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Joint-Polarization Phase-Noise Estimation and
Symbol Detection for Optical Coherent Receivers

Arni F. Alfredsson, Student Member, IEEE, Rajet Krishnan, and Erik Agrell, Senior Member, IEEE

Abstract—The problem of optimal symbol detection in the
presence of laser phase noise is studied, for uncoded polarization-
multiplexed fiber-optic transmission. To this end, the maximum
a posteriori (MAP) symbol detector is presented. Specifically,
it is emphasized that obtaining phase-noise point estimates,
and treating them as the true values of the phase noise, is
in general suboptimal. Furthermore, a pilot-based algorithm
that approximates the MAP symbol detector is developed, using
approaches adopted from the wireless literature. The algorithm
performs joint-polarization phase-noise estimation and symbol
detection, for arbitrary modulation formats. Through Monte
Carlo simulations, the algorithm is compared to existing solutions
from the optical communications literature. It is demonstrated
that joint-polarization processing can significantly improve upon
the single-polarization case, with respect to linewidth tolerance.
Finally, it is shown that with less than 3% pilot overhead, the
algorithm can be used with lasers having up to 6 times larger
linewidths than the most well-performing blind algorithms can
tolerate.

Index Terms—Optical fiber communication, phase noise, co-
herent detection, digital signal processing.

I. INTRODUCTION

PHASE noise is a critical issue for higher-order modulation
format transmission in coherent optical communication

systems. As the phase of the optical carrier is used to convey
information in coherent transmission, phase recovery at the
receiver is imperative for successful symbol detection. Phase
noise can severely degrade the system performance, and in
order to scale systems to higher-order modulation formats, a
well-performing phase-noise estimation is of great importance.

For signal demodulation, a local oscillator (LO) laser at
the receiver acts as a phase reference to the laser at the
transmitter. As these lasers have finite linewidths [1], their
relative phase drifts with time and results in a phenomenon
commonly referred to as phase noise. Effects due to the fiber
Kerr nonlinearity will contribute to the phase noise as well,
but the severity of nonlinear phase noise is highly dependent
on, e.g., the symbol rate, the number of wavelength-division
multiplexed channels, and the channel power. The focus in this
paper is on systems where laser phase noise is dominant, and
nonlinear phase noise will not be considered.

A classic feedback-based method for estimating and mitigat-
ing phase noise is a phase-locked loop [1]. Delays in feedback
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loops, however, decrease the effectiveness of earlier phase-
noise estimates used for feedback. Coherent optical systems
utilize extensive parallelization and pipelining to achieve the
required throughput. In [2] it is shown that this leads to large
amounts of feedback delay, making feedback-based methods,
either hardware-based techniques or digital signal processing
(DSP) algorithms, impractical for these systems.

Substantial research has been done for feedforward and
blind phase-noise compensation. Feedforward algorithms do
not require feedback loops, and blind algorithms do not
use any pilot symbols which are known to the receiver.
Examples of blind feedforward algorithms are the Viterbi–
Viterbi [3] algorithm and its variations [4]–[6], which are
developed for phase-shift keying modulation. These algorithms
will perform poorly for higher-order quadrature amplitude
modulation (QAM) formats, as they assume equal phase
spacing between constellation points. Algorithms based on the
Viterbi–Viterbi algorithm and quadrature phase-shift keying
(QPSK) partitioning [7], which improve upon the original
Viterbi–Viterbi algorithm for QAM, are presented in [8], [9].
Furthermore, among the well-known feedforward algorithms
designed for higher-order QAM is the blind phase search
algorithm [2]. Other approaches have been proposed for QAM,
some reporting less complexity than the blind phase search
algorithm with similar linewidth tolerance [10]–[12].

Blind phase-noise compensation algorithms have ambigui-
ties in the phase-noise estimation, owing to rotational symme-
tries in constellations and lack of absolute phase references.
This may cause cycle slips which can further cause catas-
trophic failures. This is commonly mitigated through differen-
tial encoding, but it has the downside that the average bit error
rate (BER) will be higher [4]. Pilot-based solutions have been
suggested, e.g., to estimate phase noise without ambiguity
[13]–[16], or to reduce the probability of cycle slips occurring
after blind phase-noise estimation at the receiver [17]. Using
pilots eliminates the need for differential encoding, resulting
in a lower average BER. In addition, modulation transparency
is generally easier to achieve when pilots are utilized [18].
Moreover, pilots can be reused to perform other tasks in
addition to phase-noise estimation, such as polarization demul-
tiplexing, frequency offset estimation, and fiber nonlinearity
compensation [19]. However, pilots introduce overhead to the
transmission, which results in lower information data rate than
in the absence of pilots.

The majority of the approaches mentioned above process
each polarization-multiplexed (PM) channel separately. How-
ever, as both channels generally share the same transmitter
and LO laser, they experience the same laser phase noise.



2

It is demonstrated in [17], [20]–[22] that performing joint-
polarization processing improves the phase-noise estimation,
motivating the development of algorithms that exploit both
channels jointly.

Detection algorithms in uncoded digital communication
systems are designed such that the symbol error rate (SER)
performance of the system is minimized. The detector that
achieves this is the maximum a posteriori (MAP) symbol
detector [23, p. 254]. In [24] it is shown that for transmission
in the presence of phase noise and additive white Gaussian
noise (AWGN), this detector solves the joint problem of phase-
noise estimation and symbol detection. Furthermore, it has a
particular structure. When detecting a symbol, the received
samples, corresponding to the rest of the symbols, are first used
to estimate the a posteriori probability density function (PDF)
of the phase noise. This PDF is then used when detecting
the symbol. In other words, the MAP symbol detector treats
the phase noise as a nuisance parameter [25, p. 328]. Hence,
it does not produce explicit phase-noise point estimates. In
optical communications, receiver algorithms generally do not
conform to this structure, but rather perform explicit phase-
noise compensation, followed by detection assuming the signal
is devoid of any residual phase noise.

The biggest challenge with realizing the MAP symbol
detector, however, is computing the a posteriori phase-noise
PDF, as it turns out to be an infinite-dimensional problem in
general [24]. This problem has been addressed in the wireless
literature [26]–[28] as oscillator phase noise is present in
wireless systems, albeit not as severe as laser phase noise
in fiber-optic systems. Furthermore, in recent years, advances
in the electronic hardware in optical systems have spurred
the application of DSP algorithms from wireless to optical
communications. A recent example is [29], where the authors
borrow an algorithm from the wireless literature and demon-
strate its excellent performance for single-polarization coher-
ent fiber-optic transmission, in the presence of phase noise and
frequency fluctuations. The optimal receiver structure in [24],
along with the presence of laser phase noise in PM fiber-optic
transmission and the existence of phase noise compensation
solutions in the wireless literature, forms the main motivations
for this work.

