Blood-brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV.

Downloaded from: https://research.chalmers.se, 2023-10-06 13:37 UTC

Citation for the original published paper (version of record):

N.B. When citing this work, cite the original published paper.
Blood–brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV

ABSTRACT

Objective: Although blood–brain barrier (BBB) impairment has been reported in HIV-infected individuals, characterization of this impairment has not been clearly defined.

Methods: BBB integrity was measured by CSF/plasma albumin ratio in this cross-sectional study of 631 HIV-infected individuals and 71 controls. We also analyzed CSF and blood HIV RNA and neopterin, CSF leukocyte count, and neurofilament light chain protein (NFL) concentrations. The HIV-infected participants included untreated neuroasymptomatic patients, patients with untreated HIV-associated dementia (HAD), and participants on suppressive antiretroviral treatment (ART).

Results: The albumin ratio was significantly increased in patients with HAD compared to all other groups. There were no significant differences between untreated neuroasymptomatic participants, treated participants, and controls. BBB integrity, however, correlated significantly with CSF leukocyte count, CSF HIV RNA, serum and CSF neopterin, and age in untreated neuroasymptomatic participants. In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratio. A significant correlation was found between albumin ratio and CSF NFL in untreated neuroasymptomatic patients and in participants on ART. Albumin ratio, age, and CD4 cell count were confirmed as independent predictors of CSF NFL in multivariable analysis.

Conclusions: BBB disruption was mainly found in patients with HAD, where BBB damage correlated with CNS immunoactivation. Albumin ratios also correlated with CSF inflammatory markers and NFL in untreated neuroasymptomatic participants. These findings give support to the association among BBB deterioration, intrathecal immunoactivation, and neuronal injury in untreated neuroasymptomatic HIV-infected individuals.

Glossary

ART = antiretroviral therapy; BBB = blood–brain barrier; HAD = HIV-associated dementia; NFL = neurofilament light chain protein.

Impairment of the blood–brain barrier (BBB) is common in patients with HIV encephalitis and important in the pathogenesis of HIV-associated dementia (HAD), but its characterization is incomplete.

CSF viral load and intrathecal immunoactivation, as determined by increased CSF neopterin, correlate with BBB impairment. CNS inflammation also correlates with axonal injury, as measured by CSF concentrations of the light subunit of neurofilament protein (NFL). These findings indicate an association among neuroinflammation, BBB permeability, and neuronal injury, but their relationship has not been fully elucidated.
Initiation of antiretroviral therapy (ART) reduces CSF HIV RNA and various markers of inflammation and neuronal injury. In a study with 38 neuroasymptomatic individuals, only 5% (2/38) had elevated albumin ratios prior to ART initiation: both normalized on treatment. In a recent cross-sectional study, 38.6% of untreated and 24.6% of treated participants had signs of BBB impairment.

The purpose of this study was to define the prevalence of BBB disruption in a large number of treated and untreated HIV-infected individuals at different stages of infection and CNS injury. To test the hypothesis that BBB function is associated with neuroinflammation and CNS injury in HIV, we analyzed associations between albumin ratios and markers of CNS immunoactivation and neuronal injury in samples from predefined patient groups representing essential stages of HIV disease progression and viral suppression.

METHODS Patients. In this retrospective cross-sectional study, we analyzed archived CSF samples from 631 HIV-infected adults and 71 HIV-negative controls from 3 centers (Gothenburg, Sweden; San Francisco, CA; and Sydney, Australia). Neurocognitive testing was not routinely performed but never refrozen: regular controls with analyses of biological markers have confirmed compatibility between fresh and frozen samples.

METHODS. Quantitative determination of CSF and plasma albumin was performed by nephelometry (Behring Nephelometer Analyzer, Behringwerke AG, Marburg, Germany). The albumin ratio was calculated as CSF albumin (mg/L)/plasma albumin (g/L) and used to evaluate BBB function. Reference values were 0.68 for individuals younger than 45 years and 0.10.2 for individuals ≥45 years of age. Some CSF samples had been frozen, but never refrozen: regular controls with analyses of biological markers have confirmed compatibility between fresh and frozen samples.

