations mainly because re-
sistance genes occur in multiple contexts [47, 53]. The
recently developed epicPCR methodology has the poten-
tial to address at least some of these shortcomings of
metagenomics [54].
The variable abundances and types of resistance genes

are only partially governed by the selection pressure
within each environment type. Transmission between
environments, primarily from human and animal
sources, which typically carry larger relative abundances
of ARGs than most external environments, are likely to
play an important role as well [55]. This is a particularly
tenable explanation for the relatively high abundance
and diversity of ARGs in sewage/sludge. In this type of
environment, the complex mixtures of antibiotics, deter-
gents and metals could also, if present at sufficiently
high levels, provide a selection pressure for antibiotic-
resistant bacteria [56], but clear-cut evidence for this is
still lacking [57]. Some of the high relative abundance
and diversity of ARGs in the human microbiota is very
likely a consequence of transmission between humans

rather than a direct effect of antibiotic selection pressure
in the studied individuals. This interpretation does not
only fit the general view of how humans tend to share
microbiota with each other but also supported in our
analysis by the comparably low and highly nested beta-
diversity of ARGs found in the human microbiota (ex-
cept airways) compared to, e.g. soil. Evidence for the role
of transmission in determining the ARG profiles of hu-
man-associated bacteria can easily be seen on larger geo-
graphical scales, where we find dominance of certain
ARGs in human pathogens from some regions, while
other genes with similar resistance function dominate in
other countries, for example, KPC carbapenemases in the
USA and NDM-type carbapenemases in India [58, 59].
In addition to selective pressures and transmission, the

different biotic and abiotic conditions associated with
different environments also favour certain types of
bacteria, indirectly favouring resistance genes that tend
to be associated with those taxa. Data on taxonomic
composition may therefore provide possible explanations
to the overrepresentation of specific resistance genes
that are independent of selective pressures or recent
transmission events. In addition, a high degree of taxo-
nomic similarity across environments can provide clues
to their potential ecological connectivity [60, 61]. Strong
differences in biotic and abiotic conditions limit the abil-
ity of bacteria, and hence ARGs, to transfer and establish
themselves in new environments, even if the physical
distance is small, as illustrated, for example, by the dif-
ferences in both taxa and ARGs between human body
sites. The opposite is probably the explanation to why
human gastrointestinal samples and those of animal ori-
gin (of which many are gastrointestinal) have a relatively
large overlap in terms of ARGs and taxa. It would seem
reasonable to assume that wastewater/sludge would
harbour ARGs and taxa similar to those found in human
gut simply because human faeces largely end up in sew-
age. However, we found that the ARGs and taxonomic
profiles in wastewater/sludge microbiota had limited
similarity to the human gut microbiota, as also reported
by previously [53, 62–64], and was also much more vari-
able between samples. An important explanation behind
the discrepancy between faeces and wastewater is likely
the difference in oxygen availability. Another study of
ours shows that the strongest shift between the bacterial
communities of human gut and wastewater microbiota
is the almost complete elimination of the obligate anaer-
obes that dominate the gut microbiota [53].
Based on metagenomic analysis of known MGEs, envir-

onmental bacteria seem to be better adapted to transfer
genes than those thriving on or in our bodies. Within the
human microbiome, class 1 integrases (intI1) and ISCR
transposases such as ISCR2, ISCR5 and ISCR8 were com-
mon, whereas external environments harboured both
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greater diversity and relative abundances of MGEs. This
was observed despite the fact that MGEs are studied at
much greater depth in human pathogens, which in turn
would be expected to bias estimates towards more MGEs
in human-associated environments. Some of the integron-
associated integrases and ISCR transposases found in en-
vironmental metagenomes are often also associated with
ARGs in clinical isolates [65, 66], whereas others have, at
least not yet, been associated with resistance. Neverthe-
less, the widespread distribution of MGEs across external
environments suggests ample opportunities for external
environments to contribute to the mobilization and fur-
ther transmission of ARGs.
Across all metagenomes, less than 1.5 % of all detected