In this paper, we first present the MAP symbol detector
for PM transmission over an optical phase-noise channel and
show that it uses data on both polarizations to solve the
joint problem of laser-phase noise estimation and symbol
detection, assuming identical phase noise on the polarizations.
Secondly, we introduce a pilot-aided method for estimating
and compensating for a constant phase offset between the
polarizations. Thirdly, we exploit the wireless literature to
address the problem of realizing an efficient implementation of
the MAP symbol detector. Specifically, we follow the approach
proposed by Colavolpe et al. in [26] to derive a pilot-based
implementation that approximates the detector. The resulting
algorithm performs phase-noise estimation and symbol detec-
tion, jointly for both polarizations, for the first time in fiber-
optical communications. Through Monte Carlo simulations we
demonstrate that joint-polarization processing has significant
benefits. Moreover, we compare the proposed algorithm with

Random
phase offset

× +

[ sx,k

sy,k

]

C ejθk
[nx,k

ny,k

]

[ rx,k

ry,k

]

Fig. 1. Discrete-time complex baseband model.

conventional receivers, which involve a blind or pilot-based
algorithm that finds point estimates of the phase noise and
compensates for it using the estimates. The simulation results
show that the proposed algorithm outperforms existing solu-
tions by a wide margin, requiring low pilot overhead to achieve
the superior performance.

The paper is organized as follows. In Section II, the system
model is presented. Section III presents a review of the optimal
symbol detection for PM transmission affected by AWGN and
phase noise. Furthermore, the factor-graph (FG) framework is
applied to the problem of realizing the MAP symbol detector,
which allows the usage of the sum–product algorithm (SPA).
In Section IV, an efficient algorithm is derived, based on the
method of canonical distributions. Finally, in Section V, the
simulation results are presented, and the concluding remarks
are given in Section VI.

II. SYSTEM MODEL

PM transmission of complex modulation symbols is con-
sidered, over an AWGN channel with laser phase noise and a
random state of polarization at the receiver end. Polarization
demultiplexing is assumed to have been performed success-
fully, using a standard algorithm such as the constant mod-
ulus algorithm [30]. This entails separating the polarization
components, but imposing a drifting phase difference between
them [31], [32]. This drift occurs on a much longer time
scale than the laser phase noise; therefore, it is assumed to
be a constant offset throughout the transmitted block. Other
impairments, such as chromatic dispersion, polarization mode
dispersion, and frequency offset, are assumed to have been
compensated for. Considering perfect symbol synchronization,
matched filtering, one sample per symbol, and no nonlinear
phase noise or intersymbol interference, the discrete-time
complex baseband model is written as [20], [22]

[ rx,k

ry,k

]
=

[ sx,k

sy,ke
jC

]
ejθk +

[nx,k

ny,k

]
, (1)

for k = 0, 1, . . . , N − 1, where x and y denote the two
orthogonal polarizations, and N is the length of the transmitted
symbol block. A schematic of the model is sketched in Fig. 1.

The vectors rx = [rx,0, . . . , rx,N−1] and ry =
[ry,0, . . . , ry,N−1] are the received samples, whereas sx =
[sx,0, . . . , sx,N−1] and sy = [sy,0, . . . , sy,N−1] contain com-
plex M -ary modulation symbols. The data symbols are drawn
independently from a constellation M ∈ C with equal prob-
ability. The constellation is subject to an energy constraint
such that the average transmitted symbol energy is Es. Pilot
symbols are distributed with regular intervals in sx and sy.
Moreover, the positions of the pilots in polarization y are
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Fig. 2. Pilot distribution in a transmitted block on polarizations x (above)
and y (below).

shifted by half of the pilot interval. This arrangement is
depicted in Fig. 2. The noise vectors nx = [nx,0, . . . , nx,N−1]
and ny = [ny,0, . . . , ny,N−1] are independent of each other,
and contain independent and identically distributed, circularly
symmetric complex Gaussian components, nx,k ∼ NC(0, 2σ2

n)
and ny,k ∼ NC(0, 2σ2

n). The vector θ accounts for the accumu-
lated phase noise from the transmitter and the local oscillator
laser, and affects both polarizations equally. Moreover, it is
defined modulo 2π, and is modeled as a random-walk process,
where

θk = (θk−1 + ∆k) mod 2π, (2)

with initial component θ0 ∼ U [0, 2π). The step ∆k is a real
Gaussian random variable with zero mean and variance

σ2
∆ = 2π∆νTs, (3)

where ∆ν is the total laser linewidth and Ts is the symbol
duration. The phase noise θ is unknown both to the receiver
and the transmitter, and is independent of the transmitted
symbols as well as the AWGN. The constant phase offset
between rx and ry is encapsulated in the random variable C,
drawn from a uniform distribution in the interval [0, 2π).

III. OPTIMAL SYMBOL DETECTION AND FG FRAMEWORK
APPLICATION

In this section the FG framework and the SPA are used
to realize the optimal symbol detector. As mentioned in
the introduction, the detector that minimizes the SER for
an uncoded transmission is the MAP symbol detector. It is
performed symbol-by-symbol according to

ŝw,k = argmax
sw,k∈M

p(sw,k|rx, ry), (4)

for k = 0, 1, . . . , N − 1 and w ∈ {x, y}. The function
p(sw,k|rx, ry) is the a posteriori probability mass function
(PMF) of the kth symbol on polarization w. The detection
rule in (4) considers all the received samples when decision
on each transmitted symbol is made. In [24] it is shown that
in the presence of phase noise, the PMF in (4) can be written
as1

p(sw,k|rx, ry) ∝
2π∫

0

p(rw,k|sw,k, θk)p(θk|r̄w,k)dθk, (5)

where r̄w,k is the vector of received samples on both po-
larizations except rw,k and θk is the phase noise at the

1Only sx, sy, and θ affect the maximization in (4). Constants in expres-
sions with respect to these parameters can thus be ignored. Therefore the
proportionality relationship ∝ suffices and will be used throughout the paper.

kth sample. Moreover, the function p(rw,k|sw,k, θk) is the
likelihood function of the kth received sample on polarization
w, which has a complex Gaussian PDF with mean sw,kejθk ,
variance 2σ2

n, and argument rw,k. The integral in (5) highlights
the fact that the a posteriori phase-noise PDF is used in the
symbol detection. In [24], it is further shown that this PDF
does not have a closed form solution in general, and computing
the integral directly is impractical.