CSF neopterin was analyzed using a commercially available immunoassay (BRAHMS, Berlin, Germany) according to the manufacturer’s instructions. Normal CSF neopterin reference values were 6.8 for individuals younger than 45 years and 10.2 for individuals ≥45 years of age. Some CSF samples had been frozen, but never refrozen: regular controls with analyses of biological markers have confirmed compatibility between fresh and frozen samples.

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th>Groups</th>
<th>No.</th>
<th>Age, y, median (IQR)</th>
<th>Plasma HIV RNA, median log_{10} (IQR)</th>
<th>CSF HIV RNA, median log_{10} (IQR)</th>
<th>Blood CD4+ T cells, cells/μL, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>71</td>
<td>43 (35–49)</td>
<td></td>
<td></td>
<td>833 (674–1,033)</td>
</tr>
<tr>
<td>NA, CD4 50–199</td>
<td>102</td>
<td>37 (32–47)</td>
<td>4.92 (4.46–5.42)</td>
<td>3.90 (3.31–5.41)</td>
<td>120 (84–163)</td>
</tr>
<tr>
<td>NA, CD4 <50</td>
<td>71</td>
<td>38 (33–47)</td>
<td>5.20 (4.53–5.54)</td>
<td>3.07 (2.25–3.76)</td>
<td>20 (10–37)</td>
</tr>
<tr>
<td>HAD stage 1</td>
<td>24</td>
<td>39 (32–44)</td>
<td>5.24 (4.48–5.57)</td>
<td>3.78 (2.57–4.82)</td>
<td>55 (21–152)</td>
</tr>
<tr>
<td>HAD stage 2–4</td>
<td>33</td>
<td>40 (34–48)</td>
<td>4.94 (4.07–5.44)</td>
<td>4.94 (4.17–5.44)</td>
<td>130 (18–195)</td>
</tr>
<tr>
<td>ART</td>
<td>159</td>
<td>45 (37–52)</td>
<td><1.70</td>
<td><1.70</td>
<td>490 (325–671)</td>
</tr>
</tbody>
</table>

Abbreviations: ART = on antiretroviral treatment with P-RNA <50 copies/mL; HAD = HIV-associated dementia (untreated); IQR = interquartile range; NA = neuroasymptomatic (untreated).
Figure 1. CSF/plasma albumin ratio in the different groups of HIV-infected participants and the healthy controls.

Table 2. Albumin ratio, inflammatory markers, and CSF NFL in the different groups of HIV-infected participants and the healthy controls.

<table>
<thead>
<tr>
<th>Groups</th>
<th>No.</th>
<th>Albumin ratio, median (IQR)</th>
<th>S-neopterin, nmol/L, median (IQR)</th>
<th>CSF-neopterin, nmol/L, median (IQR)</th>
<th>CSF WBC, cells/μL, median (IQR)</th>
<th>CSF NFL, ng/L, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>71</td>
<td>4.77 (3.91–6.37)</td>
<td>6.1 (4.3–8.2)</td>
<td>5.00 (4.1–6.4)</td>
<td>1 (0–2)</td>
<td>407 (331–537)</td>
</tr>
<tr>
<td>NA, CD4 >350</td>
<td>125</td>
<td>4.70 (3.53–6.40)</td>
<td>11.1 (8.4–17.9)</td>
<td>11.2 (8.1–17.7)</td>
<td>5 (3–9)</td>
<td>440 (272–580)</td>
</tr>
<tr>
<td>NA, CD4 200–349</td>
<td>117</td>
<td>5.15 (4.09–7.00)</td>
<td>18.2 (11.2–23.2)</td>
<td>18.3 (12.0–26.4)</td>
<td>6 (3–13)</td>
<td>395 (228–640)</td>
</tr>
<tr>
<td>NA, CD4 50–199</td>
<td>102</td>
<td>4.90 (3.79–6.86)</td>
<td>21.0 (13.6–32.7)</td>
<td>21.7 (12.4–32.4)</td>
<td>4 (1–9)</td>
<td>490 (295–886)</td>
</tr>
<tr>
<td>NA, CD4 <50</td>
<td>71</td>
<td>5.00 (3.76–6.21)</td>
<td>23.5 (16.5–37.8)</td>
<td>22.0 (11.5–35.0)</td>
<td>1 (0–2)</td>
<td>801 (477–2,380)</td>
</tr>
<tr>
<td>HAD stage 1</td>
<td>24</td>
<td>7.37 (5.26–11.31)</td>
<td>22.5 (17.0–33.8)</td>
<td>29.4 (24.6–61.5)</td>
<td>3 (2–9)</td>
<td>11,400 (5,224–38,225)</td>
</tr>
<tr>
<td>HAD stage 2–4</td>
<td>33</td>
<td>10.42 (7.20–17.00)</td>
<td>26.4 (18.2–38.9)</td>
<td>75.0 (34.7–127.5)</td>
<td>11 (4–26)</td>
<td>30,825 (25,898–35,753)</td>
</tr>
<tr>
<td>ART</td>
<td>159</td>
<td>4.70 (3.61–6.52)</td>
<td>8.4 (5.7–11.0)</td>
<td>6.7 (4.8–9.3)</td>
<td>0 (0–2)</td>
<td>454 (289–673)</td>
</tr>
</tbody>
</table>

