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2 A. Pianzola, A. Stolin

1 Introduction

The appearance of Galois cohomology in the classification of certain quantum groups
is one of the primary goals of this paper. In order to do this we first need to “linearize”
quantum groups (in the same spirit that, via the exponential map, complex simply
connected simple Lie groups can be studied/classified by looking at their Lie algebras).
The linearization problem is an extremely technical construction brought forward as
a conjecture in the work of Drinfeld [5] (see also [3] and [4]), and proved in the
seminal work of Etingof and Kazhdan (see [6,7]). An outline of this correspondence
can be found in the Introductions of [9,11], wherein one can also find an explanation
of why the description of which Lie bialgebras structures exists on the Lie algebra
g ⊗k k((t)), with g simple finite dimensional over an algebraically closed field k of
characteristic 0, arise naturally in the classification of quantum groups. The approach
to the classification of Lie bialgebra structures on g ⊗k k((t)) developed in [9–11]
and [14] is by the introduction of the so-called “Belavin–Drinfeld cohomologies”.
The calculation of these cohomologies is mostly done on a case-by-case basis in the
classical types using realizations of the relevant objects as matrices. The main thrust
of the present paper is to realize Belavin–Drinfeld cohomologies as usual Galois
cohomologies. This allows for uniform realization-free proofs in all types of results
that were conjectured (and were known to hold on many of the classical types). The
methods that we describe also open an avenue for further studies of Lie bialgebra
structures over non-algebraically closed fields.

2 Notation

Throughout this paper K will denote a field of characteristic 0. We fix an algebraic
closure ofKwhich will be denoted byK. The (absolute) Galois group of the extension
K/K will be denoted by G.1

If V is aK-space (resp. Lie algebra), we will denote theK-space (resp. Lie algebra)
V ⊗K K by V .

If K is a linear algebraic group over K the corresponding (non-abelian) Galois
cohomology will be denoted by H1(K, K). (See [13] for details. See also [2,12,15]
for some of the more technical aspects of this theory that will be used in what follows
without further reference). We recall that H1(K, K) coincides with the usual non-
abelian continuous cohomology of the profinite group G acting (naturally) on K(K).

Let g be a split finite dimensional simple Lie algebra over K. In what follows G
will denote a split (connected) reductive algebraic group over K with the property that
the Lie algebra of the corresponding adjoint group Gad is isomorphic to g.2

We fix once and for all a Killing couple (B, H) of G. The induced Killing couple
on Gad, which we denote by (Bad, Had), leads to a Borel subalgebra and split Cartan

1 For the “untwisted” Belavin–Drinfeld cohomologiesKwill be arbitrary. In the “twisted” caseK = k((t))
where k is algebraically closed.
2 The case which is most of interest to us is when G = Gad. That said, peculiar phenomena appear when G
is either GLn or SLn . Of course Gad is then PGLn and g= sln . The case of G = SO2n is also interesting.
For all of these reasons we try to maintain our set up as general as possible.
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Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois… 3

subalgebras of g which will be denoted by b and h respectively. Our fixed Killing
couple leads, both at the level of Gad and g, to a root system � with a fixed set of
positive roots �+ and base � = {α1, . . . , αn}.3

The Lie bialgebra structures that we will be dealing with are defined by r -matrices,
which are element of g ⊗K g satisfying CYB(r) = 0 where CYB is the classical
Yang–Baxter equation (see Sect. 3 below and [8] for definitions). For future use we
introduce some terminology and notation. Consider the action of G on g⊗K g induced
from the adjoint action of G on g. Let R be a commutative ring extension of K. If
X ∈ G(R) and v ∈ (g⊗K g)a(R) = (g⊗K g) ⊗K R � (g⊗K R) ⊗R (g⊗K R), then
the adjoint action of X in v will be denoted by AdX (v).4

Along similar lines if σ ∈ G we will write σ(r) instead of (σ ⊗ σ)(r).

3 The Belavin–Drinfeld classification

We maintain all of the above notation. Consider a Lie bialgebra structure (g, δ) on g.
By Whitehead’s Lemma the cocycle δ : g → g ⊗K g is a coboundary. Thus δ = δr

for some element r ∈ g ⊗K g, namely

δ(a) = [a ⊗ 1 + 1 ⊗ a, r ]

for all a ∈ g. It is well-known when an element r ∈ g⊗K g determines a Lie bialgebra
structure of g. See [8] for details.

