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Abstract The randomwalk loop soup is a Poissonian ensemble of lattice loops; it has
been extensively studied because of its connections to the discrete Gaussian free field,
but was originally introduced by Lawler and Trujillo Ferreras as a discrete version of
the Brownian loop soup of Lawler and Werner, a conformally invariant Poissonian
ensemble of planar loops with deep connections to conformal loop ensembles (CLEs)
and the Schramm–Loewner evolution (SLE). Lawler and Trujillo Ferreras showed
that, roughly speaking, in the continuum scaling limit, “large” lattice loops from the
randomwalk loop soup converge to “large” loops from the Brownian loop soup. Their
results, however, do not extend to clusters of loops, which are interesting because
the connection between Brownian loop soup and CLE goes via cluster boundaries. In
this paper, we study the scaling limit of clusters of “large” lattice loops, showing that
they converge to Brownian loop soup clusters. In particular, our results imply that the
collection of outer boundaries of outermost clusters composed of “large” lattice loops
converges to CLE.
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1 Introduction

Several interesting models of statistical mechanics, such as percolation and the Ising
and Potts models, can be described in terms of clusters. In two dimensions and at
the critical point, the scaling limit geometry of the boundaries of such clusters is
known (see [7–10,26]) or conjectured (see [14,27]) to be described by some member
of the one-parameter family of Schramm–Loewner evolutions (SLEκ with κ > 0)
and related conformal loop ensembles (CLEκ with 8/3 < κ < 8). What makes
SLEs and CLEs natural candidates is their conformal invariance, a property expected
of the scaling limit of two-dimensional statistical mechanical models at the critical
point. SLEs can be used to describe the scaling limit of single interfaces; CLEs are
collections of loops and are therefore suitable to describe the scaling limit of the
collection of all macroscopic boundaries at once. For example, the scaling limit of
the critical percolation exploration path is SLE6 [8,26], and the scaling limit of the
collection of all critical percolation interfaces in a bounded domain is CLE6 [7,9].

For 8/3 < κ ≤ 4, CLEκ can be obtained [25] from the Brownian loop soup,
introduced by Lawler and Werner [18] (see Sect. 2 for a definition), as we explain
below. A sample of the Brownian loop soup in a bounded domain D with intensity
λ > 0 is the collection of loops contained in D from a Poisson realization of a
conformally invariant intensitymeasureλμ.Whenλ ≤ 1/2, the loop soup is composed
of disjoint clusters of loops [25] (where a cluster is a maximal collection of loops that
intersect each other). When λ > 1/2, there is a unique cluster [25] and the set of
points not surrounded by a loop is totally disconnected (see [1]). Furthermore, when
λ ≤ 1/2, the outer boundaries of the outermost loop soup clusters are distributed like
conformal loop ensembles (CLEκ ) [24,25,29] with 8/3 < κ ≤ 4. More precisely,
if 8/3 < κ ≤ 4, then 0 < (3κ − 8)(6 − κ)/4κ ≤ 1/2 and the collection of all
outer boundaries of the outermost clusters of the Brownian loop soup with intensity
λ = (3κ − 8)(6 − κ)/4κ is distributed like CLEκ [25]. For example, the continuum
scaling limit of the collection of all macroscopic outer boundaries of critical Ising
spin clusters is conjectured to correspond to CLE3 and to a Brownian loop soup with
λ = 1/4.

We note that most of the existing literature, including [25], contains an error in the
correspondence between κ and the loop soup intensity λ. The error can be traced back
to the choice of normalization of the (infinite) Brownian loop measure μ. (We thank
Gregory Lawler for discussions on this topic.) With the normalization used in this
paper, which coincides with the one in the original definition of the Brownian loop
soup [18], for a given 8/3 < κ ≤ 4, the corresponding value of the loop soup intensity
λ is half of that given in [25]—see, for example, Section 6 of [6] for a discussion of
this and of the relation between λ and the central charge of the Brownian loop soup.
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Fig. 1 Schematic diagram of
relations between discrete and
continuous loop soups and their
cluster boundaries. Horizontal
arrows indicate a scaling limit.
In this paper we show the
convergence corresponding to
the bottom horizontal arrow

random walk
loop soup loop soup

Brownian

CLEcluster
boundaries

In [17] Lawler and Trujillo Ferreras introduced the random walk loop soup as a
discrete version of the Brownian loop soup, and showed that, under Brownian scaling,
it converges in an appropriate sense to the Brownian loop soup. The authors of [17]
focused on individual loops, showing that, with probability going to 1 in the scaling
limit, there is a one-to-one correspondence between “large” lattice loops from the
random walk loop soup and “large” loops from the Brownian loop soup such that
corresponding loops are close.

In [19] Le Jan showed that the random walk loop soup has remarkable connections
with the discrete Gaussian free field, analogous to Dynkin’s isomorphism [11,12] (see
also [2]). Such considerations have prompted an extensive analysis of more general
versions of the random walk loop soup (see e.g. [20,28]).

As explained above, the connection between the Brownian loop soup and SLE/CLE
goes through its loop clusters and their boundaries. In view of this observation, it
is interesting to investigate whether the random walk loop soup converges to the
Brownian loop soup in terms of loop clusters and their boundaries, not just in terms of
individual loops, as established by Lawler and Trujillo Ferreras [17]. This is a natural
and nontrivial question, due to the complex geometry of the loops involved and of
their mutual overlaps.

In this paper, we consider random walk loop soups from which the “vanishingly
small” loops have been removed and establish convergence of their clusters and bound-
aries, in the scaling limit, to the clusters and boundaries of the correspondingBrownian
loop soups (see Fig. 1). We work in the same set-up as [17], which in particular means
that the number of loops of the random walk loop soup after cut-off diverges in the
scaling limit. We use tools ranging from classical Brownian motion techniques to
recent loop soup results. Indeed, properties of planar Brownian motion as well as
properties of CLEs play an important role in the proofs of our results.

We note that, while this paper was under review, a substantial improvement of our
main result on the scaling limit of the randomwalk loop soup was announced by Lupu
[21]. The result announced appears to use our convergence result in a crucial way,
combined with a coupling between the random walk loop soup and the Gaussian free
field, and would give the convergence of the random walk loop soup to the Brownian
loop soup keeping all loops.

2 Definitions and main result

We recall the definitions of the Brownian loop soup and the random walk loop soup.
A curve γ is a continuous function γ : [0, tγ ] → C, where tγ < ∞ is the time length
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of γ . A loop is a curve with γ (0) = γ (tγ ). A planar Brownian loop of time length t0
started at z is the process z+ Bt − (t/t0)Bt0 , 0 ≤ t ≤ t0, where B is a planar Brownian
motion started at 0. The Brownian bridge measure μ

�
z,t0 is a probability measure on

loops, induced by a planar Brownian loop of time length t0 started at z. The (rooted)
Brownian loop measure μ is a measure on loops, given by

μ(C) =
∫
C

∫ ∞

0

1

2π t20
μ

�
z,t0(C)dt0d A(z),

where C is a collection of loops and A denotes two-dimensional Lebesgue measure,
see Remark 5.28 of [15]. For a domain D let μD be μ restricted to loops which stay
in D.

The (rooted) Brownian loop soup with intensity λ ∈ (0,∞) in D is a Poissonian
realization from the measure λμD . The Brownian loop soup introduced by Lawler
and Werner [18] is obtained by forgetting the starting points (roots) of the loops. The
geometric properties we study in this paper are the same for both the rooted and the
unrooted version of the Brownian loop soup. Let L be a Brownian loop soup with
intensity λ in a domain D, and let Lt0 be the collection of loops in L with time length
at least t0.

The (rooted) random walk loop measure μ̃ is a measure on nearest neighbor loops
in Z2, which we identify with loops in the complex plane by linear interpolation. For
a loop γ̃ in Z2, we define

μ̃(γ̃ ) = 1

tγ̃
4−tγ̃ ,

where tγ̃ is the time length of γ̃ , i.e. its number of steps. The (rooted) random walk
loop soup with intensity λ is a Poissonian realization from the measure λμ̃. For a
domain D and positive integer N , let L̃N be the collection of loops γ̃N defined by
γ̃N (t) = N−1γ̃ (2N 2t), 0 ≤ t ≤ tγ̃ /(2N 2), where γ̃ are the loops in a random walk
loop soup with intensity λ which stay in ND. Note that the time length of γ̃N is
tγ̃ /(2N 2). Let L̃t0

N be the collection of loops in L̃N with time length at least t0.
We will often identify curves and processes with their range in the complex plane,

and a collection of curves C with the set in the plane
⋃

γ∈C γ . For a bounded set A,
we write ExtA for the exterior of A, i.e. the unique unbounded connected component
of C\A. By HullA, we denote the hull of A, which is the complement of ExtA. We
write ∂oA for the topological boundary of ExtA, called the outer boundary of A. Note
that ∂A ⊃ ∂oA = ∂ExtA = ∂HullA. For sets A, A′, the Hausdorff distance between
A and A′ is given by

dH (A, A′) = inf
{
δ > 0 : A ⊂ (A′)δ and A′ ⊂ Aδ

}
,

where Aδ = ⋃
x∈A B(x; δ) with B(x; δ) = {y : |x − y| < δ}.

Let A be a collection of loops in a domain D. A chain of loops is a sequence of
loops, where each loop intersects the loop which follows it in the sequence. We call
C ⊂ A a subcluster of A if each pair of loops in C is connected via a finite chain
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of loops from C . We say that C is a finite subcluster if it contains a finite number of
loops. A subcluster which is maximal in terms of inclusion is called a cluster. A cluster
C of A is called outermost if there exists no cluster C ′ of A such that C ′ 	= C and
HullC ⊂ HullC ′. The carpet ofA is the set D\⋃

C (HullC\∂oC), where the union is
over all outermost clusters C of A. For collections of subsets of the plane A,A′, the
induced Hausdorff distance is given by

d∗
H (A,A′) = inf

{
δ > 0 : ∀A ∈ A ∃A′ ∈ A′ such that dH (A, A′) < δ,

and ∀A′ ∈ A′ ∃A ∈ A such that dH (A, A′) < δ
}
.

The main result of this paper is the following theorem:

Theorem 2.1 Let D be a bounded, simply connected domain, take λ ∈ (0, 1/2] and
16/9 < θ < 2. As N → ∞,

(i) the collection of hulls of all outermost clusters of L̃N θ−2

N converges in distribution
to the collection of hulls of all outermost clusters of L, with respect to d∗

H ,

(ii) the collection of outer boundaries of all outermost clusters of L̃N θ−2

N converges in
distribution to the collection of outer boundaries of all outermost clusters of L,
with respect to d∗

H ,

(iii) the carpet of L̃N θ−2

N converges in distribution to the carpet of L, with respect to
dH .