The PMF in (4) can be obtained by marginalizing the joint
PDF p(sx, sy,θ, C|rx, ry) of all the system variables,

p(sx,k|rx, ry) =
∑

sx∈Sx

∑

sy∈MN

∫

T

2π∫

0

p(sx, sy,θ, C|rx, ry)dCdθ,

(6)

where Sx = {s′x ∈MN : s′x,k = sx,k} and T = [0, 2π)N . The
corresponding PMF p(sy,k|rx, ry) is obtained analogously by
swapping x and y in (6). The computational complexity of
this approach is impractical, and the problem can be solved
in more efficient ways. In this paper, the PMF in (4) is
computed using an FG which is constructed from the joint
PDF p(sx, sy,θ|rx, ry), i.e., the joint a posteriori PDF of all
system variables except C. In other words, the phase offset
between rx and ry is assumed to be absent when the FG
is constructed. Omitting C reduces the complexity of the
resulting FG. The rationale for this omission is the fact that the
variable is constant throughout the received sequence. Thus,
the phase offset between the polarizations can be estimated and
compensated for with high accuracy in the majority of cases.
After compensation, the phase offset between the polarizations
is approximately absent. The estimation and compensation
methods for this phase offset will be detailed in Section IV-A.

FGs can be used to visually represent how a joint distri-
bution may be factorized into a product of simpler marginal
functions. A message-passing algorithm that operates on FGs
is the SPA. It can be used to derive algorithms in various appli-
cations, e.g. iterative decoding algorithms in error-correcting
codes, such as low-density parity-check and turbo codes [26].
The tutorial paper [33] offers a thorough explanation of FGs
and the SPA.

Rewriting the joint PDF p(sx, sy,θ|rx, ry) using Bayes’
theorem results in

p(sx, sy,θ|rx, ry) =
p(rx, ry|sx, sy,θ)p(sx, sy,θ)

p(rx, ry)

∝ p(rx, ry|sx, sy,θ)p(sx)p(sy)p(θ) (7)
∝ p(θ)p(rx|sx,θ)p(ry|sy,θ), (8)

where (7) follows from the fact that the transmitted symbols
are independent of the phase noise. Moreover, the joint PDF of
the received samples, p(rx, ry), does not depend on sx or sy,
and accordingly it is constant when maximizing with respect to
sw,k. All constellation points are equiprobable, and the trans-
mitted symbols are independent and identically distributed;
therefore, p(sx) and p(sy) are constant. Furthermore, when
conditioned on θ, the received samples are independent of
each other, resulting in (8).
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The random-walk model for the phase noise has the Markov
property such that

p(θk|θk−1, . . . , θ0) = p(θk|θk−1) = p∆(θk−1; θk), (9)

for k = 0, 1, . . . , N−1. The function p∆ is a wrapped normal
PDF with variance σ2

∆, expressed as

p∆(µ; z)
∆
=

∞∑

τ=−∞
g(µ, σ2

∆; z − τ2π), z ∈ [0, 2π), (10)

where g(µ, σ2; z) is a real Gaussian PDF with mean µ,
variance σ2, and argument z. Using (9), the joint PDF of θ
can be factored as

p(θ) = p(θ0)

N−1∏

k=1

p∆(θk−1; θk), (11)

allowing further decomposition of the joint PDF in (8),

p(sx, sy,θ|rx, ry)

∝ p(θ0)

N−1∏

k=1

p∆(θk−1; θk)

N−1∏

k=0

f(sx,k, θk)f(sy,k, θk), (12)

where

f(sw,k, θk)
∆
= exp

{
1

σ2
n

Re
{
rw,ks

∗
w,ke

−jθk
}
− |sw,k|

2

2σ2
n

}

∝ gC(sw,ke
jθk , 2σ2

n; rw,k)

= p(rw,k|sw,k, θk), (13)

for k = 0, 1, . . . , N − 1 and w ∈ {x, y}, where gC(µ, σ2; z)
is a complex Gaussian PDF with mean µ, variance σ2, and
argument z. A part of the FG constructed from (12) can be
seen in Fig. 3. The graph is cycle-free, implying that the SPA,
when applied to this FG, yields exact a posteriori distributions
[33]. Hence, it is optimal as it realizes the exact MAP symbol
detector.

For each k and w, let
→
Pw,k(sw,k) denote the message from

variable node sw,k to factor node f(sw,k, θk). This message
corresponds to the a priori probabilities of the transmitted
symbols. These probabilities, as mentioned in Section II, are
all 1/M by default. If multiple iterations are run, however, they
will be replaced by a posteriori probabilities from the previous
iteration, see Section IV-C. The message from f(sw,k, θk) to
variable node θk is denoted by pw(θk), and is computed as

pw(θk) ∝
∑

sw,k∈M

→
Pw,k(sw,k)f(sw,k, θk) ∝ p(rw,k|θk), (14)

for k = 0, 1, . . . , N − 1 and w ∈ {x, y}. The message from
factor node p∆(θk−1; θk) to θk is denoted by pf(θk), and the
message from p∆(θk; θk+1) to variable node θk is denoted by
pb(θk). These correspond to a posteriori phase-noise PDFs,
and are computed in a recursive fashion. Computation of the
forward recursion entails the messages pf(θk) being calculated
in a forward direction based on the received samples. Simi-
larly, computing the backward recursion involves calculating

sx,0

sy,0

sx,k

sy,k

sx,N−1

sy,N−1

f(sx,0, θ0)

f(sy,0, θ0)

f(sx,k, θk)

f(sy,k, θk)

f(sx,N−1, θN−1)

f(sy,N−1, θN−1)

θ0

θk

θN−1

1
2π

p∆(θ0; θ1)

p∆(θk−1; θk)

p∆(θk; θk+1)

p∆(θN−2; θN−1)

1
2π

←
Px,k(sx,k)

→
Px,k(sx,k)

←
Py,k(sy,k)

→
Py,k(sy,k)

px(θk)

py(θk)

pf(θk)

pb(θk)

pf(θk+1)

pb(θk−1)

...

