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Abstract

The characterization of the covariance function of the solution process to a stochastic partial differential 
equation is considered in the parabolic case with multiplicative Lévy noise of affine type. For the second 
moment of the mild solution, a well-posed deterministic space–time variational problem posed on projective 
and injective tensor product spaces is derived, which subsequently leads to a deterministic equation for the 
covariance function.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The covariance function of a stochastic process is an interesting quantity for the following 
reasons: It provides information about the correlation of the process with itself at pairs of time 
points. In addition, it shows if this relation is stationary, i.e., whether or not it changes when 
shifted in time, and if it follows a trend. In [6] the covariance of the solution process to a 
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parabolic stochastic partial differential equation driven by an additive Q-Wiener process has 
been described as the solution to a deterministic, tensorized evolution equation. In this case the 
solution process is also Gaussian with mean zero and therefore completely characterized by its 
covariance. It is now natural to ask whether it is possible to establish such an equation also for co-
variance functions of solutions to stochastic partial differential equations driven by multiplicative 
noise.

In the present paper, we extend the study of the covariance function to solution processes 
of parabolic stochastic partial differential equations driven by multiplicative Lévy noise in the 
framework of [8]. In this case the solution process is no longer fully characterized by the co-
variance, but the covariance function is still of interest as mentioned above. We emphasize that 
it is the extension to multiplicative noise which is the main motivation and challenge here; the 
extension to Lévy noise is rather straightforward since the theory of the corresponding Itô in-
tegral is more or less parallel to the Wiener case. The multiplicative operator is assumed to be 
affine. Clearly, under appropriate assumptions on the driving Lévy process, the mean function 
of the mild solution satisfies the corresponding deterministic, parabolic evolution equation as 
in the case of additive Wiener noise, since in both cases the stochastic integral has expectation 
zero. However, the presence of a multiplicative term changes the behavior of the second moment 
and the covariance. We prove that also in this case the second moment as well as the covari-
ance of the square-integrable mild solution satisfy deterministic space–time variational problems 
posed on tensor products of Bochner spaces. In contrast to the case of additive Wiener noise 
considered in [6], the trial and the test space are not Hilbert tensor product spaces. Instead we 
use different notions of tensor product spaces to obtain well-posed variational problems. These 
tensor product spaces are non-reflexive Banach spaces. In addition, the resulting bilinear form 
in the variational problem does not arise from taking the tensor product of the corresponding 
deterministic parabolic operator with itself, but it involves a non-separable operator mapping to 
the dual space of the test space. For these reasons, well-posedness of the derived deterministic 
variational problems is not an immediate consequence, and operator theory on the tensor product 
spaces is used to derive it. We emphasize that, although the present manuscript is rather abstract, 
numerical methods based on this variational problem are currently under investigation [1].

The structure of the present paper is as follows: In Section 2 we present the parabolic stochas-
tic differential equation and its mild solution, whose covariance function we aim to describe. The 
results formulated in Section 3 will be used for proving the main results of this paper in Sec-
tions 4–6. More precisely, in Subsections 3.1–3.3 we present different notions of tensor product 
spaces and several operators arising in the variational problems satisfied by the second moment 
and the covariance of the mild solution. The weak Itô isometry, which we introduce in Subsec-
tion 3.4, is crucial for the derivation of the deterministic variational problems. Theorems 4.2
and 5.5 in Sections 4 and 5 provide the main results of this paper: In Theorem 4.2 we show that 
the second moment of the mild solution satisfies a deterministic space–time variational problem 
posed on non-reflexive tensor product spaces. In order to be able to formulate this variational 
problem, we need some additional regularity of the second moment which we prove first. The 
aim of Section 5 is to establish well-posedness of the derived variational problem. Since the 
variational problem is posed on non-reflexive Banach spaces, it is not possible to apply standard 
inf-sup theory to achieve this goal. Instead, we show that the operator associated with the bilin-
ear form appearing in the variational problem is bounded from below, which implies uniqueness 
of the solution to the variational problem. Finally, in Section 6 we use the results of the previ-
ous sections to obtain a well-posed space–time variational problem satisfied by the covariance 
function of the mild solution.
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2. The stochastic partial differential equation

In this section the investigated stochastic partial differential equation as well as the setting 
that we impose on it are presented. In addition, we formulate the definition as well as existence, 
uniqueness, and regularity results of the mild solution to this equation in Definition 2.2 and 
Theorem 2.3. Finally, in Lemma 2.4 we state a property of the mild solution which will be 
essential for the derivation of the deterministic equation satisfied by its second moment and its 
covariance function in Sections 4 and 6, respectively.

For two Banach spaces E1 and E2, we denote by L(E1; E2) the space of bounded linear 
operators mapping from E1 to E2. In addition, we write Lp(H1; H2) for the space of Schatten 
class operators of p-th order mapping from H1 to H2, where H1 and H2 are separable Hilbert 
spaces. Here, for 1 ≤ p < ∞, an operator T ∈ L(H1; H2) is called a Schatten-class operator of 
p-th order, if T has a finite p-th Schatten norm, i.e.,

‖T ‖Lp(H1;H2) :=
(∑

n∈N
sn(T )p

) 1
p

< ∞,

where s1(T ) ≥ s2(T ) ≥ . . . ≥ sn(T ) ≥ . . . ≥ 0 are the singular values of T , i.e., the eigenvalues 
of the operator (T ∗T )1/2 and T ∗ ∈ L(H2; H1) denotes the adjoint of T . If H1 = H2 = H , we 
abbreviate Lp(H ; H) by Lp(H). For the case p = 1 and a separable Hilbert space H with inner 
product 〈·, ·〉H and orthonormal basis (en)n∈N, we introduce the trace of an operator T ∈ L1(H)

by

tr(T ) :=
∑
n∈N

〈T en, en〉H .

The trace tr(T ) is independent of the choice of the orthonormal basis and it satisfies | tr(T )| ≤
‖T ‖L1(H), cf. [2, Proposition C.1]. By L+

1 (H) we denote the space of all nonnegative, symmetric 
trace class operators on H , i.e.,

L+
1 (H) := {T ∈ L1(H) : 〈T ϕ,ϕ〉H ≥ 0, 〈T ϕ,ψ〉H = 〈ϕ,T ψ〉H ∀ϕ,ψ ∈ H } .

For p = 2, the norm ‖T ‖L2(H1;H2) coincides with the Hilbert–Schmidt norm.
In the following, U and H denote separable Hilbert spaces with norms ‖ · ‖U and ‖ · ‖H

induced by the inner products 〈·, ·〉U and 〈·, ·〉H , respectively.
Let L := (L(t), t ≥ 0) be an adapted, square-integrable, U -valued Lévy process defined on a 

complete filtered probability space (�, A, (Ft )t≥0, P). More precisely, we assume that

(i) L has independent increments, i.e., for all 0 ≤ t0 < t1 < . . . < tn the U -valued random 
variables L(t1) − L(t0), L(t2) − L(t1), . . ., L(tn) − L(tn−1) are independent;

(ii) L has stationary increments, i.e., the distribution of L(t) − L(s), s ≤ t , depends only on the 
difference t − s;

(iii) L(0) = 0 P-almost surely;
(iv) L is stochastically continuous, i.e.,

lim
s→t

P(‖L(t) − L(s)‖U > ε) = 0 ∀ε > 0, ∀t ≥ 0;

s≥0



K. Kirchner et al. / J. Differential Equations 262 (2017) 5896–5927 5899
(v) L is adapted, i.e., L(t) is Ft -measurable for all t ≥ 0;
(vi) L is square-integrable, i.e., E 

[‖L(t)‖2
U

]
< ∞ for all t ≥ 0.

