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Abstract—A comprehensive study of the coded performance
of long-haul spectrally-efficient WDM optical fiber transmission
systems with different coded modulation decoding structures is
presented. Achievable information rates are derived for three dif-
ferent square QAM formats and the optimal format is identified
as a function of distance and specific decoder implementation.
The four cases analyzed combine hard-decision (HD) or soft-
decision (SD) decoding together with either a bit-wise or a
symbol-wise demapper, the last two suitable for binary and
nonbinary codes, respectively. The information rates achievable
for each scheme are calculated based on the mismatched decoder
principle. These quantities represent true indicators of the coded
performance of the system for specific decoder implementations
and when the modulation format and its input distribution are
fixed. In combination with the structure of the decoder, two
different receiver-side equalization strategies are also analyzed:
electronic dispersion compensation and digital backpropagation.
We show that, somewhat unexpectedly, schemes based on nonbi-
nary HD codes can achieve information rates comparable to SD
decoders and that, when SD is used, switching from a symbol-wise
to a bit-wise decoder results in a negligible penalty. Conversely,
from an information-theoretic standpoint, HD binary decoders
are shown to be unsuitable for spectrally-efficient, long-haul
systems.

Index Terms—Achievable information rates, coded modulation,
forward error correction, generalized mutual information, hard-
decision decoding, mutual information, nonbinary codes, optical
communications, soft-decision decoding.

I. INTRODUCTION

THE demand for ever higher transmission rates in optical
fiber transmission systems has led researchers to study
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the performance of transceivers based on sophisticated for-
ward error correction (FEC) techniques. Next-generation long-
haul transceivers will use powerful FEC and high-spectral-
efficiency (SE) modulation formats, a combination known as
coded modulation (CM). In order to provide reliable trans-
mission, a FEC encoder maps blocks of information bits into
longer blocks of coded bits that are sent through the channel
at a nominal transmission rate. As a result, the information
rate is, in general, lower than the nominal one by an amount
that depends on the redundancy added by the FEC encoder,
which in turn needs to be adjusted based on the quality of the
channel. A key performance parameter is then the maximum
rate at which an optical communication system can be operated
whilst maintaining reliable transmission of information.

To have an estimate of this rate, a widely used approach
in the optical communication literature is based on identi-
fying a pre-FEC BER threshold, for which a specific high-
performance FEC code can guarantee an error-free perfor-
mance after decoding. The code rate of such a coding scheme,
multiplied by the raw transmission data rate, is used to quantify
an achievable information rate (AIR) for that specific system
configuration. On the other hand, information theory, founded
by Shannon in his seminal paper [1], shows that quantities such
as the mutual information (MI) can precisely indicate what is
the maximum information rate at which a code can ensure an
arbitrarily small error probability [2], [3]. Moreover, several
recent works have showed that both the MI and the generalized
mutual information (GMI) [4], [5] are more reliable indicators
than the pre-FEC BER of the performance of coded optical
fiber systems, regardless of the specific channel used for
transmission [6]–[12].

The channel MI (i.e., the MI including the channel memory)
represents an upper limit on the AIRs for a given channel when
a given modulation format is used along with an optimum
decoder. In most cases, FEC codewords are equally likely, and
thus the optimum decoder performs a maximum likelihood
estimation on the received codewords. However, the imple-
mentation of such a decoder is in general prohibitive, both for
complexity reasons and due to the lack of knowledge of the
channel law. Instead of the optimum decoder, more pragmatic
CM decoders are usually employed. Typical CM decoder
implementations used in optical communications neglect the
channel memory [9] and are, thus, suboptimal. Furthermore,
their design involves two degrees of freedom. Each degree of
freedom presents two options: hard-decision (HD) vs. soft-
decision (SD) decoding and bit-wise (BW) vs. symbol-wise
(SW) demapping, effectively producing four different design
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Fig. 1. General schematic of the optical communication system analyzed in this work.

options.
These structures are representative of pragmatic decoders

for FEC schemes employed in optical communication systems
and comprehensively studied in the previous literature. SD-SW
FEC schemes have been discussed in the context of optical
communications for example in [8], [13, Sec. III-E]. SD-BW
decoders are a more widespread choice for SD FEC and are
typically used with binary low-density parity-check codes (see
for example [6], [7], [10], [13]–[15]). As for HD FEC schemes,
HD-SW decoders have been employed for Reed-Solomon
codes which were adopted by the standard ITU-T G.975.1 [16]
within the implementation of the so-called super-FEC scheme.
Finally, HD binary FEC schemes such as extended Hamming
codes and BCH codes were also adopted by the ITU-T G.975.1
standard. Alternative HD-BW schemes that have been recently
considered for optical communications include staircase codes
[17] and other types of so-called generalized product codes
[18].

The channel MI is not in general an AIR for any of the
four suboptimal schemes discussed above. Indeed, the adopted
decoding strategy has a major impact on the AIRs, which
can potentially be significantly lower that the channel MI.
A common approach to calculate AIRs for specific decoder
implementations is based on two steps: i) the memory of the
optical fiber channel is neglected and the MI is calculated for
an equivalent memoryless channel; ii) the mismatched decoder
principle is used [19]–[22]. Each of these two methods results
in a lower bound on the channel MI.