Abbreviations: ART = on antiretroviral treatment with P-RNA <50 copies/mL; HAD = HIV-associated dementia (untreated); IQR = interquartile range; NA = neuroasymptomatic (untreated); NFL = neurofilament light chain protein; WBC = white blood cells.
CSF biomarker profiles in participants with increased as opposed to normal albumin ratios with respect to age-dependent reference values.

Neuroasymptomatic participants with increased albumin ratios had higher CSF neopterin ($p < 0.05$) and CSF NFL levels ($p < 0.01$). No difference was found in CSF HIV RNA between those groups (figure 2). Patients on suppressive ART and HIV-negative controls with increased albumin ratios had similar levels of CSF neopterin and CSF NFL as participants with normal ratio (not shown).

Correlations of CSF biomarkers and albumin ratio. In untreated neuroasymptomatic participants, albumin ratios correlated with CSF leukocyte count ($r = 0.25, p < 0.001$), CSF HIV RNA levels ($r = 0.15, p < 0.01$), blood neopterin ($r = 0.21, p < 0.001$), CSF neopterin ($r = 0.26, p < 0.001$), and age ($r = 0.24, p < 0.001$). Similar correlations with age ($r = 0.27, p = 0.001$) and CSF leukocytes ($r = 0.16, p = 0.05$) were found in virally suppressed participants. In HIV-negative controls, only age correlated significantly with albumin ratio ($r = 0.26, p < 0.05$). No significant correlations were found between CSF neopterin and albumin ratio in participants on suppressive ART or in HIV-negative controls. There was no significant correlation between CD4 nadir and albumin ratio in virally suppressed participants. While all participants on ART had plasma HIV RNA levels <50 copies/mL as part of the inclusion criteria, 5 out of 159 treated participants (3.1%) had detectable HIV RNA levels in the CSF, ranging from 50 to 145 copies/mL.

In a multiple linear regression analysis, age, CSF neopterin, and CSF leukocyte count stood out as independent predictors of albumin ratios in neuroasymptomatic participants (table 3).

Correlations between albumin ratio and CSF NFL. A significant correlation was found between the albumin ratio and CSF NFL concentration in untreated neuroasymptomatic participants ($r = 0.32, p < 0.001$).

Albumin ratio was confirmed as an independent predictor of CSF NFL together with age and CD4 cell count in a multiple linear regression analysis. By contrast, CSF HIV RNA and CSF neopterin were not found to be significant predictors (table 4).

Albumin ratios and CSF NFL levels were also correlated in participants on ART ($r = 0.44, p < 0.001$) and albumin ratios were, together with age, confirmed as independent predictors of CSF NFL in multivariable analysis (data not shown). Likewise, a significant correlation was found between albumin ratios and CSF NFL concentrations in HIV-negative controls ($r = 0.30, p < 0.05$). CSF NFL results were missing in the majority of patients with HAD because of shortage of samples.