Assumeuntil further notice thatK is algebraically closed.We thenhave theBelavin–
Drinfeld classification [1], which we now recall. Define an equivalence relation on
g ⊗K g by declaring that r is equivalent to r ′ if there exist an element X ∈ Gad(K)

and a scalar c ∈ K
× such that

r ′ = cAdX (r) (3.1)

If furthermore c = 1 the two elements are called gauge equivalent.
Belavin–Drinfeld provides us with a list of elements rBD ∈ g⊗K g (called Beladin-

Drinfeld r-matrices) with the following properties:

1. Each rBD is an r -matrix (i.e. a solution of the classical Yang–Baxter equation)
satisfying r + r21 = � (where � is the Casimir operator of g.)

2. Any non-skewsymetric r -matrix for g is equivalent to a unique rBD.

For the reader’s convenience we recall the nature of the Belavin–Drinfeld r -
matrices. With respect to our fixed (b, h), any rBD depends on a discrete and a
continuous parameter. The discrete parameter is an admissible triple (�1, �2, τ ), i.e.
an isometry τ : �1 −→ �2 where �1, �2 ⊂ � such that for any α ∈ �1 there exists
k ∈ N satisfying τ k(α) /∈ �1. The continuous parameter is a tensor r0 ∈ h ⊗K h
satisfying r0 + r210 = �0 and (τ (α) ⊗ 1 + 1 ⊗ α)(r0) = 0 for any α ∈ �1. Here �0

3 The elements of � are to be thought as characters of Had or elements of h∗ depending on whether we
are working at the group or Lie algebra level. This will always be clear from the context.
4 In contrast to the notation (AdX ⊗ AdX )(v) used elsewhere.
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4 A. Pianzola, A. Stolin

denotes the Cartan part of the quadratic Casimir element �. Then

rBD = r0 +
∑

α>0

eα ⊗ e−α +
∑

α∈(Span�1)+

∑

k∈N
eα ∧ e−τ k (α).

We now return to the case of our general K. Let (g, δ) be a Lie bialgebra structure
on g. We will assume that (g, δ) is not triangular, i.e. δ = δr where r ∈ g ⊗K g is not
skew-symmetric. We view r as an element of g⊗

K
g in the natural way and denote it

by r . The K Lie bialgebra (g, δ) obtained by base change is given by the r -matrix r .

By the Belavin–Drinfeld classification there exists a unique rBD such that

r = cAdX (rBD) (3.2)

for some X ∈ G(K) and c ∈ K
×
. Since r + r21 = c � we can apply [11] Theorem

2.7 to conclude that c2 ∈ K.

This leads to two cases, according towhether c is inK or not. The first case is treated
with the untwisted Belavin–Drinfeld cohomologies, while the second one, in the case
when K = k((t)) with k algebraically closed of characteristic 0, leads to twisted
Belavin–Drinfeld cohomologies. These and their relations to Galois cohomology are
the contents of the next two sections.

4 Untwisted Belavin–Drinfeld cohomology

Assume that in (3.2) we have c ∈ K
×. Let s = c−1r . By (3.2) rBD = AdX−1s. For any

element γ ∈ G = Gal(K/K) we have γ (s) = s and therefore s = Adγ (X)γ (rBD).

From the foregoing it follows that

rBD = AdX−1γ (X)γ (rBD) (4.1)

We can now appeal to Theorem 3 of [9] to conclude that.

Theorem 4.1 Assume that r = cAdX (rBD) are as above. Then rBD is rational, i.e. it
belongs to g ⊗K g. Furthermore X−1γ (X) ∈ C(G, rBD)(K) for all γ ∈ G. 
�

We now recall (with our notation) the Belavin–Drinfeld cohomology definitions
and results developed in [9]. Let rBD ∈ g ⊗K g be a Belavin–Drinfeld r -matrix.

Definition 4.2 An element X ∈ G(K) is called aBelavin–Drinfeld cocycle associated
to G and rBD if X−1γ (X) ∈ C(G, rBD)(K), for any γ ∈ G.

The set of Belavin–Drinfeld cocycles associated to rBD will be denoted by
Z B D(G, rBD). Note that this set contains the identity element of G(K).