In [23] the memoryless MI was studied for coherent optical
fibre systems using ring constellations. In [6], [7], the same
quantity was used in an experimental scenario as a system
performance metric for an SD coded system. In [9] and [10,
Fig. 6], it was shown that when BW decoders are used, the
GMI is a better metric to predict AIRs than the MI. The GMI
has also been used to evaluate the performance of experimental
optical systems in [24]–[26]. The memoryless MI and the
GMI were also shown to be good post-FEC BER predictors
for SD-SW (nonbinary) and SD-BW decoders, in [8] and
[10] respectively. Finally, a study comparing SD-SW and
HD-BW AIRs for polarization multiplexed (PM) quadrature-
amplitude modulation (QAM) formats (PM-16QAM and PM-
64QAM) was presented in [27], where electronic dispersion
compensation (EDC) or digital backpropagation (DBP) are
used at the receiver for a given transmission distance.

CM Encoder

CM Encoder

Binary FEC
Encoder

Mapper
Φ

Mapper
Φ

Nonbinary FEC
Encoder

BNb

XNs

Fig. 2. Two different implementation alternatives for the CM encoder in
Fig. 1.

In this work, we extend the results in [27] adding, for
the first time, AIRs for HD-SW decoders to the picture.
Furthermore, we present a comprehensive comparison of the
AIRs of the optical fiber channel for different CM decoder
implementations and for all transmission distances of interest
for mid-range/long-haul terrestrial and transoceanic optical
fiber links. The AIRs are also compared for different equaliza-
tion techniques and over different PM-MQAM formats with
nominal SE above 4 bits/sym per polarization such as PM-
16QAM, PM-64QAM, and PM-256QAM. The results in this
paper show the design trade-offs in coded optical fiber sys-
tems where, for a given distance requirement, a compromise
between transmission rates and transceiver complexity (mod-
ulation format, equalization, and decoding) must be found.
To the best of our knowledge, this is the first time such an
extensive study is performed for optical fiber communication
systems.

The paper is structured as follows: in Section II, the investi-
gated system is first modeled and the different decoding strate-
gies analyzed in this work are described; Section III discusses
in a semi-tutorial style the information-theoretic quantities
used to evaluate their performance and, as a reference, results
are shown for the additive white Gaussian noise (AWGN)
channel. In Section IV, the numerical setup is explained and
AIR results for the optical fiber channel are shown; finally in
Section V, conclusions are drawn.

II. SYSTEM MODEL

We consider the schematic diagram in Fig. 1, represent-
ing a generic multispan optical fiber communication system.
Although in this work PM (4D) modulation formats are
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Fig. 3. The four CM decoder implementations analyzed in this work.

considered, for simplicity of the mathematical treatment in
Sec. III, we will neglect in our channel model any statis-
tical dependence between the data transmitted on the two
polarizations. Under this assumption, and for the modulation
formats studied in this paper (PM-16QAM, PM-64QAM,
and PM-256QAM), the system under analysis can be re-
duced to a single-polarization (2D) one. At the transmitter,
a CM encoder encodes a stream of Nb information bits
BNb = [B1, B2, . . . , BNb

] into a sequence of Ns symbols
XNs = [X1, X2, . . . , XNs ], each drawn from a set of M
complex values S = {s1, s2, ..., sM}, where M is a power
of 2.1 The rate at which this operation is performed (in bits
per symbol) is therefore given by

R =
Nb

Ns
. (1)

In our analysis, we will only consider the case where the sym-
bols Xn forming a codeword XNs are independent, identically
distributed (i.i.d.) random variables with equal probability
1/M .2

Although all CM encoders are inherently nonbinary en-
coders, the encoding process described above can be imple-
mented in two different ways, as shown in Fig. 2. In the first
implementation, shown in the top part of Fig. 2, the sequence
of information bits is encoded using a binary FEC code
and subsequently a memoryless mapper Φ is used to convert
blocks of log2M bits into symbols of the constellation S.3

This implementation is naturally associated with CM decoders
based on a demapper and a binary FEC decoder. The second
implementation is shown in the bottom part of Fig. 2, where
bits are first mapped into a sequence of nonbinary information
symbols, which are then mapped into sequences of nonbinary
coded symbols by a nonbinary FEC encoder [13, Sec. III-E],
[8]. In this case, the decoding can be performed by a nonbinary
FEC decoder.

In this paper, we do not consider cases where symbols are
not uniformly distributed, i.e., when a probabilistic shaping

1Throughout this paper, boldface uppercase variables (e.g., XN ) denote
random vectors where the superscript indicates the size of the vector. Calli-
graphic letters (e.g., S) represent sets.

2However, once a codebook is selected, symbols within codewords will
appear as statistically dependent.

