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SUMMARY

By separation of scales and the homogenization of a flow through porous media, a two-scale problem arises
where a Darcy-type flow is present on the macroscale and a Stokes flow on the subscale. In this paper,
the problem is given as the minimization of a potential. Additional constraints imposing periodicity in a
weak sense are added using Lagrange multipliers. In particular, the upper and lower energy bounds for the
corresponding strongly periodic problem are produced, quantifying the accuracy of the weakly periodic
boundary conditions. A numerical example demonstrates the evaluation of energy bounds and the perfor-
mance of weakly periodic boundary conditions on a representative volume element. © 2016 The Authors.
International Journal for Numerical Methods in Engineering Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

In this paper, we consider the two-scale problem where a Stokes flow is present on the subscale and
a Darcy flow on the macroscale. Thus, the macroscale is considered homogeneous, while the sub-
scale is considered porous, that is, it consists of a solid and a fluid phase. The two-scale approach
used to simulate the behavior of materials is common for a large number of engineering applica-
tions including oil geology [1], sintering [2], resin transfer modeling [3, 4], and transportation of
matter [5] to name a few.

The objective for models of this type, known as multiscale models, is to capture the subscale
effects without the computational effort involved in resolving the complete microstructure. To that
end, computational homogenization [6] is employed. Here, a representative volume element (RVE),
containing a suitably large volume of the microstructure, is used as a replacement for the classic
phenomenological model pertinent to the macroscale problem, that is, a Darcy flow. A Stokes flow is
present on the RVE, which is driven by the macroscale pressure gradient. The resulting macroscale
seepage is computed using volume averaging of the velocity on the RVE. In this work, the solid part
of the porous material is considered rigid.

The derivation of a Darcy flow from a subscale Stokes flow can be found in, for example, [7–9].
Previous work concerning the upper and lower energy bounds of a Darcy flow can be found
in [10] and [11] where various kinds of correlation functions, describing the characteristics of the
microstructure, are used to estimate the bounds. In this paper, the bounds produced using weak
periodicity [12], which allows for handling non-periodic meshes.
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308 C. SANDSTRÖM AND F. LARSSON

We consider the variationally consistent homogenization (VCH) method as a framework for the
multiscale model. VCH is an extension of variational multiscale method (VMS) proposed by Hughes
and coworkers [13, 14]. The more classic format of VMS has also been used on a Stokes flow as
shown in [15]. The extension of VMS to VCH was first proposed by Larsson et al. [16], where
the pertinent generalized macrohomogeneity condition was introduced for guaranteeing energy
equivalence for the homogenized response.

Following along the lines of Sandström et al. [12], we consider a viscous potential on a fully
resolved domain consisting of a fluid phase contained within a rigid and geometrically periodic
open pore solid. By splitting the domain into a finite number of subdomains and assuming sepa-
ration of scales, we define the geometry and size of the pertinent RVE. From here, we use, as an
approximation, periodic boundary conditions that, as shown in [17], satisfy the variationally con-
sistent macrohomogeneity condition. In other words, we ensure energy equivalence on macroscale
and subscale [16]. In particular, we impose periodic boundary conditions in weak form, resulting
in additional unknown Lagrange multipliers on the RVE. The unknowns constitute external loads
necessary to uphold periodicity on the pertinent fields.

By minimizing a viscous potential on the RVE, a saddle point problem is produced, allowing
for the analysis of upper and lower energy bounds for the strongly periodic problem. The bounds
are produced by confining pertinent solution spaces to contain only strongly periodic velocities or
pressures. In a 2D setting, this can be achieved using quadratic interpolation over each opening on
the boundary because the boundary is 1D [12]. In this way, we allow for the fluid to enter and exit
the RVE while satisfying the no-slip condition on obstacles crossing the boundary. However, as
the geometry of the surface of the RVE in 3D is of arbitrary 2D shape, the choice of global base
functions is not as straightforward.

As a suggestion for the choice of basis functions on the 2D surface, we introduce the concept
of solution-based shape functions. To compute the shape functions, we use a possibly non-periodic
solution of a Stokes flow to produce an analytically periodic function. The function is then pro-
jected onto the boundary, producing a function that is periodic up to the error introduced by the
discretization of the domain while satisfying no-slip conditions. We note that this procedure is used
on the velocity to produce an upper bound and on the pressure to produce a lower bound. In the case
of velocity, a method for compensating for possible compressibility artifacts due to the prescribed
inflow on all open boundaries is also discussed. We note that an important part of this paper con-
cerns the weak periodic boundary condition [12]. In [18], an alternative approach to weak boundary
conditions is discussed.

