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Abstract 
Passenger vehicles are considered to be bluff bodies and therefore their total aerodynamic 

resistance is dominated by pressure drag, which is basically the difference between the stagnation 

pressure in the front and the pressure at the base. In particular, the base wake of a vehicle has a 

significant influence on the total drag and ways to reduce it and controlling it have been the 

subject of numerous investigations. The present work focuses on the identification and analysis 

of unsteady flow structures acting on the base wake of an SUV with and without rear-end 

extensions. Tapered extensions have proven to be an effective way to reduce drag since they act 

as a truncated boat-tailing device improving the pressure recovery zone and reducing the wake 

size. In this investigation, wind tunnel experiments and Computational Fluid Dynamics were 

used to study the forces acting on the vehicle and the un-stationary behaviour of the rear wake 

flow. For the analysis of the unsteady base pressures, a data structure sensitive filtering approach 

based on Empirical Mode Decomposition in combination with Fast Fourier Transform and Proper 

Orthogonal Decomposition were used.  The numerical and the experimental results are a good 

complement to each other and both revealed an antisymmetric mode in the transverse plane 

related to a flapping of the wake at a Strouhal number around 0.23. Furthermore, a pumping 

effect, which is a main contributor to the drag, was observed at Strouhal values between 0.04 and 

0.07. This is in good agreement with results from research on more simplified model shapes. The 

rear extensions proved to be a productive way to reduce the drag coefficient and the magnitude of 

the wake flapping for the yaw angles investigated. 
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Introduction 
Consumer demands and governmental legislation for a sustainable society are driving car 

manufactures to invest significant resources on the aerodynamic development of new vehicles 

with the objective of minimizing fuel consumption and reducing emissions. Increasing 

environmental consciousness among customers and manufactures leads the automotive industry 

to strive for highly optimized designs and energy efficient vehicles.  This is seen as a necessity in 

order to stay competitive in a market that is globalized and volatile. One important contributor to 



the total driving resistance, which is then directly related to fuel efficiency, is the aerodynamic 

drag of the vehicle. The aerodynamic drag of a passenger vehicle is basically governed by the 

pressure difference between the forward and rearwards facing surfaces. Ways to minimize this 

difference using techniques that reduce the wake size and particularly aim to increase the base 

pressure by stabilizing the unsteady nature of the rear wake are a matter of continuous research. 

A well-known method for achieving such results is the use of tapered extensions attached to the 

rear end of the car. The extensions create a cavity and can also be interpreted as creating a boat-

tailing effect. A thorough overview of drag reduction devices for the base area are extensively 

described in References [1-5]. Specifically, the effects of base-cavity, base bleed, active blowing 

and splitter plate techniques are discussed in References [3-8]. Recent work on a full-size SUV 

with attached rear-end extensions was conducted both experimentally and numerically in [9-10]. 

The results of the study successfully showed that the technique of tapered extensions works well 

even at relatively large yaw angles and that it is possible to achieve drag reduction while still 

maintaining vehicle stability. This was principally achieved with the use of a so-called kicker, a 

small device attached to the edge of the extensions with the objective of reducing the lateral- and 

normal-velocity components in favour of the longitudinal component upon flow separation. 

The present work focuses on the identification and analysis of unsteady flow structures acting on 

the base wake of an SUV with and without rear-end extensions at different yaw angles. The work 

was conducted both experimentally and numerically, and the results obtained complement each 

other regarding forces, unsteady base surface pressure and frequency of flow field fluctuations. 

Experimentally, the force analysis and the study of the unsteady wake behaviour were conducted 

in different campaigns. Previous research [11] on unsteady effects of the base wake behind a 

simple square back model showed that the principal contributor to the aerodynamic drag can be 

associated to a pumping effect of the wake with a frequency corresponding to 0.8 to 1 Hz, 

equivalent to a Strouhal number, Sr, of approximately 0.04. A comprehensive analysis of the 

turbulent wake structure behind an Ahmed body, its global modes and bi-stable behaviour with 

coupling to base pressure and drag is well explained in the work of Grandemange et al. [12,13]. 