3Throughout the paper, it is assumed that the mapping is done via the
binary reflected Gray code [28], [29].

on S is performed [30]–[35]. Moreover, throughout this paper,
we focus our attention on high SEs (>2 bits/sym/polarization),
and thus the constellation S is assumed to be a square MQAM
constellation where M ∈ {16, 64, 256}.

The symbols Xn are mapped, one every Ts seconds, onto
a set of waveforms by a (real) pulse shaper p(t), generating
the complex signal

s(t) =

Ns∑
n=1

Xnp(t− nTs). (2)

The signal s(t) propagates through Nsp spans of optical fiber
(see Fig. 1), optically amplified at the end of each span by an
erbium-doped fiber amplifier (EDFA). At the end of the fiber
link, the signal is detected by an optical receiver. As shown in
Fig. 1, the first part of the receiver includes an equalizer and
a matched filter (MF), which are assumed to be operating on
the continuous-time received waveform r(t).4 The equalizer
performs a compensation of the most significant fiber channel
impairments, either the linear ones only, as in the case of EDC,
or both linear and nonlinear, as with DBP. The equalized (but
noisy) waveform y(t) represents the input of the detection
stage and can be therefore effectively considered as the output
of the so-called waveform channel [36, Sec. 2.4]. Such a
channel is formed by the cascade of the physical channel and
the equalization block at the receiver, as shown in Fig. 1. The
physical channel (i.e., fiber spans and amplifiers), also referred
to as nonlinear Schrödinger channel in [37], is described by
the nonlinear Schrödinger equation [38, Sec. 2.3].

The receiver estimates the transmitted bits based on the set
of observations Y Ns that are extracted from the signal y(t),
using an MF matched to the transmitted pulse p(t)

Yn =

∫ +∞

−∞
y(τ)p(τ − nTs)dτ. (3)

As shown in [39], [40], (3) does not necessarily represent
the optimum way to reduce this particular waveform channel
to a discrete-time one. Also, in all scenarios where residual
correlated phase-noise is present due to fiber nonlinearities
[22], [41], a phase-noise estimation block would improve the
system performance, as shown for example in [42]. However,

4The equalizer typically operates in the digital domain, but for a large
enough sampling rate, the two representations are equivalent.
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the focus of this work is on the performance of CM encoder
and decoder blocks, operating on the input and output of the
discrete-time channel, regardless of the suboptimality of the
observations Y Ns .

In the following section, we will discuss AIRs of the four
decoding strategies shown in Fig. 3, representing different
implementations of the CM decoder. The importance of these
structures lies in the fact that they cover all main options
employing a memoryless demapper. Each BW configuration
(see Figs. 3(b) and (d)) is characterized by a CM decoder
formed by two blocks: a memoryless demapper and a binary
FEC decoder. The SW strategies (see Figs. 3(a) and (c)) are
instead characterized by the adoption of a nonbinary decoder
operating directly on symbol level metrics derived from the
samples Yn. Each of the HD schemes (see Figs. 3(c) and
(d)) operates a symbol/bit level decision before the FEC
decoder, which as a result operates on discrete quantities (hard
information). In the SD case (see Figs. 3(a) and (b)), the
decoder instead produces codeword estimates based on BW
or SW log-likelihood (LL) values5, which are distributed on a
continuous range (soft information).

III. AIRS FOR CM SYSTEMS

A. Information-theoretic Preliminaries

Consider an information stable, discrete-time channel with
memory [43], characterized by the sequence of probability
density functions (PDFs)6

pY N |XN (yN |xN ), N = 1, 2, . . . (4)

The maximum rate at which reliable transmission over such a
channel is possible is defined by the capacity [43, eq. (1.2)]

C = lim
N→∞

sup
pXN

1

N
I(Y N ;XN ) (5)

where pXN is the joint PDF of the sequence XN under a
given power constraint. When pXN is fixed, the quantity

I(XN ;Y N ) = E

[
log2

pY N |XN (Y N |XN )

pY N (Y N )

]
(6)

in (5) is the MI between the two sequences of symbols XN

and Y N , and

Imem = lim
N→∞

1

N
I(XN ;Y N ) (7)

is the average per-symbol MI rate [2], [22], which has a
meaning of channel MI. For a fixed N , (7) represents the
maximum AIR for the channel in (4), and can be achieved by
a CM encoder generating codewords XNs according to pXN ,
used along with an optimum decoder.7 Such a decoder uses

5For the binary case, LL ratios are typically preferred for implementation
reasons.

6Throughout this paper, pY |X(y|x) denotes a joint conditional PDF for
the random vectors Y and X , whereas a marginal joint PDF is denoted by
pX(x).

7The channel can be seen as block-wise memoryless, and thus, codewords
should be constructed using blocks of N symbols drawn independently from
pXN .

the channel observations yNs to produce codeword estimates
XNs

DEC based on the rule

XNs

DEC = argmax
xNs∈SNs

pY Ns |XNs (yNs |xNs) (8)

where the codeword likelihood pY Ns |XNs is calculated based
on the knowledge of the channel law (4).