The outline of the remainder of this paper is as follows. In Section 2, we start out from the energy
formulation and derive the weak form of the problem. In Section 3, the upper and lower energy
bounds are discussed and for the special case of linear flow, the permeability. In Section 4, a general
method for producing function spaces pertinent to the bounds is shown along with special handling
of incompressibility. The function spaces for the bounds are studied in more detail in Section 4.2
for the upper energy bounds and in Section 4.3, for the lower bound. Section 5 contains a numerical
example of a simple RVE where the bounds are computed and the performance of the weak periodic
boundary condition is evaluated. In Section 6, we finish the paper with some concluding remarks
and suggestions for future work.

2. PROBLEM FORMULATION

2.1. Multiscale Stokes flow – the saddle point problem

In this section, we provide the reader with the basic background on the two scale problem and the
pertinent boundary conditions.

For the subsequent two-scale problem, we introduce the macroscale domain � and the RVE ��.
The boundary � D @� of the macroscale domain is split into two parts, � D �v [ �p , where �p
is the part where the pressure is prescribed and �v is the part where the out-flux is prescribed. The
RVE consists of two subdomains �� D �F

� [ �
S
� where �F

� is the volume containing the fluid
and �S

� the volume containing the solid phase, as shown in Figure 1. The solid phase is considered

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd
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APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 309

Figure 1. (a) Macroscale; (b) subscale; and (c) positive and negative parts of the boundary.

rigid, and the interface between the two phases is denoted � int
� . �F

� is the part of @�� where fluid
can enter and exit the domain. For reasons given momentarily, we also denote the part of�F

� having
a normal in a positive direction as �FC

� and for part having a normal in the negative direction as
�F�
� . Finally, we also define the boundary between �FC

� and �F�
� as �F0

� D �
FC
� \ �

F�
� as shown in

Figure 1(c).
In order to establish a coupling between the macroscale and the subscale, we first define the

pressure p on both scales. The pressure p on the RVE is then split into two parts, p D pM C
pS, where pM is the smooth macroscale part and pS is the fluctuating subscale part. Furthermore,
we introduce the macroscale pressure Np and the macroscale pressure gradient Ng. As first-order
homogenization is assumed, pM is allowed to vary linearly within the RVE as

pM D Np C Ng �
�
x � NxF

�
(1)

where x is the coordinate and NxF is the centroid of the fluid part of the RVE. From Equation (1),
we conclude the macroscale–subscale coupling as Ng D rpM. For a discussion concerning the
uniqueness of the split, we refer to [17].

The macroscale problem is given on strong form as

r � Nw ¹ Ngº D 0 (2a)

Np D Op on �p (2b)

Nw � n D Ovn on �v (2c)

where Nw is the seepage, n is the outward pointing normal to the boundary, Op is a prescribed pressure,
and Ovn is the prescribed flux in the outward pointing normal direction of �v . Furthermore, ¹�º
denotes implicit dependence on �.

We define the seepage Nw in terms of the stationary mean RVE potential  � ¹ Ngº

Nw D
@ �
@ Ng

(3)

In the case of a laminar, incompressible, and strongly periodic flow, the potential  � is given as
a stationary point to the optimization problem

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd
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310 C. SANDSTRÖM AND F. LARSSON

 � ¹ Ngº D inf
v2VP
�

sup
pS2PS;P

�

1

j��j

´Z
�F
�

ˆ.v˝ r/dV �
Z
�F
�

pS.r � v/dV

C

Z
�F
�

v � NgdV �
Z
�F
�

tS � vdV

μ (4)

where v is the velocity of a fluid particle, the subscale pressure pS is a Lagrange multiplier due to
the incompressibility condition, and ˆ.l/ is a viscous potential (expressed in terms of the velocity
gradient l D v˝r ), such that @ˆ

@l
D �V being the deviatoric part of the Cauchy stress. The solution

spaces in Equation (4) are defined as

VP
� D

®
v W v 2 V�; v is periodic on �F

�
¯

(5a)

PS;P
� D

®
p W p 2 PS

�; p is periodic on �F
�
¯

(5b)

where

V� D
®
v 2 ŒH 1.�F/�3 W v D 0 on � int

�
¯

(6a)

PS
� D

®
p 2 H 1

�
�F
�
�¯

(6b)

As a final remark on the potential, we note that tS D .�V � pSI/ � n is the traction pertinent to the
reaction forces due to split of� into a finite number of RVEs. Henceforth, we will neglect this term
as it is zero when the macrohomogeneity condition is fulfilled. For further reading on this topic, we
refer to [17].