...

...

...

Fig. 3. Part of FG constructed from the distribution in (12).

the messages pb(θk) in a backward direction based on the
received samples. The messages are computed as

pf(θk) =

∫ 2π

0

px(θk−1)py(θk−1)pf(θk−1)

· p∆(θk−1; θk)dθk−1, (15)

pb(θk) =

∫ 2π

0

px(θk+1)py(θk+1)pb(θk+1)

· p∆(θk; θk+1)dθk+1, (16)

with initial conditions

pf(θ0) = pb(θN−1) =
1

2π
. (17)

Finally, let
←
Pw,k(sw,k) denote the message from factor node

f(sw,k, θk) to variable node sw,k. It is computed as

←
Px,k(sx,k) ∝

∫ 2π

0

pf(θk)pb(θk)py(θk)f(sx,k, θk)dθk, (18)

←
Py,k(sy,k) ∝

∫ 2π

0

pf(θk)pb(θk)px(θk)f(sy,k, θk)dθk, (19)

for polarizations x and y, respectively, and k = 0, 1, . . . , N−1.
The messages in (18) and (19) correspond to the a posteriori
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PMFs p(sx,k|rx, ry) and p(sy,k|rx, ry), respectively. Further-
more, it can be shown that

pf(θk)pb(θk)py(θk) ∝ p(θk|r̄x,k), (20)
pf(θk)pb(θk)px(θk) ∝ p(θk|r̄y,k), (21)

where p(θk|r̄w,k), for w ∈ {x, y}, is the a posteriori phase-
noise PDF in (5). The PDFs in (20) and (21) can be used
to produce point estimates of the phase noise. However, using
point estimates to compensate for the phase noise does not lead
to optimal symbol detection. The variance of the a posteriori
phase-noise PDFs gives information about the uncertainty of
the estimates. By compensating for the phase noise using point
estimates, as opposed to PDFs, the information about this
uncertainty is discarded. This has been shown to degrade the
performance of symbol detection [24].

The message-passing algorithm can be summarized as fol-
lows. The received samples, the a priori probabilities of
the transmitted symbols, and the AWGN and phase-noise
variance, are the inputs to the algorithm. The inputs are used
to calculate the messages in (14). The messages in (15) and
(16), corresponding to the a posteriori phase-noise PDFs, are
then computed in a recursive fashion. Finally, the messages
in (18) and (19), corresponding to the a posteriori symbol
probabilities, are calculated. These messages are the outputs
of the algorithm. Symbol detection is performed according
to (4), by selecting the argument, i.e., the constellation point
in M, that maximizes the messages in (18) and (19). In
coded systems that employ iterative soft-decision decoding,
the message

→
Pw,k(sw,k) corresponds to the extrinsic PMF of

sw,k provided by the decoder. Moreover, the messages in (18)
and (19) are used to compute log-likelihood ratios which are
then used as channel information for the decoder.

IV. RECEIVER IMPLEMENTATION

The messages produced by the SPA are difficult to imple-
ment in practice, as they include integrals. One approach is
to approximate the integrals as weighted sums of impulses by
discretizing the phase noise. This approximation approaches
the performance of the exact MAP detector, but becomes
impractical, as the number of discretization levels increases
[26]. As a result, other approximations are required in order
to obtain an efficient implementation. In this section, the
estimation and compensation for the phase offset, due to the
polarization demultiplexing, are described. Afterwards, a pilot-
based algorithm is derived, using approximations of the results
given by the SPA in the preceding section. The resulting
DSP chain is depicted in Fig. 4, showing how the proposed
algorithm differs from conventional setups, where phase noise
estimation is performed separately for each polarization, inde-
pendently of the symbol detection.

A. Compensation of Phase Offset Between Polarizations

As mentioned in Section III, the variable C embodies the
phase offset between the polarizations. Moreover, the FG in
Fig. 3 is constructed from the joint PDF p(sx, sy,θ|rx, ry),
with the assumption that rx and ry are free of this phase
offset. If not compensated for, the a posteriori phase-noise

PNE

PNE

SD

SD

rx

ry

ŝx

ŝy

POE

Joint
PNE & SD

rx

ry

ŝx

ŝy
ryej arg{ρ̂}

Fig. 4. A conventional DSP chain (top) and the proposed DSP chain (bottom).
(POE: Phase offset estimation, PNE: Phase noise estimation, SD: Symbol
detection.)

PDF estimation will not work properly. However, through
utilization of the pilot symbols, the phase offset between the
polarizations can be estimated.

Let L denote the set of pilot indices on polarization x in the
transmitted block, L ⊂ {0, 1, . . . , N −K − 1}. Furthermore,
let K denote the number of indices by which the pilots
on polarization y are delayed, with respect to the pilots on
polarization x. For pilot symbols, the transmitted constellation
point and hence its phase are known to the receiver. The
phase offset between the transmitted pilot symbol and its
corresponding received sample on polarization x at index l ∈ L
can thus be computed as

rx,ls
∗
x,l = sx,ls

∗
x,le

jθl + nx,ls
∗
x,l

= |sx,l|2ejθl + |sx,l|nx,le
−j arg{sx,l}

∝ ejθl +
nx,le

−j arg{sx,l}

|sx,l|
. (22)

Rotating the AWGN vectors nx and ny does not change
their statistics as they contain complex circularly symmetric
Gaussian components. Similarly, the phase offset between the
transmitted pilot symbol and its corresponding received sample
on polarization y at index l +K is computed as

ry,l+Ks
∗
y,l+K ∝ ej(θl+K+C) +

ny,l+Ke
−j arg{sy,l+K}

|sy,l+K |
. (23)

The phase-noise samples in (23) can be rewritten as

θl+K = θl +

l+K∑

k=l+1

∆k = θl + ∆K , (24)

where ∆K ∼ N (0,Kσ2
∆). The phase offset between the

polarizations is expressed as

rx,ls
∗
x,l(ry,l+Ks

∗
y,l+K)∗ ∝ ρe−j∆K +ml (25)

≈ ρ
(

1− j∆K −
∆2
K

2

)
+ml, (26)

where ρ = e−jC , and ml comprises a sum of terms contributed
by the noise. The exponential in (25) is approximated using
a second-order Taylor series expansion, which is a close
approximation for practical values of Kσ2

∆. Moreover, it can
be shown that ml is drawn from a zero-mean, non-Gaussian
distribution.