As an immediate consequence of Theorem 2.1 and the loop soup construction
of conformal loop ensembles by Sheffield and Werner [25], we have the following
corollary:

Corollary 2.2 Let D be a bounded, simply connected domain, take λ ∈ (0, 1/2] and
16/9 < θ < 2. Let κ ∈ (8/3, 4] be such that λ = (3κ − 8)(6 − κ)/4κ . As N → ∞,
the collection of outer boundaries of all outermost clusters of L̃N θ−2

N converges in
distribution to CLEκ , with respect to d∗

H .

Note that since θ < 2, L̃N θ−2

N contains loops of time length, and hence also diameter,

arbitrarily small as N → ∞, so the number of loops in L̃N θ−2

N diverges as N → ∞.
Theorem 2.1 has an analogue for the random walk loop soup with killing and the
massive Brownian loop soup as defined in [5]; our proof extends to that case.

We conclude this section by giving an outline of the paper and explaining the
structure of the proof of Theorem 2.1. The largest part of the proof is to show that, for
large N , with high probability, for each large cluster C of L there exists a cluster C̃N

of L̃N θ−2

N such that dH (ExtC,ExtC̃N ) is small. We will prove this fact in three steps.
First, let C be a large cluster of L. We choose a finite subcluster C ′ of C such

that dH (ExtC,ExtC ′) is small. A priori, it is not clear that such a finite subcluster
exists—see, e.g., Fig. 2 which depicts a cluster containing two disjoint infinite chains
of loops at Euclidean distance zero from each other. A proof that, almost surely, a
finite subcluster with the desired property exists is given in Sect. 4, using results from
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Fig. 2 A cluster whose exterior
is not well-approximated by the
exterior of any finite subcluster

Sect. 3. The latter section contains a number of definitions and preliminary results
used in the rest of the paper.

Second, we approximate the finite subclusterC ′ by a finite subcluster C̃ ′
N of L̃N θ−2

N .
Here we use Corollary 5.4 of Lawler and Trujillo Ferreras [17], which gives that,
with probability tending to 1, there is a one-to-one correspondence between loops
in L̃N θ−2

N and loops in LN θ−2
such that corresponding loops are close. To prove that

dH (ExtC ′,ExtC̃ ′
N ) is small, we need results from Sect. 3 and the fact that a planar

Brownian loop has no “touchings” in the sense of Definition 3.1 below. The latter
result is proved in Sect. 5.

Third, we let C̃N be the full cluster of L̃N θ−2

N that contains C̃ ′
N . In Sect. 6 we prove

an estimate which implies that, with high probability, for non-intersecting loops in
LN θ−2

the corresponding loops in L̃N θ−2

N do not intersect. We deduce from this that,
for distinct subclusters C̃ ′

1,N and C̃ ′
2,N , the corresponding clusters C̃1,N and C̃2,N are

distinct. We use this property to conclude that dH (ExtC,ExtC̃N ) is small.

3 Preliminary results

In this section we give precise definitions and rigorous proofs of deterministic results
which are important tools in the proof of our main result. Let γN be a sequence of
curves converging uniformly to a curve γ , i.e. d∞(γN , γ ) → 0 as N → ∞, where

d∞(γ, γ ′) = sup
s∈[0,1]

|γ (stγ ) − γ ′(stγ ′)| + |tγ − tγ ′ |.

The distance d∞ is a natural distance on the space of curves mentioned in Section 5.1
of [15].Wewill identify topological conditions that, imposed on γ (and γN ), will yield
convergence in the Hausdorff distance of the exteriors, outer boundaries and hulls of
γN to the corresponding sets defined for γ . Note that, in general, uniform convergence
of the curves does not imply convergence of any of these sets. We define a notion of
touching (see Fig. 3) and prove that if γ has no touchings then the desired convergence
follows:
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Fig. 3 A curve with a touching,
and an approximating curve
(dashed)

Definition 3.1 We say that a curve γ has a touching (s, t) if 0 ≤ s < t ≤ tγ , γ (s) =
γ (t) and there exists δ > 0 such that for all ε ∈ (0, δ), there exists a curve γ ′ with
tγ = tγ ′ , such that d∞(γ, γ ′) < ε and γ ′[s−, s+]∩γ ′[t−, t+] = ∅, where (s−, s+) is
the largest subinterval of [0, tγ ] such that s− ≤ s ≤ s+ and γ ′(s−, s+) ⊂ B(γ (s); δ),
and t−, t+ are defined similarly using t instead of s.

Theorem 3.2 Let γN , γ be curves such that d∞(γN , γ ) → 0 as N → ∞, and γ has
no touchings. Then,

dH (ExtγN ,Extγ ) → 0, dH (∂oγN , ∂oγ ) → 0, and dH (HullγN ,Hullγ ) → 0.

To prove the main result of this paper, we will also need to deal with similar
convergence issues for sets defined by collections of curves. For two collections of
curves C,C ′ let

d∗∞(C,C ′) = inf
{
δ > 0 : ∀γ ∈ C ∃γ ′ ∈ C ′ such that d∞(γ, γ ′) < δ,

and ∀γ ′ ∈ C ′ ∃γ ∈ C such that d∞(γ, γ ′) < δ
}
.

We will also need a modification of the notion of touching:

Definition 3.3 Let γ1 and γ2 be curves. We say that the pair γ1, γ2 has a mutual
touching (s, t) if 0 ≤ s ≤ tγ1 , 0 ≤ t ≤ tγ2 , γ1(s) = γ2(t) and there exists δ > 0 such
that for all ε ∈ (0, δ), there exist curves γ ′

1, γ ′
2 with tγ1 = tγ ′

1
, tγ2 = tγ ′

2
, such that

d∞(γ1, γ
′
1) < ε, d∞(γ2, γ

′
2) < ε and γ ′

1[s−, s+] ∩ γ ′
2[t−, t+] = ∅, where (s−, s+) is

the largest subinterval of [0, tγ1 ] such that s− ≤ s ≤ s+ and γ ′
1(s

−, s+) ⊂ B(γ1(s); δ),
and t−, t+ are defined similarly using γ2 and t , instead of γ1 and s.

Definition 3.4 We say that a collection of curves has a touching if it contains a curve
that has a touching or it contains a pair of distinct curves that have a mutual touching.

The next result is an analog of Theorem 3.2.

Theorem 3.5 Let CN ,C be collections of curves such that d∗∞(CN ,C) → 0 as N →
∞, and C contains finitely many curves and C has no touchings. Then,

dH (ExtCN ,ExtC) → 0, dH (∂oCN , ∂oC) → 0, and dH (HullCN ,HullC) → 0.
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The remainder of this section is devoted to proving Theorems 3.2 and 3.5. We will
first identify a general condition for the convergence of exteriors, outer boundaries
and hulls in the setting of arbitrary bounded subsets of the plane. We will prove
that if a curve does not have any touchings, then this condition is satisfied and hence
Theorem3.2 follows.At the endof the section,wewill showhow toobtainTheorem3.5
using similar arguments.

Proposition 3.6 Let AN , A be bounded subsets of the plane such that dH (AN , A) →
0 as N → ∞. Suppose that for every δ > 0 there exists N0 such that, for all N > N0,
ExtAN ⊂ (ExtA)δ . Then,

dH (ExtAN ,ExtA) → 0, dH (∂oAN , ∂oA) → 0, and dH (HullAN ,HullA) → 0.

To prove Proposition 3.6, we will first prove that one of the inclusions required
for the convergence of exteriors is always satisfied under the assumption that
dH (AN , A) → 0. For sets A, A′ let dE (A, A′) be the Euclidean distance between
A and A′.

Lemma 3.7 Let AN , A be bounded sets such that dH (AN , A) → 0 as N → ∞.
Then, for every δ > 0, there exists N0 such that for all N > N0, ExtA ⊂ (ExtAN )δ .

Proof Suppose that the desired inclusion does not hold. This means that there exists
δ > 0 such that, after passing to a subsequence, ExtA 	⊂ (ExtAN )δ for all N . This
is equivalent to the existence of xN ∈ ExtA, such that dE (xN ,ExtAN ) ≥ δ. Since
dH (AN , A) → 0 and the sets are bounded, the sequence xN is bounded and we can
assume that xN → x ∈ ExtA when N → ∞. It follows that for N large enough,
dE (x,ExtAN ) > δ/2 and hence B(x; δ/2) does not intersect ExtAN . We will show
that this leads to a contradiction. To this end, note that since x ∈ ExtA, there exists
y ∈ ExtA such that |x − y| < δ/4. Furthermore, ExtA is an open connected subset
of C, and hence it is path connected. This means that there exists a continuous path
connecting ywith∞which stayswithinExtA.Wedenote by℘ its range in the complex
plane. Note that dE (℘, A) > 0. For N sufficiently large, dH (AN , A) < dE (℘, A) and
so AN does not intersect ℘. This implies that AN does not disconnect y from ∞.
Hence, y ∈ ExtAN and B(x; δ/2) intersects ExtAN for N large enough, which is a
contradiction. This completes the proof. ��
Lemma 3.8 Let A, A′ be bounded sets and let δ > 0. If dH (A, A′) < δ and ExtA ⊂
(ExtA′)δ , then ∂oA ⊂ (∂oA′)2δ and HullA′ ⊂ (HullA)2δ .

Proof We start with the first inclusion. From the assumption, it follows that A ⊂ (A′)δ
and ExtA ⊂ (ExtA′)2δ . Take x ∈ ∂oA. Since ∂oA ⊂ A ⊂ (A′)δ ⊂ (HullA′)δ , we
have that B(x; δ) ∩ HullA′ 	= ∅. Since ∂oA ⊂ ExtA ⊂ (ExtA′)2δ , we have that
B(x; 2δ) ∩ ExtA′ 	= ∅. The ball B(x; 2δ) is connected and intersects both ExtA′ and
its complement HullA′. This implies that B(x; 2δ) ∩ ∂oA′ 	= ∅. The choice of x was
arbitrary, and hence ∂oA ⊂ (∂oA′)2δ .

We are left with proving the second inclusion. From the assumption, it follows
that A′ ⊂ Aδ and ExtA ⊂ (ExtA′)δ . Since ∂oA′ ⊂ A′ ⊂ Aδ ⊂ (HullA)δ , we have
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that (∂oA′)δ ⊂ (HullA)2δ . Since ExtA ⊂ (ExtA′)δ = ExtA′ ∪ (∂oA′)δ , by taking
complements we have that HullA′\(∂oA′)δ ⊂ HullA ⊂ (HullA)2δ . By taking the
union with (∂oA′)δ , we obtain that HullA′ ⊂ (HullA)2δ . ��
Proof of Proposition 3.6 It follows from Lemmas 3.7 and 3.8. ��
Remark 3.9 In the proof of Theorem 2.1, we will use equivalent formulations of
Theorem 3.5 and Lemma 3.7 in terms of metric rather than sequential convergence.
The equivalent formulation of Lemma 3.7 is as follows: For any bounded set A and
δ > 0, there exists ε > 0 such that if dH (A, A′) < ε, then ExtA ⊂ (ExtA′)δ . The
equivalent formulation of Theorem 3.5 is similar.