For the special case of linear flow, we have the viscous stress �V defined as

�V D 2�Œv˝ r �sym (7)

2.2. Weak periodicity on the RVE using Lagrange multipliers

We will now weaken the conditions on v and pS by using the larger function spaces V� and PS
� as

replacements for VP
� and PS;P

� and instead impose periodicity on the pressure and velocity fields on
the RVE in a weak sense. For this purpose, we introduce the jump operator ��� as

�f � D f .x/ � f .x�.x// (8)

where x 2 �FC
� and x�.x/ are the corresponding points on �F�

� . When enforcing periodicity,
we do so by manipulating the stationary mean RVE potential  � in Equation (4). Thus, we add
the conditions

�pS� D 0 (9a)

�v� D 0 (9b)

tSC C tS� D 0 (9c)

where tSC and tS� are tractions along �FC
� and �F�

� , respectively. As the conditions enter into the
optimization problem, they give rise to Lagrange multiplier ˇ for the velocity constraint and � for
the pressure constraint. The stationary mean RVE potential now takes the form

 � . Ng/ D inf
v2V�

sup
pS2PS

�

ˇ2B�

inf
�2G�

��
�
v; pS;ˇ; �; Ng

�
(10)

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd
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APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 311

where �� is the mean RVE potential, defined as

��
�
v; pS;ˇ; �; Ng

�
D

1

j��j

 Z
�F
�

ˆ.v˝ r/dV �
Z
�F
�

pS.r � v/dV C
Z
�F
�

Ng � vdV �
Z
�

FC
�

�v� � ˇ C �pS��dS

!
(11)

and

B� D
°
ˇ 2

�
L2
�
�FC
�
��3±

(12a)

G� D
®
� 2 L2

�
�FC
�
�¯

(12b)

For the situation in Equation (10), we note that the seepage satisfies

Nw � ı Ng D
d �
d Ng
D � 0�

�
v; pS;ˇ; �; NgI ı Ng

�
(13)

due to the stationarity of �� (cf. [12]). Here, � 0� denotes the directional derivative of �� w.r.t. Ng in
the direction of ı Ng.

Remark 1
The solution to Equation (10) can be stated as�

v ¹ Ngº ; pS ¹ Ngº ;ˇ ¹ Ngº ; � ¹ Ngº
�
D arg min

v2V�
max
pS2P�
ˇ2B

min
�2G

 �
�
v; pS;ˇ; �; Ng

�
(14)

if we assume a unique solution. Consequently, the explicit description of the stationary RVE problem
becomes

 � ¹ Ngº D ��
�
v ¹ Ngº ; pS ¹ Ngº ;ˇ ¹ Ngº ; � ¹ Ngº

�
(15)

We stress that the existence of a unique solution
�
v ¹ Ngº ; pS ¹ Ngº ;ˇ ¹ Ngº ; �¹ Ngº

�
is a stronger

requirement than the formulation in Equation (10).

Remark 2
We note that by using the definition of the split and first-order homogenization, the periodicity
condition on the subscale pressure pS is equivalent to the condition

�p� D Ng � �x� (16)

Thus, we can rewrite Equation (11) as

�� .v; p;ˇ; �; Ng/

D
1

j��j

 Z
�F
�

ˆ.v˝ r/dV �
Z
�F
�

p.r � v/dV �
Z
�

FC
�

�v� � ˇ

C�p � Ng � x��dS �
Z
�F
�

�
Ng � Œx � xF �

�
n � vdS

! (17)

Here, the split of the domain into RVEs gives the traction t D tS� Ng �Œx�xF � �n on the boundary.
Assuming that the integral containing the subscale traction tS vanishes because of boundary condi-
tions satisfying the variationally consistent macrohomogeneity condition, we obtain the last integral
in Equation (17). This formulation allows for the computation of the full pressure up to a constant
rather than the subscale pressure pS.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd
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312 C. SANDSTRÖM AND F. LARSSON

2.3. Weak form

For the weak form of the macroscale equation, we refer to [12] and proceed by taking variations in
all subscale quantities in Equation (11), producing the following weak form of the subscale problem:
Find .v; pS;ˇ; �/ 2 V� � PS

� � B� � G� such that

a�.vI ıv/ � b�.ıv; p
S/ �c�.ıv;ˇ/ D� e� .ıv; Ng/ 8ıv 2 V� (18a)

�b�
�
v; ıpS

�
� d�

�
ıpS; �

�
D 0 8ıpS 2 PS

� (18b)

�c� .v; ıˇ/ D 0 8ıˇ 2 B� (18c)

� d�
�
pS; ı�

�
D 0 8ı� 2 G� (18d)

where

a� .vI ıv/ D
1

j��j

Z
�F
�

�V.v˝ r/ W Œıv˝ r �dV (19a)

b�
�
ıv; pS

�
D

1

j��j

Z
�F
�

Œıv � r �pSdV (19b)

c� .ıv;ˇ/ D
1

j��j

Z
�F
�

�ıv� � ˇdS (19c)

d� .ıp; �/ D
1

j��j

Z
�F
�

�ıpS��dS (19d)

e� .ıv; Ng/ D
1

j��j

Z
�F
�

ıvdV � Ng (19e)

In Equation (18a), the known macroscale pressure gradient Ng acts as a driving load for the flow.