The expression of the channel law (4), for N large enough
to account for the channel memory, remains so far unknown
for the optical fiber channel despite previous attempts to
derive approximated [44], [45] or heuristic [46] analytical
expressions. On the other hand, brute-force numerical ap-
proaches appear prohibitive. An immediate consequence is
that the exact channel MI for a given modulation format
cannot be calculated. The second consequence is that the
optimum receiver potentially achieving a rate R = Imem
cannot be designed. However, using the mismatched decoder
approach, it is still possible to calculate nontrivial AIRs for the
optical fiber channel in Fig. 1, when suboptimal but practically
realizable CM encoders and decoders are used, such as the
ones described in Section II (see Fig. 3).

The method of the mismatched decoder to calculate AIRs
for specific decoder structures originates from the works in
[19], later extended to channels with memory in [20] and re-
cently applied to optical fiber systems in, e.g., [21], [22], [27].
This approach consists in replacing, in the calculation of the
channel MI, the unknown channel law with an auxiliary one,
obtaining a lower bound. Moreover, such a bound represents an
AIR for a system using the optimum decoder for the auxiliary
channel. The tightness of such a lower bound depends on how
similar the auxiliary channel is to the actual one. On the other
hand, no converse coding theorem is available for the bound
obtained using a given auxiliary channel. In other words, even
when a mismatched decoder is used, the estimated rate is not
necessarily the maximum achievable rate. Counterexamples
have been shown, e.g., in [47].

Nevertheless the AIRs calculated via the mismatched de-
coder approach still represent an upper bound on the rates of
most, if not all, coding schemes used in practice. Furthermore
they are a strong predictor of the post-FEC BER of such
schemes, as shown in [6]–[8], [10].

B. AIRs for SD CM Decoders

Since each of the CM decoders presented in Section II
neglects the memory of the channel in (4), a first decoding
mismatch is introduced. In what follows, we will discuss
this mismatch using the SD-SW case (see Fig. 3(a)) as a
representative example of all other CM decoders.

For the SD-SW, the nonbinary decoder requires SW like-
lihoods pYn|Xn

, with n = 1, 2, . . . , N . These N PDFs can
be derived for each n by marginalizing the joint PDF in (4).
For simplicity, however, practical implementations use a single
PDF across the block of N symbols. We choose the PDF
in the middle of the observation block, i.e., at time instant
n = n̂ = dN/2e. The marginalization of (4) in this case gives

pYn̂|Xn̂
(yn̂|xn̂) =

∫
CN−1

pY N |Xn̂
(yN |xn̂)dỹN−1 (9)
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where C denotes the complex field, ỹN−1 ,
[y1, . . . , yn̂−1, yn̂+1, . . . , yN ], and the conditional PDF
pY N |Xn̂

in (9) can be expressed as

pY N |Xn̂
(yN |xn̂) =

1

MN−1

∑
x̃N−1∈SN−1

pY N |XN (yN |xN )

(10)
where x̃N−1 , [x1, . . . , xn̂−1, xn̂+1, . . . , xN ].

The choice for the single PDF to be the one in the
middle of the observation block is arbitrary. However, this
choice is justified by the fact that pYn̂|Xn̂

(yn̂|xn̂) will be a
good approximation of all other PDFs pYn|Xn

(yn|xn) with
n = 1, 2, . . . , N when N is large.

The demapper is then assuming a channel that is stationary
across the block of N symbols.8 This channel is fully deter-
mined by a PDF pY |X(y|x) defined as

pY |X(y|x) , pYn̂|Xn̂
(y|x). (11)

When i.i.d. symbols are transmitted, the MI for this auxiliary
memoryless channel is given by

ISD-SW =
1

M

M∑
i=1

∫
C
pY |X(y|si) log2

pY |X(y|si)
pY (y)

dy. (12)

The SD-SW MI in (12) is an AIR for the SD-SW decoder
structure in Fig. 3(a), where the demapper computes LLs
log pY |X(y|x), and the FEC decoder estimates each transmit-
ted codeword using (8) with a codeword likelihood given by

pY Ns |XNs (yNs |xNs) =

Ns∏
n=1

pY |X(yn|xn). (13)

In most cases, the channel law pY N |XN is unknown and
therefore pY |X(y|x) is not available in closed form to the
receiver. Also, numerical estimations of pY |X(y|x) are often
prohibitive. As a result, practical implementations not only
ignore the memory of the channel (first mismatch), but also
make an a priori assumption on the PDF pY |X(y|x). This
assumption introduces a second mismatch, which we discuss
in what follows.

Most receivers assume a circularly symmetric Gaussian
distribution for (11). In this case, an AIR is given by [27,
eq. (2)]

ĨSD-SW =
1

M

M∑
i=1

∫
C
pY |X(y|si) log2

qY |X(y|si)
qY (y)

dy (14)

where
qY |X(y|x) =

1

πσ2
exp

(
−|y − x|

2

σ2

)
(15)

represents the auxiliary Gaussian channel with complex noise
variance σ2, which accounts for the contributions of both ASE
and nonlinear distortions.