Additional discussions of the near-wake nature can be found in the work of Sims-Williams [14], 

for example. In search of observations of similar behaviour, unsteady base pressures 

measurements were conducted experimentally. This allowed for a correlation between different 

assessment locations that helped to bring insight on the flow structures behind the model. The 

high temporal resolution and duration of the experimental samples enabled the low frequencies 

relevant to wake modes to be captured, but spatial resolution was insufficient, as the number of 

sensors was limited. Therefore, a technique based on Empirical Mode Decomposition (EMD) 

was used, where the signal was decomposed in multiple modes ordered from high to low 

frequencies. This allowed for a signal reconstruction with the modes in the desired frequency 

range.  

Computational Fluid Dynamics (CFD) results enrich the experimental analysis by bridging the 

shortcoming in spatial resolution of the surface pressures and by giving more insight into the flow 

field. The CFD analysis allowed for the correlation of several wake planes which was a limitation 

in the measurements performed in the wind tunnel.  

Methodology 
This section gives a description of the test object and the experimental and numerical setup. It 

also provides a short explanation of the techniques used for acquiring the modes and frequencies. 

 



Test object 
The results presented in this paper are retrieved from the analysis on a modified Volvo XC60 

AWD that includes additional underbody panels, a covering of the stop lamp feature at the roof,  

and a closed upper and lower grille. This is considered as the baseline configuration. The 

modifications were added in order to guarantee a good flow quality entering the base wake which 

is a pre-requisite for a good performance of the extensions. The vehicle exterior and the 

underbody with the mounted panels is seen in Figure 1. 

  
(a)        (b) 

Figure 1. Test object: (a) rear-side view, and (b) improved underbody with mounted panels. 

 

As discussed previously, several investigations [5,9,15] show the benefit of tapered rear-end 

extensions to alter the base wake with the intension of reducing the aerodynamic resistance. Here, 

an extended analysis of the effect of the extensions used in [15] was performed with a focus on 

the response of the flow unsteadiness in the wake. In particular, the extensions with a length of 

0.15 m were chosen and installed in the baseline model at their most effective angle. A sketch of 

the extension profile with the kicker at the symmetry plane is seen in Figure 2. The concept 

behind the addition of the extensions and the kicker is based on the equation for the local drag 

which is discussed next. 

 
Figure 2. A sketch of the extensions and the kicker at the symmetry plane. 

 

Local drag 
An informative way to visualize and quantify wake losses is by using the notion of local drag 

which is defined by Cogotti [16] according to equation (1). The expression represents losses due 

to the total-pressure (Term I), longitudinal kinetic energy (Term II) and vorticity (Term III). 
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According to the equation, Terms I and III add to drag and their values should be minimized, 

while Term II has always a negative contribution. The inclusion of tapered extensions reduces the 

rear wake size, dS, which improves drag in general. It also reduces Term I in equation (1) due to 

the increase of the base pressure of the model. The kicker contributes to the reduction of Term III 

by minimizing the lateral- and normal-velocity components. It is to be noted however, that the 

addition of the kicker results on a slightly larger rear wake when compared to the configuration 

with the extensions only. This causes an increase in drag which can annul the reduction obtained 

in Term III in some situations.   

The magnitude of the third term, also called vortex drag is visualized in Figure 3 at a plane 0.1 m 

behind the vehicle for yaw = 0.  

 
(a) 

 
(b) 

Figure 3. Visualization of vortex drag, Term III in equation (1) for: (a) configuration with 

extensions, and (b) configuration with extensions and kicker. 

 

Experimental set-up 
All experimental measurements were conducted in the full-scale Volvo Cars Aerodynamic Wind 

Tunnel (PVT) and at a speed of 100 kph. The tunnel is of a Göttingen type with a slotted-wall test 

section and a cross-sectional area of 27 m2. In order to simulate real road flow conditions around 

a vehicle, a boundary layer control system (BLCS) is available. The system contains a scoop at 

the start of the test section, a boundary-layer suction area, a five-belt moving-ground system, and 

tangential blowing behind each of the five belts [17]. It ensures an uncertainty of less than 0.001 



for Cd and ClF and less than 0.003 for ClR for measurements within the same test. The tunnel is 

accredited according to the European Accreditation procedure EA 4/02. 