Remark 3
In a discrete setting, the tangent stiffness of Equation (18) is a block matrix

T D

2
664

A G C
GT D
CT

DT

3
775 (20)

where submatrices C and D constitute the weak boundary conditions. In the case where relevant
base functions are global, the submatrices can be considered dense. As a result, the computational
cost increases rapidly as the Lagrange multiplier approximations are refined.

3. ENERGY BOUNDS ON THE PERIODIC SOLUTION

3.1. Confining the solution spaces

From Equation (10), we note that by confining the function spaces in certain ways, we can compute
the upper and lower energy bounds. In the special case of a linear fluid material, we are also able
to compute upper and lower bounds for the permeability. By replacing V� with V 0� � V� and G�
with G0� � G�, we produce an upper energy bound. More specifically, by choosing V 0� to contain
only strongly periodic functions, we produce an upper bound for strongly periodic velocities. This
also voids the supremum on ˇ. The subspace G0� contains the discretized � , giving the inequality

 �
�
pM
�
D inf
v2V�

sup
pS2PS

�

ˇ2B�

inf
�2G�

��
�
v; pM; pS;ˇ; �

�
6 inf
v2V0
�

sup
pS2PS

�

inf
�2G0
�

��
�
v; pM; pS;ˇ; �

�
D U�

�
pM
�

(21)

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd
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APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 313

By the same reasoning, we replace the function spaces PS
� and B� with PS

�
0

and B0�, where
the particular choice of PS

�
0

only contains strongly periodic pressures. This yields the inequality
pertinent to the lower energy bound for strong periodicity as

 L�
�
pM
�
D inf
v2V�

sup
pS2PS

�

0

ˇ2B0
�

��
�
v; pM; pS;ˇ; �

�
6 inf
v2V�

sup
pS2PS

�

ˇ2B�

inf
�2G�

��
�
v; pM; pS;ˇ; �

�
D  �

�
pM
�

(22)
Summing Equations (21) and (22) gives the bounds on strong periodicity as

 L�
�
pM
�
6  �

�
pM
�
6  U�

�
pM
�

(23)

3.2. Permeability and energy relation in the linear case

In the special case where we have a linear fluid, we have from [12] the following relations between
the energy potential on the RVE and the permeability NK

 L
� . Ng/ D �

1

2
Ng � NK

U
� Ng (24a)

 � . Ng/ D �
1

2
Ng � NK � Ng (24b)

 U
� . Ng/ D �

1

2
Ng � NK

L
� Ng (24c)

Here, the permeability NK is computed as

NK D ��

 
3X
iD1

D
v.i/

E
�
˝ ei

!
(25)

where v.i/ is the velocity field pertinent to a unit pressure gradient Ng in the i th spatial direction.
h�i� is the intrinsic averaging operator, defined as

hf i� D
1ˇ̌
�F
�
ˇ̌ Z

�F
�

f dV (26)

4. SOLUTION-BASED SHAPE FUNCTIONS

4.1. Computing discrete shape functions

For the analysis of upper and lower bounds for strong periodicity according to Section 3, we require
the velocity or pressure function spaces to contain only strongly periodic functions. In the case of
a 2D flow, this can be achieved using global quadratic shape functions along the fluid part of the
boundary (cf. [12]). However, in 3D, there is no apparent way of producing global shape functions
for that purpose, as the arbitrary geometry is in 2D. To that end, we introduce the concept of solution-
based shape functions being global base functions that are produced by manipulating a possibly
non-periodic solution of a Stokes flow. If these base functions are strongly periodic, we have ensured
that the resulting flow is indeed also strongly periodic.

As the discussed method is used to create solution spaces for both velocity and pressures and
because the procedure is the same for both, we introduce the loosely defined function spaces Q�
and Q0�, which we can switch for its velocity or pressure counterparts later.

Q� D
®
q W q is sufficiently regular and satisfies Dirichlet conditions on �F

�
¯

(27a)

Q0� D
®
q W q 2 Q�, �q� D 0 on �FC

�
¯
� Q�: (27b)

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd
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314 C. SANDSTRÖM AND F. LARSSON

Figure 2. Flowchart for producing solution-based shape function Q'h.

We also introduce the function 'h 2 Q� being either the discrete pressure or velocity field. Here,
we restrict ourselves to use the same number of solution-based shape functions as the number of
spatial dimensions of the problem, ndim.

For clarity, the following procedure is shown in the flowchart in Figure 2. As a starting point,
we solve a Stokes flow on �F

� where a unit pressure gradient Ng D ei is applied. The index
i D 1; : : : ; ndim indicates the spatial direction of the pressure gradient. The discrete solution to
this problem is denoted '.i/

h
, being either the velocity solution v.i/ or the pressure solution pS.i/.

Naturally, '.i/
h

must satisfy all Dirichlet conditions in order to qualify as a proper global base
function.