Definition 4.3 Two cocycles X1 and X2 in Z B D(G, rBD) are called equivalent if there
exists Q ∈ G(K) and C ∈ C(G, rBD)(K) such that X1 = Q X2C .

It is easy to check that the above defines an equivalence relation in the non-empty set
Z B D(G, rBD)
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Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois… 5

Definition 4.4 Let HB D(G, rBD) denote the set of equivalence classes of cocycles in
Z B D(G, rBD).

We call this set the Belavin–Drinfeld cohomology associated to (G, rBD). The
Belavin–Drinfeld cohomology is said to be trivial if all cocycles are equivalent to
the identity, and non-trivial otherwise.

Remark 4.5 The relevance of this concept, as explained in [9], is that there exists a
one-to-one correspondence between HB D(G, rBD) and Lie bialgebra structures (g, δ)
on g with classical double isomorphic to g ⊕ g and δ = δrBD up to equivalence.

Our next goal is to realize HB D(G, rBD) in terms of usual Galois cohomology.
This will allow us to establish some open conjectures, as well as “interpret” some
peculiarities observed with HB D(G, rBD) for certain special orthogonal groups.

Proposition 4.6 There is a natural injection of pointed sets

HB D(G, rB D) → H1(K, C(G, rBD))

Proof Let X ∈ G(K) be a Belavin–Drinfeld cocycle. For γ ∈ G define

u X : G → G(K)

by

u X : γ → u X (γ ) := X−1γ (X).

Clearly u X satisfies the cocycle condition (it is in fact a cohomologically trivial element
of Z1(K, G)). Since by definition γ (X) = XC for some element C ∈ C(G, rB D)(K),
the cocycle u X takes values in Z1(K, C(G, rB D)).5 By considering its cohomology
class we obtain a map

Z B D(G, rB D) → H1(K, C(G, rB D)).

It remains to show that if X and Y are Belavin–Drinfeld cocycles, then u X is coho-
mologous uY if and only if X is equivalent to Y.

If X and Y are equivalent then Y = Q XC withC ∈ C(G, rB D)(K) and Q ∈ G(K).
Since γ (Q) = Q for any γ ∈ G, it follows that uY (γ ) = C−1u X (γ )γ (C), which
means that u X and uY are cohomologous. Conversely, if u X and uY are cohomologous
as elements of Z1(K, C(G, rB D)) there exists C ∈ C(G, rBD)(K) such that

Y −1γ (Y ) = C−1X−1γ (X)γ (C)

for all γ ∈ G. It follows that Q−1 = XCY −1 ∈ G(K). This completes the proof of
the proposition. 
�

5 As the reader has probably guessed, it will not necessarily be true that the class of our cocycle will any
longer be trivial when viewed as taking values in the smaller group C(G, rB D). This subtlety is in fact the
reason that allows Galois cohomology to be brought into be picture.
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6 A. Pianzola, A. Stolin

The remarkable fact is that the the algebraicK-groupC(G, rB D)) is diagonalizable.
Indeed since rBD ∈ g ⊗K g we can reason exactly as in [9] Theorem 1 to conclude
that.

Theorem 4.7 C(G, rB D) is a closed subgroup of H. 
�
Combining this last result with Proposition 4.6 we obtain, with the aid of Hilbert’s

theorem 90, that

Corollary 4.8 If the algebraic K-group C(G, rB D) is connected then HB D(G, rBD)

is trivial. 
�
One of the most important r -matrices is the so-called Drinfeld–Jimbo rDJ given by

Definition 4.9 rDJ = ∑
α>0 eα ⊗ e−α + 1

2 �0

where �0, as has already been mentioned, stands for the h ⊗K h component of the
Casimir operator � of g written with respect to our choice of (b, h).

In [9] it was conjectured that HB D(G, rDJ) is trivial under the assumption that G be
simple and K = C((h̄)). The conjecture was established by a case-by-case reasoning
for most of the classical groups. Further progress on this problem (still for the classical
algebras but now with an arbitrary base field of characteristic 0) is given in [11]. The
Galois cohomology interpretation we have given provides an affirmative much more
general answer to this question.

Theorem 4.10 HB D(G, rDJ) is trivial for any split reductive group G over a field K

of characteristic 0.

Proof We already know that C(G, rD J ) is a closed subgroup of our split torus H.
It is also clear from Definition 4.9 that all elements of H(K) fix rDJ. This yields
C(G, rD J ) = H. By the last Corollary the Theorem follows.