Furthermore, we assume that, for t > s ≥ 0, the increment L(t) − L(s) is independent of Fs

and that L has zero mean and covariance operator Q ∈L+
1 (U), i.e., for all s, t ≥ 0 and x, y ∈ U

it holds: E〈L(t), x〉U = 0 and

E
[〈L(s), x〉U 〈L(t), y〉U

]= min{s, t} 〈Qx,y〉U , (2.1)

cf. [8, Theorem 4.44]. Note that under these assumptions, the Lévy process L is a martingale 
with respect to the filtration (Ft )t≥0 by [8, Proposition 3.25].

In addition, since Q ∈L+
1 (U) is a nonnegative, symmetric trace class operator, there exists an 

orthonormal eigenbasis (en)n∈N ⊂ U of Q with corresponding eigenvalues (γn)n∈N ⊂ R≥0, i.e., 
Qen = γnen for all n ∈N, and for x ∈ U we may define the fractional operator Q1/2 by

Q
1
2 x :=

∑
n∈N

γ
1
2

n 〈x, en〉U en

as well as its pseudo-inverse Q−1/2 by

Q− 1
2 x :=

∑
n∈N : γn 
=0

γ
− 1

2
n 〈x, en〉U en.

We introduce the vector space H := Q1/2U . Then H is a Hilbert space with respect to the inner 
product 〈·, ·〉H := 〈Q−1/2·, Q−1/2·〉U .

Furthermore, let A : D(A) ⊂ H → H be a densely defined, self-adjoint, positive definite lin-
ear operator, which is not necessarily bounded but which has a compact inverse. In this case −A

is the generator of an analytic semigroup of contractions (S(t), t ≥ 0) and for r ≥ 0 the fractional 
power operator Ar/2 is well-defined on a domain D(Ar/2) ⊂ H , cf. [7, Chapter 2]. We define the 
Hilbert space Ḣ r as the completion of D(Ar/2) equipped with the inner product

〈ϕ,ψ〉Ḣ r := 〈Ar/2ϕ,Ar/2ψ〉H
and obtain a scale of Hilbert spaces with Ḣ s ⊂ Ḣ r ⊂ Ḣ 0 = H for 0 ≤ r ≤ s. Its role is to measure 
spatial regularity. We denote the special case when r = 1 by V := Ḣ 1. In this way we obtain a 
Gelfand triple

V ↪→ H ∼= H ∗ ↪→ V ∗,

where we use ∗ to denote the identification of the dual spaces of H and V with respect to the 
pivot space H . Later on, the notation ′ will be used when addressing the dual space in its classical 
sense, i.e., as the space of all linear continuous mappings to R. In addition, although the operator 
A is assumed to be self-adjoint, we denote by A∗ : V → V ∗ its adjoint for clarification whenever 
we consider the adjoint instead of the operator itself. With these definitions, the operator A and 
its adjoint are bounded, i.e., A, A∗ ∈ L(V ; V ∗), since for ϕ, ψ ∈ V it holds
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V ∗〈Aϕ,ψ〉V = 〈A1/2ϕ,A1/2ψ〉H = 〈ϕ,ψ〉V = V 〈ϕ,A∗ψ〉V ∗ ,

where V ∗〈·, ·〉V and V 〈·, ·〉V ∗ denote dual pairings between V and V ∗.
We consider the stochastic partial differential equation

dX(t) + AX(t)dt = G(X(t))dL(t), t ∈ T := [0, T ],
X(0) = X0,

(2.2)

for finite T > 0. In order to obtain existence and uniqueness of a solution to this problem as well 
as additional regularity for its second moment, which will be needed later on, we impose the 
following assumptions on the initial value X0 and the operator G.

Assumption 2.1. The initial value X0 and the operator G in (2.2) satisfy:

(i) X0 is a square-integrable, H -valued random variable, i.e., X0 ∈ L2(�; H), which is 
F0-measurable;

(ii) G : H → L2(H; H) is an affine operator, i.e., G(ϕ) = G1(ϕ) + G2 with operators G1 ∈
L(H, L2(H; H)) and G2 ∈ L2(H; H);

(iii) There exists a regularity exponent r ∈ [0, 1] such that X0 ∈ L2(�; Ḣ r ) and Ar/2S(·)G1 ∈
L2(T; L(Ḣ r ; L2(H; H))), i.e.,

T∫
0

‖Ar
2 S(t)G1‖2

L(Ḣ r ;L2(H;H))
dt < ∞;

(iv) A1/2S(·)G1 ∈ L2(T; L(Ḣ r ; L2(H; H))), i.e.,

T∫
0

‖A 1
2 S(t)G1‖2

L(Ḣ r ;L2(H;H))
dt < ∞,

with the same value for r ∈ [0, 1] as in (iii);
(v) G1 ∈ L(V , L(U ; H)) and G2 ∈ L(U ; H).

Note that the assumption on G1 in part (iv) implies the one in part (iii). Conditions (i)–(iii) 
guarantee Ḣ r regularity of the mild solution (cf. Theorem 2.3), but we need all five assumptions 
for our main results in Sections 4 and 6.

Before we derive the deterministic variational problems satisfied by the second moment and 
the covariance of the solution X to (2.2) in Sections 4 and 6, we have to specify which kind of 
solvability we consider. In addition, existence and uniqueness of this solution must be guaranteed.

Definition 2.2. A predictable process X : � × T → H is called a mild solution to (2.2), if 
supt∈T ‖X(t)‖L2(�;H) < ∞ and

X(t) = S(t)X0 +
t∫
S(t − s)G(X(s))dL(s), t ∈ T. (2.3)
0
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It is a well-known result that there exists a unique mild solution to equations driven by affine 
multiplicative noise as considered above. More precisely, we have the following theorem.

Theorem 2.3. Under Assumption 2.1 (i)–(ii) there exists (up to modification) a unique mild so-
lution X of (2.2). If additionally Condition (iii) of Assumption 2.1 holds, then the mild solution 
satisfies

sup
t∈T

‖X(t)‖L2(�;Ḣ r ) < ∞,

i.e., X ∈ L∞(
T; L2(�; Ḣ r )

)
.

Proof. The first part of the theorem follows from [8, Theorem 9.29]. Suppose now that Condi-
tion (iii) is satisfied. By the dominated convergence theorem, the sequence of integrals

T∫
0

‖Ar
2 S(τ)G1‖2

L(Ḣ r ;L2(H;H))
1(0,T /n)(τ )dτ,

where n ∈ N and 1(0,T /n) denotes the indicator function on the interval (0, T/n), converges to 
zero as n → ∞. Therefore, there exists T̃ ∈ (0, T ] such that

κ2 :=
T̃∫

0

‖Ar
2 S(τ)G1‖2

L(Ḣ r ;L2(H;H))
dτ < 1.

Define ̃T := [
0, ̃T

]
, Z := L∞(

T̃; L2(�; Ḣ r )
)

and

ϒ : Z → Z, ϒ(Z)(t) := S(t)X0 +
t∫

0

S(t − s)G(Z(s))dL(s), t ∈ T̃.