Without loss of generality, from now till the end of this section, we assume that all
curves have time length 1 (this can always be achieved by a linear time change).

Definition 3.10 We say that s, t ∈ [0, 1] are δ-connected in a curve γ if there exists
an open ball B of diameter δ such that γ (s) and γ (t) are connected in γ ∩ B.

Lemma 3.11 Let γN , γ be curves such that d∞(γN , γ ) → 0 as N → ∞, and γ has
no touchings. Then for any δ > 0 and s, t which are δ-connected in γ , there exists N0
such that s, t are 4δ-connected in γN for all N > N0.

Proof Fix δ > 0. If the diameter of γ is at most δ, then it is enough to take N0 such
that d∞(γN , γ ) < δ for N > N0.

Otherwise, let s, t ∈ [0, 1] be δ-connected in γ and let x be such that γ (s) and γ (t)
are in the same connected component of γ ∩B(x; δ/2).We say that I = [a, b] ⊂ [0, 1]
defines an excursion of γ from ∂B(x; δ) to B(x; δ/2) if I is a maximal interval
satisfying

γ (a, b) ⊂ B(x; δ) and γ (a, b) ∩ B(x; δ/2) 	= ∅.

Note that if [a, b] defines an excursion, then the diameter of γ [a, b] is at least δ/2.
Since γ is uniformly continuous, it follows that there are only finitelymany excursions.
Let Ii = [ai , bi ], i = 1, 2, . . . , k, be the intervals which define them.

It follows that γ ∩ B(x; δ/2) ⊂ ⋃k
i=1 γ [Ii ], and hence γ (s) and γ (t) are in the

same connected component of
⋃k

i=1 γ [Ii ]. If s, t ∈ Ii for some i , then it is enough to
take N0 such that d∞(γN , γ ) < δ for N > N0, and the claim of the lemma follows.
Otherwise, using the fact that γ [Ii ] are closed, connected sets, one can reorder the
intervals in such a way that s ∈ I1, t ∈ Il , and γ [Ii ]∩γ [Ii+1] 	= ∅ for i = 1, . . . , l−1.
Let (si , ti ) be such that si ∈ Ii , ti ∈ Ii+1, and γ (si ) = γ (ti ) = zi . Since (si , ti ) is
not a touching, we can find εi ∈ (0, δ) such that γ ′(si ) is connected to γ ′(ti ) in
γ ′ ∩ B(zi ; δ) for all γ ′ with d(γ, γ ′) < εi . Hence, if N0 is such that d(γN , γ ) <

min{ε, δ} for N > N0, where ε = mini εi , then γN (s) and γN (t) are connected in⋃l
i=1 γN [Ii ] ∪ (γN ∩ ⋃l−1

i=1 B(zi ; δ)), and therefore also in γN ∩ B(x; 2δ). ��
Lemma 3.12 If γ is a curve, then there exists a loop whose range is ∂oγ and whose
winding around each point of Hullγ \∂oγ is equal to 2π .
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Proof Let D′ = {x ∈ C : |x | > 1}. By the proof of Theorem 1.5(ii) of [3], there
exists a one-to-one conformalmap ϕ from D′ onto Extγ which extends to a continuous
function ϕ : D′ → Extγ , and such that ϕ[∂D′] = ∂oγ . Let γr (t) = ϕ(eit2π (1 + r))
for t ∈ [0, 1] and r ≥ 0. It follows that the range of γ0 is ∂oγ . Moreover, since ϕ is
one-to-one, γr is a simple curve for r > 0 and hence its winding around every point
of Hullγ \∂oγ is equal to 2π . Since d∞(γ0, γr ) → 0 when r → 0, the winding of γ0
around every point of Hullγ \∂oγ is also equal to 2π . ��
Lemma 3.13 Let γN , γ be curves such that d∞(γN , γ ) → 0 as N → ∞. Suppose
that for any δ > 0 and s, t which are δ-connected in γ , there exists N0 such that s, t
are 4δ-connected in γN for all N > N0. Then, for every δ > 0, there exists N0 such
that for all N > N0, ExtγN ⊂ (Extγ )δ .

Proof Fix δ > 0. By Lemma 3.12, let γ0 be a loop whose range is ∂oγ and whose
winding around each point of Hullγ \∂oγ equals 2π . Let

0 = t0 < t1 < · · · < tl = 1,

be a sequence of times satisfying

ti+1 = inf {t ∈ [ti , 1] : |γ0(t) − γ0(ti )| = δ/32} for i = 0, . . . , l − 2,

and |γ0(t) − γ0(tl−1)| < δ/32 for all t ∈ [tl−1, 1). This is well defined, i.e. l < ∞,
since γ0 is uniformly continuous. Note that ti and ti+1 are δ/8-connected in γ0. For
each ti , we choose a time τi , such that γ (τi ) = γ0(ti ) and τl = τ0. It follows that τi
and τi+1 are δ/8-connected in γ . Let Ni be so large that τi and τi+1 are δ/2-connected
in γN for all N > Ni , and let M = maxi Ni . The existence of such Ni is guaranteed
by the assumption of the lemma.

Let M ′ > M be such that d∞(γN , γ ) < δ/16 for all N > M ′. Take N > M ′.
We will show that ExtγN ⊂ (Extγ )δ . Suppose by contradiction, that x ∈ ExtγN ∩
(C\(Extγ )δ) = ExtγN ∩ (Hullγ \(∂oγ )δ). Since ExtγN is open and connected, it is
path connected and there exists a continuous path ℘ connecting x with ∞ and such
that ℘ ⊂ ExtγN .

We will construct a loop γ ∗ which is contained in C\℘, and which disconnects x
from ∞. This will yield a contradiction. By the definition of M , for i = 0, . . . , l −
1, there exists an open ball Bi of diameter δ/2, such that γN (τi ) and γN (τi+1) are
connected in γN ∩ Bi , and hence also in Bi\℘. Since the connected components of
Bi\℘ are open, they are path connected and there exists a curve γ ∗

i which starts at
γN (τi ), ends at γN (τi+1), and is contained in Bi\℘. By concatenating these curves,
we construct the loop γ ∗, i.e.

γ ∗(t) = γ ∗
i

(
t − ti

ti+1 − ti

)
for t ∈ [ti , ti+1], i = 0, . . . , l − 1.

By construction, γ ∗ ⊂ C\℘. We will now show that γ ∗ disconnects x from ∞ by
proving that its winding around x equals 2π . By the definition of ti+1, γ0(ti , ti+1) ⊂
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B(γ0(ti ); δ/16). Since d∞(γN , γ ) < δ/16 and γ0(ti ) = γ (τi ), it follows that
γ0(ti , ti+1) ⊂ B(γN (τi ); δ/8). By the definition of γ ∗

i , γ ∗
i ⊂ Bi ⊂ B(γN (τi ); δ/2).

Combining these two facts, we conclude that d∞(γ0, γ
∗) < 5δ/8. Since the winding

of γ0 around every point of Hullγ \∂oγ is equal to 2π , and since x ∈ Hullγ and
dE (x, γ0) ≥ δ, the winding of γ ∗ around x is also equal to 2π . This means that γ ∗
disconnects x from ∞, and hence ℘ ∩ γ ∗ 	= ∅, which is a contradiction. ��
Proof of Theorem 3.2 It is enough to use Proposition 3.6, Lemma 3.11 and
Lemma 3.13. ��
Proof of Theorem 3.5 The proof follows similar steps as the proof of Theorem 3.2. To
adapt Lemma 3.11 to the setting of collections of curves, it is enough to notice that a
finite collection of nontrivial curves, when intersected with a ball of sufficiently small
radius, looks like a single curve intersected with the ball. To generalize Lemma 3.13,
it suffices to notice that the outer boundary of each connected component ofC is given
by a curve as in Lemma 3.12. ��

4 Finite approximation of a Brownian loop soup cluster

Let L be a Brownian loop soup with intensity λ ∈ (0, 1/2] in a bounded, simply
connected domain D. The following theorem is the main result of this section.

Theorem 4.1 Almost surely, for any cluster C of L, there exists a sequence of finite
subclusters CN of C such that as N → ∞,

dH (ExtCN ,ExtC) → 0, dH (∂oCN , ∂oC) → 0, and dH (HullCN ,HullC) → 0.

We will need the following result.

Lemma 4.2 Almost surely, for each cluster C of L, there exists a sequence of finite
subclusters CN increasing to C (i.e. CN ⊂ CN+1 for all N and

⋃
N CN = C), and

a sequence of loops �N : [0, 1] → C converging uniformly to a loop � : [0, 1] → C,
such that the range of �N is equal to CN , and hence the range of � is equal to C.

Proof This follows from the proof of Lemma 9.7 in [25]. Note that in [25], a cluster
C is replaced by the collection of simple loops η given by the outer boundaries of
γ ∈ C . However, the same argument works also for C and the loops γ . ��

To prove Theorem 4.1, wewill show that the loops �N , � fromLemma 4.2 satisfy the
conditions of Lemma 3.13. Then, using Proposition 3.6 and Lemma 3.13, we obtain
Theorem 4.1. We will first prove some necessary lemmas.

Lemma 4.3 Almost surely, for all γ ∈ L and all subclusters C of L such that γ does
not intersect C, it holds that dE (γ,C) > 0.

Proof Fix k and let γk be the loop in L with k-th largest diameter. Using an argument
similar to that in Lemma 9.2 of [25], one can prove that, conditionally on γk , the loops
in Lwhich do not intersect γk are distributed like L(D\γk), i.e. a Brownian loop soup
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in D\γk . Moreover,L(D\γk) consists of a countable collection of disjoint loop soups,
one for each connected component of D\γk . By conformal invariance, each of these
loop soups is distributed like a conformal image of a copy ofL. Hence, by Lemma 9.4
of [25], almost surely, each cluster of L(D\γk) is at positive distance from γk . This
implies that the unconditional probability that there exists a subcluster C such that
dE (γk,C) = 0 and γk does not intersect C is zero. Since k was arbitrary and there are
countably many loops in L, the claim of the lemma follows. ��
Lemma 4.4 Almost surely, for all x with rational coordinates and all rational δ > 0,
no two clusters of the loop soup obtained by restricting L to B(x; δ) are at Euclidean
distance zero from each other.