ARGs were exclusively found in the human microbiome.
On the contrary, 57.5 % of the ARGs were only detected
in metagenomes from environmental samples. Even
though the majority of the investigated ARGs have been
initially found in pathogens, our analysis suggests that
most of them are still relatively rare in the human
microbiota. Environmental samples generally contained
a wider distribution of resistance genes to a more diverse
set of antibiotics classes. For example, the relative abun-
dance of beta-lactam resistance genes was much larger in
external environments than in human and animal micro-
biomes. This suggests that the external environment
harbours many more varieties of resistance genes than the
ones currently known from the clinic. Indeed, functional
metagenomics has resulted in the discovery of many novel
ARGs in external environments [12, 55, 67, 68]. This all
fits well with an overall much higher taxonomic diversity
of environmental microbial communities. In terms of con-
sequences associated with the potential transfer of ARGs
to human pathogens, we argue that unknown resistance
genes are of greater concern than those already known to
circulate among human-associated bacteria [22].

Conclusions
We used databases on known genes to estimate the overall
structure and diversity of antibiotic resistomes and taxa in
deeply sequenced metagenomes across environments,
including humans and animals. Most importantly, we
described the potential for many external environments,
such as environments subjected to pharmaceutical pollu-
tion, air and wastewater/sludge to serve as hotspots for
resistance development and/or transmission of ARGs. In
addition, our results indicate that these environments may
play important roles in the mobilization of yet unknown
ARGs and their further transmission to human pathogens.
Taken together, to provide guidance for risk-reducing
actions, we suggest strict regulatory measures of waste
discharges from pharmaceutical industries and encourage
more attention to air in the transmission of antibiotic
resistance.

Methods
Datasets and metadata
We included 864 metagenomes in this study, all gener-
ated using shotgun sequencing by Illumina technology
and with sequencing depth of over 10 million reads per
metagenome to allow more accurate determinations of
relative gene counts and detection of less common
resistance genes, MGEs and taxa [69].
In total, 358 publicly available metagenomes (Additional

file 5: Table S4) spanning a range of external environments
including soil (n = 200), water (n = 45), sediment (n = 60),
mine (n = 7), wastewater/sludge (n = 32) and a Beijing
smog event (n = 14), as well as 145 animal-associated meta-
genomes, were retrieved from MG-RAST (http://metagen-
omics.anl.gov/) [70] on 8 February 2015. We excluded
datasets from plant-associated environments as only two
samples passed our selection criteria. In addition to the
environmental metagenomes, 350 metagenomes covering
five main human body sites including gastrointestinal tract
(n = 100), oral (n = 100), skin (n = 50), airways (n = 50) and
urogenital tract (n = 50), from healthy adults, were re-
trieved from the Human Microbiome Project repository
(http://hmpdacc.org/) [71] on 16 August 2015 (Additional
file 6: Table S5).
Since MG-RAST lacked any deeply sequenced meta-

genomes from environments subjected to antibiotic pol-
lution, and this is an apparent risk environment [49], we
also conducted shotgun metagenomic sequencing of 11
sediment samples collected from an Indian river and
two lakes polluted by pharmaceutical production, to rep-
resent an external environment where direct antibiotic
exposure is apparent (Additional file 7: Table S6).
Finally, all metagenomes analysed in this study were cat-
egorized into 13 different environment types based on
their metadata, covering a wide ecological versatility of
external, animal and human body habitats.
The number of air samples (Beijing smog) was limited.

We therefore searched for other, high depth Illumina
shotgun metagenomic data in different public repositories
but were unable to find any. Thus, to enable comparisons
with other air environments, we also analysed much
smaller metagenomic air datasets generated using 454
technology from US cities, representing both outdoor and
indoor environments from homes, offices and hospitals in
New York and San Diego [31]. When comparing these
samples to the Beijing smog samples, all samples were
down-sampled to 350,000 reads per metagenome.