Then ϒ is a contraction: For every t ∈ T̃ and Z1, Z2 ∈Z we have

‖ϒ(Z1)(t) − ϒ(Z2)(t)‖2
L2(�;Ḣ r )

= E

∥∥∥ t∫
0

S(t − s)G1(Z1(s) − Z2(s))dL(s)

∥∥∥2

Ḣ r

= E

∥∥∥ t∫
0

A
r
2 S(t − s)G1(Z1(s) − Z2(s))dL(s)

∥∥∥2

H
,

since A and, hence, Ar/2 are closed operators. Now the application of Itô’s isometry for the case 
of a Lévy process, cf. [8, Corollary 8.17], yields
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‖ϒ(Z1)(t) − ϒ(Z2)(t)‖2
L2(�;Ḣ r )

= E

t∫
0

‖Ar
2 S(t − s)G1(Z1(s) − Z2(s))‖2

L2(H;H) ds

≤
t∫

0

‖Ar
2 S(t − s)G1‖2

L(Ḣ r ;L2(H;H))
E

[
‖Z1(s) − Z2(s)‖2

Ḣ r

]
ds,

where the interchanging of the expectation and the time integral is justified by Tonelli’s theorem. 
Therefore, we obtain the estimate

‖ϒ(Z1)(t) − ϒ(Z2)(t)‖2
L2(�;Ḣ r )

≤ κ2 sup
s∈T̃

E‖Z1(s) − Z2(s)‖2
Ḣ r

for all t ∈ T and ‖ϒ(Z1) − ϒ(Z2)‖Z ≤ κ‖Z1 − Z2‖Z , which shows that ϒ is a contraction. By 
the Banach fixed point theorem, there exists a unique fixed point X∗ of ϒ in Z . Hence, X = X∗
is the unique mild solution to (2.2) on ̃T and

‖X‖2
Z = sup

t∈T̃
E‖X(t)‖2

Ḣ r < ∞.

The claim of the theorem follows from iterating the same argument on the intervals[
(m − 1)T̃ , min{mT̃ ,T }], m ∈ {

1,2, . . . ,
⌈
T/T̃

⌉}
. �

Lemma 2.4 relates the concepts of weak and mild solutions of stochastic partial differential 
equations, cf. [8, Section 9.3], and provides the basis for establishing the connection between 
the second moment of the mild solution and a space–time variational problem. In order to state 
it, we first have to define the differential operator ∂t and the weak stochastic integral. For a 
vector-valued function u : T → H taking values in a Hilbert space H we define the distributional 
derivative ∂tu as the H -valued distribution satisfying

〈(∂tu)(w),ϕ〉H = −
T∫

0

dw

dt
(t)〈u(t), ϕ〉H dt

for all ϕ ∈ H and w ∈ C∞
0 (T; R), cf. [3, Definition 3 in §XVIII.1].

In the following, we consider the spaces L2(� × T; L2(H; H)) as well as L2(� × T;
L(U ; H)) of square-integrable functions taking values in L2(H; H) and L(U ; H), respectively, 
with respect to the measure space (� × T, PT, P ⊗ λ), where PT denotes the σ -algebra of 
predictable subsets of � × T and λ the Lebesgue measure on T. For a predictable process 
� ∈ L2(� × T; L2(H; H)) and a continuous H -valued function v ∈ C0(T; H), we define the 
stochastic process � ∈ L2(� ×T; L2(H; R)) by

�(t) : z �→ 〈v(t),�(t)z〉H ∀z ∈ H,

for all t ∈ T. The predictability of � follows from the continuity of v on T and the predictability 
of �.
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The weak stochastic integral 
∫ T

0 〈v(t), �(t) dL(t)〉H is then defined as the stochastic integral 
with respect to the integrand � , i.e.,

T∫
0

〈v(t),�(t)dL(t)〉H :=
T∫

0

�(t)dL(t) P-a.s., (2.4)

cf. [8, p. 151]. Its properties imply by [8, Equation (9.20)] the following lemma.

Lemma 2.4. Let Assumption 2.1 (i)–(ii) be satisfied and let X be the mild solution to (2.2). Then 
it holds P-almost surely that

〈X, (−∂t + A∗)v〉L2(T;H) = 〈X0, v(0)〉H +
T∫

0

〈v(t),G(X(t))dL(t)〉H

for all v ∈ C1
0,{T }(T; D(A∗)) := {w ∈ C1(T, D(A∗)) : w(T ) = 0}.

3. Auxiliary results

The aim of this section is to prove some auxiliary results that will be needed later on to derive 
the main results in Sections 4, 5, and 6.

In Subsection 3.1 we introduce different notions of tensor product spaces and some of their 
properties. The deterministic equations satisfied by the second moment and the covariance will 
be posed on these kinds of spaces.

Next, in Subsection 3.2, we use these tensor product spaces to define the covariance kernel 
associated with the driving Lévy process L and derive some additional results for the interaction 
of this covariance kernel with the operators G1 and G2, see Lemmas 3.4 and 3.5.

In order to formulate our main results in Sections 4–6 in a compact way, we introduce 
two operators in Subsection 3.3. These operators appear in the deterministic equations in Sec-
tions 4 and 6 and the results of this subsection provide the basis for proving their well-posedness 
in Section 5.

Finally, Subsection 3.4 is devoted to an Itô isometry for the weak stochastic integral driven by 
a Lévy process L.

3.1. Tensor product spaces

Before we formulate the first result, we have to introduce some definitions and notation: For 
two Banach spaces E1 and E2, we denote the algebraic tensor product, i.e., the tensor product 
of E1 and E2 as vector spaces, by E1 ⊗E2. The algebraic tensor product E1 ⊗E2 consists of all 
finite sums of the form

N∑
k=1

ϕk ⊗ ψk, ϕk ∈ E1, ψk ∈ E2, k = 1, . . . ,N.

There are several ways to define a norm on this space. Here we introduce three of them:
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(i) Projective tensor product: By taking the completion of the algebraic tensor product E1 ⊗E2
with respect to the projective norm defined for x ∈ E1 ⊗ E2 by

‖x‖E1⊗̂πE2
:= inf

{
N∑

k=1

‖ϕk‖E1‖ψk‖E2 : x =
N∑

k=1

ϕk ⊗ ψk

}
,

the projective tensor product space E1 ⊗̂π E2 is obtained. We abbreviate E(π) := E ⊗̂π E, 
whenever E1 = E2 = E.

(ii) Injective tensor product: The injective norm of an element x in the algebraic tensor product 
space E1 ⊗ E2 is defined as

‖x‖E1⊗̂εE2
:= sup

{∣∣∣ N∑
k=1

f (ϕk) g(ψk)

∣∣∣ : f ∈ BE′
1
, g ∈ BE′

2

}
,

where BE′
1
, BE′

2
denote the closed unit balls in the dual spaces E′

j := L(Ej ; R), j = 1, 2, 

and 
∑N

k=1 ϕk ⊗ ψk is any representation of x ∈ E1 ⊗ E2. Note that the value of the supre-
mum is independent of the choice of the representation of x, cf. [9, p. 45]. The completion 
of E1 ⊗E2 with respect to this norm is called injective tensor product space and denoted by 
E1 ⊗̂ε E2. If E1 = E2 = E, the abbreviation E(ε) := E ⊗̂ε E is used.

(iii) Hilbert tensor product: If E1 and E2 are Hilbert spaces with inner products 〈·, ·〉E1 and 
〈·, ·〉E2 , the tensor product E1 ⊗̂ E2 is defined as the completion of the algebraic tensor 
product E1 ⊗ E2 with respect to the norm induced by the inner product

〈x, y〉E1⊗̂E2
:=

N∑
k=1

M∑
�=1

〈ϕk,ϑ�〉E1〈ψk,χ�〉E2 ,

where x = ∑N
k=1 ϕk ⊗ ψk and y = ∑M

�=1 ϑ� ⊗ χ� are representations of x, y ∈ E1 ⊗ E2. 
For E1 = E2 = E, set E(2) := E ⊗̂ E.

In the latter case, we obtain again a Hilbert space, whereas the vector spaces in (i) and (ii) are 
Banach spaces, which are in general not reflexive, cf. [9, Theorem 4.21]. The following lemma 
is an immediate consequence of the definitions above.

Lemma 3.1. Let E1, E2, F1, F2 be Banach spaces and H1, H2, U1, U2 be Hilbert spaces.

(i) For bounded linear operators S ∈ L(E1; F1) and T ∈ L(E2; F2), there exists a unique 
bounded linear operator S ⊗̂π T : E1 ⊗̂π E2 → F1 ⊗̂π F2 such that (S ⊗̂π T )(x ⊗ y) =
(Sx) ⊗ (T y) for every x ∈ E1, y ∈ E2 and it holds

‖S ⊗̂π T ‖L(E1⊗̂πE2;F1⊗̂πF2)
= ‖S‖L(E1;F1)‖T ‖L(E2;F2).