For the study of the periodic base wake structures, an initial evaluation of the empty wind tunnel 

was conducted in order to check that neither the wind tunnel fan nor the boundary layer control 

system produced periodic variations that could affect the wake pressure measurements when the 

car was present in the test section. For this, the pressure sensors were mounted in poles which 

were spread over the width of the test section and were movable. Care was taken so that the 

measurement signals were not distorted by the interference of the flow with the poles. Sensors 

from First Sensors of the HCLA-type were positioned at the inside of the surface shell with 

0.05m-tubing leading to the measurement location. Their range is ±2500 Pa with a static 

calibration to an accuracy of ±5 Pa which for the flow regime investigated, allows for an 

accuracy in the coefficient of pressure, Cp, equivalent to 0.01 at 100 kph. Results of the spectral 

response of the wind tunnel systems indicated that periodic variations from the fan, moving 

ground and BLCS were not significant and could be neglected in this investigation. Low-

frequencies originated from other parts of the tunnel circuit were not investigated as their 

contribution was assumed to be smaller than the fan and BLCS system. 

For the vehicle measurements, unsteady surface pressures were assessed near the base perimeter 

where separation is expected to occur in order to capture the strongest flow fluctuations. In the 

reference configuration (without extensions), 14 pressure-sensors were mounted on the inside of 

the vehicle surface shell with a 0.05 m tube leading to the measurement location. Most of the 

sensors were positioned in the rear-lamp region where the flow is expected to show a strong 

unsteady behaviour. Two additional sensors were placed at the symmetry line, see Figure 4. 

 
Figure 4. Locations of the unsteady pressure sensors mounted on the base perimeter.  

 

Signal processing 
The raw signal obtained by the unsteady pressure sensors over time is complex and difficult to 

interpret. It is hidden under a broad spectrum of fluctuations and noise. Therefore it is necessary 

to analyse the signals to extract spatial and spectral information of the structures related to the 

global behaviour of the wake.  

Fast Fourier Transform (FFT). To analyse its spectral content a signal can be transformed from 

its time domain to its frequency through the often used Fourier transformation, equation (2). 

From the FFT the energy contribution of the signal p(t) can be calculated with the Power Spectral 

Density function (PSD), equation (3).  
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Empirical Mode Decomposition (EMD). With EMD a signal is decomposed through a sifting 

process into Multiple Intrinsic Mode functions (IMF’s) sorted based on their frequency content in 

a descending order. At the end of this process only a residue of the signal remains with temporal 

trend of the signal. A more detailed explanation of the sifting process and the definition of an 

IMF can be found in [15]. As these modes are a direct result of the signal itself, the latter can be 

reconstructed through summation of the modes and residue, see equation (4), or any subset can be 

chosen with the modes in the frequency range of interest. 

𝑝(𝑡)=∑ 𝐼𝑀𝐹𝑗+𝑟𝑛
𝑛
𝑗=1                                                               (4) 

These modes represent a physical meaning where their frequencies and amplitudes are dependent 

on time as they adapt to changes in the physical environment. Therefore the EMD can be useful 

approach for non-stationary and non-linear data analysis [18]. 

 

Proper orthogonal decomposition (POD). POD is a multivariate statistical analysis method that 

can be used to decompose the data into orthogonal uncorrelated modes ranked by the amount of 

variance in the complete dataset from high to low. This approach can be applied to both the 

experimental and numerical data to reveal relevant coherent structures. The complete data is 

united in a matrix X, which can be decomposed into X = USVT. Here the diagonal elements of 

the matrix S are equal to the square-root of the eigenvalues of X.XT and the matrix V contains the 

eigenvectors belonging to each eigenvalue and represents the direction of the principal 

component. The matrix U is the projection matrix of the data X onto the directions of the 

principal components. 

The POD technique can be implemented as a bi-orthogonal decomposition where it not only 

provides spatial information for each mode or topos, but also temporal modes, chronos, 

describing the development of the topos over time. Therefore it can be considered an interesting 

choice for the analysis of periodic coherent wake structures [19]. 

All POD results presented here are based on the pressure field, unless otherwise stated. 