From here, we use the discrete '.i/
h

(cf. Figure 3(a)) to produce an analytically periodic function
Q'.i/ 2 Q0� (cf. Figure 3(b)) by computing the average of '.i/

h
as

Q'.i/.x/ D

Pn
jD1 '

.i/
h

�
xm
j .x/

�
n

(28)

where n is the number of mirror points for a point on �F
� and xm

j is an operator such that xm
j .x/ is

the j th mirror point of x. We note that the number of mirror points varies over the cubic domain.
For instance, on a surface, there are two mirror points, one on �FC

� and one on the opposite side
�F�
� . On an edge of a 3D cube, there are four mirror points, and on a corner, there are eight mirror

points, as shown in Figure 4.
By projecting the analytically periodic function Q'.i/ onto the discretized boundary �F

�, we create
a quasi-periodic function Q'.i/

h
with an error in periodicity up to that introduced by the discretiza-

tion of the boundary. More specifically, the value of Q'.i/
h

in coordinates of nodes is exactly Q'.i/ and
is otherwise interpolated using the base functions pertinent to the discretization for that particular
function. That is, in the case of Taylor–Hood elements, if Q'.i/ represents the velocity, it is interpo-
lated using quadratic base functions, and if Q'.i/ represents the pressure, it is interpolated using linear
base functions.

© 2016 The Authors. International Journal for Numerical
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Int. J. Numer. Meth. Engng 2017; 109:307–325
DOI: 10.1002/nme

 10970207, 2017, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.5281 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [26/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 315

Figure 3. (a) Non-periodic flow '.i/
h

along the boundary of an RVE; (b) projection of the analytically periodic
function Q'.i/ onto the boundary mesh.

Figure 4. The number of mirror points varies over the domain.

By producing the solution-based shape functions Qvh;i and Qph;i , we can now give the velocity and
the pressure as

Qvh D

ndimX
iD1

ai Qvh;i (29)

and

Qph D

ndimX
iD1

bi Qph;i (30)

where ai 2 R and bi 2 R are arbitrary weights. Furthermore, we note that because both Qvh;i and
Qph;i tend to strong periodicity as the fineness of the mesh increases, so does both Qvh and Qph.

As a concluding remark, we note that as v in Equation (21) and pS in Equation (22) tend to strong
periodicity, the respective bounds approach the strongly periodic energy content. Thus, we can use
weak periodic boundary conditions on the RVE problem pertinent to the production of '.i/

h
in order

to enhance the bound.

4.2. Special case of incompressibility

In the case where we choose to use solution-based shape functions on the velocity field, projecting
the analytically periodic function Qv onto �F

� may introduce compressibility into the model because
of non-periodicity of the mesh. This implies a violation of the incompressibility condition. In order
to compensate for such an error, we compute correction factors that are used to scale the prescribed
velocity on �FC

� and �F�
� . As a first step, we split the solution-based shape function Qvh into three

parts as

Qvh D Qv
0
h C Qv

C
h
C Qv�h (31)
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316 C. SANDSTRÖM AND F. LARSSON

where QvC
h

and Qv�h are the parts of Qvh on �FC
� and �F�

� , respectively, while Qv0h is the part on �F0
� .

We can now introduce variables aC and a� such that we weight the terms in Equation (31) as

NQvh D Qv
0
h C a

C QvC
h
C a� Qv�h (32)

We want to find aC and a� such that NQvh is as close to Qv as possible while maintaining global
incompressibility on �F

�, that is, the same amount of fluid enters and exits the domain. Thus, we
state the optimization problem as

min
NQvh

1

2

Z
�F
�

�
NQvh � Qv

�2
dS (33a)

subject to:
Z
�F
�

NQvh � ndS D 0 (33b)

In weak form, we state the problem as follows: Find
�
NQvh; 	

�
2 V� �Q� such thatZ

�F
�

�
NQvh � Qv

�
ı NQvhdS � 	

Z
�F
�

ı NQvh � ndS D 0 8ı NQvh (34a)

� ı	

Z
�F
�

NQvh � ndS D 0 8ı	 (34b)

By choosing ı NQvh D
®
QvC
h
; Qv�h

¯
and ı	 D 1, we can solve aC, a�, and 	 from the following system

of equations: 2
4 AC 0 �cC

0 A� �c�

�cC �c� 0

3
5
2
4 aCa�
	

3
5 D

2
4BCB�
c0

3
5 (35a)

where

AC D

Z
�F
�

QvC
h
� QvC
h

dS A� D

Z
�F
�

Qv�h � Qv
�
h dS BC D

Z
�F
�

�
Qv � Qv0h

�
� QvC
h

dS (36a)

B� D

Z
�F
�

�
Qv � Qv0h

�
� Qv�h dS c0 D

Z
�F
�

Qv0h � ndS cC D

Z
�F
�

QvC
h
� ndS (36b)

c� D

Z
�F
�

Qv�h � ndS (36c)