(ii) For bounded linear operators S ∈ L(H1; U1) and T ∈ L(H2; U2), there exists a unique 
bounded linear operator S ⊗̂ T : H1 ⊗̂ H2 → U1 ⊗̂ U2 such that (S ⊗̂ T )(x ⊗ y) = (Sx) ⊗
(T y) for every x ∈ H1, y ∈ H2 and it holds
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‖S ⊗̂ T ‖L(H1⊗̂H2;U1⊗̂U2)
= ‖S‖L(H1;U1)‖T ‖L(H2;U2).

(iii) The following chain of continuous embeddings holds:

H1 ⊗̂π H2 ↪→ H1 ⊗̂ H2 ↪→ H1 ⊗̂ε H2,

where all embedding constants are equal to 1.

Proof. For (i) see [9, Proposition 2.3].
To see that S ⊗T is a bounded mapping with respect to the Hilbert tensor products in (ii), one 

may proceed as in [5, Section I.2.3] – there for the case H1 = U1 and H2 = U2. We may write 
S ⊗ T as S ⊗ T = (IU1 ⊗ T )(S ⊗ IH2) and for x ∈ H1 ⊗ H2 we can choose a representation ∑N

k=1 ϕk ⊗ ψk of x, such that the vectors {ψk}Nk=1 are orthonormal in H2. Then we obtain

‖(S ⊗ IH2)x‖2
U1⊗̂H2

=
∥∥∥ N∑

k=1

Sϕk ⊗ ψk

∥∥∥2

U1⊗̂H2
=

N∑
k=1

‖Sϕk‖2
U1

≤ ‖S‖2
L(H1;U1)

N∑
k=1

‖ϕk‖2
H1

= ‖S‖2
L(H1;U1)

‖x‖2
H1⊗̂H2

and, thus,

‖(S ⊗ IH2)x‖U1⊗̂H2
≤ ‖S‖L(H1;U1)‖x‖H1⊗̂H2

for all x ∈ H1 ⊗ H2. In the same way, one can prove that

‖(IU1 ⊗ T )y‖U1⊗̂U2
≤ ‖T ‖L(H2;U2)‖y‖U1⊗̂H2

for every y ∈ U1 ⊗ H2 and conclude for x ∈ H1 ⊗ H2

‖(S ⊗ T )x‖U1⊗̂U2
≤ ‖T ‖L(H2;U2)‖(S ⊗ IH2)x‖U1⊗̂H2

≤ ‖T ‖L(H2;U2)‖S‖L(H1;U1)‖x‖H1⊗̂H2
.

Therefore, there exists a unique continuous extension S ⊗̂ T ∈ L(H1 ⊗̂ H2; U1 ⊗̂ U2) with
‖S ⊗̂ T ‖L(H1⊗̂H2;U1⊗̂U2)

= ‖S‖L(H1;U1)‖T ‖L(H2;U2).
In order to prove (iii), let x ∈ H1 ⊗ H2. Then we estimate

‖x‖H1⊗̂H2
=
∥∥∥ N∑

k=1

ϕk ⊗ ψk

∥∥∥
H1⊗̂H2

≤
N∑

k=1

‖ϕk ⊗ ψk‖H1⊗̂H2
=

N∑
k=1

‖ϕk‖H1‖ψk‖H2

for any representation 
∑N

k=1 ϕk ⊗ ψk of x. This shows that ‖x‖H1⊗̂H2
≤ ‖x‖H1⊗̂πH2

for all x ∈
H1 ⊗ H2 and, thus, H1 ⊗̂π H2 ↪→ H1 ⊗̂ H2 with embedding constant 1.

Furthermore, by the Riesz representation theorem, for f ∈ BH ′
1

and g ∈ BH ′
2

there exist χf ∈
BH1 and χg ∈ BH2 such that 〈χf , ϕ〉H1 = f (ϕ), 〈χg, ψ〉H2 = g(ψ) for all ϕ ∈ H1, ψ ∈ H2. This 
yields
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∣∣∣ N∑
k=1

f (ϕk) g(ψk)

∣∣∣2 =
∣∣∣ N∑
k=1

〈χf ,ϕk〉H1〈χg,ψk〉H2

∣∣∣2

=
N∑

k=1

N∑
�=1

〈χf ,ϕk〉H1〈χg,ψk〉H2〈χf ,ϕ�〉H1〈χg,ψ�〉H2

=
N∑

k=1

N∑
�=1

〈〈χf ,ϕ�〉H1χf ,ϕk〉H1〈〈χg,ψ�〉H2χg,ψk〉H2

=
N∑

k=1

N∑
�=1

〈Pχf
ϕ�,ϕk〉H1‖χf ‖2

H1
〈Pχgψ�,ψk〉H2‖χg‖2

H2
,

where Pχf
and Pχg denote the orthogonal projections on the subspaces span{χf } := {α χf : α ∈

R} ⊂ H1 and span{χg} := {α χg : α ∈ R} ⊂ H2, i.e.,

Pχf
ϕ := 〈χf ,ϕ〉H1

‖χf ‖2
H1

χf , ϕ ∈ H1, Pχgψ := 〈χg,ψ〉H2

‖χg‖2
H2

χg, ψ ∈ H2.

By using the properties of orthogonal projections we estimate

∣∣∣ N∑
k=1

f (ϕk) g(ψk)

∣∣∣2 = ‖χf ‖2
H1

‖χg‖2
H2

N∑
k=1

N∑
�=1

〈Pχf
ϕ�,Pχf

ϕk〉H1〈Pχgψ�,Pχgψk〉H2

= ‖χf ‖2
H1

‖χg‖2
H2

N∑
k=1

N∑
�=1

〈Pχf
ϕ� ⊗ Pχgψ�,Pχf

ϕk ⊗ Pχgψk〉H1⊗̂H2

= ‖χf ‖2
H1

‖χg‖2
H2

〈 N∑
�=1

Pχf
ϕ� ⊗ Pχgψ�,

N∑
k=1

Pχf
ϕk ⊗ Pχgψk

〉
H1⊗̂H2

= ‖χf ‖2
H1

‖χg‖2
H2

∥∥∥ N∑
k=1

Pχf
ϕk ⊗ Pχgψk

∥∥∥2

H1⊗̂H2

= ‖χf ‖2
H1

‖χg‖2
H2

∥∥∥(Pχf
⊗̂ Pχg )

N∑
k=1

ϕk ⊗ ψk

∥∥∥2

H1⊗̂H2
,

where Pχf
⊗̂ Pχg denotes the extension of Pχf

⊗ Pχg to H1 ⊗̂ H2, which has been introduced in 
Lemma 3.1 (ii). This lemma and ‖χf ‖H1 ≤ 1, ‖χg‖H2 ≤ 1 yield

∣∣∣ N∑
k=1

f (ϕk) g(ψk)

∣∣∣2 ≤ ‖Pχf
⊗̂ Pχg‖2

L(H1⊗̂H2;H1⊗̂H2)

∥∥∥ N∑
k=1

ϕk ⊗ ψk

∥∥∥2

H1⊗̂H2

= ‖Pχf
‖2
L(H1;H1)

‖Pχg‖2
L(H2;H2)

‖x‖2
H1⊗̂H2

= ‖x‖2
H1⊗̂H2
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for any representation 
∑N

k=1 ϕk ⊗ ψk of x ∈ H1 ⊗ H2. Since f ∈ BH ′
1

and g ∈ BH ′
2

were arbi-
trarily chosen we obtain

‖x‖H1⊗̂εH2
= sup

{∣∣∣ N∑
k=1

f (ϕk) g(ψk)

∣∣∣ : f ∈ BH ′
1
, g ∈ BH ′

2

}
≤ ‖x‖H1⊗̂H2

.