Proof This follows from Lemma 9.4 of [25], the restriction property of the Brownian
loop soup, conformal invariance and the fact that we consider a countable number of
balls. ��
Lemma 4.5 Almost surely, for every δ > 0 there exists t0 > 0 such that every sub-
cluster of L with diameter larger than δ contains a loop of time length larger than
t0.

Proof Let δ > 0 and suppose that for all t0 > 0 there exists a subcluster of diameter
larger than δ containing only loops of time length less than t0.

Let t1 = 1 and let C1 be a subcluster of diameter larger than δ containing only
loops of time length less than t1. By the definition of a subcluster there exists a finite
chain of loops C ′

1 which is a subcluster of C1 and has diameter larger than δ. Let
t2 = min{tγ : γ ∈ C ′

1}, where tγ is the time length of γ . Let C2 be a subcluster
of diameter larger than δ containing only loops of time length less than t2. By the
definition of a subcluster there exists a finite chain of loops C ′

2 which is a subcluster
of C2 and has diameter larger than δ. Note that by the construction γ1 	= γ2 for all
γ1 ∈ C ′

1, γ2 ∈ C ′
2, i.e. the chains of loops C ′

1 and C ′
2 are disjoint as collections of

loops, i.e. γ1 	= γ2 for all γ1 ∈ C ′
1, γ2 ∈ C ′

2. Iterating the construction gives infinitely
many chains of loops C ′

i which are disjoint as collections of loops and which have
diameter larger than δ.

For each chain of loops C ′
i take a point zi ∈ C ′

i , where C
′
i is viewed as a subset of

the complex plane. Since the domain is bounded, the sequence zi has an accumulation
point, say z. Let z′ have rational coordinates and δ′ be a rational number such that
|z − z′| < δ/8 and |δ − δ′| < δ/8. The annulus centered at z′ with inner radius δ′/4
and outer radius δ′/2 is crossed by infinitely many chains of loops which are disjoint
as collections of loops. However, the latter event has probability 0 by Lemma 9.6 of
[25] and its consequence, leading to a contradiction. ��
Proof of Theorem 4.1 We restrict our attention to the event of probability 1 such that
the claims of Lemmas 4.2, 4.3, 4.4 and 4.5 hold true, and such that there are only
finitely many loops of diameter or time length larger than any positive threshold. Fix a
realization ofL and a clusterC ofL. TakeCN , �N and � defined forC as in Lemma 4.2.
By Proposition 3.6 andLemma3.13, it is enough to prove that the sequence �N satisfies
the condition that for all δ > 0 and s, t ∈ [0, 1] which are δ-connected in �, there
exists N0 such that s, t are 4δ-connected in �N for all N > N0.
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To this end, take δ > 0 and s, t such that �(s) is connected to �(t) in � ∩ B(x, δ/2)
for some x . Take x ′ with rational coordinates and δ′ rational such that B(x; δ/2) ⊂
B(x ′; δ′/2) and B(x ′; δ′) ⊂ B(x; 2δ). If C ⊂ B(x ′; δ′), then �N (s) is connected to
�N (t) in �N ∩ B(x; 2δ) for all N and we are done. Hence, we can assume that

C ∩ ∂B(x ′; δ′) 	= ∅. (4.1)

When intersectedwith B(x ′; δ′), each loop γ ∈ C may split intomultiple connected
components. We call each such component of γ ∩ B(x ′; δ′) a piece of γ . In particular
if γ ⊂ B(x ′; δ′), then the only piece of γ is the full loop γ . The collection of all pieces
we consider is given by {℘ : ℘ is a piece of γ for some γ ∈ C}. A chain of pieces is
a sequence of pieces such that each piece intersects the next piece in the sequence.
Two pieces are in the same cluster of pieces if they are connected via a finite chain of
pieces. We identify a collection of pieces with the set in the plane given by the union
of the pieces. Note that there are only finitely many pieces of diameter larger than
any positive threshold, since the number of loops of diameter larger than any positive
threshold is finite and each loop is uniformly continuous.

Let C∗
1 ,C

∗
2 , . . . be the clusters of pieces such that

C∗
i ∩ B(x ′; δ′/2) 	= ∅ and C∗

i ∩ ∂B(x ′; δ′) 	= ∅. (4.2)

We will see later in the proof that the number of such clusters of pieces is finite, but
we do not need this fact yet. We now prove that

C∗
i ∩ C∗

j ∩ B(x ′; δ′/2) = ∅ for all i 	= j. (4.3)

To this end, suppose that (4.3) is false and let z ∈ C∗
i ∩ C∗

j ∩ B(x ′; δ′/2) for some
i 	= j .

First assume that z ∈ C∗
i . Then, by the definition of clusters of pieces, z /∈ C∗

j .
It follows that C∗

j contains a chain of infinitely many different pieces which has z as
an accumulation point. Since there are only finitely many pieces of diameter larger
than any positive threshold, the diameters of the pieces in this chain approach 0. Since
dE (z, ∂B(x ′; δ′)) > δ′/2, the pieces become full loops at some point in the chain. Let
γ ∈ C be such that z ∈ γ . It follows that there exists a subcluster of loops of C , which
does not contain γ and has z as an accumulation point. This contradicts the claim of
Lemma 4.3 and therefore it cannot be the case that z ∈ C∗

i .
Second assume that z /∈ C∗

i and z /∈ C∗
j . By the same argument as in the previous

paragraph, there exist twochains of loops ofC which are disjoint, contained in B(x ′; δ′)
and both of which have z as an accumulation point. These two chains belong to two
different clusters ofL restricted to B(x ′; δ′). Since x ′ and δ′ are rational, this contradicts
the claim of Lemma 4.4, and hence it cannot be the case that z /∈ C∗

i and z /∈ C∗
j . This

completes the proof of (4.3).
We now define a particular collection of pieces P . By Lemma 4.5, let t0 > 0 be

such that every subcluster of L of diameter larger than δ′/4 contains a loop of time
length larger than t0. Let P be the collection of pieces which have diameter larger
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Fig. 4 Illustration of the last
part of the proof of Theorem 4.1
with C∗

i = C∗
1 . The pieces

drawn with solid lines form the
set C∗

i ∩ �N . The shaded pieces
represent the set C∗

i ∩ P

�(s) �(t)

�N (t)�N (s)

C C∗
1

C

C

C

C∗
2

C∗
3

δ′/2 δ′x′

than δ′/4 or are full loops of time length larger than t0. Note that P is finite. Each
chain of pieces which intersects both B(x ′; δ′/2) and ∂B(x ′; δ′), contains a piece of
diameter larger than δ′/4 intersecting ∂B(x ′; δ′) or contains a chain of full loops which
intersects both B(x ′; δ′/2) and ∂B(x ′; 3δ′/4). In the latter case it contains a subcluster
ofL of diameter larger than δ′/4 and therefore a full loop of time length larger than t0.
Hence, each chain of pieces which intersects both B(x ′; δ′/2) and ∂B(x ′; δ′) contains
an element of P . Since P is finite, it follows that the number of clusters of pieces C∗

i
satisfying (4.2) is finite.

Since the range of � is C and the number of clusters of pieces C∗
i is finite,

� ∩ B(x ′; δ′/2) = C ∩ B(x ′; δ′/2)

=
⋃
i

C∗
i ∩ B(x ′; δ′/2) =

⋃
i

C∗
i ∩ B(x ′; δ′/2). (4.4)

By (4.3), (4.4) and the fact that �(s) is connected to �(t) in � ∩ B(x ′; δ′/2),

�(s), �(t) ∈ C∗
i ∩ B(x ′; δ′/2), (4.5)

for some i . From now on see also Fig. 4.
Let ε be the Euclidean distance between {�(s), �(t)} and ∂B(x ′; δ′/2) ∪ ⋃

j 	=i C
∗
j .

By (4.3) and (4.5), ε > 0. Let M be such that d∞(�N , �) < ε and �N ∩∂B(x ′; δ′) 	= ∅
for N > M . The latter can be achieved by (4.1). Let N > M . By the definitions of ε

and M , we have that �N (s), �N (t) ∈ B(x ′; δ′/2) and �N (s), �N (t) /∈ C∗
j for j 	= i . It

follows that

�N (s), �N (t) ∈ C∗
i ∩ B(x ′; δ′/2).
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Since �N is a finite subcluster of C , it also follows that there are finite chains of pieces
G∗

N (s),G∗
N (t) ⊂ C∗

i ∩ �N (not necessarily distinct) which connect �N (s), �N (t),
respectively, to ∂B(x ′; δ′).

Since G∗
N (s),G∗

N (t) intersect both B(x ′; δ′/2) and ∂B(x ′; δ′), we have that
G∗

N (s),G∗
N (t) both contain an element of P . Moreover, P is finite, any two ele-

ments of C∗
i are connected via a finite chain of pieces and �N (= CN ) increases to the

full cluster C . Hence, all elements of C∗
i ∩ P are connected to each other in C∗

i ∩ �N
for N sufficiently large. It follows that G∗

N (s) is connected to G∗
N (t) in C∗

i ∩ �N for
N sufficiently large. Hence, �N (s) is connected to �N (t) in �N ∩ B(x ′; δ′) for N suf-
ficiently large. This implies that s, t are 4δ-connected in �N for N sufficiently large.

��

5 No touchings

Recall the definitions of touching, Definitions 3.1, 3.3 and 3.4. In this section we prove
the following:

Theorem 5.1 Let Bt be a planar Brownian motion. Almost surely, Bt , 0 ≤ t ≤ 1, has
no touchings.

Corollary 5.2

(i) Let Bloop
t be a planar Brownian loop with time length 1. Almost surely, B loop

t ,
0 ≤ t ≤ 1, has no touchings.

(ii) Let L be a Brownian loop soup with intensity λ ∈ (0,∞) in a bounded, simply
connected domain D. Almost surely, L has no touchings.

We start by giving a sketch of the proof of Theorem 5.1. Note that ruling out isolated
touchings can be done using the fact that the intersection exponent ζ(2, 2) is larger
than 2 (see [16]). However, also more complicated situations like accumulations of
touchings can occur. Therefore, we proceed as follows. We define excursions of the
planar Brownian motion B from the boundary of a disk which stay in the disk. Each of
these excursions has, up to a rescaling in space and time, the same law as a processW
which we define below. We show that the process W possesses a particular property,
see Lemma 5.6 below. If B had a touching, it would follow that the excursions of B
would have a behavior that is incompatible with this particular property of the process
W .

As a corollary to Theorem 5.1, Corollary 5.2 and Theorem 3.2, we obtain the
following result. It is a natural result, but we could not find a version of this result in
the literature and therefore we include it here.