For completeness, we give the explicit expressions for the unknowns in (35a)

aC D
BCc�2 � B�c�cC � A�c0cC

ACc�2 C A�cC
2

(37a)

a� D
B�cC

2
� BCc�cC � ACc0c�

ACc�2 C A�cC
2

(37b)

4.3. Solution-based shape functions on the velocity

For the computation of the upper energy bound discussed in Section 3, we introduce the function
space

V 0� D
´
v 2 V� W v D

ndimX
iD1

bi NQvh;i on �F
�; bi 2 R

μ
� V� (38)

where bi is an unknown coefficient and NQvh;i is the solution-based shape function arising from a
pressure gradient in the direction ei . In order to avoid numerical difficulties relevant to possible
compressibility, we define the velocity NQvh;i on @�F

� as

© 2016 The Authors. International Journal for Numerical
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APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 317

NQvh;i D

8̂<
:̂
aC Qv

.i/
h

on �FC
�

a� Qv
.i/
h

on �F�
�

Qv
.i/
h

on �F0
�

(39)

where the correction factors aC and a� are defined in Equation (37). We note that, because NQvh;i is
strongly periodic, so is v 2 V 0� and c�.v;ˇ/ D 0 for any ˇ 2 B�. The formulation of the problem
is now as follows: Find .v; pS; �/ 2 V 0� � PS

� � G� such that

a�.vI ıv/ � b�.ıv; p
S/ D �e� .ıv; Ng/ 8ıv 2 V 0� (40a)

�b�.v; ıp
S/ � d�.ıp

S; �/ D 0 8ıpS 2 PS
� (40b)

�d�.p
S; ı�/ D 0 8ı� 2 G� (40c)

In the finite element setting, V 0� is simply constructed by defining the global basis functions
pertaining to NQvh;i on the nodes residing on �F

�.

4.4. Solution-based shape functions for the pressure

For the lower energy bound, we follow the procedure described in Section 4.3 and introduce the
function space

PS
�
0
D

´
Qph 2 PS

� W Qph D
ndimX
iD1

ai Qph;i on �F
�, ai 2 R

μ
� PS

� (41)

where ai is an unknown coefficient and Qph;i is the solution-based shape function pertinent to the i th
spatial direction.

As the pressure is strongly periodic, we have d�.pS; �/ D 0 for any pS 2 PS
�
0

and � 2 G�.
Thus, we state the problem on weak form, as follows: Find .v; pS;ˇ/ 2 V� � PS

�
0
� B� such that

a�.vI ıv/ � b�.ıv; p
S/ � c�.ıv;ˇ/ D �e� .ıv; Ng/ 8ıv 2 V� (42a)

�b�.v; ıp
S/ D 0 8ıpS 2 PS

�
0

(42b)

�c�.v; ıˇ/ D 0 8ıˇ 2 B� (42c)

Similarly as for the velocities in Section 4.3, we note that the finite element counterpart of PS
�
0

can be constructed by constraining the nodal values of the pressure on �F
� pertinent to Qph;i .

5. NUMERICAL EXAMPLE

5.1. Preliminaries

In the numerical example, we will investigate the permeability and its upper and lower bounds on
a geometrically periodic structure. More specifically, we will investigate how the weak periodic
boundary conditions, and the proposed bounds, perform compared with strong periodicity. First, we
consider the approximations on fixed discretization (Section 5.2) and later also the behavior of the
bounds during refinement of the finite element discretization (Section 5.3).

To this end, we will use a ‘quasi-periodic’ mesh, which simply means that the surface elements
on opposite sides are of similar size. The permeability of the RVE with the quasi-periodic mesh
and weak periodic boundary conditions will be compared with two alternative discretizations of the
same RVE: (i) a mesh where surface elements on opposing sides are of very different sizes and (ii)
a strongly periodic mesh where the sizes of surface elements are approximately the same as those
of the quasi-periodic mesh.

As to the geometry of the subscale, we choose to use a body centered cubic (BCC) structure of
slightly intersecting spheres as a solid, around which a Stokes flow is present. The material model
used for the fluid is the standard linear model presented in Equation (7).

© 2016 The Authors. International Journal for Numerical
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318 C. SANDSTRÖM AND F. LARSSON

The RVE is chosen as a unit cell as seen in Figure 5(a). The space occupied by the RVE is chosen
in such a way that the (x; y) and the (x; ´) planes are planes of symmetry and the RVE window is
slightly shifted along the x-axis in order to create a non-symmetric geometry. The distance from the
center sphere to the boundary of the RVE is 0.5 in the y and ´ directions and 0.46 in the x direction
at its closest point (cf. Figure 5(b)). The distance between the centers of spheres in the same plane
is 1 in the (x; y), (y; ´), and (x; ´) planes, respectively, and the radius of each spheres is 0.45. The
solid phase in the RVE is shown in Figure 5(c).