This yields H1 ⊗̂ H2 ↪→ H1 ⊗̂ε H2 with embedding constant 1 and completes the proof. �
For our purpose – formulating variational problems on tensor product spaces for the second 

moment and the covariance of the mild solution to the stochastic partial differential equation – 
the following result on the dual space of the injective tensor product of separable Hilbert spaces 
will be important.

Lemma 3.2. Let H1 and H2 be separable Hilbert spaces. Then the dual space of the injective 
tensor product space is isometrically isomorphic to the projective tensor product of the dual 
spaces, i.e., (H1 ⊗̂ε H2)

′ ∼= H ′
1 ⊗̂π H ′

2.

Proof. The proof can be extracted from [9] as follows: The dual space of the injective tensor 
product space can be identified with the Banach space of integral bilinear forms on H1 ×H2 by [9, 
Proposition 3.14]. In addition, since H1 and H2 are separable Hilbert spaces, the dual spaces 
H ′

1 and H ′
2 have the so-called approximation property, which implies that the projective tensor 

product of them can be identified with the Banach space of nuclear bilinear forms on H1 × H2
by [9, Corollary 4.8 (b)]. In general, the space of nuclear bilinear forms is only a subspace of the 
space of integral bilinear forms. Since we assume that H1 and H2 are separable Hilbert spaces, 
they have monotone shrinking Schauder bases and this fact implies that every integral bilinear 
form on H1 × H2 is nuclear and the integral and nuclear norms coincide, cf. [9, Corollary 4.29]. 
Hence, the spaces (H1 ⊗̂ε H2)

′ and H ′
1 ⊗̂π H ′

2 are isometrically isomorphic. �
3.2. The covariance kernel and the multiplicative noise

For a U -valued Lévy process L with covariance operator Q as considered in Section 2, we 
define the covariance kernel q ∈ U(2) as the unique element in the tensor space U(2) satisfying

〈q, x ⊗ y〉U(2) = 〈Qx,y〉U (3.1)

for all x, y ∈ U . Note that for an orthonormal eigenbasis (en)n∈N ⊂ U of Q with corresponding 
eigenvalues (γn)n∈N we may expand

q =
∑
n∈N

∑
m∈N

〈q, en ⊗ em〉U(2) (en ⊗ em) =
∑
m∈N

γm(em ⊗ em) (3.2)

with convergence of the series in U(2), since (en ⊗ em)n,m∈N is an orthonormal basis of U(2)

and 〈q, en ⊗ em〉U(2) = γmδnm, where δnm denotes the Kronecker delta. In addition, we obtain 
convergence of the series also with respect to U(π), which is shown in the following lemma.
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Lemma 3.3. The series in (3.2) converges in U(π), i.e.,

lim
M→∞

∥∥∥q −
M∑

m=1

γm(em ⊗ em)

∥∥∥
U(π)

= 0.

Proof. For M ∈N define

qM :=
M∑

m=1

γm(em ⊗ em). (3.3)

The trace class property of Q implies that 
∑

m∈N γm < ∞. Hence, for any ε > 0 there exists 
N0 ∈ N such that 

∑L
m=M+1 γm < ε for all L > M ≥ N0 and (qM)M∈N is a Cauchy sequence in 

U(π), since for any L > M ≥ N0 we obtain

‖qL − qM‖U(π) =
∥∥∥ L∑

m=M+1

γm(em ⊗ em)

∥∥∥
U(π)

≤
L∑

m=M+1

γm < ε.

The completeness of the space U(π) implies the existence of q∗ ∈ U(π) such that lim
M→∞‖qM −

q∗‖U(π) = 0. The convergence lim
M→∞qM = q in U(2) and the continuous embedding U(π) ↪→

U(2), cf. Lemma 3.1 (iii), yield q = q∗ ∈ U(π). �
The bilinear form and the right-hand side appearing in the deterministic variational problems 

in Sections 4 and 6, contain several terms depending on the operators G1 and G2 as well as on 
the kernel q that is associated with the covariance operator Q via (3.1). To verify that they are 
well-defined we introduce the following Bochner spaces as well as their inner products

W := L2(T;H), 〈u1, u2〉W :=
T∫

0

〈u1(t), u2(t)〉H dt,

X := L2(T;V ), 〈v1, v2〉X :=
T∫

0

〈v1(t), v2(t)〉V dt

and derive the results of the two lemmas below.

Lemma 3.4. For operators G1 and G2 satisfying Assumption 2.1 (v) the following hold:

(i) The linear operator G1 ⊗ G1 : U ⊗ U → L(X ; W) ⊗L(X ; W),

M∑
�=1

ϕ1
� ⊗ ϕ2

� �→
M∑

�=1

G1(·)ϕ1
� ⊗ G1(·)ϕ2

�

admits a unique extension G1 ⊗̂π G1 ∈ L(U(π); L(X (π); W(π))).
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(ii) The linear operators G1 ⊗ G2 : U ⊗ U → L(X ; W) ⊗ H and G2 ⊗ G1 : U ⊗ U → H ⊗
L(X ; W),

M∑
�=1

ϕ1
� ⊗ ϕ2

� �→
M∑

�=1

G1(·)ϕ1
� ⊗ G2ϕ

2
� ,

M∑
�=1

ϕ1
� ⊗ ϕ2

� �→
M∑

�=1

G2ϕ
1
� ⊗ G1(·)ϕ2

�

admit unique extensions G1 ⊗̂π G2 ∈ L(U(π); L(X ; W ⊗̂π H)) and G2 ⊗̂π G1 ∈ L(U(π);
L(X ; H ⊗̂π W)).

(iii) The linear operator G2 ⊗ G2 : U ⊗ U → H ⊗ H ,

M∑
�=1

ϕ1
� ⊗ ϕ2

� �→
M∑

�=1

G2ϕ
1
� ⊗ G2ϕ

2
�

admits a unique extension G2 ⊗̂π G2 ∈ L(U(π); H(π)).

Proof. We first note that G1 ∈ L(V ; L(U ; H)) implies that G1 can be identified with an element 
in L(U ; L(X ; W)), because for any ϕ ∈ U we estimate

‖G1(·)ϕ‖L(X ;W) = sup
u∈X‖u‖X =1

‖G1(u)ϕ‖W = sup
u∈X‖u‖X =1

⎛⎝ T∫
0

‖G1(u(t))ϕ‖2
H dt

⎞⎠
1
2

≤ ‖ϕ‖U sup
u∈X‖u‖X =1

⎛⎝ T∫
0

‖G1(u(t))‖2
L(U ;H) dt

⎞⎠
1
2

≤ ‖ϕ‖U sup
u∈X‖u‖X =1

⎛⎝ T∫
0

‖G1‖2
L(V ;L(U ;H))‖u(t)‖2

V dt

⎞⎠
1
2

≤ ‖G1‖L(V ;L(U ;H))‖ϕ‖U .

This inequality shows that

G1 ∈ L(U ;L(X ;W)), ‖G1‖L(U ;L(X ;W)) ≤ ‖G1‖L(V ;L(U ;H)).