Corollary 5.3 Let St , t ∈ {0, 1, 2, . . .}, be a simple random walk on the square lattice
Z2, with S0 = 0, and define St for non-integer times t by linear interpolation.

(i) Let Bt be a planar Brownian motion started at 0. As N → ∞, the outer boundary
of (N−1S2N2t , 0 ≤ t ≤ 1) converges in distribution to the outer boundary of
(Bt , 0 ≤ t ≤ 1), with respect to dH .
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(ii) Let Bloop
t be a planar Brownian loop of time length 1 started at 0. As N → ∞, the

outer boundary of (N−1S2N2t , 0 ≤ t ≤ 1), conditional on {S2N2 = 0}, converges
in distribution to the outer boundary of (Bloop

t , 0 ≤ t ≤ 1), with respect to dH .

To define the process W mentioned above, we recall some facts about the three-
dimensional Bessel process and its relation with Brownian motion, see e.g. Lemma 1
of [4] and the references therein. The three-dimensional Bessel process can be defined
as the modulus of a three-dimensional Brownian motion.

Lemma 5.4 Let Xt be a one-dimensional Brownian motion starting at 0 and Yt a
three-dimensional Bessel process starting at 0. Let 0 < a < a′ and define τ =
Ta(X) = inf{t ≥ 0 : Xt = a}, τ ′ = Ta′(X), σ = sup{t < τ : Xt = 0}, ρ = Ta(Y )

and ρ′ = Ta′(Y ). Then,

(i) the two processes (Xσ+u, 0 ≤ u ≤ τ − σ) and (Yu, 0 ≤ u ≤ ρ) have the same
law,

(ii) the process (Yρ+u, 0 ≤ u ≤ ρ′ − ρ) has the same law as the process (Xτ+u, 0 ≤
u ≤ τ ′ − τ) conditional on {∀u ∈ [0, τ ′ − τ ], Xτ+u 	= 0}.

Next we recall the skew-product representation of planar Brownian motion, see e.g.
Theorem 7.26 of [22]: For a planar Brownian motion Bt starting at 1, there exist two
independent one-dimensional Brownian motions X1

t and X2
t starting at 0 such that

Bt = exp
(
X1
H(t) + i X2

H(t)

)
,

where

H(t) = inf

{
h ≥ 0 :

∫ h

0
exp(2X1

u)du > t

}
=

∫ t

0

1

|Bu |2 du.

Wedefine the processWt as follows. Let Xt be a one-dimensional Brownianmotion
starting according to somedistribution on [0, 2π). LetYt be a three-dimensionalBessel
process starting at 0, independent of Xt . Define

Vt = exp
(−YH(t) + i XH(t)

)
,

where

H(t) = inf

{
h ≥ 0 :

∫ h

0
exp(−2Yu)du > t

}
.

Let Bt be a planar Brownianmotion starting at 0, independent of Xt and Yt , and define

Wt =
{
Vt , 0 ≤ t ≤ τ 1

2
,

Vτ 1
2

+ Bt−τ 1
2
, τ 1

2
< t ≤ τ,
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Fig. 5 The event Eε

Bτ4

0

Bτ1

Bτ3

Bτ2

ε 7ε

with

τ 1
2

= inf
{
t > 0 : |Vt | = 1

2

}
,

τ = inf

{
t > τ 1

2
: |Vτ 1

2
+ Bt−τ 1

2
| = 1

}
.

Note that Wt starts on the unit circle, stays in the unit disk and is stopped when it hits
the unit circle again.

Next we derive the property of W which we will use in the proof of Theorem 5.1.
For this, we need the following property of planar Brownian motion:

Lemma 5.5 Let B be a planar Brownian motion started at 0 and stopped when it
hits the unit circle. Almost surely, there exists ε > 0 such that for all curves γ with
d∞(γ, B) < ε we have that γ disconnects ∂B(0; ε) from ∂B(0; 1).
Proof We construct the event Eε, for 0 < ε ≤ 1/7, illustrated in Fig. 5. Loosely
speaking, Eε is the event that B disconnects 0 from the unit circle in a strong sense,
by crossing an annulus centered at 0 and winding around twice in this annulus. Let

τ1 = inf {t ≥ 0 : |Bt | = 2ε} , τ2 = inf {t ≥ 0 : |Bt | = 6ε} ,

τ3 = inf {t > τ2 : |Bt | = 4ε} , τ4 = inf
{
t > τ3 : |arg(Bt/Bτ3)| = 4π

}
,

where arg is the continuous determination of the angle. Let

A1 = {
z ∈ C : ε < |z| < 7ε, |arg(z/Bτ1)| < π/4

}
,

A2 = {z ∈ C : 3ε < |z| < 5ε} .

Define the event Eε by

Eε = {τ4 < ∞, B[τ1, τ3] ⊂ A1, B[τ3, τ4] ⊂ A2} .
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By construction, if Eε occurs then for all curves γ with d∞(γ, B) < ε we have that
γ disconnects ∂B(0; 2ε) from ∂B(0; 6ε). It remains to prove that almost surely Eε

occurs for some ε. By scale invariance of Brownian motion, P(Eε) does not depend
on ε, and it is obvious that P(Eε) > 0. Furthermore, the events E1/7n , n ∈ N, are
independent. Hence almost surely Eε occurs for some ε. ��
Lemma 5.6 Let γ : [0, 1] → C be a curve with |γ (0)| = |γ (1)| = 1 and |γ (t)| < 1
for all t ∈ (0, 1). Let W denote the process defined above Lemma 5.5 and assume
that W0 /∈ {γ (0), γ (1)} a.s. Then the intersection of the following two events has
probability 0:

(i) γ ∩ W 	= ∅,
(ii) for all ε > 0 there exist curves γ ′, γ ′′ such that d∞(γ, γ ′) < ε, d∞(W, γ ′′) < ε

and γ ′ ∩ γ ′′ = ∅.
Proof The idea of the proof is as follows. We run the process Wt till it hits ∂B(0; a),
where a < 1 is close to 1. From that point the process is distributed as a conditioned
Brownian motion. We run the Brownian motion till it hits the trace of the curve γ .
From that point the Brownian motion winds around such that the event (ii) cannot
occur, by Lemma 5.5.

Let Ta(W ) = inf{t ≥ 0 : |Wt | = a} and let P be the law of WTa(W ). Let Bt be
a planar Brownian motion with starting point distributed according to the law P and
stopped when it hits the unit circle. Let τ = inf{t > 0 : |Wt | = 1}. By Lemma 5.4
and the skew-product representation, if a ∈ ( 12 , 1), the process

(Wt , Ta(W ) ≤ t ≤ τ)

has the same law as

(Bt , 0 ≤ t ≤ T1(B)) conditional on {T1/2(B) < T1(B)},

where T1(B) = inf{t ≥ 0 : |Bt | = 1}. Let E1, E2 be similar to the events (i) and (ii),
respectively, from the statement of the lemma, but with B instead of W , i.e.

E1 = {γ ∩ B 	= ∅},
E2 = {

for all ε > 0 there exist curves γ ′, γ ′′ such that d∞(γ, γ ′) < ε,

d∞(B, γ ′′) < ε, γ ′ ∩ γ ′′ = ∅}
.

Let Tγ (W ) = inf{t ≥ 0 : Wt ∈ γ } be the first time Wt hits the trace of the curve γ .
The probability of the intersection of the events (i) and (ii) from the statement of

the lemma is bounded above by

P(E1 ∩ E2 | T1/2(B) < T1(B)) + P(Tγ (W ) ≤ Ta(W ))

≤ P(E2 | E1)P(E1)

P(T1/2(B) < T1(B))
+ P(Tγ (W ) ≤ Ta(W )). (5.1)
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The second term in (5.1) converges to 0 as a → 1, by the assumption that W0 /∈
{γ (0), γ (1)} a.s. The first term in (5.1) is equal to 0. This follows from the fact that

P(E2 | E1) = 0, (5.2)

which we prove below, using Lemma 5.5.
To prove (5.2) note that E1 = {Tγ (B) ≤ T1(B)}, where Tγ (B) = inf{t ≥ 0 : Bt ∈

γ }. Define δ = 1−|BTγ (B)| and note that δ > 0 a.s. The time Tγ (B) is a stopping time
and hence, by the strong Markov property, (Bt , t ≥ Tγ (B)) is a Brownian motion.
Therefore, by translation and scale invariance, we can apply Lemma 5.5 to the process
(Bt , t ≥ Tγ (B)) stopped when it hits the boundary of the ball centered at BTγ (B) with
radius δ. It follows that (5.2) holds. ��
Proof of Theorem 5.1 For δ0 > 0we say that a curve γ : [0, 1] → C has a δ0-touching
(s, t) if (s, t) is a touching and we can take δ = δ0 in Definition 3.1, and moreover
A∩∂B(γ (s); δ0) 	= ∅ for all A ∈ {γ [0, s), γ (s, t), γ (t, 1]}. The last condition ensures
that if (s, t) is a δ0-touching then γ makes excursions from ∂B(γ (s); δ0) which visit
γ (s).

Since Bt 	= B0 for all t ∈ (0, 1] a.s., we have that (0, t) is not a touching for all
t ∈ (0, 1] a.s. By time inversion, B1 − B1−u , 0 ≤ u ≤ 1, is a planar Brownian motion
and hence (s, 1) is not a touching for all s ∈ [0, 1) a.s. For every touching (s, t) with
0 < s < t < 1 there exists δ′ > 0 such that for all δ ≤ δ′ we have that (s, t) is a
δ-touching a.s. (A touching (s, t) that is not a δ-touching for any δ > 0 could only
exist if Bu = B0 for all u ∈ [0, s] or Bu = B1 for all u ∈ [t, 1].) We prove that for
every δ > 0 we have almost surely,

B has no δ-touchings (s, t) with 0 < s < t < 1. (5.3)

By letting δ → 0 it follows that B has no touchings a.s.
To prove (5.3), fix δ > 0 and let z ∈ C. We define excursions Wn , for n ∈ N, of

the Brownian motion B as follows. Let

τ0 = inf {u ≥ 0 : |Bu − z| = 2δ/3} ,

and define for n ≥ 1,

σn = inf {u > τn−1 : |Bu − z| = δ/3} ,

ρn = sup {u < σn : |Bu − z| = 2δ/3} ,

τn = inf {u > σn : |Bu − z| = 2δ/3} .

Note that ρn < σn < τn < ρn+1 and that ρn, σn, τn may be infinite. The reason that
we take 2δ/3 instead of δ is that we will consider δ-touchings (s, t) not only with
Bs = z but also with |Bs − z| < δ/3. We define the excursion Wn by

Wn
u = Bu, ρn ≤ u ≤ τn .
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Observe that Wn has, up to a rescaling in space and time and a translation, the same
law as the process W defined above Lemma 5.5. This follows from Lemma 5.4, the
skew-product representation and Brownian scaling.