Treating ρ as an unknown deterministic parameter, and
taking the expectation of (25), gives

E
[
rx,ls

∗
x,l(ry,l+Ks

∗
y,l+K)∗

]
≈ ρ
(

1− Kσ2
∆

2

)
. (27)
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The right hand side of (27) can be estimated by the sample
mean [25, p. 138]. Moreover, as scaling does not affect the
argument of a complex number, the sample sum suffices,
yielding

ρ̂ =
∑

l∈L

rx,ls
∗
x,lr
∗
y,l+Ksy,l+K . (28)

This estimator will have the argument −C on the average, for
practical values of laser linewidth and pilot overhead. Rotating
ry,k with the argument of (28) gives

[ rx,k

ry,ke
j arg{ρ̂}

]
≈
[ sx,k

sy,k

]
ejθk +

[ nx,k

ρny,k

]
, (29)

for k = 0, 1, . . . , N−1. Comparing (29) with (1), it is evident
that rx and ry are essentially devoid of any phase offset
after compensation. Consequently, constructing an FG from
the joint PDF p(sx, sy,θ|rx, ry), and the model in (29), is
valid after following the procedure described above.

B. Phase-Noise Estimation and Symbol Detection

In order to obtain an efficient implementation, the approach
in [26] is adopted, namely selecting parametrized canonical
distributions to approximate messages involving continuous
PDFs [34]. It is claimed in [26] that utilizing the Tikhonov
canonical distribution yields performance close to the MAP
detector. Furthermore, this approach has repeatedly proven its
merit in phase noise estimation under different scenarios [35]–
[37]. Hence, the messages pf(θk) and pb(θk) are constrained
to be in a family of Tikhonov PDFs. This PDF, also known
as a von Mises distribution, is defined as [38, p. 35]

t(κ; θ)
∆
=

1

2πI0(|κ|) exp
{

Re
{
κe−jθ

}}
, θ ∈ [0, 2π), (30)

where κ ∈ C and I0 is the modified Bessel function of the
first kind and zeroth order. The argument and modulus of κ
characterize the mean and variance, respectively, of the PDF
in (30); a Tikhonov PDF is completely described by a single
parameter. The direct computation of the integrals in (15) and
(16) can thus be reduced to recursively updating the parameters
describing the Tikhonov PDFs.

A closer look at the messages in (14) reveals that they
are a mixture of Gaussian PDFs. As in [26], the messages
are approximated by the closest Gaussian PDF in terms of
the Kullback–Leibler divergence, a measure of the similarity
between two distributions. The mean and variance of these
Gaussian PDFs are E[rw,k|θk] and Var[rw,k|θk], respectively,
for k = 0, 1, . . . , N − 1 and w ∈ {x, y}. It can be shown that

E[rw,k|θk] = αw,ke
jθk , (31)

Var[rw,k|θk] = 2σ2
n + βw,k − |αw,k|2, (32)

where

αw,k
∆
=

∑

sw,k∈M
sw,k

→
Pw,k(sw,k), (33)

βw,k
∆
=

∑

sw,k∈M
|sw,k|2

→
Pw,k(sw,k), (34)

represent the first and second moments of sw,k, respectively.
Using the results from (31) and (32) yields

pw(θk) ≈ gC(E[rw,k|θk],Var[rw,k|θk]; rw,k)

= t

(
2rw,kα

∗
w,k

2σ2
n + βw,k − |αw,k|2

; θk

)
. (35)

For pilot symbols,
→
Pw,k(sw,k) = 1 in (33) and (34) for the

constellation point sw,k ∈M used as a pilot symbol, and 0 for
the points in M\ {sw,k}. This gives an unambiguous phase
reference in (35) for indices w and k corresponding to pilot
symbols.

The messages pf(θk) and pb(θk) are constrained to be in a
family of Tikhonov PDFs,

pf(θk) ∝ t(af,k; θk), (36)
pb(θk) ∝ t(ab,k; θk), (37)

for k = 0, 1, . . . , N − 1, where af,k and ab,k denote the
kth forward and backward coefficients, respectively. These
coefficients can be recursively calculated, allowing for an
efficient means of computing the messages in (36) and (37)
for all k. To this end, we substitute (35) and (36) into (15),
and exploit that the product of univariate Tikhonov PDFs is
proportional to another univariate Tikhonov PDF. Thus,

pf(θk) ≈
∫ 2π

0

t(zf,k−1; θk−1)p∆(θk−1; θk)dθk−1, (38)

where

zf,k−1
∆
= af,k−1 +

2rx,k−1α
∗
x,k−1

2σ2
n + βx,k−1 − |αx,k−1|2

+
2ry,k−1α

∗
y,k−1

2σ2
n + βy,k−1 − |αy,k−1|2

. (39)

Let the following 2π-periodic function be defined as

t̃(κ; η)
∆
=

1

2πI0(|κ|) exp
{

Re
{
κe−jη

}}
, (40)

where κ ∈ C and η ∈ R. Using (40), the integral in (38) can
be rewritten as

pf(θk) ≈
∫ θk+π

θk−π
t̃(zf,k−1; θk−1)p∆(θk−1; θk)dθk−1. (41)

For practical values of σ2
∆, the wrapped normal PDF p∆ in

(41) is virtually zero everywhere in [θk − π, θk + π) except
in an interval much smaller than 2π, centered around θk.
Consequently, it can be approximated as a Gaussian PDF,

p∆(θk−1; θk) ≈ g(θk−1, σ
2
∆; θk). (42)

Thus, the integral in (41) simplifies to

pf(θk) ≈
∫ θk+π

θk−π
t̃(zf,k−1; θk−1)g(θk−1, σ

2
∆; θk)dθk−1

∝
∫ θk+π

θk−π
exp
{

Re
{
zf,k−1e

−jθk−1
}}

· g(θk−1, σ
2
∆; θk)dθk−1. (43)
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The integral in (43) can be approximately expressed [26] in
the same form as (40), with the complex coefficient denoted
by af,k and computed as

af,k =
zf,k−1

1 + σ2
∆|zf,k−1|

. (44)