DISCUSSION BBB impairment is considered a key event in CNS injury in HIV infection. To date, this is the largest study that has characterized the BBB in
The BBB is a semipermeable barrier surrounding the CNS. Its main function is to maintain a stable environment for the brain. It differs from other capillaries in the body in a number of ways. Most importantly, endothelial cells in the BBB are fused together by tight junctions. HIV-infected cells in the CNS and the periphery produce viral proteins such as gp120, Tat, and Nef, and inflammatory mediators including cytokines and chemokines. These viral and host products have the ability to affect the integrity of the BBB, leading to increased permeability of the brain endothelial cells. Impairment of the BBB could be harmful to the brain by facilitating influx of blood proteins, viral particles, and other possibly neurotoxic substances into the CNS (figure e-1 at Neurology.org/nn). Conversely, BBB impairment may facilitate entry of antiretroviral drugs, which may be beneficial. The BBB restricts the entry of proteins from the blood to the brain and the CSF, to this rather large cohort of thoroughly classified participants with HIV infection. This is a major strength of the study and makes the results more reliable.

Although most neuroasymptomatic HIV-infected participants without ART had albumin ratios within the normal range, we found a significant correlation between CSF neopterin, a marker of intrathecal immune activation, and BBB integrity in this group. CNS inflammation was, together with age, confirmed in a multivariable analysis as independent predictors of BBB impairment. Intrathecal immune activation is a general feature of HIV infection, and a persistent low-grade immune activation is often present even in antiretroviral treated patients despite several years of suppressed plasma viral loads. However, CSF neopterin did not correlate with albumin ratios in patients on suppressive ART, or in healthy controls, perhaps because substantial CNS inflammation is required for BBB impairment.

In addition, we found the albumin ratio to be an independent predictor of CSF NFL both in untreated and treated HIV-infected individuals, suggesting that minor impairment of the BBB might be harmful to the CNS. However, the lack of association with markers of immune activation in patients on treatment implies either an additional mechanism or possibly fixed BBB impairment as a legacy effect of pre-ART disease. Another recent study on treated HIV-infected individuals undergoing lumbar punctures for clinical reasons reported a similar association between albumin ratios and the neural protein t-tau, but without any association with CSF neopterin. NFL is a more sensitive marker of neural injury than t-tau and our study corroborates the association between BBB function and CNS disturbance, extending it also to untreated and treated HIV-infected participants without neurologic symptoms.

Table 3

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Univariable</th>
<th>Multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std β (r)</td>
<td>p Value</td>
</tr>
<tr>
<td>Age</td>
<td>0.242</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood CD4</td>
<td>0.010</td>
<td>0.84</td>
</tr>
<tr>
<td>Blood CD8</td>
<td>-0.009</td>
<td>0.85</td>
</tr>
<tr>
<td>CSF WBC</td>
<td>0.245</td>
<td><0.001</td>
</tr>
<tr>
<td>P HIV RNA</td>
<td>0.097</td>
<td>0.055</td>
</tr>
<tr>
<td>CSF HIV RNA</td>
<td>0.153</td>
<td>0.002</td>
</tr>
<tr>
<td>S neopterin</td>
<td>0.208</td>
<td><0.001</td>
</tr>
<tr>
<td>CSF neopterin</td>
<td>0.259</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Abbreviation: CSF = cerebrospinal fluid; P = plasma; S = serum; Std β = standardized beta coefficient; Std β adj = adjusted standardized beta coefficient; WBC = white blood cells.