Metagenomic sequencing
Eleven sediment samples from an Indian river and two
lakes polluted by wastewater from pharmaceutical pro-
duction were prepared for metagenomic sequencing (see
[45] and [47] for details about sampling sites and proce-
dures). Genomic DNA was extracted from the sediment
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samples using the PowerSoil® DNA Isolation Kit (MO
BIO, Carlsbad, CA, USA) according to the manufac-
turer’s instructions. DNA purity and concentrations
were measured using a NanoDrop™ spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Extraction of
sufficient amounts of high-quality DNA from the pol-
luted sediments was a challenge, likely due to chemicals
in the sediment material interfering with the DNA ex-
traction process. Therefore, extracted DNA was ampli-
fied for seven out of 11 samples using the REPLI-g Mini
Kit (Qiagen, Hilden, Germany), according to the manu-
facturer’s instructions. Metagenomic shotgun sequencing
libraries (101 bp paired-end) were prepared using the
TrueSeq DNA Kit for multiplexing and sequenced on
the Illumina HiSeq2000 sequencing platform.

Pre-processing of dataset
Seqtk (v1.0-r82-dirty; https://github.com/lh3/seqtk) [72],
which uses the modified Mott’s trimming algorithm, was
used with the default error threshold of 0.05 for trimming
low-quality reads, maintaining reads with minimum se-
quence length of 75 bp from all metagenomes. A few
metagenomes from MG-RAST were only available in
FASTA format without quality information. For those
metagenomes, reads that had more than 10 % ambiguous
bases were discarded. After quality filtering, 9.2 Tb of
sequence data were left for downstream analysis.

Resistance gene analysis
As the main rationale of this study was to identify
potential risks for transmission of ARGs, we studied only
known horizontally transferrable ARGs. Therefore,
sequences of antibiotic resistance proteins and markers
of MGEs such as integron-associated integrases (intI)
and ISCR transposases were retrieved from the Resqu
database (version 1.1; http://www.1928diagnostics.com/
resdb/) [73], containing 3018 non-redundant protein
sequences (divided into 325 resistance gene types)
reported to be horizontally transferred between at least
two different bacterial species and conferring verified re-
sistance phenotypes. For resistance genes to antibacterial
biocides and metals, we only studied the mobile resist-
ance genes that frequently occur on plasmids. Therefore,
only plasmid-borne antibacterial biocide and metal
resistance protein sequences were retrieved from the
BacMet predicted database (version 1.1; http://bacmet.bio
medicine.gu.se/) which contains 40,556 non-redundant
protein sequences (out of which 9173 are found on plas-
mids correspond to 131 biocide/metal resistance gene
types) corresponding to resistance genes towards 43
chemical classes including 23 metals and 58 antibacterial
biocides [74]. Note that our approach only detected resist-
ance genes and MGEs that were highly similar to the
reference sequences in the databases. Furthermore, as

metagenomics does not link the genes to its larger genetic
context or host, it cannot be inferred that the genotype is
directly reflected in a corresponding resistance phenotype.
The quality-filtered dataset of 864 metagenomes was