As shown in [49], [50], the marginal PDF for the optical
fiber channel is in most practical cases well approximated

8Here we refer to wide-sense stationarity [48, Sec. 3.6.1].

Imem

ISD-SW

ĨSD-SW

ISD-BW

ĨSD-BW

IHD-SW

IHD-BW

Fig. 4. Graph showing relationships between the information-theoretic
quantities presented in this paper. Lines between nodes indicate an inequality,
where the arrows point towards the upper bound. Dotted arrows indicate
inequalities which become equalities for the AWGN channel.

by a circularly symmetric Gaussian distribution.9 This near-
Gaussianity property can be attributed to the central limit
theorem, as it is the result of the accumulation of many random
nonlinear interference contributions.

Therefore, as pointed out in [27], we generally have

ĨSD-SW ≈ ISD-SW. (16)

In this case, as we will discuss in Sec. IV, the AIRs of SD-
SW decoders can be quite accurately estimated using the MI
expression for the AWGN channel and the effective signal-to-
noise ratio (SNR) at the MF output

SNR =
E
[
|X|2

]
σ2

. (17)

In the SD-BW implementation (see Fig. 3(b)), for each
received symbol Y the demapper generates log2M BW LLs
[5, Ch. 3], [10]. These LLs are usually obtained assuming
no statistical dependence between bits belonging to the same
transmitted symbol. When such LLs are calculated based on
a memoryless channel law pY |X(y|x), the relevant quantity
for the coded performance is the GMI [5, eq. (4.54)], [10,
eq. (24)]

ISD-BW =

log2 M∑
k=1

I(Bk;Y ) (18)

where Bk denotes the k-th bit of X and I(Bk;Y ) denotes the
MI between transmitted bits and received symbols.

When the LLs are calculated using the auxiliary channel in
(15) instead of the true channel, the GMI is lower-bounded by

ĨSD-BW =
1

M

log2 M∑
k=1

∑
b∈{0,1}

∑
i∈Ibk

∫
C
pY |X(y|si)gk,b(y)dy (19)

9A deviation from a circularly symmetric Gaussian PDF can be observed,
e.g., in the following cases: amplification schemes different from EDFA (such
as Raman amplifiers) [44], dispersion-managed links (see for instance [22]),
and for very high transmitted powers.
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where Ibk is the subset of indices of the constellation S having
the k-th bit equal to b ∈ {0, 1} and

gk,b(y) , log2

∑
j∈Ibk

qY |X(y|sj)
1
2

∑M
j=1 qY |X(y|sj)

. (20)

Similarly to the SD-SW case, for the optical fiber channel in
Fig. 1 we have ĨSD-BW ≈ ISD-BW.

C. AIRs for HD CM Decoders

As illustrated in Figs. 3(c) and (d), the HD decoders are
preceded by a memoryless threshold device casting the channel
samples Y Ns into a discrete set of values. In the SW case
(Fig. 3(c)), such a device provides a sequence of hard SW
estimates X̂Ns that are passed to a nonbinary decoder.

The channel
PX̂N |XN (x̂N |xN ) (21)

will in general show memory across multiple symbols X̂n.
However, in analogy with (9), we can replace (21) with an
equivalent memoryless channel defined by

PX̂|X(xj |xi) , pij for i, j = 1, 2, ...,M (22)

where the pij are the SW crossover probabilities. Using the
same argument on the channel memory used for the SD-SW
case, the quantity

IHD-SW =
1

M

M∑
i=1

M∑
j=1

pij log2

pij
1
M

∑M
p=1 ppj

(23)

represents an AIR for the HD-SW CM decoder in Fig. 3(c).10

When the HD decoder structure is preserved but a binary
decoder is instead used (Fig. 3(d)), the threshold device needs
to be followed by a symbol-to-bit demapper producing a
sequence of pre-FEC bits estimates B̂Nb . Again, although the
resulting binary channel might show memory, the HD FEC
decoder typically neglects it and the most likely codeword is
calculated based on each single detected bits. The auxiliary
channel law PB̂k|Bk

(b̂|b) can be in this case represented by a
set of log2M pairs of transition probabilities

PB̂k|Bk
(b̂|b) =

 pk for b = 0, b̂ = 1

qk for b = 1, b̂ = 0
(24)

for k=1,2,. . . ,log2M , where pk and qk are the crossover
probabilities for the bits B̂k and Bk in k-th position within
the symbols X̂ and X , respectively. The quantity

IHD-BW =

log2 M∑
k=1

I(Bk; B̂k), (25)

10The rate IHD-SW in (23) is achievable with a nonbinary FEC decoder that is
matched to the channel transition probabilities pij , but not necessarily with a
standard nonbinary FEC decoder based on minimizing the Hamming distance.

where I(Bk; B̂k) is given, after some simple algebra, by

I(Bk; B̂k) = 1 +
1

2

[
log2

(1− pk)(1− qk)

(1− pk + qk)(1− qk + pk)

+pk log2

pk(1− pk + qk)

(1− pk)(1− qk + pk)

+qk log2

qk(1− qk + pk)

(1− qk)(1− pk + qk)

]
, (26)

represents an AIR for an HD-BW CM decoder as in
Fig. 3(d).11

D. Relationships Between AIRs

The relationships between the above discussed AIRs are
summarized by means of the graph in Fig. 4. Nodes that are
connected in the graph indicate the existence of an inequality
between the quantities in each of the nodes. The direction of
the arrows show which quantity is upper-bounding the other.