If B has a δ-touching (s, t) with |Bs − z| < δ/3, then there exist m 	= n such that

(i) Wm ∩ Wn 	= ∅,
(ii) for all ε > 0 there exist curves γm, γ n such that d∞(γm,Wm) < ε,

d∞(γ n,Wn) < ε and γm ∩ γ n = ∅.
By Lemma 5.6, with Wm playing the role of W and Wn of γ , for each m, n such that
m 	= n the intersection of the events (i) and (ii) has probability 0. Here we use the fact
that Wm

ρm
/∈ {Wn

ρn
,Wn

τn
} a.s. Hence B has no δ-touchings (s, t) with |Bs − z| < δ/3

a.s. We can cover the plane with a countable number of balls of radius δ/3 and hence
B has no δ-touchings a.s. ��

Proof of Corollary 5.2 First we prove part (i). For any u0 ∈ (0, 1), the laws of the
processes Bloop

u , 0 ≤ u ≤ u0, and Bu , 0 ≤ u ≤ u0, aremutually absolutely continuous,
see e.g. Exercise 1.5(b) of [22]. Hence by Theorem 5.1 the process Bloop

u , 0 ≤ u ≤ 1,
has no touchings (s, t) with 0 ≤ s < t ≤ u0 a.s., for any u0 ∈ (0, 1). Taking a
sequence of u0 converging to 1, we have that Bloop

u , 0 ≤ u ≤ 1, has no touchings
(s, t) with 0 ≤ s < t < 1 a.s. By time reversal, Bloop

1 − Bloop
1−u , 0 ≤ u ≤ 1, is a

planar Brownian loop. It follows that Bloop
u , 0 ≤ u ≤ 1, has no touchings (s, 1) with

s ∈ (0, 1) a.s. By Lemma 5.5, the time pair (0, 1) is not a touching a.s.
Second we prove part (ii). By Corollary 5.2 and the fact that there are countably

many loops in L, we have that every loop in L has no touchings a.s. We prove that
each pair of loops in L has no mutual touchings a.s. To this end, we discover the loops
in L one by one in decreasing order of their diameter, similarly to the construction in
Section 4.3 of [23]. Given a set of discovered loops γ1, . . . , γk−1, we prove that the
next loop γk and the already discovered loop γi have nomutual touchings a.s., for each
i ∈ {1, . . . , k − 1} separately. Note that, conditional on γ1, . . . , γk−1, we can treat γi
as a deterministic loop, while γk is a (random) planar Brownian loop. Therefore, to
prove that γk and γi have no mutual touchings a.s., we can define excursions of γi and
γk and apply Lemma 5.6 in a similar way as in the proof of Theorem 5.1. We omit the
details. ��

6 Distance between Brownian loops

In this section we give two estimates, on the Euclidean distance between non-
intersecting loops in the Brownian loop soup and on the overlap between intersecting
loops in the Brownian loop soup.Wewill only use the first estimate in the proof of The-
orem 2.1. As a corollary to the two estimates, we obtain a one-to-one correspondence
between clusters composed of “large” loops from the random walk loop soup and
clusters composed of “large” loops from the Brownian loop soup. This is an extension
of Corollary 5.4 of [17]. For intersecting loops γ1, γ2 we define their overlap by
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overlap(γ1, γ2) = 2 sup
{
ε ≥ 0 : for all loops γ ′

1, γ
′
2 such that d∞(γ1, γ

′
1) ≤ ε,

d∞(γ2, γ
′
2) ≤ ε, we have that γ ′

1 ∩ γ ′
2 	= ∅}

.

Proposition 6.1 Let L be a Brownian loop soup with intensity λ ∈ (0,∞) in a
bounded, simply connected domain D. Let c > 0 and 16/9 < θ < 2. For all non-
intersecting loops γ, γ ′ ∈ L of time length at least N θ−2 we have that dE (γ, γ ′) ≥
cN−1 log N, with probability tending to 1 as N → ∞.

Proposition 6.2 Let L be a Brownian loop soup with intensity λ ∈ (0,∞) in a
bounded, simply connected domain D. Let c > 0 and θ < 2 sufficiently close to
2. For all intersecting loops γ, γ ′ ∈ L of time length at least N θ−2 we have that
overlap(γ, γ ′) ≥ cN−1 log N, with probability tending to 1 as N → ∞.

Corollary 6.3 Let D be a bounded, simply connected domain, take λ ∈ (0,∞) and
θ < 2 sufficiently close to 2. Let L,LN θ−2

, L̃N , L̃N θ−2

N be defined as in Sect. 2. For
every N we can define L̃N and L on the same probability space in such a way that
the following holds with probability tending to 1 as N → ∞. There is a one-to-
one correspondence between the clusters of L̃N θ−2

N and the clusters of LN θ−2
such

that for corresponding clusters, C̃ ⊂ L̃N θ−2

N and C ⊂ LN θ−2
, there is a one-to-one

correspondence between the loops in C̃ and the loops in C such that for corresponding
loops, γ̃ ∈ C̃ and γ ∈ C, we have that d∞(γ, γ̃ ) ≤ cN−1 log N, for some constant c
which does not depend on N.

Proof Let c be two times the constant in Corollary 5.4 of [17]. Combine this corollary
and Propositions 6.1 and 6.2 with the c in Propositions 6.1 and 6.2 equal to six times
the constant in Corollary 5.4 of [17]. ��

In Propositions 6.1 and 6.2 and Corollary 6.3, the probability tends to 1 as a power
of N . This can be seen from the proofs. We will use Proposition 6.1, but we will not
use Proposition 6.2 in the proof of Theorem 2.1. Because of this, and because the
proofs of Propositions 6.1 and 6.2 are based on similar techniques, we omit the proof
of Proposition 6.2. To prove Proposition 6.1, we first prove two lemmas.

Lemma 6.4 Let B be a planar Brownianmotion and let B loop,t0 be a planar Brownian
loop with time length t0. There exist c1, c2 > 0 such that, for all 0 < δ < δ′ and all
N ≥ 1,

P(diamB[0, N−δ] ≤ N−δ′/2) ≤ c1 exp(−c2N
δ′−δ), (6.1)

P(diamBloop,N−δ ≤ N−δ′/2) ≤ c1 exp(−c2N
δ′−δ). (6.2)

Proof First we prove (6.2). By Brownian scaling,

P(diamBloop,N−δ ≤ N−δ′/2)

= P(diamBloop,1 ≤ N−(δ′−δ)/2)

≤ P(supt∈[0,1] |X loop
t | ≤ N−(δ′−δ)/2)2,
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where X loop
t is a one-dimensional Brownian bridge starting at 0 with time length

1. The distribution of supt∈[0,1] |X loop
t | is the asymptotic distribution of the (scaled)

Kolmogorov-Smirnov statistic, and we can write, see e.g. Theorem 1 of [13],

P(supt∈[0,1] |X loop
t | ≤ N−(δ′−δ)/2)

= √
2πN (δ′−δ)/2 ∑∞

k=1 e
−(2k−1)2π28−1N δ′−δ

≤ √
2πN (δ′−δ)/2 ∑∞

k=1 e
−(2k−1)π28−1N δ′−δ

= √
2πN (δ′−δ)/2eπ28−1N δ′−δ ∑∞

k=1(e
−2π28−1N δ′−δ

)k

= √
2πN (δ′−δ)/2e−π28−1N δ′−δ

(1 − e−2π28−1N δ′−δ

)−1

≤ ce−N δ′−δ

, (6.3)

for some constant c and all 0 < δ < δ′ and all N ≥ 1. This proves (6.2).
Nextwe prove (6.1).We canwrite X loop

t = Xt−t X1, where Xt is a one-dimensional
Brownian motion starting at 0. Hence

sup
t∈[0,1]

|X loop
t | ≤ sup

t∈[0,1]
|Xt | + |X1| ≤ 2 sup

t∈[0,1]
|Xt |. (6.4)

By Brownian scaling, (6.4) and (6.3),

P(diamB[0, N−δ] ≤ N−δ′/2)

= P(diamB[0, 1] ≤ N−(δ′−δ)/2)

≤ P(supt∈[0,1] |Xt | ≤ N−(δ′−δ)/2)2

≤ P(supt∈[0,1] |X loop
t | ≤ 2N−(δ′−δ)/2)2

≤ c2e− 1
2 N

δ′−δ

.

This proves (6.1). ��
Lemma 6.5 There exist c1, c2 > 0 such that the following holds. Let c > 0 and
0 < δ < δ′ < 2. Let γ be a (deterministic) loop with diamγ ≥ N−δ′/2. Let Bloop,t0

be a planar Brownian loop starting at 0 of time length t0 ≥ N−δ . Then for all N > 1,

P(0 < dE (Bloop,t0 , γ ) ≤ cN−1 log N )

≤ c1N
−1/2+δ′/4(c log N )1/2 + c1 exp(−c2N

δ′−δ)

Proof We use some ideas from the proof of Proposition 5.1 of [17]. By time reversal,
we have

P(0 < dE (Bloop,t0 , γ ) ≤ cN−1 log N )

≤ 2P
(
0 < dE

(
Bloop,t0

[
0, 1

2 t0
]
, γ

) ≤ cN−1 log N , Bloop,t0
[
0, 3

4 t0
] ∩ γ = ∅)
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= 4t0 lim
ε↓0 ε−2 P

(
0 < dE

(
B

[
0, 1

2 t0
]
, γ

) ≤ cN−1 log N , B
[
0, 3

4 t0
] ∩ γ = ∅,

|Bt0 | ≤ ε
)
, (6.5)

where B is a planar Brownian motion starting at 0. The equality (6.5) follows from
the following relation between the law μ

�
0,t0

of (Bloop,t0
t , 0 ≤ t ≤ t0) and the law μ0,t0

of (Bt , 0 ≤ t ≤ t0):

μ
�
0,t0

= 2t0 lim
ε↓0 ε−2μ0,t0 1{|γ (t0)|≤ε},

see Section 5.2 of [15] and Section 3.1.1 of [18].
Next we bound the probability

P
(
0 < dE

(
B

[
0, 1

2 t0
]
, γ

) ≤ cN−1 log N , B
[
0, 3

4 t0
] ∩ γ = ∅)

. (6.6)

If the event in (6.6) occurs, then Bt hits the cN−1 log N neighborhood of γ before time
1
2 t0, say at the point x . From that moment, in the next 1

4 t0 time span, Bt either stays
within a ball containing x (to be defined below) or exits this ball without touching γ .
Hence, using the strong Markov property, (6.6) is bounded above by

sup
x∈C,y∈γ

|x−y|≤cN−1 log N

P
(
τ x
y > 1

4 t0
)

+ P(Bx [0, τ x
y ] ∩ γ = ∅), (6.7)

where Bx is a planar Brownian motion starting at x and τ x
y is the exit time of Bx from

the ball B(y; 1
4N

−δ′/2).