subjected to similarity searches against the BacMet and
Resqu databases using USEARCH (v8.0.1445) [75]. To
retrieve only the best matches, the entire coverage of the
query reads matched against a target gene with a sequence
identity threshold of 90 % was set (options “-usearch_glo-
bal -id 0.9 –maxaccepts 1 -threads 16”). To avoid bias due
to sequence length variations of resistance genes in the
databases, the gene abundances were calculated by count-
ing the number of raw read matches to each resistance
gene or MGE, followed by normalization by the length of
the respective gene. Subsequently, the length-normalized
values were further normalized to 16S rRNA gene abun-
dances divided by the average length of the 16S rRNA
gene to minimize variance caused by differential extrac-
tion and analytical efficiencies and differences in back-
ground bacterial abundances [47]. The number of 16S
rRNA copies in a genome can vary, usually between 1 and
15 [76]. Depending on the composition of microbial
communities, the average 16S rRNA copy number may
vary as well, but likely less so than between genomes.
Normalization using single-copy genes such as recA, rpoB,
gapA, gyrB, rpoA or pyrH has a potential to reduce the
between-sample variability and more directly reflect the
abundance of bacterial cells in a sample [77, 78]. Ac-
cordingly, such genes, singly or in combination, have
been suggested as alternatives to 16S rRNA for normal-
izing gene abundances in metagenomes to the bacterial
fraction [79, 80]. However, many recent metagenomics
studies investigating relative ARG abundances, includ-
ing the present, either normalize simply to the total
number of reads [29, 30, 55, 81–83] or to 16S rRNA
[53, 84–86]. Still, we foresee that the use of single-copy
genes for normalization could become more widely
adapted in the future and thereby further improve the
estimation of the relative abundance of resistance genes
in bacterial communities.
Diversity of resistance genes, MGEs and bacteria was

calculated using subsamples of 10 million high-quality
reads from each metagenome. Although this sequence
depth allow stratification of gene diversity across envi-
ronments, rare resistance genes are likely to remain
undetected. To identify the resistance genes that were
shared between different environment types, resistance
gene or taxa sharing matrices were generated using a
weighted-model (both richness and relative abundance
were accounted for) by applying a threshold (detection
limit) for a gene or taxa to be counted as present
(nraw-counts/ntotal-sequenes > Nlowest-raw-counts). If the num-
ber of raw read counts of the resistance gene or
taxa (nraw-counts) in an environment, relative to total
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sequences in the environment type (ntotal-sequences), was
higher than the lowest non-zero relative abundance (Nlo-

west-raw-counts) in the environment type with lowest num-
ber of sequences present, the read count was included.

Taxonomic affiliation
Reads corresponding to the 16S (SSU) rRNA genes were
extracted from all the metagenomes using Metaxa2 (ver-
sion 2.1) [87] for taxonomic assignment with default
options. Taxonomic classification of the extracted bacterial
16S rRNA reads was carried out using the native Metaxa2
database of manually curated entries from SILVA (release
111) [88] and MITOZOA (version 2.0; release 10) [89].
This procedure assigned the reads matching to SSU rRNA
to individual taxonomic levels up to species and/or subspe-
cies level. The taxonomic raw counts of each metagenome
were then normalized to counts per million reads.

Statistical analysis
Beta-diversity was estimated based on metrics consider-
ing the presence/absence data (Sørensen’s (dis)similarity
index) of resistance genes, MGEs and taxa (family level)
according to the approach proposed in [32]). To further
evaluate the ecological processes that drive high/low beta-
diversity of resistance genes and taxa between samples,
beta-diversity was additionally partitioned into ‘turnover’
(i.e. tendency to replace resistance genes or taxa with other
genes or taxa, respectively) and ‘nestedness’ (i.e. the ten-
dency to lose resistance genes or bacterial taxa, respect-
ively) components, where larger numbers expressed larger
diversity. Beta-diversity was computed using the ‘vegan’
statistical package [90] in R (http://www.r-project.org/)
[91]. Heatmaps were generated in R using the ‘gplots’ pack-
age [92] to show the resistance genes and taxa that were
most frequently found in different environments. Correla-
tions between richness of resistance genes and genera were
calculated using Spearman’s rank correlation. Similarly,
partial correlations between richness of ARGs and biocide/
metal resistance genes were calculated, while controlling
for the effect of taxonomic richness, using partial correl-
ation in the R package ‘ppcor’ [93]. Principal component
analysis (PCA) was performed on the log-transformed nor-
malized abundance data in R using the ‘prcomp’ function
and visualised using the statistical package ‘ggplot2’ [94].
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