 

Numerical set-up 
For the CFD simulations, the geometrical CAD-data resembled with good accuracy the physical 

model. Volume meshes of around 170 million cells with five to seven prism layers near the 

surface to give an y+ = 20, were used together with Ansys Fluent as the CFD solver. A rather 

extensive mesh study was conducted in order to guarantee a relatively independent mesh 

solution. The numerical simulations were performed with the Delayed Detached Eddy Simulation 

(DDES) with the Spalart-Allmaras (SA) turbulence model, after an initialization from a steady-

state Reynolds averaged k-ε model converged solution. After an initial simulation time, the time 

step was set to 0.0002 s which results in a CFL number somewhat higher than 1. However, a 

study conducted with a reduced time step and thus, lower CFL, resulted in negligible changes in 

the force values. Hence, it was assumed that the time step of 0.0002 s was a good compromise 

between accuracy and computational costs. The overall running time was over six seconds in 

order to guarantee a good running average. For each force coefficient the running average started 

at time t = 2.0 s including an additional safety margin. For a reliable averaged value, about three 

seconds of integration was required before the force coefficients were sufficiently averaged. With 



these settings, rear-lift coefficients agreed quite well with the wind tunnel data and drag values 

were within 3% in accuracy for all cases studied. More detailed information on the numerical 

method and its validation is found in [10]. 

A view of the model in the numerical domain together with a series of planes used for post-

processing is depicted in Figure 5. 

 
(a)                                                                (b) 

Figure 5. (a) Vehicle positioning in the numerical wind tunnel, and (b) planes containing the data 

for the analysis of the numerical results. 

 

Results 
Results for global delta drag forces obtained in the wind tunnel and data related to the unsteady 

surface base pressure measurements are discussed in this section. As mentioned, the high 

temporal resolution and duration of this data provides a good basis for recovering data over the 

relevant frequency range. This is partially overcome with results from CFD simulations and 

POD.  

 

Global drag delta forces  
The effect of the tapered extensions and the addition of the kicker on the drag coefficient relative 

to the reference are summarized in Figure 6. The experimental data is taken from [9] and 

confirms that drag reduction is obtained with the modifications attached at edge of the base, at 

small yaw angles. At 0º yaw, a slight increase in drag is observed with the kicker. As explained 

earlier, the decrease in vortex drag can be overcome by the larger wake size resulting from the 

addition of the kicker. However, the kicker is still beneficial since it promotes a less sharp 

increase of the drag coefficient with yaw and it practically doubles the drag reduction under yaw 

up to ±5º when compared to the extensions only. 



                    
Figure 6. Delta drag coefficient versus yaw angle: Experimental results. 

 

Asymmetric wake behaviour  
For the experimental analysis of the wake periodicity a pressure centre movement approach was 

used to relate the signals from the sensors at the base. The centres, named PC1 and PC2, were 

calculated from the measurements of the right and left sensors positioned above and below the 

vehicle catwalk, respectively. The approach was used to identify a flapping motion.  

A spectral response of the horizontal fluctuations of the centres of pressure, PC1 and PC2, 

revealed a periodic pattern with a peak at Sr ~ 0.23 which agrees well with typical Strouhal 

numbers given in the literature related to an asymmetric flapping motion of the wake or vortex 

shedding behind bluff bodies. In order to further investigate the data in this frequency interval, 

the EMD approach was used to filter each signal obtained with the pressure sensors at the base. 

Only modes containing a significant amount of power spectral density between 0.15 < Sr < 0.3 

were considered. A first impression of the pressure fluctuations and a clear asymmetric behaviour 

can be seen in Figure 7 (a) and (b) for time steps t = 0.16 s and t = 0.3 s, respectively. At t = 0.16 

s the pressure on the left side of the car is close to zero or negative while it is positive in nearly 

every sensor on the right side. At t = 0.3 s the situation is reversed. Within one second, four full 

periods of changeover were counted resulting on a Strouhal number around 0.25 which is well 

within the interval of wake flapping.  



 
(a)          (b)           

Figure 7. Distribution of pressure filtered to flapping related interval at: (a) t = 0.16 s, and (b) t = 

0.3 s.  

 

By using a combination of POD with EMD on the pressures and by filtering the data set to a 

desired bandwidth it is possible to obtain the topos of the first mode which show the asymmetric 

behaviour between the left and right sides. The lower two sensors contribute mainly to the first 

mode as they measure the strongest overall fluctuations. An anti-correlation between the left and 

the right sides is seen below the catwalk where the rear end of the vehicle is practically vertical. 

Even though peaks for flapping can be found in the spectral responses of all sensors, the typical 

asymmetric bluff body behaviour is strongest at the lower part. The topos and the FFT of the 

chronos are shown in Figure 8. It is concluded that the POD is a sufficient approach to verify an 

asymmetric flapping of the wake in the experimental data. Important to notice is that similar 

observations as the one from Figure 8 can be derived from the measurements at low yaw angles.  