In order to prove (i), note that by Lemma 3.1 (i) for two vectors ϕ1, ϕ2 ∈ U there exists a 
unique operator G1(·)ϕ1 ⊗̂π G1(·)ϕ2 : X (π) →W(π) satisfying

(
G1(·)ϕ1 ⊗̂π G1(·)ϕ2

)
(u) =

N∑
k=1

G1(u
1
k)ϕ

1 ⊗ G1(u
2
k)ϕ

2

for any representation 
∑N

k=1 u1
k ⊗ u2

k of u ∈ X ⊗X . This operator is bounded because

‖G1(·)ϕ1 ⊗̂π G1(·)ϕ2‖L(X (π);W (π)) = ‖G1(·)ϕ1‖L(X ;W)‖G1(·)ϕ2‖L(X ;W).
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In addition, for a representation 
∑M

�=1 ϕ1
� ⊗ ϕ2

� of ϕ ∈ U ⊗ U we may extend

(G1(·) ⊗ G1(·))ϕ =
M∑

�=1

G1(·)ϕ1
� ⊗ G1(·)ϕ2

� : X ⊗X → W ⊗W

to a bounded linear operator (G1(·) ⊗̂π G1(·))ϕ ∈ L(X (π); W(π)), since

‖(G1(·) ⊗ G1(·))ϕ‖L(X (π);W (π)) ≤
M∑

�=1

‖G1(·)ϕ1
� ⊗ G1(·)ϕ2

�‖L(X (π);W (π))

=
M∑

�=1

‖G1(·)ϕ1
�‖L(X ;W)‖G1(·)ϕ2

�‖L(X ;W) ≤ ‖G1‖2
L(V ;L(U ;H))

M∑
�=1

‖ϕ1‖U‖ϕ2‖U

by the observations above. Therefore, (G1(·) ⊗G1(·))ϕ ∈ L(X (π); W(π)) for all ϕ ∈ U ⊗U with

‖(G1(·) ⊗ G1(·))ϕ‖L(X (π);W (π)) ≤ ‖G1‖2
L(V ;L(U ;H))‖ϕ‖U(π) .

This estimate shows that G1 ⊗G1 : U ⊗U → L(X ; W) ⊗L(X ; W) admits a unique continuous 
extension to an operator G1 ⊗̂π G1 ∈ L(U(π); L(X (π); W(π))).

For part (ii), let 
∑M

�=1 ϕ1
� ⊗ ϕ2

� be again a representation of ϕ ∈ U ⊗ U . Then, for u ∈ X , we 
calculate

∥∥∥ M∑
�=1

G1(u)ϕ1
� ⊗ G2ϕ

2
�

∥∥∥
W⊗̂πH

≤
M∑

�=1

‖G1(u)ϕ1
�‖W‖G2ϕ

2
�‖H

≤
M∑

�=1

‖G1(·)ϕ1
�‖L(X ;W)‖u‖X ‖G2‖L(U ;H)‖ϕ2

�‖U

≤ ‖G1‖L(V ;L(U ;H))‖G2‖L(U ;H)‖u‖X
M∑

�=1

‖ϕ1
�‖U‖ϕ2

�‖U .

This calculation implies that (G1(·) ⊗ G2)ϕ ∈ L(X ; W ⊗̂π H) for any ϕ ∈ U ⊗ U with

‖(G1(·) ⊗ G2)ϕ‖L(X ;W⊗̂πH) ≤ ‖G1‖L(V ;L(U ;H))‖G2‖L(U ;H)‖ϕ‖U(π) ,

and that there exists a unique extension G1 ⊗̂π G2 ∈ L(U(π); L(X ; W ⊗̂π H)). It is obvi-
ous that the same argumentation yields existence and uniqueness of an extension G2 ⊗̂π G1 ∈
L(U(π); L(X ; H ⊗̂π W)) of G2 ⊗ G1.

Assertion (iii) follows immediately, since G2 ∈ L(U ; H) implies the existence of G2 ⊗̂π G2 ∈
L(U(π); H(π)) by Lemma 3.1 (i). �
Lemma 3.5. Define q ∈ U(2) as in (3.1) and let G1 and G2 satisfy Assumption 2.1 (v).
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(i) (G1 ⊗ G1)(·)q : X (π) → W(π) is bounded and

‖(G1 ⊗ G1)(·)q‖L(X (π);W (π)) ≤ ‖G1‖2
L(V ;L2(H;H)); (3.4)

(ii) (G1(·) ⊗ G2)q ∈ L(X ; W ⊗̂π H) and (G2 ⊗ G1(·))q ∈ L(X ; H ⊗̂π W);
(iii) (G2 ⊗ G2)q ∈ H(π).

Proof. The results (G1 ⊗ G1)(·)q ∈ L(X (π); W(π)), (G1(·) ⊗ G2)q ∈ L(X ; W ⊗̂π H), (G2 ⊗
G1(·))q ∈ L(X ; H ⊗̂π W) and (G2 ⊗G2)q ∈ H(π) are immediate consequences of Lemma 3.4, 
since q ∈ U(π) by Lemma 3.3.

In order to prove the bound in (3.4), let M ∈ N and define qM ∈ U ⊗ U as in (3.3). Set 
fm := √

γm em, m ∈ N, and let 
∑N

k=1 u1
k ⊗ u2

k be a representation of u ∈X ⊗X . Then we have

‖(G1 ⊗̂π G1)(u)qM‖W (π) ≤
N∑

k=1

M∑
m=1

‖G1(u
1
k)fm‖W‖G1(u

2
k)fm‖W

≤
N∑

k=1

(
M∑

m=1

‖G1(u
1
k)fm‖2

W

) 1
2
(

M∑
m=1

‖G1(u
2
k)fm‖2

W

) 1
2

≤ ‖G1‖2
L(V ;L2(H;H))

N∑
k=1

‖u1
k‖X ‖u2

k‖X ,

since for v ∈ X we obtain

M∑
m=1

‖G1(v)fm‖2
W =

T∫
0

M∑
m=1

‖G1(v(t))fm‖2
H dt ≤

T∫
0

‖G1(v(t))‖2
L2(H;H) dt,

where the last inequality follows from the fact that the set {fj : j ∈ N, γj 
= 0} forms an or-
thonormal basis of H. Therefore,

M∑
m=1

‖G1(v)fm‖2
W ≤ ‖G1‖2

L(V ;L2(H;H))

T∫
0

‖v(t)‖2
V dt = ‖G1‖2

L(V ;L2(H;H))‖v‖2
X

and, hence, (G1 ⊗̂π G1)(·)qM ∈ L(X (π); W(π)) for all M ∈ N with

‖(G1 ⊗ G1)(·)qM‖L(X (π);W (π)) ≤ ‖G1‖2
L(V ;L2(H;H)).

The bound for (G1 ⊗̂π G1)(·)q in (3.4) follows from Lemmas 3.3 and 3.4 (i), since
limM→∞ qM = q in U(π) and G1 ⊗̂π G1 ∈ L(U(π); L(X (π); W(π))). �
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3.3. The diagonal trace operator

We introduce the spaces H 1
0,{T }(T; V ∗) := {

v ∈ H 1(T;V ∗) : v(T ) = 0
}

as well as Y :=
L2(T; V ) ∩ H 1

0,{T }(T; V ∗), which is a Hilbert space with respect to the inner product

〈v1, v2〉Y := 〈v1, v2〉L2(T;V ) + 〈∂tv1, ∂t v2〉L2(T;V ∗), v1, v2 ∈ Y .

Moreover, we obtain the following two continuous embeddings.

Lemma 3.6. It holds that Y ↪→ C0(T; H) with embedding constant C ≤ 1, i.e., sup
s∈T

‖v(s)‖H ≤
‖v‖Y for every v ∈ Y .

Proof. For every v ∈ Y = L2(T; V ) ∩ H 1
0,{T }(T; V ∗) we have the relation

‖v(r)‖2
H − ‖v(s)‖2

H =
r∫

s

2 V ∗〈∂tv(t), v(t)〉V dt, r, s ∈ T, r > s,

cf. [3, §XVIII.1, Theorem 2]. Choosing r = T and observing that v(T ) = 0 leads to

‖v(s)‖2
H ≤ 2‖∂tv‖L2(T;V ∗)‖v‖L2(T;V ) ≤ ‖∂tv‖2

L2(T;V ∗) + ‖v‖2
L2(T;V )

= ‖v‖2
Y . �

Lemma 3.7. The injective tensor product space satisfies Y(ε) ↪→ C0(T; H)(ε) with embedding 
constant C ≤ 1.