To bound the second term in (6.7), recall that diamγ ≥ N−δ′/2, so γ intersects
both the center and the boundary of the ball B(y; 1

4N
−δ′/2). Hence we can apply the

Beurling estimate (see e.g. Theorem 3.76 of [15]) to obtain the following upper bound
for the second term in (6.7),

c1
(
4cN δ′/2N−1 log N

)1/2
, (6.8)

for some constant c1 > 1 which in particular does not depend on the curve γ . The
above reasoning to obtain the bound (6.8) holds if cN−1 log N < 1

4N
−δ′/2 and hence

for large enough N . If N is small then the bound (6.8) is larger than 1 and holds
trivially. To bound the first term in (6.7) we use Lemma 6.4,

P
(
τ x
y > 1

4 t0
)

≤ P
(
τ x
y > 1

4N
−δ

)
≤ P

(
diamB

[
0, 1

4N
−δ

] ≤ 1
2N

−δ′/2
)

≤ c2 exp
(
−c3N

δ′−δ
)

,

for some constants c2, c3 > 0.
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We have that

P
(|Bt0 | ≤ ε | 0 < dE

(
B

[
0, 1

2 t0
]
, γ

) ≤ cN−1 log N , B
[
0, 3

4 t0
] ∩ γ = ∅)

≤ sup
x∈C

P

(
|Bx

1
4 t0

| ≤ ε

)
= P

(
|B 1

4 t0
| ≤ ε

)
≤ 8

π
ε2t−1

0 . (6.9)

The first inequality in (6.9) follows from the Markov property of Brownian motion.
The equality in (6.9) follows from the fact that Bx

1
4 t0

is a two-dimensional Gaussian

random vector centered at x . By combining (6.5), the bound on (6.6), and (6.9), we
conclude that

P(0 < dE (Bloop,t0 , γ ) ≤ cN−1 log N )

≤ 32

π

[
c1

(
4cN δ′/2N−1 log N

)1/2 + c2 exp
(
−c3N

δ′−δ
)]

.

��
Proof of Proposition 6.1 Let 2− θ =: δ < δ′ < 2 and let XN be the number of loops
in L of time length at least N−δ . First, we give an upper bound on XN . Note that XN

is stochastically less than the number of loops γ in a Brownian loop soup in the full
plane C with tγ ≥ N−δ and γ (0) ∈ D. The latter random variable has the Poisson
distribution with mean

λ

∫
D

∫ ∞

N−δ

1

2π t20
dt0d A(z) = λA(D)

1

2π
N δ,

where A denotes two-dimensional Lebesgue measure. By Chebyshev’s inequality,
XN ≤ N δ log N with probability tending to 1 as N → ∞.

Second, we bound the probability that L contains loops of large time length with
small diameter. By Lemma 6.4,

P
(
∃γ ∈ L, tγ ≥ N−δ, diamγ < N−δ′/2

)

≤ N δ log N c1 exp(−c2N
δ′−δ) + P(XN > N δ log N ), (6.10)

for some constants c1, c2 > 0. The expression (6.10) converges to 0 as N → ∞.
Third, we prove the proposition. To this end, we discover the loops in L one by

one in decreasing order of their time length, similarly to the construction in Section
4.3 of [23]. This exploration can be done in the following way. Let L1,L2, . . . be a
sequence of independent Brownian loop soups with intensity λ in D. From L1 take
the loop γ1 with the largest time length. FromL2 take the loop γ2 with the largest time
length smaller than tγ1 . Iterating this procedure yields a random collection of loops
{γ1, γ2, . . .}, which is such that tγ1 > tγ2 > · · · a.s. By properties of Poisson point
processes, {γ1, γ2, . . .} is a Brownian loop soup with intensity λ in D.

Given a set of discovered loops γ1, . . . , γk−1, we bound the probability that the
next loop γk comes close to γi but does not intersect γi , for each i ∈ {1, . . . , k − 1}
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separately. Note that, because of the conditioning, we can treat γi as a deterministic
loop, while γk is random. Therefore, to obtain such a bound, we can use Lemma 6.5
on the event that tγk ≥ N−δ and diamγi ≥ N−δ′/2. We use the first and second steps
of this proof to bound the probability that L contains more than N δ log N loops of
large time length, or loops of large time length with small diameter. Thus,

P(∃γ, γ ′ ∈ L, tγ , tγ ′ ≥ N−δ, 0 < dE (γ, γ ′) ≤ cN−1 log N )

≤ (N δ log N )2[c3N−1/2+δ′/4(c log N )1/2 + c3 exp(−c4N
δ′−δ)]

+ P({XN > N δ log N } ∪ {∃γ ∈ L, tγ ≥ N−δ, diamγ < N−δ′/2}), (6.11)

for some constants c3, c4 > 0. If δ′ < 2/9, then (6.11) converges to 0 as N → ∞. ��

7 Proof of main result

Proof of Theorem 2.1 ByCorollary 5.4 of [17], for every N we can define on the same
probability space L̃N and L such that the following holds with probability tending to
1 as N → ∞: There is a one-to-one correspondence between the loops in L̃N θ−2

N

and the loops in LN θ−2
such that, if γ̃ ∈ L̃N θ−2

N and γ ∈ LN θ−2
are paired in this

correspondence, then d∞(γ̃ , γ ) < cN−1 log N , where c is a constant which does not
depend on N .

We prove that in the above coupling, for all δ, α > 0 there exists N0 such that for
all N ≥ N0 the following holds with probability at least 1 − α: For every outermost
cluster C of L there exists an outermost cluster C̃N of L̃N θ−2

N such that

dH (C, C̃N ) < δ, dH (ExtC,ExtC̃N ) < δ, (7.1)

and for every outermost cluster C̃N of L̃N θ−2

N there exists an outermost cluster C of
L such that (7.1) holds. By Lemma 3.8, (7.1) implies that dH (∂oC, ∂oC̃N ) < 2δ and
dH (HullC,HullC̃N ) < 2δ. Also, (7.1) implies that the Hausdorff distance between
the carpet of L and the carpet of L̃N θ−2

N is less than or equal to δ. Hence this proves
the theorem.

Fix δ, α > 0. To simplify the presentation of the proof of (7.1), we will often use
the phrase “with high probability”, by which we mean with probability larger than a
certain lower bound which is uniform in N . It is not difficult to check that we can
choose these lower bounds in such a way that (7.1) holds with probability at least
1 − α.

First we define some constants. By Lemma 9.7 of [25], a.s. there are only finitely
many clusters of L with diameter larger than any positive threshold; moreover they
are all at positive distance from each other. Let ρ ∈ (0, δ/2) be such that, with high
probability, for every z ∈ D we have that z ∈ HullC for some outermost cluster C
of L with diamC ≥ δ/2, or dE (z,C) < δ/4 for some outermost cluster C of L with
ρ < diamC < δ/2. The existence of such a ρ follows from the fact that a.s.L is dense
in D and that there are only finitely many clusters of L with diameter at least δ/2.

123



578 T. van de Brug et al.

We call a cluster or subcluster large (small) if its diameter is larger than (less than or
equal to) ρ.

Let ε1 > 0 be such that, with high probability,

|diamC − ρ| > ε1

for all clusters C of L. The existence of such an ε1 follows from the fact that a.s. there
are only finitely many clusters with diameter larger than any positive threshold (see
Lemma 9.7 of [25]) and the fact that the distribution of cluster sizes does not have
atoms. The latter fact is a consequence of scale invariance [18], which can be seen to
yield that the existence of an atom would imply the existence of uncountably many
atoms, which is impossible. Let ε2 > 0 be such that, with high probability,

dE (C1,C2) > ε2

for all distinct large clusters C1,C2 of L. For every large cluster C1 of L, let ℘(C1)

be a path connecting HullC1 with ∞ such that, for all large clusters C2 of L such that
HullC1 	⊂ HullC2, we have that ℘(C1) ∩ HullC2 = ∅. Let ε3 > 0 be such that, with
high probability,

dE (℘ (C1),HullC2) > ε3

for all large clusters C1,C2 of L such that HullC1 	⊂ HullC2. By Lemma 3.7 (and
Remark 3.9) we can choose ε4 > 0 such that, with high probability, for every large
cluster C of L,

if dH (C, C̃) < ε4, then ExtC ⊂ (ExtC̃)min{δ,ε2}/8

for any collection of loops C̃ .
Let t0 > 0 be such that, with high probability, every subcluster C of L with

diamC > ρ − ε1 contains a loop of time length larger than t0. Such a t0 exists
by Lemma 4.5. In particular, every large subcluster ofL contains a loop of time length
larger than t0. Note that the number of loops with time length larger than t0 is a.s.
finite.

From now on the proof is in six steps, and we start by giving a sketch of these
steps (see Fig. 6). First, we treat the large clusters. For every large cluster C of L,
we choose a finite subcluster C ′ of C such that dH (C,C ′) and dH (ExtC,ExtC ′) are
small, using Theorem 4.1. Second, we approximate C ′ by a subcluster C̃ ′

N of L̃N θ−2

N

such that dH (ExtC ′,ExtC̃ ′
N ) is small, using the one-to-one correspondence between

random walk loops and Brownian loops, Theorem 3.5 and Corollary 5.2. Third, we let
C̃N be the cluster of L̃N θ−2

N that contains C̃ ′
N . Here we make sure, using Proposition

6.1, that for distinct subclusters C̃ ′
1,N , C̃ ′

2,N , the corresponding clusters C̃1,N , C̃2,N

are distinct. It follows that dH (C, C̃N ) and dH (ExtC,ExtC̃N ) are small. Fourth, we
show that the obtained clusters C̃N are large. We also show that we obtain in fact
all large clusters of L̃N θ−2

N in this way. Fifth, we prove that a large cluster C of L is
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Fig. 6 Schematic diagram of
the proof of Theorem 2.1. We
start with a cluster C of L and,
following the arrows, we
construct a cluster C̃N of

L̃Nθ−2

N . The dashed arrow

indicates that C and C̃N satisfy
(7.1)

L̃Nθ−2

N L

cluster

subcluster

Step 1

Step 2

Step 3

C̃N C

C̃ ′
N C ′

outermost if and only if the corresponding large cluster C̃N of L̃N θ−2

N is outermost.
Sixth, we deal with the small outermost clusters.