Remark 4.11 Since C(G, rBD) is a closed subgroup of H it is of the form

C(G, rBD) = T × μm1 × · · · × μmn

where T is a split torus over K and μm is the finite multiplicative K-group of m–roots
of unity.

Thus

H1(K, C(G, rBD)) = K
×/(K×)m1 × · · · × K

×/(K×)mn

It is possible to deduce from the results of [9–11,14] that for G = GL(n), SO(2n +
1), Sp(n) that H1

B D(G, rBD) is trivial. Though the centralizer of Belavin–Drinfeld
r -matrices were not explicitly computed in these papers, it is natural to conjecture
that that they are always connected. If so, then Corollary 4.8 would show that the
corresponding HB D is trivial. This approach is not only sensible, but likely the only
reasonable way of attacking the problem in the exceptional types.
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Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois… 7

The situation for G = SO(2n) is different. Assume that αn and αn−1 are the end
vertices of the Dynkin diagram of so(2n). Assume also αn−1 = τ k(αn) for some
integer k, where τ : �1 → �2 defines rBD. It was shown in [9] that C(G, rBD) =
T × Z/2Z in this case and C(G, rBD) = T otherwise.

From our results it follows that HB D(G, rBD) is trivial in the second case.
Since H1(K, C(GrBD)) = K

×/(K×)2 in the first case, to prove that the corre-
sponding H1(SO(2n), rB D) is isomorphic to K

×/(K×)2, it is sufficient to construct
a non-trivial cocycle for any non-square d ∈ K. It is not difficult to see that such a
cocycle can be defined by means of the element

diag(d1, d2, . . . , d2n) ∈ SO(2n)

with d1 = d2 = · · · = dn−1 = dn+2 = · · · = 1 and dn = dn+1 = d1/2.
We see again that the Galois cohomology point of view “explains” why certain

Belavin–Drinfeld cohomolgies are trivial, and why in the case of SO2n the appearance
of non-trivial classes is natural.

We end this section with a statement, which provides a complete description of
non-twisted Belavin–Drinfeld cohomologies in terms of the Galois cohomologies of
algebraic groups.

Theorem 4.12 Let G be a split reductive group over a field K of characteristic 0.
Assume that the Lie algebra g of the adjoint group of G is simple. For any Belavin–
Drinfeld r-matrix rB D in g ⊗K g the sequence

1 → HB D(G, rBD) → H1(K, C(G, rBD)) → H1(K, G)

is exact.

Proof This is a direct consequence of the various definitions and of Proposition 4.6
(both the statement and the proof). 
�

From Steinberg’s theorem (see [13] Ch III Theorem 3.2.1’) we obtain.

Corollary 4.13 Assume that K is of cohomological dimension 1.6 Then

HB D(G, rB D) = H1(K, C(G, rB D))

5 Twisted Belavin–Drinfeld cohomologies

In this section we assume thatK = k((t))where k is algebraically closed of character-
istic 0. Fix an element j ∈ K such that j2 = t.Wewill denote the quadratic extension
K( j) of K by L. Twisted Belavin–Drinfeld cohomologies where introduced in [9,11]
to describe a new class of Lie bialgebras structure on g whose Drinfeld double (see
[8] for the definition and constriction of this object) is isomorphic to g ⊗K L.

6 For example K = C((t)). This is the case most relevant to quantum groups.
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8 A. Pianzola, A. Stolin

In this section our reductive group G will be assumed to be of adjoint type. Within
the general framework described in Sect. 2, our analysis corresponds to the case when
in (3.2) the constant c does not belong to K. As we have seen, then c2 ∈ K.

Before we recall how these Lie bialgebras appear and what the relevant definitions
are, we introduce some notation and give an explicit description of Gal(K) and Gal(L)

that will be used in the proofs.
Fix a compatible set of primitive mth roots of unity ξm, namely such that ξ e

me = ξm

for all e > 0. Fix also, with the obvious meaning, a compatible set t
1
m of mth roots of

t in K. There is no loss of generality in assuming that t
1
2 = j.

Let Km = C((t
1
m )). We can then identify Gal(Km/K) with Z/mZ where for each

e ∈ Z the corresponding element e ∈ Z/mZ acts on Km via et
1
m

i = ξ e
mt

1
m

i .