Proof. The continuous embedding of Lemma 3.6 implies that ‖g‖Y ′ ≤ ‖g‖C0(T;H)′ for all 
g ∈ C0(T; H)′. Therefore, the unit balls of the dual spaces satisfy BC0(T;H)′ ⊂ BY ′ and the 

embedding of the injective tensor product spaces follows, since for 
∑N

k=1 v1
k ⊗ v2

k ∈ Y ⊗ Y we 
obtain

∥∥∥ N∑
k=1

v1
k ⊗ v2

k

∥∥∥
C0(T;H)(ε)

= sup

{∣∣∣ N∑
k=1

f
(
v1
k

)
g
(
v2
k

)∣∣∣ : f,g ∈ BC0(T;H)′

}

≤ sup

{∣∣∣ N∑
k=1

f
(
v1
k

)
g
(
v2
k

)∣∣∣ : f,g ∈ BY ′

}
=
∥∥∥ N∑

k=1

v1
k ⊗ v2

k

∥∥∥
Y (ε)

. �

In the deterministic equations satisfied by the second moment and the covariance, an operator 
associated with the diagonal trace will play an important role. For u ∈W ⊗W , v ∈ Y ⊗ Y and 
representations 

∑N
k=1 u1

k ⊗ u2
k and 

∑M
�=1 v1

� ⊗ v2
� of u and v, respectively, we define

Tδ(u)v :=
N∑

k=1

M∑
�=1

T∫
〈u1

k(t), v
1
� (t)〉H 〈u2

k(t), v
2
� (t)〉H dt. (3.5)
0
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In addition, for ̃u ∈W ⊗H and û ∈ H ⊗W with representations 
∑N

k=1 uk ⊗ϕk , and 
∑N

k=1 ϕk ⊗
uk , uk ∈ W , ϕk ∈ H , respectively, as well as ϕ ∈ H ⊗ H with representation 

∑N
k=1 ϕ1

k ⊗ ϕ2
k we 

define Tδ accordingly,

Tδ(̃u)v :=
N∑

k=1

M∑
�=1

T∫
0

〈uk(t), v
1
� (t)〉H 〈ϕk, v

2
� (t)〉H dt,

Tδ(û)v :=
N∑

k=1

M∑
�=1

T∫
0

〈ϕk, v
1
� (t)〉H 〈uk(t), v

2
� (t)〉H dt,

Tδ(ϕ)v :=
N∑

k=1

M∑
�=1

T∫
0

〈ϕ1
k , v1

� (t)〉H 〈ϕ2
k , v

2
� (t)〉H dt.

With these definitions, Tδ admits unique extensions to bounded linear operators mapping from 
the projective tensor product spaces W ⊗̂π W , W ⊗̂π H , H ⊗̂π W , and H ⊗̂π H , respectively, 
to the dual space Y (ε)′ = L(Y(ε); R) of the injective tensor product space Y ⊗̂ε Y as we prove in 
the following proposition.

Proposition 3.8. The operator Tδ : (W ⊗ W) × (Y ⊗ Y) → R defined in (3.5) admits a unique 
extension to a bounded linear operator Tδ ∈ L(W (π); Y(ε)′) with ‖Tδ‖L(W (π);Y (ε)′) ≤ 1. Further-
more, Tδ as an operator acting on W ⊗ H , H ⊗ W , and H ⊗ H admits unique extensions to 
Tδ ∈ L(W ⊗̂π H ; Y(ε)′), Tδ ∈ L(H ⊗̂π W; Y(ε)′), and Tδ ∈ L(H (π); Y(ε)′), respectively.

Proof. Let u ∈ W ⊗ W and v ∈ Y ⊗ Y with representations u = ∑N
k=1 u1

k ⊗ u2
k and v =∑M

�=1 v1
� ⊗ v2

� be given. Then we obtain

|Tδ(u)v| =
∣∣∣ N∑
k=1

M∑
�=1

T∫
0

〈u1
k(t), v

1
� (t)〉H 〈u2

k(t), v
2
� (t)〉H dt

∣∣∣
≤

N∑
k=1

T∫
0

∣∣∣ M∑
�=1

〈u1
k(t), v

1
� (t)〉H 〈u2

k(t), v
2
� (t)〉H

∣∣∣dt

≤
N∑

k=1

T∫
0

‖u1
k(t)‖H ‖u2

k(t)‖H

∥∥∥ M∑
�=1

v1
� (t) ⊗ v2

� (t)

∥∥∥
H(ε)

dt,

since 〈ϕ, ·〉H ∈ BH ′ for ϕ ∈ BH . Therefore,

|Tδ(u)v| ≤ sup
t∈T

∥∥∥ M∑
�=1

v1
� (t) ⊗ v2

� (t)

∥∥∥
H(ε)

N∑
k=1

T∫
‖u1

k(t)‖H ‖u2
k(t)‖H dt
0
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≤ sup
t∈T

sup
f,g∈BH ′

∣∣∣ M∑
�=1

f
(
v1
� (t)

)
g
(
v2
� (t)

)∣∣∣ N∑
k=1

‖u1
k‖W‖u2

k‖W

≤ sup
s,t∈T

sup
f,g∈BH ′

∣∣∣ M∑
�=1

f
(
δs(v

1
� )
)
g
(
δt (v

2
� )
)∣∣∣ N∑

k=1

‖u1
k‖W‖u2

k‖W ,

where δt : C0(T; H) → H denotes the evaluation functional in t ∈ T, i.e., δt (v) := v(t). We 
obtain the estimate

|Tδ(u)v| ≤ sup
f̃ ,g̃∈B

C0(T;H)′

∣∣∣ M∑
�=1

f̃
(
v1
�

)
g̃
(
v2
�

)∣∣∣ N∑
k=1

‖u1
k‖W‖u2

k‖W ,

because f ◦ δt ∈ BC0(T;H)′ for f ∈ BH ′ and t ∈ T. Hence,

|Tδ(u)v| ≤ ‖v‖C0(T;H)(ε)‖u‖W (π) ≤ ‖v‖Y (ε)‖u‖W (π) ,

since Y(ε) ↪→ C0(T; H)(ε) with embedding constant 1 by Lemma 3.7, and Tδ admits a unique 
extension Tδ ∈ L(W (π); Y(ε)′).

For ũ ∈ W ⊗ H and û ∈ H ⊗ W with representations 
∑N

k=1 u1
k ⊗ ϕk and 

∑N
k=1 ϕk ⊗ u2

k , 
respectively, one can prove in the same way as above that

|Tδ(̃u)v| ≤ √
T ‖v‖Y (ε)‖ũ‖W⊗̂πH , |Tδ(û)v| ≤ √

T ‖v‖Y (ε)‖û‖H ⊗̂πW

for all v ∈ Y(ε). Finally, for ϕ ∈ H ⊗ H with representation 
∑N

k=1 ϕ1
k ⊗ ϕ2

k we obtain for all 
v ∈ Y(ε)

|Tδ(ϕ)v| ≤ T ‖v‖Y (ε)‖ϕ‖H(π) .

The last three estimates show that there exist unique extensions Tδ ∈ L(W ⊗̂π H ; Y(ε)′), Tδ ∈
L(H ⊗̂π W; Y(ε)′), and Tδ ∈ L(H (π); Y(ε)′) and complete the proof. �

In addition to Tδ we define the operator Rt : H → Y ′ for t ∈ T by

Rt(ϕ)v := 〈ϕ,v(t)〉H , v ∈ Y . (3.6)

The next lemma shows that we obtain a well-defined operator Rs,t ∈ L(H (π); Y(ε)′) by setting 
Rs,t := Rs ⊗̂π Rt for s, t ∈ T.