Table 4

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Univariable</th>
<th>Multivariable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std β (r)</td>
<td>p Value</td>
</tr>
<tr>
<td>Age</td>
<td>0.365</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood CD4</td>
<td>-0.326</td>
<td><0.001</td>
</tr>
<tr>
<td>CSF WBC</td>
<td>-0.090</td>
<td>0.22</td>
</tr>
<tr>
<td>CSF HIV RNA</td>
<td>-0.070</td>
<td>0.34</td>
</tr>
<tr>
<td>CSF neopterin</td>
<td>0.200</td>
<td>0.010</td>
</tr>
<tr>
<td>CSF/P albumin ratio</td>
<td>0.315</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Abbreviations: P = plasma; NFL = neurofilament light chain protein; Std β = standardized beta coefficient; Std β adj = adjusted standardized beta coefficient; WBC = white blood cells.

Table 3 Univariable correlation (left columns) and multiple linear regression (right columns) determining predictors of CSF/plasma albumin ratio in 415 HIV-infected neuroasymptomatic patients without antiretroviral treatment.

Table 4 Univariable correlation (left columns) and multiple linear regression (right columns) determining predictors of CSF NFL in 415 HIV-infected neuroasymptomatic patients without antiretroviral treatment.
resulting in markedly lower concentrations of proteins in CSF than in blood. Because albumin is exclusively synthesized in the liver, albumin detected in CSF originates from blood. The albumin ratio between CSF and plasma provides a reliable determination of BBB function,1,3,24 and is the most commonly used method to examine this.

Myelinated axons consist of a major structural element NFL, the light subunit of the neurofilament protein. Previous studies have confirmed CSF NFL concentrations as a reliable marker of CNS axonal injury in various neurodegenerative diseases25 including CNS injury associated with HIV infection.5,26 Increased CSF NFL is a consistent finding in patients with HAD, but can also be found in some HIV-infected patients without neurologic symptoms, mainly in individuals with low CD4+ T-cell counts. Our study confirms immunosuppression and age as predictors of CSF NFL in multivariable analysis. In addition, we found that impairment of the BBB was an independent predictor of axonal injury. A significant correlation was found between the albumin ratio and CSF NFL in both untreated and treated individuals, supporting the hypothesis that increased BBB permeability may be linked with neuronal injury in HIV infection. Neurotoxic substances and inflammation may cause damage to neuroglial cells further amplifying BBB breakdown, eventually leading to clinically significant neurocognitive deficits.

In agreement with previous smaller studies,9 we found no correlation between CD4+ T-cell count and BBB dysfunction. Another recent study found that increased BBB permeability was more common in individuals on ART with low CD4 nadir compared with those with high CD4 nadir.9 We could not confirm this finding in our study, where no correlation was found between CD4 nadir and the albumin ratio in patients on suppressive ART. In contrast to the abovementioned study, all treated participants in our study were virologically suppressed, which might explain the diverse results. Furthermore, in the current study, participants were asymptomatic, with lumbar punctures performed within clinical study protocols and not for clinical reasons.

Also in agreement with previous studies,9 we did not find any difference in the albumin ratio between neuroasymptomatic HIV-infected participants and patients on ART. However, those were cross-sectional studies and the data are sparse on BBB integrity changes following initiation of ART.8 Neither has the effect of ART on BBB integrity in patients with HAD and increased albumin ratios been carefully elucidated. Smaller studies and case reports indicate that normalization of the albumin ratio, even in patients with HAD, is possible after commencement of ART.8,27 Almost one-fifth of untreated neuroasymptomatic participants, some of them with preserved immune systems, had signs of BBB impairment. Patients in the neuroasymptomatic groups had neither neurologic nor neurocognitive symptoms, signs, or complaints, but as neuropsychological testing was not performed on all participants, we cannot exclude the possibility that some had asymptomatic neurocognitive impairment. It is not known if asymptomatic patients with elevated albumin ratios have an increased risk of developing symptomatic neurocognitive deficits in the future. It is notable that the proportion of asymptomatic untreated patients with impaired BBB had significantly higher levels of both CSF neopterin and CSF NFL compared with patients without BBB injury, while no such difference was found in participants on suppressive ART or in healthy controls.