Step 1. Let C be the collection of large clusters of L. By Lemma 9.7 of [25], the
collection C is finite a.s. For every C ∈ C let C ′ be a finite subcluster of C such that
C ′ contains all loops in C which have time length larger than t0 and

dH (C,C ′) < min{δ, ε1, ε2, ε3, ε4}/16, (7.2)

dH (ExtC,ExtC ′) < min{δ, ε2}/16, (7.3)

a.s. This is possible by Theorem 4.1. Let C′ be the collection of these finite subclusters
C ′.

Step 2. For every C ′ ∈ C′ let C̃ ′
N ⊂ L̃N θ−2

N be the set of random walk loops which
correspond to the Brownian loops in C ′, in the one-to-one correspondence from the
first paragraph of this proof. This is possible for large N , with high probability, since
then

⋃ C′ ⊂ LN θ−2
,

where
⋃ C′ = ⋃

C ′∈C′ C ′. Let C̃′
N be the collection of these sets of random walk loops

C̃ ′
N .
Now we prove some properties of the elements of C̃′

N . By Corollary 5.2, C ′ has
no touchings a.s. Hence, by Theorem 3.5 (and Remark 3.9), for large N , with high
probability,

dH (ExtC ′,ExtC̃ ′
N ) < min{δ, ε2}/16. (7.4)

Next note that almost surely, dE (γ, γ ′) > 0 for all non-intersecting loops γ, γ ′ ∈ L,
and overlap(γ, γ ′) > 0 for all intersecting loops γ, γ ′ ∈ L. Since the number of loops
in

⋃ C′ is finite, we can choose η > 0 such that, with high probability, dE (γ, γ ′) > η

for all non-intersecting loops γ, γ ′ ∈ ⋃ C′, and overlap(γ, γ ′) > η for all intersecting
loops γ, γ ′ ∈ ⋃ C′. For large N , cN−1 log N < η/2 and hence with high probability,

γ1 ∩ γ2 = ∅ if and only if γ̃1 ∩ γ̃2 = ∅, for all γ1, γ2 ∈ ⋃ C′, (7.5)

where γ̃1, γ̃2 are the random walk loops which correspond to the Brownian loops
γ1, γ2, respectively. By (7.5), every C̃ ′

N ∈ C̃′
N is connected and hence a subcluster of
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L̃N θ−2

N . Also by (7.5), for distinct C ′
1,C

′
2 ∈ C′, the corresponding C̃ ′

1,N , C̃ ′
2,N ∈ C̃′

N
do not intersect each other when viewed as subsets of the plane.

Step 3. For every C̃ ′
N ∈ C̃′

N let C̃N be the cluster of L̃N θ−2

N which contains C̃ ′
N . Let

C̃N be the collection of these clusters C̃N . We claim that for distinct C̃ ′
1,N , C̃ ′

2,N ∈ C̃′
N ,

the corresponding C̃1,N , C̃2,N ∈ C̃N are distinct, for large N , with high probability.
This implies that there is one-to-one correspondence between elements of C̃′

N and
elements of C̃N , and hence between elements of C, C′, C̃′

N and C̃N .
To prove the claim, we combine Proposition 6.1 and the one-to-one correspondence

between random walk loops and Brownian loops to obtain that, for large N , with high
probability,

if γ1 ∩ γ2 = ∅ then γ̃1 ∩ γ̃2 = ∅, for all γ1, γ2 ∈ LN θ−2
, (7.6)

where γ̃1, γ̃2 are the random walk loops which correspond to the Brownian loops
γ1, γ2, respectively. Let C̃ ′

1,N , C̃ ′
2,N ∈ C̃′

N be distinct. Let C ′
1,C

′
2 ∈ C′ be the finite

subclusters of Brownian loops which correspond to C̃ ′
1,N , C̃ ′

2,N , respectively. By con-

struction,C ′
1,C

′
2 are contained in clusters ofLN θ−2

which are distinct. Hence by (7.6),
C̃1,N , C̃2,N are distinct.

Next we prove that, for large N , with high probability,

dH (C, C̃N ) < min{δ, ε1, ε2, ε3, ε4}/4, (7.7)

dH (ExtC,ExtC̃N ) < min{δ, ε2}/4, (7.8)

which implies that C and C̃N satisfy (7.1). To prove (7.7), let N be sufficiently large,
so that in particular cN−1 log N < min{δ, ε1, ε2, ε3, ε4}/16. By (7.2), with high
probability,

C ⊂ (C ′)min{δ,ε1,ε2,ε3,ε4}/16 ⊂ (C̃ ′
N )min{δ,ε1,ε2,ε3,ε4}/8 ⊂ (C̃N )min{δ,ε1,ε2,ε3,ε4}/8.

By (7.6), C̃N ⊂ Cmin{δ,ε1,ε2,ε3,ε4}/16. This proves (7.7). To prove (7.8), note that by
(7.7) and the definition of ε4, ExtC ⊂ (ExtC̃N )min{δ,ε2}/8. By (7.3) and (7.4),

ExtC̃N ⊂ ExtC̃ ′
N ⊂ (ExtC)min{δ,ε2}/8.

This proves (7.8).
Step 4. We prove that, for large N , with high probability, all C̃N ∈ C̃N are large,

and that all large clusters of L̃N θ−2

N are elements of C̃N . This gives that, for large N ,
with high probability, there is a one-to-one correspondence between large clusters C
of L and large clusters C̃N of L̃N θ−2

N such that (7.7) and (7.8) hold, and hence such
that (7.1) holds.

Firstwe show that, for large N ,with highprobability, all C̃N ∈ C̃N are large.By (7.7)
and the definition of ε1, for large N , with high probability, diamC̃N > diamC−ε1 > ρ,
i.e. C̃N is large.
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Next we prove that, for large N , with high probability, all large clusters of L̃N θ−2

N

are elements of C̃N . Let G̃N be a large cluster of L̃N θ−2

N . Let GN ⊂ LN θ−2
be the set of

Brownian loops which correspond to the random walk loops in G̃N . By (7.6), GN is
connected and hence a subcluster ofL. If cN−1 log N < ε1/2, then diamGN > ρ−ε1.
Let G be the cluster of L which contains GN . We have that diamG > ρ − ε1 and
hence by the definition of ε1, with high probability, G is large, i.e. G ∈ C. Let G̃∗

N be
the element of C̃N which corresponds to G. We claim that

G̃∗
N = G̃N , (7.9)

which implies that G̃N ∈ C̃N .
To prove (7.9), let G ′ be the element of C′ which corresponds to G. Since GN is a

subcluster of L with diamGN > ρ − ε1, GN contains a loop γ of time length larger
than t0. Since γ ∈ G and tγ > t0, by the construction of G ′, we have that γ ∈ G ′.
Hence γ̃ ∈ G̃∗

N , where γ̃ is the random walk loop corresponding to the Brownian
loop γ . Since γ ∈ GN , by the definition of GN , we have that γ̃ ∈ G̃N . It follows that
γ̃ ∈ G̃N ∩ G̃∗

N , which implies that (7.9) holds.
Step 5. LetC,G be distinct large clusters ofL, and let C̃N , G̃N be the large clusters

of L̃N θ−2

N which correspond to C,G, respectively. We prove that, for large N , with
high probability,

HullC ⊂ HullG if and only if HullC̃N ⊂ HullG̃N . (7.10)

It follows from (7.10) that a large cluster C of L is outermost if and only if the
corresponding large cluster C̃N of L̃N θ−2

N is outermost.
To prove (7.10), suppose that HullC ⊂ HullG. By the definition of ε2,

(HullC)ε2/2 ⊂ C\(ExtG)ε2/2. By (7.8), ExtG̃N ⊂ (ExtG)ε2/2. By (7.7), C̃N ⊂
Cε2/2 ⊂ (HullC)ε2/2. Hence

C̃N ⊂ (HullC)ε2/2 ⊂ C\(ExtG)ε2/2 ⊂ C\ExtG̃N = HullG̃N .

It follows that HullC̃N ⊂ HullG̃N .
To prove the reverse implication of (7.10), suppose that HullC̃N ⊂ HullG̃N . There

are three cases: HullC ⊂ HullG, HullG ⊂ HullC and HullC ∩ HullG = ∅. We
will show that the second and third case lead to a contradiction, which implies that
HullC ⊂ HullG. For the second case, suppose that HullG ⊂ HullC . Then, by the
previous paragraph, HullG̃N ⊂ HullC̃N . This contradicts the fact that HullC̃N ⊂
HullG̃N and C̃N ∩ G̃N = ∅.

For the third case, suppose that HullC ∩ HullG = ∅. Let ℘(C) be the path from
the definition of ε3, which connects HullC with ∞ such that ℘(C) ∩HullG = ∅ (see
Fig. 7). By the definition of ε2, ε3, with high probability,

((HullC)min{ε2,ε3}/2 ∪ ℘(C)) ∩ (HullG)min{ε2,ε3}/2 = ∅.
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Fig. 7 The case
HullC ∩ HullG = ∅ in Step 5

> ε2
> ε3

G

C

℘(C)

By (7.7), for large N , with high probability,

C̃N ⊂ Cmin{ε2,ε3}/2 ⊂ (HullC)min{ε2,ε3}/2.

Similarly, G̃N ⊂ (HullG)min{ε2,ε3}/2. It follows that there exists a path from C̃N to ∞
that avoids G̃N . This contradicts the assumption that HullC̃N ⊂ HullG̃N .

Step 6. Finally we treat the small outermost clusters. Let G be a small outermost
cluster of L. By the definition of ρ, with high probability, there exists an outermost
cluster C of L with ρ < diamC < δ/2 such that dE (C,G) < δ/4. It follows that

dH (C,G) ≤ dE (C,G) + max{diamC, diamG} < 3δ/4,

dH (ExtC,ExtG) ≤ 1
2 max{diamC, diamG} < δ/4.

Note that C is large, and let C̃N be the large outermost cluster of L̃N θ−2

N which corre-
sponds to C . Since C and C̃N satisfy (7.7) and (7.8), we obtain that dH (G, C̃N ) < δ

and dH (ExtG,ExtC̃N ) < δ/2.
Next, by the one-to-one correspondence between elements of C and C̃N satisfying

(7.7) and (7.8), for large N , with high probability,

dH
(⋂

C∈C ExtC,
⋂

C̃N∈C̃N
ExtC̃N

)
< δ/4. (7.11)

Let G̃N be a small outermost cluster of L̃N θ−2

N , then we have that G̃N ⊂⋂
C̃N∈C̃N

ExtC̃N . By (7.11) and the fact that L is dense in D, a.s. there exists an

outermost cluster C of L with diamC < δ/2 such that dE (C, G̃N ) < δ/2. It follows
that

dH (C, G̃N ) ≤ dE (C, G̃N ) + max{diamC, diamG̃N } < δ,

dH (ExtC,ExtG̃N ) ≤ 1
2 max{diamC, diamG̃N } < δ/4.

This completes the proof. ��
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