For any given input distribution, the rate Imem upper-bounds
all other quantities. In particular, we have

Imem ≥ ISD-SW ≥ ĨSD-SW, (27)

where the first inequality can be proven using the chain rule
of the MI (see [3, Sec. 2.5.2], [23, Sec. IV], [51]). The second
inequality instead reflects the additional mismatch caused by
a memoryless demapper based on (15) rather than on (9). The
proof of this inequality follows from the definitions (12) and
(14) and is given in [20, Sec. VI]. Due to the assumption
of independent bits within each transmitted symbol in the
calculation of (18), it can also be shown that [5, Sec. 4.4]

ISD-SW ≥ ISD-BW ≥ ĨSD-BW. (28)

Again, the second inequality reflects the loss of information
of a mismatched demapper calculating BW LLs based on (15)
rather than on (9).

Due to the data-processing inequality [3, Sec. 2.4] and
the mismatch of the illustrated HD decoders to the potential
channel memory, we have

ISD-SW ≥ IHD-SW, (29)
ISD-BW ≥ IHD-BW. (30)

Finally, similarly to the SD case, we have

IHD-SW ≥ IHD-BW. (31)

In general, nothing can be said on the relationship between
ISD-BW and IHD-SW. Also, no systematic inequality holds between
the mismatched versions of the SD AIRs (ĨSD-SW, ĨSD-BW) and
the HD AIRs (IHD-SW, IHD-BW). However, as already discussed
in Section III-B, for the optical fiber channel the mismatched
AIRs are expected to be very close to the AIRs obtained with
perfect knowledge of the channel marginal PDF in (9).

11An average binary symmetric channel (BSC) could be used instead of (24)
as an auxiliary channel. This would result in the well-known BSC capacity
which might be a pessimistic AIR for generic HD-BW decoders. However,
such a quantity is a more suitable AIR for HD-BW decoders that disregard
both bit position and channel asymmetry.
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Fig. 5. AIRs vs. SNR for different modulation formats for the AWGN channel.

When the channel is indeed AWGN, clearly

Imem = ISD-SW = ĨSD-SW, (32)

ISD-BW = ĨSD-BW. (33)

In this case, as illustrated in 4, ISD-SW and IHD-SW are the maxi-
mum AIR for SD-SW and HD-SW decoders, respectively [1],
since each demapper is matched to the channel.12 Conversely,
for BW decoders, rates higher than ISD-BW and IHD-BW are still
achievable (see, e.g., [47]).

In order to better illustrate the relationships discussed above,
the four AIRs in (12), (18), (23), and (25) were calculated for
the AWGN channel. In Fig. 5, ISD-SW, ISD-BW, IHD-SW, and IHD-BW

are shown vs. the SNR in (17) for the three MQAM formats
analyzed in this paper: 16QAM, 64QAM, and 256QAM. For
16QAM, the HD AIRs are below both of the SD AIRs. It
should be noted that for SD decoders, a negligible penalty is
incurred by using a BW structure. As the modulation order is
increased, and for low enough SNR values, it can be observed
that the HD-SW AIRs match or exceed the SD-BW AIRs.
Also, in this regime, the performance of these two decoders
are comparable to the SD-SW one. This behaviour is clearer
for a 256QAM modulation format, where a more significant
penalty is incurred by using BW demapping in an SD CM
decoder, whereas the HD-SW structure performs as well as
the SD counterpart. When the modulation format cardinality
increases, an HD-BW decoder incurs, in general, significant
penalties in AIR. Finally, the inequalities in (28)–(31) can be
seen to hold for all modulation formats shown, as expected.

IV. NUMERICAL RESULTS

A. Numerical Setup

In this section, numerical results based on split-step Fourier
(SSF) simulations of optical fiber transmission are presented.
As shown in Fig. 1, the simulated system consists of an

12In the HD-SW case, the channel seen by the nonbinary FEC decoder is
the one in (22).