The shape of the elements in all simulations is tetrahedral, and the discretization is P2–P1, that
is, a Taylor–Hood element (quadratic velocity and linear pressure).

For the following numerical example, we define the function spaces for the discretization of the
Lagrange multipliers as

B�.np/ D

8<
:ˇ 2 B� W ˇ D

npX
iD0

np�iX
jD0

bij 

i�j

9=
; (43a)

G�.np/ D

8<
:� 2 G� W � D

npX
iD0

np�iX
jD0

gij 

i�j

9=
; (43b)

where np is the order of the polynomial, bij 2 R2 and gij 2 R are coefficients, and 
 and � are the
local coordinates on the surface of the RVE. As the polynomial depends on two coordinates, note
that the number of terms in the expression is ..np C 1/2C np C 1/=2 if we consider all cross-terms.
Furthermore, we choose solution spaces for the velocity and pressure fields according to Section 4.

Figure 5. (a) 2D representation of the periodic lattice with the RVE highlighted; (b) position of the RVE
window; and (c) 3D representation of the solid phase of the RVE.

Figure 6. Solution-based shape functions NQvv;4
h;1

, NQvv;4
h;2

, and NQvv;4
h;3

for the velocity pertinent to macroscopic unit
pressure gradients Ng D ¹e1; e2; e3º.
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APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 319

More specifically, we define the following function spaces:

PS
�
0
D
®
p 2 H 1

�
�F
�
�
W p D 0 on �F

�
¯
� PS

� (44a)

PS
�
0
.np/ D

´
p 2 H 1

�
�F
�
�
W p D

ndimX
iD1

ai Qp
np
i on �F

�

μ
� PS

� (44b)

V 0�.np/ D
´
v 2

�
H 1

�
�F
�
��3
W v D 0 on � int

� ; v D
ndimX
iD1

bi NQv
v;np
h;i

on �F
�

μ
� V� (44c)

where Qpnpi and NQvv;np
h;i

are the solution-based shape functions pertinent to the pressure and velocity
fields defined in Sections 4.3 and 4.4. The np decoration indicates for the order of the Lagrange
multiplier polynomial approximation used when producing the solution-based shape functions. Fur-
thermore, a macroscale unit pressure gradient is imposed on the RVE in each spatial direction,
and in the case of velocities, the correction factors presented in Section 4.2 are used. Figure 6
illustrates the solution-based shape functions pertinent to weak periodicity of order 4 in all three
spatial directions.

Figure 7. (a) Quasi-periodic mesh; (b) non-periodic mesh.
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320 C. SANDSTRÖM AND F. LARSSON

Remark 4
In order to maintain compatibility between the velocity and pressure spaces, we avoid tetrahedral
elements located such that all velocity degrees of freedom are either prescribed or hanging on a
solution-based shape function. This is solved by flipping the edge between the tetrahedral element
and its neighbor such that one node is located inside the volume.

5.2. Weak approximations and bounds on fixed meshes

We shall now investigate how the weak periodic boundary conditions and the pertinent bounds
converge on fixed finite element discretizations (meshes). The behavior will be studied for fully non-

Table I. Number of volume elements, nodes, and surface elements on respective sides of the
representative volume elements.

Surface elements

Volume elements Nodes xC x� yC y� ´C ´� h

Non-periodic 6477 13,002 300 56 294 82 288 56 0.05/0.15
Quasi-periodic 7807 15,744 304 306 296 286 256 290 0.05
Periodic 13,729 24,001 344 344 334 334 342 342 0.05

For the surface elements, the letter and the sign tells which direction the surfaces normally point to. h is
the longest allowed edge.

Figure 8. Permeability plots for different choices of solution spaces on (a) non-uniform mesh and (b) quasi-
uniform mesh.
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APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 321

periodic as well as quasi-periodic meshes. Here, quasi-periodic means having elements of similar
sizes on opposing sides of the RVE, whereas the fully non-periodic mesh has differently sized ele-
ments on opposing sides. For reference, we also consider a strongly periodic mesh with conventional
periodic boundary conditions enforced.

As to the discretization of the domain, three meshes are used:

(1) A ‘quasi-periodic’ mesh with approximately equally sized element on all sides
(cf. Figure 7(a)).

(2) A non-periodic mesh with a coarse mesh on the �F�
� and a fine mesh on �FC

� (cf. Figure 7(b)).
(3) A periodic mesh with the same element sizes as in 1.

Detailed information on the number of nodes and elements for the various meshes is given
in Table I.

In order to estimate how the weak periodic boundary conditions converge towards strong period-
icity as we increase the order of the polynomial, we evaluate the upper and lower bounds for the
permeability. Thus, if the gap between the upper and lower bounds is small, the weak periodicity
will perform well. Figure 8 shows how the first eigenvalue KI of the permeability tensor changes
for the quasi-periodic and non-periodic meshes. The same quantity for the strong periodic boundary
conditions using the periodic mesh is shown in both plots. Note that the order of all polynomi-
als is the same for each choice of np , both when producing the shape functions and for imposing
weak periodicity.