Therefore, the forward coefficients af,k can be computed
recursively for k = 1, . . . , N − 1 from (39) and (44), with
the initial condition af,0 = 0. Similarly, using (35), (37), and
(42), the backward coefficients ab,k, for k = N−2, . . . , 0, are
computed recursively as

ab,k =
zb,k+1

1 + σ2
∆|zb,k+1|

, (45)

with the initial condition ab,N−1 = 0, and

zb,k+1
∆
= ab,k+1 +

2rx,k+1α
∗
x,k+1

2σ2
n + βx,k+1 − |αx,k+1|2

+
2ry,k+1α

∗
y,k+1

2σ2
n + βy,k+1 − |αy,k+1|2

. (46)

The expressions for
←
Pw,k(sw,k) are calculated using (18)

and (19) for polarization x and y, respectively. In Appendix
A it is shown that they can be approximated as

←
Pw,k(sw,k) ≈ I0(|ξw,k|) exp

{
−|sw,k|

2

2σ2
n

}
, (47)

where

ξx,k
∆
= af,k + ab,k +

2ry,kα
∗
y,k

2σ2
n + βy,k − |αy,k|2

+
rx,ks

∗
x,k

σ2
n

, (48)

ξy,k
∆
= af,k + ab,k +

2rx,kα
∗
x,k

2σ2
n + βx,k − |αx,k|2

+
ry,ks

∗
y,k

σ2
n

. (49)

The expression in (47) can be numerically problematic. A
solution to this is derived in Appendix B.

C. Multiple Iterations

A single iteration of the algorithm is defined as follows.
First and second order moments of the transmitted symbols,
described in (33) and (34), are first calculated, given the a
priori symbol probabilities

→
Pw,k. Afterwards, the a posteriori

phase-noise PDFs are estimated by way of calculating their
forward and backward coefficients recursively with (39) and
(44)–(46). Finally, the a posteriori symbol probabilities are
calculated with (47).

Once the a posteriori symbol probabilities have been calcu-
lated, symbol detection can be performed according to (4). The
first order moment (33), however, is zero for symbols whose
constellation points are equiprobable. When the first iteration
is run, this is indeed the case for all the data symbols. If αx,k
and αy,k are zero, (39) and (46) reduce to zf,k−1 = af,k−1

and zb,k+1 = ab,k+1, respectively. Thus, the coefficients af,k

and ab,k do not get updated with new information; the data
symbols do not contribute to the estimation of the a posteriori
phase-noise PDF in the first iteration of the algorithm.

The performance of the algorithm can be improved by
running multiple iterations. After calculating the message
←
Pw,k(sw,k) in a particular iteration, corresponding to the a pos-
teriori symbol probabilities, it is used as the a priori symbol

Compensate for
phase offset between
polarizations, using

(28) and (29)

Receive samples

Calculate 1st and 2nd
order moments of

transmitted symbols,
using (33) and (34)

Calculate coefficients
of a posteriori phase

noise PDF, using
(39) and (44)–(46)

Calculate a posteriori
symbol probabilities,

using (47)–(49)

Reached max
number of
iterations?

Replace a priori
symbol probabilities

with a posteriori

Detect
symbols by (4)

No

Yes

Fig. 5. A high level flowchart of the algorithm, from receiving the samples
to detecting the transmitted symbols, illustrating the iterative structure of the
implementation.

probabilities in the next iteration, represented by the message
→
Pw,k(sw,k). This can be performed until a stopping criterion
is fulfilled. It should be noted that

→
Pw,k(sw,k) is assumed

to be a PMF, i.e., the sum of
→
Pw,k(sw,k) over all possible

values of sw,k is one. The message
←
Pw,k(sw,k) is in general

only equal to the a posteriori symbol probabilities up to a
scaling factor; the sum of

←
Pw,k(sw,k) over all possible values

of sw,k is not one. Thus, to be used as the a priori symbol
probabilities, scaling is generally necessary beforehand. This
scaling procedure can present numerical problems; appendix
B details how this is managed. A high level flowchart of the
algorithm structure is depicted in Fig. 5.

D. Complexity and Parallelization

The complexity of the algorithms is estimated by counting
the number of real multiplications and additions. Assume
that complex multiplications require 4 real multiplications
and 2 additions, and furthermore, that nonlinear functions are
computed through a lookup table. To compute (28), 12Np

multiplications and 7Np − 1 additions are required in total,
where Np is the number of pilots per transmitted block per
polarization. Additionally, 4 multiplications and 2 additions
are required per symbol to rotate ry with the argument
of (28). Moreover, the total number of multiplications and
additions per symbol per polarization for a single iteration of
the algorithm in Section IV-B and the normalization of (47),
detailed in Appendix B, is found to be 17M+13 and 14M+7,
respectively, where M is the number of constellation points.

The parallelization of the algorithm in [26] is presented in
[39], and it is furthermore shown that the parallelization of the
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forward-backward recursions can degrade performance. It is
also detailed how the performance degradation can be reduced
at the cost of increased complexity. The analysis in [39] can
be utilized to parallelize the algorithm in Section IV-B.

V. SIMULATION RESULTS

In this section, the performance of the algorithm is assessed
in terms of BER for different amounts of phase noise, signal-
to-noise ratio (SNR), pilot overhead, and number of iterations.
The algorithm is evaluated using Monte Carlo simulations,
using the system model in (1), for transmission of PM-QPSK,
PM-16-QAM, and PM-64-QAM constellations. The transmit-
ted blocks contain approximately N = 10 000 symbols per
polarization when simulating the proposed algorithm; the exact
value of N depends on the pilot overhead. The value of N
will not affect the performance of the algorithm significantly,
provided that N ≥ 10 000.

When simulating the constant phase offset between the
polarizations according to (1), a realization of the random
variable C is generated for each transmitted block. Moreover,
the realizations of C are independent between blocks. When
simulating the blind phase search algorithm, the filter half
width is set to 9 and the transmission blocks contain 200 000
symbols. Moreover, 32 test phases values are used when
transmitting PM-QPSK and PM-16-QAM, whereas 64 test
phases values are used in the case of PM-64-QAM transmis-
sion. Additionally, differential encoding, described in [2], is
employed due to ambiguities in the phase-noise estimation.
For each result, errors in the transmission are accumulated
until the total number of transmitted bits reaches 108, or if the
number of bit errors exceeds a minimum of 1000, regardless of
the block length N . The bits are Gray encoded before they are
mapped to symbols, and no forward error correction coding is
used. Pilots are normalized such that their energy is Es.