We have K = lim−→Km . The absolute Galois group Gal(K) is the profinite com-

pletion Ẑ thought as the inverse limit of the Galois groups Gal(Km/K) as described
above. It will henceforth be denoted by G as per our convention. If γ1 denotes the
standard profinite generator of Ẑ, then the action of γ on K is given by

γ1 t
1
m = ξmt

1
m

Note for future reference that γ2 := 2γ1 is the canonical profinite generator of Gal(L).

5.1 Definition of the twisted cohomologies

Twisted cohomologies are a tool in the study of Lie bialgebra structures on g such that

δ(x) = [x ⊗ 1 + 1 ⊗ x, r ], x ∈ g

with an r-matrix r satisfying condition r + r21 = j�.7

The following result is proved in [11].

Proposition 5.1 Lie bialgebra structures on g = sln such that the corresponding
double is isomorphic to g ⊗K L are given by the formula

δ(a) = [a ⊗ 1 + 1 ⊗ a, r ]

where r satisfies r + r21 = j� and CY B(r) = 0.
Furthermore there exists a (unique) r-matrix rBD from the Belavin–Drinfeld list of

g and an element X ∈ G(K) such that

(i) r = j AdX (rBD)

(iia) X−1γ (X) ∈ C(G, r) for any γ ∈ Gal(L)

(iib) AdX−1γ1(X)(rBD) = r21BD.

7 We are in the situation when c in (3.1) is not inK. Strictly speaking we should have c = aj with a ∈ K
×.

Since we are working on Lie bialgebras up to equivalence we may assume without loss of generality that
a = 1.
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To define twisted Belavin–Drinfeld cohomology we will need the following more
general result.

Proposition 5.2 Let r ∈ g⊗
K
g be an r-matrix which defines a Lie bialgebra structure

on g and such that r + r21 = j�. Then

• γ (r) = r for all γ ∈ Gal(L)

• γ1(r) = −r21

Proof Let γ ∈ G. It is proved in [11] that

γ (r) = r, or (5.1)

γ (r) = r − j�. (5.2)

Let H ⊂ G be the subgroup of elements satisfying (5.1). Clearly, H is a proper
subgroup because r + r21 = j�.

Let γ and γ ′ satisfy (5.2). Then γ γ ′ ∈ H. It follows that H is a subgroup of G
index 2, in fact H = Gal(L). For γ1 we conclude that γ1(r) = r − j� = −r21. 
�
Remark 5.3 It is easy to see that if r satisfies the conclusions of the proposition above,
then r induces a Lie bialgebra structure on g.

Since r + r21 = j�, it is clear that r = jAdX (rBD) for some X ∈ G(K). We will
henceforth assume that rBD is rational, namely RBD ∈ g ⊗k g or, what is equivalent,
that γ (rBD) = rBD for all γ ∈ G. Then we get the following two equations for X :

• X−1γ (X) ∈ C(G, r)(K) for any γ ∈ Gal(L)

• AdX−1γ1(X)(rBD) = r21BD.

Definition 5.4 Anelement X ∈ G(K) is called a twistedBelavin–Drinfeld cocycle for
G and rBD if X−1γ (X) ∈ C(G, rBD) for any γ ∈ Gal(L) andAdX−1γ1(X)(rBD) = r21BD.

The definition of equivalent cocycles is just as in the untwisted case.

Definition 5.5 Two twisted Belavin–Drinfeld cocycles X and Y are said to be equiv-
alent if Y = Q XC for some C ∈ C(G, rBD)(K)and Q ∈ G(K).

It is clear that the above defines an equivalence relation on the set Z B D(G, rBD) of
twisted Belavin–Drinfeld cocycles.

Definition 5.6 The twisted Belavin–Drinfeld cohomology related to G and rBD is the
set of equivalence classes of the twisted cocycles. We will denote it by H B D(G, rBD).

Note that, unlike the untwisted case, it is not clear that twisted Belavin–Drinfeld
cocycles exist.

Remark 5.7 Assume that rBD is rational. Then the twisted Belavin–Drinfeld coho-
mology H B D(G, rBD) gives a one-to-one correspondence between equivalence of Lie
bialgebra structures on g such that over K they become gauge equivalent to the Lie
bialgebra structure defined by jrBD.