We have previously found that CSF NFL can predict severe neurocognitive impairment.28 Impairment of BBB with simultaneously raised levels of CSF neopterin and CSF NFL give further support to the association among BBB deterioration, neuroinflammation, and axonal injury in untreated HIV. Indeed, our results point to the potential utility of measurement of the albumin ratio, something which is simple and easily performed. Further, our data allow the generation of 2 important hypotheses. First, albumin ratio elevation in neuroasymptomatic patients may predict the subsequent development of HIV-associated neurocognitive disorders. Second, there is no need for antiretroviral drugs that penetrate the brain if the albumin ratio is normal. Further prospective studies can address these hypotheses.

DISCLOSURE
B. Anesten and A. Yilmaz report no disclosures. L. Hagberg serves as an associate editor for *Journal of Alzheimer's Disease, Alzheimer's & Dementia, and DADM, is cofounder of Brain Biomarker Solutions in Gothenburg AB; and received research support from The Swedish Research Council, Swedish State Support for Clinical Research, VINNOVA, The Knut and Alice Wallenberg Foundation, and the NIH (R01MH62701, R21MH096619, R21NS069219 and UL1 TR000004).

STUDY FUNDING
Supported by the Swedish Research Council (K2011-58P-20931-01-4, 2013-2546), the Sahlgrenska University Hospital (ALFGBG-430271, ALFGBG-441051), the Knut and Alice Wallenberg Foundation, and the NIH (R01MH62701, R21MH69619, R21NS069219 and UL1 TR000004).

AUTHOR CONTRIBUTIONS
M.G. originated the idea and designed and supervised the study. M.G., A.Y., L.H., B.B., and RW.P. recruited the participants. D.F. and H.Z. performed the biochemical analyses. B.A. and M.G. performed acquisition, analysis, and interpretation of data. B.A., M.G., and S.N. performed the statistics. B.A., A.Y., and M.G. wrote the article. All the authors contributed to manuscript preparation.
honoraria from Biogen Idec, holds a patent for Monoclonal antibody for quinolinic acid as part of test kit for monitoring MS severity and progression, received publishing royalties from Oxford University Press and Cambridge University Press, and received research support from Biogen Idec and NIH NHMRC. D. Fuchs is Chief Editor for Cambridge University Press, and received research support from Kinemed, NIDA, NIMH, NIAID, and National Institute of Neurological Disorders and Stroke. M. Gisslen served on the scientific advisory board for Gilead Sciences, BMS, Janssen, and MSD; received speaker honoraria from Gilead, BMS, and Janssen; was editor for *HIV & Viralogy News* and *AIDS Research and Therapy*; and received research support from Gilead and Janssen. Go to Neurology.org/nrn for full disclosure forms.

Received March 24, 2016. Accepted in final form September 29, 2016.

REFERENCES

Blood–brain barrier integrity, intrathecal immunoactivation, and neuronal injury in HIV

Birgitta Anesten, Aylin Yilmaz, Lars Hagberg, et al.

Neurol Neuroimmunol Neuroinflamm 2016;3;
DOI 10.1212/NXI.0000000000000300

This information is current as of November 9, 2016
Updated Information & Services

including high resolution figures, can be found at:

http://nn.neurology.org/content/3/6/e300.full.html

Supplementary Material

Supplementary material can be found at:

http://nn.neurology.org/content/suppl/2016/11/09/3.6.e300.DC1

References

This article cites 28 articles, 0 of which you can access for free at:

http://nn.neurology.org/content/3/6/e300.full.html##ref-list-1

Citations

This article has been cited by 1 HighWire-hosted articles:

http://nn.neurology.org/content/3/6/e300.full.html##otherarticles

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):

- **All Cognitive Disorders/Dementia**
 http://nn.neurology.org/cgi/collection/all_cognitive_disorders_dementia

- **All Immunology**
 http://nn.neurology.org/cgi/collection/all_immunology

- **HIV**
 http://nn.neurology.org/cgi/collection/hiv

- **HIV dementia**
 http://nn.neurology.org/cgi/collection/hiv_dementia

- **Viral infections**
 http://nn.neurology.org/cgi/collection/viral_infections

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:

http://nn.neurology.org/misc/about.xhtml#permissions

Reprints

Information about ordering reprints can be found online:

http://nn.neurology.org/misc/addir.xhtml#reprintsus