When finding sensitivity penalty (SP) induced by phase
noise and pilot overhead, BER values for different amounts
of laser linewidth are compared to a theoretical ideal BER,
calculated for transmission with no pilot overhead over an
AWGN channel. This BER of Gray-coded M -QAM is [40]

BER ≈
√
M − 1√

M log2

√
M

erfc

(√
3γb log2M

2(M − 1)

)

+

√
M − 2√

M log2

√
M

erfc

(
3

√
3γb log2M

2(M − 1)

)
, (50)

where erfc is the complementary error function. The SNR per
information bit is

γb
∆
=

Es

2σ2
nR log2M

, (51)

where log2M represents the number of bits per symbol and
R is the effective information rate per bit, defined as R =
1/(1 + OH), where OH is the pilot overhead. Using (50) and
letting R = 1 in (51), the required γb for a BER of 10−3 is
approximately 6.79 dB, 10.52 dB, and 14.77 dB for PM-QPSK,
PM-16-QAM, and PM-64-QAM, respectively. The SP is the
additional γb required, due to phase noise and loss in effective

TABLE I
LINEWIDTH TOLERANCE COMPARISON FOR DIFFERENT ALGORITHMS AND

MODULATION FORMATS

Algorithm OH
∆νTs for 1 dB penalty at a BER of 10−3

PM-QPSK PM-16-QAM PM-64-QAM

TIK (9 it.) 2.86% 1.86 · 10−3 8.42 · 10−4 2.00 · 10−4

TIK (2 it.) 2.86% 1.41 · 10−3 4.86 · 10−4 1.11 · 10−4

TIK-S (9 it.) 2.86% 9.43 · 10−4 4.11 · 10−4 9.90 · 10−5

BPS [2] 0% 4.10 · 10−4 1.40 · 10−4 4.00 · 10−5

information rate owing to pilot symbols, to achieve the same
BER as in the ideal case.

In the following subsections, the proposed Tikhonov algo-
rithm (TIK) will be compared to the original single-channel
Tikhonov algorithm (TIK-S) proposed by Colavolpe et al. in
[26] and the blind phase search algorithm (BPS) in [2]. It
is worth emphasizing that TIK-S and BPS perform single-
polarization processing. Performance gains from using phase
noise PDFs coupled with utilizing pilots can be assessed by
comparing TIK-S with BPS. Furthermore, the benefits of joint-
polarization processing may be quantified by comparing TIK
with TIK-S.

A. Linewidth Tolerance

The SP at a BER of 10−3 is shown in Fig. 6 for TIK
running 2 iterations, BPS, and TIK-S for PM-QPSK, PM-16-
QAM, and PM-64-QAM. TIK has the lowest SP for all the
tested linewidths and constellations. At low linewidths, TIK
and TIK-S attain close to zero penalty. The penalty does not
reach zero due to the pilot overhead. Moreover, BPS maintains
a minimum penalty due to the differential encoding which
increases the average BER.

The maximum tolerable ∆νTs for a 1 dB penalty at a
BER of 10−3 for the considered algorithms is presented in
Table I. The values for BPS, which are acquired using single-
polarization processing, are taken from [2]. As observed in
[2, Sec. V-A], if data on both polarizations are used for phase
noise estimation using BPS, the values in Table I correspond-
ing to BPS can be approximately doubled. However, for the
system model in (1), dual-polarization processing will not
work properly in the majority of cases without compensating
for C beforehand [32]. Moreover, optimizing the parameters
of BPS for each ∆νTs value can lead to further performance
improvements for the algorithm [2]. The second column shows
the required pilot overhead to achieve the tolerance values.
After running 2 iterations at 2.86% pilot overhead, TIK has the
best performance in all considered cases. Specifically, when
compared to TIK-S, a significant increase in linewidth toler-
ance is observed, owing to the joint-polarization processing.

As explained in Section III, the laser phase noise variance
σ2

∆, which is a function of the laser linewidth ∆ν, is an input to
the proposed algorithm. In a practical scenario, the estimated
laser linewidth may be inaccurate, in which case performance
will suffer. However, simulations show that for practical values
of laser linewidths, performance suffers only marginally even
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Fig. 6. SP for TIK running 2 iterations at 2.86% pilot overhead, for different modulation formats. For comparison, SP for BPS and TIK-S is also shown.
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Fig. 7. SP for TIK running a different number of iterations at 2.86% pilot
overhead, for a fixed γb and BER.

if the estimated laser linewidth is much smaller or larger than
in reality.

B. Iterations

To demonstrate the linewidth tolerance improvement, the
maximum tolerable ∆νTs for a 1 dB SP at a BER of 10−3,
for different numbers of iterations, is depicted in Fig. 7. After
9 iterations, tolerable ∆νTs values of 1.86 ·10−3, 8.42 ·10−4,
and 2.00·10−4 are obtained for PM-QPSK, PM-16-QAM, and
PM-64-QAM, respectively. As Fig. 7 shows, the performance
improves initially with an increasing number of iterations.
However, beyond a particular number of iterations, negligible
improvement in performance is observed. In the case of PM-
QPSK, the improvements are marginal after 3 iterations. For
PM-16-QAM and PM-64-QAM, the tolerance increases more
gradually.

C. Pilot Overhead

The performance of the algorithm depends significantly on
the pilot overhead. To gain insight into this dependency, the
maximum ∆νTs values for a 1 dB SP at a BER of 10−3,
for different pilot overhead and 2 iterations, are plotted in
Fig. 8. As expected, there is an optimal pilot overhead for

0 4 8 12 16
10−5

10−4

10−3

10−2

10−1

pilot overhead [%]

∆
ν
T
s

fo
r
1

dB
SP

at
B

E
R

of
1
0
−
3

PM-QPSK
PM-16-QAM
PM-64-QAM

2.86%

Fig. 8. Linewidth tolerance of TIK running 2 iterations at different pilot
overhead, for a fixed γb and BER.

each constellation. If the overhead is too low, the algorithm
will only cope with low amounts of phase noise. On the
other hand, as the pilot overhead increases, the SNR loss due
to reduction in the transmission rate will eventually be the
limiting factor. For PM-QPSK, the optimal pilot overhead is
roughly 7%. For PM-16-QAM and PM-64-QAM, the optimal
overhead is slightly lower.

