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Summary. In this paper an sequential linear programming (SLP) algorithm for solving
multi-objective topology optimization problems have been implemented and numerical
results for a design domain have been calculated. Examples shows that the SLP algorithm
performs similar to the single objective optimality criteria algorithm but also that some
further work is needed.

1 INTRODUCTION

Topology optimization, a subfield of structural optimization, can be seen as finding
the best connectivity between loads and supports with respect to desired performance
quantified by objective functions3,8. Topology optimization can e.g. be applied in order to
find the shape of a beam or the reinforcement layout in a concrete slab. However, classical
topology optimization considers only one objective while in many practical situations there
are several conflicting objectives to consider. In this work we present a formulation and
solution approach for finding the Pareto-optimal solutions of multi-objective topology
optimization problems.

2 PROBLEM FORMULATION

In the context of a finite element discretization the distribution of material is assumed
to be constant within each element, thus the vector of design variables ρ with compo-
nents ρe the material at element e. A continuous interpolation formulation approach for
intermediate values of ρe is used. The problem can be written as: min

ρ
(V (ρ), C(ρ),−λ1(ρ))

subject to 0 ≤ ρ ≤ 1
. (1)
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The considered objectives are: minimization of volume V (ρ) =
∑nel

e=1 ρeV
0
e ; minimization

of compliance C under static loads, which includes solving K(ρ)u{ρ} = f(ρ) where K, u
and f are the stiffness matrix, displacement vector and load vector respectively, given the
design vector ρ; and maximization of the fundamental eigenvalue λ1 of the structure under
free vibration, wich includes solving the eignevalue problem

[
Kfree(ρ)− λ1Mfree(ρ)

]
φfree

1 =
0, where M and φ1 are the mass matrix and eigenvector respectively. Hence, C and λ1
are ultimately functions of ρ, so-called nested formulation. A complete formulation of the
objective functions and their derivatives are given in1.

The multi-objective problem in eq. (1) is recast into a single objective optimization
problem using compromise programming2. Introducing weights wi operating on each
objective, allowing us to trace the Pareto-optimal frontier, and making the objectives
dimensionless and scaled in order to ensure the objectives have the same magnitude,
eq. (1) can be written as: min

ρ
lp(ρ) =

[∑nf

i=1w
pn
i

(
fi(ρ)−min fi
max fi−min fi

)pn](1/pn)
subject to 0 ≤ ρ ≤ 1

, (2)

lp(ρ) is the compromise function, fi(ρ) denotes objective function i and pn is the P-norm.
Note that the the scaling parameters, min fi and max fi, of this method have a large
impact on the scope of the resulting Pareto-optimal solutions1.

3 SOLVING THE PROBLEM

As a result of the finite element discretization with choosing the design variables associ-
ated with the elements, numerical oscillations in the solution may occur causing patterns
similar to checkerboards3. Such structures can not transfer any load. These issues can
be resolved by several means4 of which the application of a filter is a common choice.
A mesh independent density filter5 along with a continuation method4 operating on the
filter radius is used. The continuation method is based on the idea of gradually going
from an artificial convex problem to the non convex problem in a number of steps.

Integer solutions are encouraged for by applying the RAMP3 interpolation scheme such
that Emin ≤ Ee(ρe) ≤ E0

e where Emin is a very small stiffness introduced in order to avoid
singularities when ρe = 0 and E0

e is the stiffness of the base material. Both schemes
penalize intermediate solutions. The optimization problem is solved using a sequential
linear programming (SLP) algorithm6.

The method has been implemented in Matlab and been used in order to solve a nu-
merical example: the support structure of a bridge deck, see Figure 1. Further examples
are presented in1. Some of the obtained structures are presented in Figure 2. In1 a
comparison of the results with single objective topology optimization results based on
the optimality criteria (OC) method3,7,8 is presented. Since the results are not as clear
integer-solutions as desired, it seems that the SLP algorithm is not capable of solving the
presented problem in a satisfying way.



Alexander Sehlström, H̊akan Johansson and Mats Ander

74 m

8 m

6 m

9.5 m

River

Ground

E

B

Boat fairway

A

C D

2 m 0.25 m

8 m

Bridge deck

Figure 1: Bridge example configuration. Supports allowed at points A-E; no structure
allowed in the river and in the boat fairway.
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Figure 2: Compromise value lp(ρ
∗) and Pareto-optimal solutions. Weight point numbers

k within circles. Here the RAMP interpolation scheme is used with q = 20 and the initial
guess set to ρ(k),(0) = 1,∀k. The continuation method is applied on the density filter with
rmin = [5, 4, 3, 2, 1]× 0.6. Note that weight points 4-6, 9-11, 14-15, 17-18 and 20-21 yields
the same result for this configuration.

4 DISCUSSION

As seen, the SLP algorithm dose not yield valid results. Due to the nature of the
compromise function lp(ρ), objectives that are relatively flat around the minima point
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may cause problem for the algorithm to handle and it will terminate without finding
the optimum. Regarding the considered objectives, it is evident that the compliance
objective (load dependent) and the eigenvalue objective (load independent) in the general
case yields completely different structures.

5 FUTURE WORK

To rule out if there are more suitable solution methods for the problem presented, other
algorithms than the SLP should be tested. Further more, the scaling of the objectives,
and especially the Eigenvalue, could be studied more thoroughly in order to clarify the
impact on the found solution. Multiplicity of eigenvalues, i.e. structures that gives several
mode shapes for the same eigenvalue (λ1,2, φ1, φ2) should be investigated, especially when
dealing with symmetrical design domains. The occurrence of such eigenvalues may lead
to poor convergence in the optimization process. Finally, in order to make real use of the
results, multiple load cases and three dimensional design domains should be considered.

REFERENCES

[1] Sehlström, A. Multiobjective topology optimization: Tracing of Pareto-optimal struc-
tures with respect to volume, compliance and fundamental eigenvalue. Master’s thesis,
Chalmers University of Technology, Gothenburg, Sweden (2013).

[2] Save, M., Prager, W., Borkowski, A. & Jendo, S. Structural optimization. Vol. 2,
Mathematical programming (Plenum, New York, 1990).

[3] Bendsøe, M. P. & Sigmund, O. Topology optimization : theory, methods and applica-
tions (Springer, Berlin, 2004), 2. ed., corr. pr. edn.

[4] Sigmund, O. & Petersson, J. Numerical instabilities in topology optimization: A sur-
vey on procedures dealing with checkerboards, mesh-dependencies and local minima.
Structural optimization 16, 68–75 (1998).

[5] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. & Sigmund, O. Efficient
topology optimization in matlab using 88 lines of code. Structural and Multidisci-
plinary Optimization 43, 1–16 (2011).

[6] Gomes, F. A. & Senne, T. A. An slp algorithm and its application to topology
optimization. Computational & Applied Mathematics 30, 53–89 (2011).

[7] Bendsoe, M. P. Optimization of structural topology, shape, and material (1995).

[8] Christensen, P. W. & Klarbring, A. An introduction to structural optimization, vol.
153 (Springer Science & Business Media, 2008).


	INTRODUCTION
	PROBLEM FORMULATION
	SOLVING THE PROBLEM
	DISCUSSION
	FUTURE WORK