123



10 A. Pianzola, A. Stolin

5.2 Twisted cohomology for the Drinfeld–Jimbo r-matrix

The only good understanding of twisted Belavin–Drinfeld cohomologies is for the
Drinfeld–Jimbo r -matrix rDJ (which is clearly rational). Our main goal is to establish
the following.

Theorem 5.8 The set H
1
BD(G, rDJ) consists of one element.

This result was established in [9,11] for the classical Lie algebras. The key to the
proof is the existence of special elements S ∈ G(K) and J ∈ G(L) with the property

AdS(rD J ) = r21D J and J−1γ1(J ) = S.

The existence of these elements is established by a laborious case-by-case analysis
(realizing the classical algebras/groups as matrices). We shall provide a uniform and
calculation-free proof of the existence of these elements using Steinberg’s theorem

(“Serre Conjecture I”). We will then relate H
1
BD to Galois cohomology to establish

Theorem 5.8 for all types.

5.2.1 Construction of S and J ∈ G(L) such that γ1(J ) = J S

Let Out(g) be the finite group of automorphisms of the Coxeter–Dynkin diagram of
our simple Lie algebra g. If Out(g) is the corresponding constant K-group we know
[16] that we have a split exact sequence of algebraic K-groups

1 → G → Aut(g) → Out(g) → 1 (5.3)

We fix a section Out(g) → Aut(g) that stabilizes (B, H). This gives a copy of
Out(g) = Out(g)(K) inside Aut(g) := Aut(g)(K) that permutes the fundamental
root spaces gαi around, and which stabilizes both of our chosen Borel and Cartan
subalgebras. Of course Aut(g) is the semi-direct product of G(K) and Out(g).

Lemma 5.9 Let w0 be the longest element of the Weyl group W of the pair (B, H).
Then there exists an element S ∈ G(K) such that S2 = 1G(K) and S(gα) = gw0(α) for
all roots α ∈ �.

Proof Let c ∈ Aut(g) be the Chevalley involution. Thus c2 = Id, c(gα) = g−α and c
restricted to the Cartan subalgebra h is scalar multiplication by−1. If Out(g) is trivial,
then w0(α) = −α and we take S = c.

In general note that −w0 ∈ Out(g), so we can view this as an element d ∈ Aut(g)
of order 2. Clearly, cd = dc and we set S = cd, which is of order 2.

It remains to be shown that S ∈ G(K). Since both c and d stabilize h, so does
S. From this it follows that S(gα) = gθ(α) for some θ ∈ Aut(�) (the automorphism
group of our root system). It is well-known that Aut(�) is a semi-direct product of W
and Out(g). Moreover, S ∈ G(K) if and only if the restriction of S to h is in W . But
by construction this restriction is θ = w0 ∈ W . 
�
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Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois… 11

It is clear from Definition 4.9 that AdS(rD J ) = r21D J . Since C(G, rDJ) = H we can
redefine twisted Belavin–Drinfeld cocycles for rDJ as follows.

Lemma 5.10 An element X ∈ G(K) is a twisted Belavin–Drinfeld cocycle for G and
rDJ if and only if

(i) X−1γ (X) ∈ H(K) for any γ ∈ Gal(L), and
(ii) AdX−1γ1(X)(rBD) = AdS(rBD).

As we shall see this definition will allow us to compute the corresponding twisted
Belavin–Drinfeld cohomology by means of usual Galois cohomology.

Proposition 5.11 Let S ∈ G(K) be as in the previous lemma. Then there exists J ∈
G(L) such that γ1(J ) = J S

Proof There exists a unique continuous group homomorphism u : G → G(K) such
that u(γ1) = S. Given that γ1(S) = S our u is a cocycle in Z1(K, G).

Since K is of cohomological dimension 1 by Steinberg’s theorem H1(K, G) = 1.
Therefore, there exists J ∈ G(K) such that J−1γ1(J ) = S. It remains to be shown
that J ∈ G(L). For this note that

2γ1(J ) = γ1(γ1(J )) = γ1(J S) = γ1(J )S = J S2 = J

Since 2γ1 pro-generates Gal(L) it follows that J ∈ G(L) as desired. 
�
Note that our element J is a twisted Belavin–Drinfeld cocycle.

5.2.2 Computation of H B D(G, rDJ)

The aim of this section to show that H B D(G, rDJ) consists of one element generated
by the class of the element J constructed above. This will in particular prove Theorem
5.8.