VI. CONCLUSION

In this work, the MAP symbol detector for PM transmission
in the presence of AWGN and phase noise was presented,
which performs joint-polarization processing to make use of
phase-noise PDFs when performing symbol detection. This
is in contrast to what many phase-noise compensation algo-
rithms in fiber-optic communications conform to, namely first
estimating the phase noise and then compensating for it before
detection. The MAP symbol detector was realized using the
FG framework and the SPA. Further, an approach proposed
by Colavolpe et al. was adopted for implementing a pilot-
based algorithm that approximates the optimal detector. This
algorithm performs joint-polarization phase-noise estimation
and symbol detection.

The performance of the algorithm was assessed using
Monte Carlo simulations. It was shown that a significant in-
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crease in linewidth tolerance is gained from performing joint-
polarization processing. Moreover, after running 9 iterations
at 2.86% pilot overhead, the algorithm had approximately
4.5, 6.0, and 5.0 times the laser linewidth tolerance of the
blind phase search algorithm, for PM-QPSK, PM-16-QAM,
and PM-64-QAM, respectively.

While this paper focuses on the optimality aspect of symbol
detection in the presence of phase noise, it is crucial to
consider the practical aspects of the proposed scheme, e.g.,
parallelization, power consumption, and performance in the
presence of nonlinear phase noise, and these aspects are
identified as future work. Furthermore, experimental work
would be useful for verifying the performance of the algorithm
in real transmission scenarios, which is also interesting for
future research.

APPENDIX A
A POSTERIORI SYMBOL PROBABILITIES

A closed form solution of the messages corresponding to the
a posteriori symbol probabilities in Section IV-B is derived.
Using (18), the message

←
Px,k(sx,k), for k = 0, 1, . . . , N − 1,

can be simplified as
←
Px,k(sx,k)

∝
∫ 2π

0

pf(θk)pb(θk)py(θk)f(sx,k, θk)dθk (52)

≈
∫ 2π

0

t(af,k; θk)t(ab,k; θk)t

(
2ry,kα

∗
y,k

2σ2
n + βy,k − |αy,k|2

; θk

)

· exp

{
1

σ2
n

Re
{
rx,ks

∗
x,ke
−jθk

}
− |sx,k|2

2σ2
n

}
dθk (53)

∝
∫ 2π

0

exp
{

Re
{
ξx,ke

−jθk
}}

exp

{
−|sx,k|2

2σ2
n

}
dθk (54)

= 2πI0(|ξx,k|) exp

{
−|sx,k|2

2σ2
n

}∫ 2π

0

t(ξx,k; θk)dθk (55)

∝ I0(|ξx,k|) exp

{
−|sx,k|2

2σ2
n

}
, (56)

where f(sx,k, θk) in (52) is defined in (13); (53) follows from
(35)–(37); (54) follows from the same reasoning as (38); (55)
follows from (30); and ξx,k is defined in (48). The message
←
Py,k(sy,k), for k = 0, 1, . . . , N −1, is derived in an analogous
fashion.

APPENDIX B
NUMERICAL PROBLEMS

The message in (47) can take on large values, which is
problematic from an implementation standpoint. To manage
this, the modified Bessel function I0 can be approximated with
an asymptotic expansion [41, p. 377],

I0(z) ∼ ez√
2πz

, z ∈ C, (57)

which is a close approximation for |z| � 1 and | arg{z}| < π
2 .

In practice, (48) and (49) satisfy the former condition with
high probability. Moreover, as the argument to I0 in (47) is the

modulus of a complex number, the latter condition is satisfied.
Substituting (57) into (47) gives

←
Pw,k(sw,k) ≈

exp
{
− |sw,k|2

2σ2
n

+ |ξw,k|
}

√
2π|ξw,k|

, (58)

for k = 0, 1 . . . , N − 1 and w ∈ {x, y}. Taking the natural
logarithm of (58) yields an expression that is numerically
tractable.

As previously detailed, (47) is proportional to a posteriori
symbol probabilities. For it to be used as a priori symbol
probabilities in a consecutive iteration, converting it to a PMF
is required. This entails scaling the message such that the sum
of the expression, over all points in M, is one. To this end,
define a scaled version of (47) as

←̃
Pw,k(sw,k)

∆
= A

←
Pw,k(sw,k), (59)

for k = 0, 1 . . . , N−1, w ∈ {x, y}, and any A > 0. Converting
(59) to a PMF imposes the constraint

∑

s∈M

←̃
Pw,k(s) = A

∑

s∈M

←
Pw,k(s) = 1. (60)

Solving (60) for A, substituting it in (59), and taking the
natural logarithm of both sides yields

log
←̃
Pw,k(sw,k) = log

←
Pw,k(sw,k)− log

∑

s∈M

←
Pw,k(s). (61)

The latter term can be rewritten as

log
∑

s∈M

←
Pw,k(s)

= log

{
max
m∈M

←
Pw,k(m)

∑

s∈M

←
Pw,k(s)

maxm∈M
←
Pw,k(m)

}

= log max
m∈M

←
Pw,k(m) + log

∑

s∈M

←
Pw,k(s)

maxm∈M
←
Pw,k(m)

= Ψw,k + log
∑

s∈M
exp
{

log
←
Pw,k(s)−Ψw,k

}
, (62)

where (62) follows from the fact that the natural logarithm is a
monotonically increasing function for positive arguments, and

Ψw,k
∆
= max
s∈M

log
←
Pw,k(s). (63)

Substituting (62) in (61) yields

←̃
Pw,k(sw,k) = exp

{
log

←
Pw,k(sw,k)−Ψw,k

− log
∑

s∈M
exp
{

log
←
Pw,k(s)−Ψw,k

}}
. (64)

When the approximation in (58) is utilized, (64) is numerically
tractable.

Symbols are detected according to (4), which gives

ŝw,k = argmax
sw,k∈M

←̃
Pw,k(sw,k)

= argmax
sw,k∈M

log
←
Pw,k(sw,k) (65)

≈ argmax
sw,k∈M

(
−|sw,k|

2

2σ2
n

+ |ξw,k| −
1

2
log |ξw,k|

)
, (66)
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where (65) follows from the fact that taking the natural
logarithm of (64) does not affect the maximization. Moreover,
log

←
Pw,k(sw,k) is the only term in (64) that depends on sw,k.

Lastly, (66) follows from using the approximation in (58).
Thus, converting (47) to a PMF is not necessary for detection,
as scaling does not affect maximization.
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