 
(a)                                                                    (b)           

Figure 8. First POD mode calculated with pressure fluctuations from flapping interval: (a) topos, 

and (b) FFT of the chronos.  

 

POD can be also applied to the numerical data and an asymmetric flapping mode can be found in 

modes three and four of the lower transverse plane. Figure 9 shows the topos with grey dots 

where the time-averaged boundary of the wake is. The topos visualize an asymmetric shedding 

while the spectral responses of the chronos reveal seven peaks of similar power spectral density. 

When evaluating the peaks from all modes together, the most dominant one appears at Sr = 0.26. 

The numerical data does not perfectly match the Sr = 0.23 from the experimental results but 



confirms the existence of an antisymmetric wake behaviour and provides a more clear picture of 

the flow structures involved. 

 
(a)                                                                                (b) 

Figure 9. CFD results of the topos and chronos at lower z-plane: (a) fourth POD mode topos, and 

(b) FFT of the chronos.  

 

Regarding the results with the rear extensions it is possible to see from the experimental data a 

reduction of the wake flapping compared to the reference car. This is clear in Figure 10 where the 

pressure normalised lateral centre position is plotted against time. The graphs are a result of the 

complete pressure signal, with a super-imposed line based on filtered pressures in the range of 

0.5-20 Hz with the EMD-technique. 

 
(a) 

 
(b) 

Figure 10. Lateral pressure centre position: (a) baseline, and (b) vehicle with extensions. 

 

Longitudinal wake movement 



Figure 11 shows the third mode resulting from the POD of the experimental data pre-filtered to 

the interval Sr < 0.1 for the reference car. It contains most of its fluctuation originating from the 

pumping interval below Sr = 0.1, and all the sensors are positively correlated with the mode.  

 
(a)                                                                    (b)           

Figure 11. Third POD mode pre-filtered to Sr < 0.1: (a) topos, and (b) FFT of the chronos.  

 

Results with the extensions are shown in Figure 12 for the second POD mode. It represents 

pressure fluctuations that are correlated with all sensors symmetrically. The extensions do not 

change the structure of the flow revealed by the POD modes at these low frequencies. 

 
(a)                                                                    (b)           

Figure 12. Third POD mode pre-filtered to Sr < 0.1: (a) topos, and (b) FFT of the chronos.  

 

Looking at the reconstruction of the flow field associated to the first POD mode at the higher z-

plane, a symmetric mode with two large counter-rotating vortices 2 m behind the vehicle and a 

strong longitudinal variance is observed in Figure 13. Such flow structure is associated with the 

pumping oscillation of the closure region of the near wake. The mode is similar to the symmetric 

second mode in a horizontal plane behind a square back generic SUV presented in [20]. However 

the longitudinal variance in the flow field is higher in Figure 13, which adds to the pumping 

effect. 



                      
Figure 13. First POD mode in the higher horizontal plane based on the Vx and Vy components.  

 

Conclusions 
The base pressure and the rear wake are responsible for a significant amount of the overall drag 

of a vehicle. In his work, a passive technique was used to control the wake flow with the 

objective of reducing drag without negatively influencing the rear lift. The technique consisted of 

tapered extensions with the addition of a so-called kicker. The concept of the kicker originated 

from the evaluation of the local drag equation and aimed to guide the flow in a parallel direction 

upon separation, thus minimizing losses due to changes in longitudinal velocity and by reducing 

the contribution of vortex drag. The approach proved to be successful as drag reductions of as 

much as 0.010 to 0.020 were obtained. To further understand the validity of the tapered 

extensions and the kicker, an analysis of the wake periodicity and wake pumping was conducted 

both experimentally and numerically. Experimentally, unsteady surface pressures sensors were 

used to obtained information of the flow at the base area. An EMD and POD approach were used 

to study the data and proved to be a powerful analysis toolbox for the study of non-stationary 

wakes.  Numerical simulations complemented the investigation by revealing more information of 

the flow. The present results confirmed an antisymmetric mode behaviour in the transverse plane 

related to a flapping of the wake at Strouhal number around 0.23 which is typical of bluff bodies. 

Additionally, a pumping effect which is a main contributor to the drag, was observed at Strouhal 

values between 0.04 and 0.07. The extensions were able to reduce the magnitude of its effect.  
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