TABLE I
SYSTEM PARAMETERS

Parameter Name Value

Transmitter Parameters

WDM Channels 5

Symbol Rate 32 Gbaud

RRC Roll-Off 0.01

Channel Frequency Spacing 33 GHz

Fiber Channel Parameters

Attenuation (α) 0.2 dB/km

Dispersion Parameter (D) 17 ps/nm/km

Nonlinearity Parameter (γ) 1.2 1/(W·km)

Fiber Span Length 80 km

EDFA Gain 16 dB

EDFA Noise Figure 4.5 dB

Numerical Parameters

SSF Spatial Step Size 100 m

Simulation Bandwidth 512 GHz

optical fiber link comprising multiple standard single-mode
fiber spans (parameters shown in Table I), amplified, at the
end of each span, by an EDFA which compensates for the
span loss. At the transmitter, after the CM encoder, PM square
MQAM formats (PM-16QAM, PM-64QAM, PM-256QAM)
were modulated using a root raised cosine (RRC) filter p(t).
For each polarization of each WDM channel, independent
sequences of 218 symbols were transmitted. The fiber prop-
agation was simulated by numerically solving the Manakov
equation through the SSF method. In order to obtain ideal
equalization performance, the sampling rate at which the
equalizer was operated was the same as the fiber propagation
simulation (512 GSa/s).

After the MF (see Fig. 1) and sampling at 1 Sa/sym, AIRs
calculations were performed based on the schemes shown in
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Fig. 3. In particular, we used (14)–(15), (19)–(20), (23), and
(25) to evaluate ĨSD-SW, ĨSD-BW, IHD-SW, and IHD-BW, respectively.
For the calculation of ĨSD-SW and ĨSD-BW in (14) and (19), Monte
Carlo integration was performed [52], using the 218 channel
samples (transmitted symbols) to estimate the variance σ2 of
qY |X(y|x). In order to calculate IHD-SW and IHD-BW, a Monte
Carlo estimation [53, Sec. 5.6.1] of the probabilities pij and
p was performed using the pairs of sequences (XNs , X̂Ns)
and (BNb , B̂Nb), respectively.

B. Optical Fiber AIRs

In Figs. 6–8, three sets of results on AIRs for the op-
tical fiber channel are shown: EDC, single-channel DBP,
and full-field DBP, respectively. Each set shows the AIR vs.
transmission distance for PM-16QAM, PM-64QAM, and PM-
256QAM with the four CM decoder structures discussed in
Section II. For each distance, equalization scheme, and CM
decoder investigated, the transmitted power was optimized,
resulting in different optimal powers. The investigated link
lengths span the typical distances of mid-range to long-haul
terrestrial links (typically 1000–3000 km), long-haul subma-
rine (3000–5000 km), and transoceanic links (6000–12000
km).

In the EDC case for PM-16QAM (Fig. 6(a)), SD decoders
significantly outperform the HD ones, particularly for long
distances. SD-BW decoders incur small penalties compared
to the SD-SW implementation at all distances of interest.
This can be explained by observing Fig. 5(a), where the
performance of PM-16QAM differs for SD-SW and SD-
BW decoders only for very small SNR values (≤2 dB). As
shown in Fig. 6(b), for PM-64QAM, SD decoders show a
significant advantage over their HD counterparts (see [27]
for SD-SW vs. HD-BW) and again SD-BW decoders have
identical performance as the SD-SW ones at short distances.
However, as the distance is increased, the AIRs of the HD-
SW schemes match the SD-BW ones (see filled red circles in
Fig. 6(b) and 6(c)), significantly outperforming the HD-BW
rates. This trend is even more prominent for PM-256QAM
(Fig. 6(c)). For this format, a crossing between the SD-BW
and HD-SW AIRs can be observed at around 2300 km distance
(filled red circles). More importantly, in the long distance
regime, the HD-SW scheme matches the performance of the
SD-SW one, with no significant penalty observed. Also, it
can be noted that the HD-BW scheme shows a significant
penalty (>3 bits/sym for long distances) compared to all other
implementations.

In the case where single-channel DBP is applied (Fig. 7),
rather small AIR gains can be noticed in general, as compared
to the EDC case (Fig. 6). This can be attributed to the fact that
the compensation of the nonlinearity generated by only one
channel out of the five transmitted gives only a marginal im-
provement of the optimum SNR at each transmission distance.
However, performance differences can be noticed for higher
order formats and long distances. Specifically, the distance at
which the HD-SW transceiver matches the performance of the
SD-BW one for PM-64QAM is increased from 10000 km to
12000 km (filled red circles in Fig. 6(b) and Fig. 7(b)), and

for PM-256QAM the crossing point between HD-SW and SD-
BW is moved from 2300 km to 3000 km (filled red circles in
Fig. 6(c) and Fig. 7(c)).