We note that the shape of the curves in both plots is similar but the values in Figure 8(a) are higher
than that for the strongly periodic solution, while the values in Figure 8(b) are lower. These differ-
ences arise from the different approximations induced by the individual meshes (cf. the subsequent
convergence study in Section 5.3). We see that KI for the strongly periodic solution is closer to KI
for the quasi-periodic mesh with high np as compared with the non-periodic one. This is expected
because the periodic and quasi-periodic meshes are of similar size.

Figure 9 shows the velocity field in a cross-section of the RVEs with weak periodic boundary
conditions. The pressure fields for the same solutions are shown in Figure 10. Finally, for the non-

Figure 9. Velocities resulting from (a) zeroth order; (b) third order; and (c) seventh order.
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322 C. SANDSTRÖM AND F. LARSSON

Figure 10. Pressure resulting from (a) zeroth order; (b) third order; and (c) seventh order.

Figure 11. Velocity on non-uniform mesh (a) �F�
�

and (b) �FC
�

.

periodic mesh, Figure 11 shows the velocity field on the coarse mesh on �F�
� and the fine mesh on

�FC
� . Both the deformation and the color represent the velocity.
In order to investigate the accuracy of lower-order shape functions with higher-order weakly

periodic boundary conditions, we introduce the parameter nsp as the order of the shape function. We
will now hold nsp constant and let np vary. From here, we can compute an upper bound by choosing
the velocity and pressures in the following way:

pS 2 PS
�
0 �
nsp
�
; v 2 V�; ˇ 2 B.np/ (45)

and for the lower bound

pS 2 PS
�; v 2 V 0�

�
nsp
�
; � 2 G.np/ (46)

Figure 12 shows the highest eigenvalue of the permeability tensor for different choices of nsp .
We note that because of the procedure pertinent to the computation of the solution-based shape
functions, there is no guarantee that the energy decreases as nsp increases. This is shown in Figure 12
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APPROXIMATIONS OF PERIODICITY FOR HOMOGENIZATION OF STOKES FLOW 323

Figure 12. Plots show how the highest eigenvalue of the upper and lower bounds for the permeability for
different choices of solution spaces changes on a (a) Non uniform mesh (b) Quasi-uniform mesh.

Figure 13. Plot shows how bounds calculated using weak periodicity of order 0 and 5 vary with mesh
fineness. Here, h is the maximum allowed length of an element edge.
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324 C. SANDSTRÖM AND F. LARSSON

where the upper bound does not decrease monotonically. The same quantity for the strongly periodic
boundary conditions using the periodic mesh is shown in both plots. Again, we note the fact that the
strongly periodic solution is not within all bounds due to different meshes used.

5.3. Convergence of bounds with mesh refinement

Finally, to demonstrate how the bounds behave as the mesh is refined, we compute KI for meshes
with various choices of largest allowed length h of an element edge and varying orders of weak peri-
odicity when computing the solution-based shape functions. We compare the resulting bounds with
the strongly periodic solutions of a mesh of similar size. The results are shown in Figure 13. Note
that the meshes are of similar size only; hence, there is no guarantee that the strong periodic solu-
tion should be contained within the bounds (as indeed is the case for some choices of h). However,
as h decreases, the solution tends to a value within the bounds.

6. CONCLUSIONS AND OUTLOOK

In this paper, we have shown a novel approach on how to compute upper and lower energy bounds
for flow through porous materials from a saddle point problem. In the case of a linear flow, upper
and lower bounds on the permeability are computed, and with the use of these bounds, we have
also evaluated the performance on weak periodicity and shown that they perform well, at least for
higher-order approximations of the Lagrange multipliers.

The bounds were computed using global base functions for the velocity and pressure using
solutions-based shape functions, pertaining from the solution of a Stokes flow that is then processed
to produce a strongly periodic base function. Correction factors due to possible compressibility in
the otherwise incompressible flow are also discussed.

In the numerical section, we have shown that the use of solution-based shape functions is suitable
to use on both quasi-periodic as well as non-periodic meshes and that the bounds converge as the flux
and traction required for weak periodicity increase are refined. This implies that we can replace the
strongly periodic boundary conditions with weak ones of sufficiently high-order of approximation.

As a suggestion for future work using solutions-based shape functions, an evaluation of the use
of this technique for the Dirichlet boundary condition for the Stokes flow in this type of applica-
tion should be done. This would enable us to compute upper and lower bounds for a non-periodic
microstructure.

An important issue in computations involving porous materials is that of the coupling between
permeability and deformation; a framework for a variationally consistent model that takes this
coupling into consideration is of great interest.
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