It is clear that our element S normalizes (in the functorial sense)H.We can therefore
consider the K-group

H̃ = H � {1, S}.

Strictly speaking we should be writing the constant K-group corresponding to the
finite group {1, S}. For this reason we shall also write

H̃ = H � Z/2Z

where Z/2Z acts on H by means of S.

Let us begin by explicitly determining H1(K, H̃).Consider the split exact sequence
of K groups

1 → H → H̃ → Z/2Z → 1.
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Passing to cohomology we get

H1(K, H) → H1(K, H̃) → H1(K, Z/2Z) → 1.

The surjectivity of the last map follows from the fact that the original sequence of
K-groups splits. We have H1(K, Z/2Z) = K

×/(K×)2. This last is the group of order

2 with representatives {1, j} where we recall that j = t
1
2 .

The elements of H1(K, H̃) mapping to the class of 1 are given by the image of
H1(K, H) which is trivial by Hilbert 90. The elements of H1(K, H̃) mapping to the
class of j are given by the image of H1(K, H′) where the K-group H′ is a twisted
form of H. By Steinberg’s theorem H1(K, H′) vanishes. It follows that H1(K, H̃) has
two elements. More precisely.

Theorem 5.12 The pointed set H1(K, H � {1, S}) consists of the two elements:

1. The trivial class,
2. The class of the cocycle u J defined by u J , u J (γ ) = J−1γ (J ). In particular

u J (γ1) = S.

If X ∈ G(K) is a twisted Belavin–Drinfeld cocycle for rDJ it is clear from Lemma
5.10 that the map ũ X : Gal(K) → G(K) given by

ũ X : γ → X−1γ (X)

is a Galois cohomology cocycle in Z1(K, H̃).

Theorem 5.13 The map X → ũ X described above induces an injection H B D(G, rDJ)
→ H1(K, H̃) = {1, j}. More precisely the fiber of the trivial class 1 is empty and that
of j consist of the class of the Belavin–Drinfeld cocycle J.

Proof If X and Y are equivalent Belavin–Drinfeld cocycle for rDJ then by definition
Y = Q XC where Q ∈ G(K) and C ∈ H(K). Just as in the untwisted case we see that
the Galois cocycles ũ X and ũY are cohomologous. We thus have a canonical map

i : H B D(G, rDJ) → H1(K, H � {1, S})

We now look in detail at the two fibers. Let X ∈ G(K) be a twisted Belavin–Drinfeld
cocycle.

1. Suppose that ũ X is in the trivial class 1 ∈ {1, j}. By definition there exists an
element h ∈ H̃(K) such that ũ X (γ ) = h−1γ h. Let C ∈ H(K) and ε ∈ {0, 1} be
such that h = SεC. Since S is fixed by the Galois group h−1γ h = C−1γ C. But
this implies, in particular, that ũ X (γ1) ∈ H(K). This last is false since

ũ X (γ1)(rDJ) = X−1γ1(X)(rDJ) = r21DJ �= rDJ.

The fiber of the trivial class 1 under our canonical map is therefore empty.
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2. Suppose that the class of X is mapped to j ∈ {1, j}. Then ũ X is cohomologous to
u J . By definition there exist h = SεC as above such that

X−1γ (X) = C−1Sε J−1γ (J )Sεγ (C) (5.4)

for all γ ∈ G. An arbitrary element of our Galois group is of the form γn = nγ1
Recall that J ∈ G(L) (hence it is fixed by all γn with n even), that J−1γ (J ) =
S ∈ G(K) and that S2 = 1. These easily imply that J−1γn(J ) = Sn . Taking this
into account we get from (5.4) that for all n ∈ Z

X−1γn(X) = C−1 J−1γn(J )γn(C) if n is odd (5.5)

From these it readily follows that Q−1 := JC X−1 is invariant under the action
of G. Thus Q ∈ G(K). Since X = Q JC we have that X and J are equivalent
Belavin–Drinfeld cocycles. The fiber of j has therefore exactly one element.

This completes the proof. 
�
This last result shows that Theorem 5.8 holds. More precisely.

Corollary 5.14 The twisted Belavin–Drinfeld cohomology H B D(G, rDJ) consists of
one class only, namely the class of the cocycle J . 
�
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