Finally, when full compensation of signal–signal nonlinear
distortion is performed via full-field DBP (Fig. 8), a remark-
able increase in the AIRs compared to the other equalization
schemes can be observed for all decoding strategies and all
modulation formats. Fig. 8(a) shows that, for PM-16QAM, the
full nominal SE (8 bits/sym) can be achieved up to a distance
of approximately 6000 km and by only using an HD-BW de-
coder (squares). This rate drops by only 0.5 bits/sym at 12000
km if SD decoders are used, and by an additional 0.5 bits/sym
(to 7 bits/sym) when HD decoders are adopted. Fig. 8(a) also
shows that when PM-16QAM is used in conjunction with full-
field DBP, switching from a binary to a nonbinary scheme
does not result in any significant AIR increase, as long as
the same FEC decoding strategy (HD or SD) is maintained.
Higher rates can be achieved using PM-64QAM (Fig. 8(b))
and PM-256QAM (Fig. 8(c)) in conjunction with SD decoders.
Again, binary and nonbinary SD schemes perform identically.
For these higher order modulation formats, HD-BW decoders
incur significant penalties compared to SD decoders. For PM-
64QAM, this penalty becomes larger than 0.5 bits/sym for
distances larger than 4000 km whereas for PM-256QAM, they
become larger than 0.5 bits/sym already for distances longer
than 1500 km. At long distances, the penalty increases to up
to 1.6 bits/sym for PM-64QAM and 2.5 bits/sym for PM-
256QAM. An improvement can be obtained by using HD-SW
decoders, particularly in the long-distance regime. For PM-
64QAM, the AIR gap from SD decoders is reduced to 0.5
bits/sym at 12000 km. For PM-256QAM, HD-SW decoders
in general largely outperform HD-BW decoders and show
performances similar to SD decoders beyond distances of 7000
km, also outperforming SD-BW decoders beyond 8000 km.

In order to highlight the performance of each decoding
structure vs. the transmission distance L, in Fig. 9, we show
the modulation format optimized AIRs, defined as

AIR∗(L) = max
M∈{16,64,256}

AIR(L,M) (34)

for EDC, single-channel DBP, and full-field DBP.
We observe that the set of curves shown for each equaliza-

tion scheme appears as a shifted version (across the distance
axis) of the other ones. This behavior is another confirmation
of the fact that dispersion-unmanaged and EDFA-amplified
optical fiber systems can be well described by an equivalent
AWGN channel and their performance is strongly correlated
to the effective SNR at the MF output. Since this SNR
includes nonlinear effects as an equivalent noise source, it is
improved by nonlinear compensation schemes. In the EDC
case (Fig. 9(a)), except for short distances (≤1000 km), HD-
SW decoders have comparable performance to SD-BW and
SD-SW schemes. The optimal format for both SW strategies
(SD and HD) is PM-256QAM (green) at all distances, whereas
for the BW schemes, PM-256QAM performs worse both
for short and middle distances, where PM-64QAM (blue)
is preferable, as well as in the long/ultra-long haul region,
where PM-16QAM (red) is optimal. Very similar behavior
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Fig. 6. AIRs vs. distance for EDC.
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Fig. 7. AIRs vs. distance for single-channel DBP.
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Fig. 8. AIRs vs. distance with full-field DBP.
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Fig. 9. AIRs vs. distance for the optimal PM-MQAM format, indicated by red (M = 16), blue (M = 64) and green (M = 256).

is observed for single-channel DBP in Fig. 9(b), where the
optimality of PM-64QAM for BW receivers is extended to
longer distances compared to their EDC counterparts.

Finally, for full-field DBP (Fig. 9(c)), rates of up to 12
bits/sym can be targeted up to 5000 km, and for all decoding
strategies, the optimal modulation format is PM-256QAM up
to 4000 km. Also, in the ultra-long haul regime, rates above 8
bits/sym can be achieved by using PM-64QAM in conjunction
with SD-BW systems without significant loss in performance
compared to SD-SW or HD-SW with PM-256QAM. Overall,
Fig. 9 also shows that HD-BW decoders perform significantly
worse than all other schemes, confirming the results in [27].
Nevertheless, they can be considered as a valid low-complexity
alternative for short distances or when high SNR values are
available at the receiver.

V. CONCLUSIONS

The MI is a useful measure of the performance of a coded
system and represents an upper bound on the AIRs when a
given modulation format is used and optimum decoding is
performed at the receiver. Conversely, the AIRs of pragmatic
transceiver schemes are dictated by the specific implementa-
tion of the CM decoder. In this work, we presented a detailed
numerical study of the AIR performance for high-SE long-
haul optical communication systems when these pragmatic
decoders and equalization schemes, such as EDC and DBP,
are employed.

The results in this paper lead to interesting conclusions on
the performance of coded optical fiber communication systems
using PM-MQAM modulation formats. For example, when
the equalizer enables high SNR values (through the use of full-
field DBP), an SD decoder is not the only alternative to achieve
high rates at long distances. On the contrary, HD nonbinary
FEC schemes can, in principle, achieve similar information
rates across all distances of interest. For SNR values in the low
to medium range (EDC or single-channel DBP), SD decoders
outperform HD ones up to medium-SE formats (PM-64QAM).
However, for high-SE formats (PM-256QAM), HD-SW CM

decoders can outperform SD-BW decoders. In the SD case,
BW decoders do not incur significant penalties as compared
to their SW counterparts, suggesting that there is no need to
employ nonbinary FEC schemes. Finally, HD-BW transceivers
are never desirable for high-SE systems. Nevertheless, they
can represent the implementation of choice for either short-
distance systems or ultra long-haul low-SE systems whenever
high order modulation formats cannot be used.
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