Lemma 3.9. The operator Rt defined for t ∈ T in (3.6) is bounded and satisfies ‖Rt‖L(H ;Y ′) ≤ 1. 
Furthermore, for s, t ∈ T the operator Rs,t : H ⊗ H → Y ′ ⊗Y ′ defined for ϕ ∈ H ⊗ H by

Rs,t (ϕ) := (Rs ⊗ Rt)(ϕ) =
N∑

Rs(ϕ
1
k ) ⊗ Rt(ϕ

2
k ), (3.7)
k=1
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where 
∑N

k=1 ϕ1
k ⊗ ϕ2

k is a representation of ϕ ∈ H ⊗ H , admits a unique extension to a bounded 
linear operator Rs,t ∈ L(H (π); Y(ε)′).

Proof. For t ∈ T and ϕ ∈ H we calculate by using the Cauchy–Schwarz inequality and 
Lemma 3.6,

|Rt(ϕ)v| = |〈ϕ,v(t)〉H | ≤ ‖ϕ‖H ‖v(t)‖H ≤ ‖ϕ‖H ‖v‖C0(T;H) ≤ ‖ϕ‖H ‖v‖Y
for all v ∈ Y . This proves that Rt(ϕ) ∈ Y ′ for all ϕ ∈ H with ‖Rt(ϕ)‖Y ′ ≤ ‖ϕ‖H , which implies 
the assertion Rt ∈ L(H ; Y ′) with ‖Rt‖L(H ;Y ′) ≤ 1 for all t ∈ T.

By Lemma 3.1 (i) there exists a unique continuous extension Rs,t ∈ L(H ⊗̂π H ; Y ′ ⊗̂π Y ′)
of Rs,t : H ⊗ H → Y ′ ⊗ Y ′ defined in (3.7) for s, t ∈ T. The fact that Y(ε)′ is isometrically 
isomorphic to Y ′ ⊗̂π Y ′, cf. Lemma 3.2, completes the proof. �
3.4. A weak Itô isometry

In this subsection the diagonal trace operator is used to formulate an isometry for the expec-
tation of the product of two weak stochastic integrals driven by the same Lévy process. This 
isometry is an essential component in the derivation of the deterministic variational problems for 
the second moment and the covariance in Sections 4 and 6.

Lemma 3.10. For a predictable process � ∈ L2(� × T; L(U ; H)) and the covariance kernel 
q ∈ U(2) in (3.1) the function E[�(·) ⊗ �(·)]q is a well-defined element in the space W (π). The 
weak stochastic integral, cf. (2.4), satisfies for v1, v2 ∈ Y

E

[ T∫
0

〈v1(s),�(s)dL(s)〉H
T∫

0

〈v2(t),�(t)dL(t)〉H
]

= Tδ(E[�(·) ⊗ �(·)]q)(v1 ⊗ v2).

Proof. In order to prove that E[�(·) ⊗ �(·)]q is a well-defined element in the space W(π), 
it suffices to show that �(·) ⊗ �(·) ∈ L1(�; L(U(π); W(π))), and, hence, E[�(·) ⊗ �(·)] ∈
L(U(π); W(π)), since q ∈ U(π) by Lemma 3.3. To this end, we estimate

‖�(·) ⊗ �(·)‖L1(�;L(U(π);W (π))) = E
[‖�(·) ⊗ �(·)‖L(U(π);W (π))

]= E

[
‖�(·)‖2

L(U ;W)

]

= E

⎡⎢⎣ sup
ψ∈U

‖ψ‖U =1

T∫
0

‖�(t)ψ‖2
H dt

⎤⎥⎦≤ E

⎡⎢⎣ T∫
0

sup
ψ∈U

‖ψ‖U =1

‖�(t)ψ‖2
H dt

⎤⎥⎦

= E

⎡⎣ T∫
0

‖�(t)‖2
L(U ;H) dt

⎤⎦= ‖�‖2
L2(�×T;L(U ;H))

< ∞.

In order to justify that the weak stochastic integrals are well-defined, we note that the following 
embedding holds,

L2(� ×T;L(U ;H)) ↪→ L2(� ×T;L2(H;H))
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with embedding constant 
√

tr(Q) < ∞, since

‖�‖2
L2(�×T;L2(H;H))

= E

T∫
0

‖�(t)‖2
L2(H;H) dt = E

T∫
0

∑
j∈I

‖�(t)fj‖2
H dt

≤ E

T∫
0

∑
j∈I

‖�(t)‖2
L(U ;H)‖fj‖2

U dt

= tr(Q)E

T∫
0

‖�(t)‖2
L(U ;H) dt = tr(Q)‖�‖2

L2(�×T;L(U ;H))
,

where fn := √
γn en and I := {j ∈ N : γj 
= 0} for an orthonormal eigenbasis (en)n∈N ⊂ U

of Q with corresponding eigenvalues (γn)n∈N. For this reason, the weak stochastic integrals∫ T

0 〈v�(t), �(t) dL(t)〉H are well-defined for v� ∈ Y ⊂ C0(T; H), � ∈ {1, 2}. Recalling the defi-
nition of the weak stochastic integral in (2.4) yields the equality

T∫
0

〈v�(t),�(t)dL(t)〉H =
T∫

0

��(t)dL(t), � = 1,2,

where for � ∈ {1, 2} the stochastic process �� ∈ L2(� ×T; L(U ; R)) is defined by

��(t) : z �→ 〈v�(t),�(t)z〉H ∀z ∈ H

for all t ∈ T. Applying Itô’s isometry, see [8, Corollary 8.17], along with the polarization identity, 
yields

E

[ T∫
0

�1(t)dL(t)

T∫
0

�2(t)dL(t)

]
=

T∫
0

E
[〈�1(t),�2(t)〉L2(H;R)

]
dt,

where 〈·, ·〉L2(H;R) denotes the Hilbert–Schmidt inner product, i.e.,

〈�̃, �̃〉L2(H;R) =
∑
n∈N

�̃(f̃n) �̃(f̃n)

for �̃, �̃ ∈ L2(H; R), where (f̃n)n∈N is an orthonormal basis of H. By choosing the orthonormal 
basis (fj )j∈I from above we obtain

E

[ T∫
〈v1(s),�(s)dL(s)〉H

T∫
〈v2(t),�(t)dL(t)〉H

]
=

T∫
E
[〈�1(t),�2(t)〉L2(H;R)

]
dt
0 0 0
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=
T∫

0

E

[∑
j∈I

〈v1(t),�(t)fj 〉H 〈v2(t),�(t)fj 〉H
]

dt

=
T∫

0

E

[∑
n∈N

γn〈v1(t),�(t)en〉H 〈v2(t),�(t)en〉H
]

dt

=
T∫

0

E

[∑
n∈N

〈v1(t) ⊗ v2(t), [�(t) ⊗ �(t)]γn(en ⊗ en)〉H(2)

]
dt

=
T∫

0

E

[
〈v1(t) ⊗ v2(t), [�(t) ⊗ �(t)]

∑
n∈N

γn(en ⊗ en)〉H(2)

]
dt

=
T∫

0

E
[〈v1(t) ⊗ v2(t), [�(t) ⊗ �(t)]q〉H(2)

]
dt.

By Proposition 3.8 the diagonal trace Tδ(E[�(·) ⊗ �(·)]q)(v1 ⊗ v2) is well-defined, since 
E[�(·) ⊗�(·)]q ∈W (π). With the introduced notion of the operator Tδ we can rewrite the above 
expression as

E

[ T∫
0

〈v1(s),�(s)dL(s)〉H
T∫

0

〈v2(t),�(t)dL(t)〉H
]

=
T∫

0

〈v1(t) ⊗ v2(t),E[�(t) ⊗ �(t)]q〉H(2) dt = Tδ(E[�(·) ⊗ �(·)]q)(v1 ⊗ v2),

which completes the proof. �
4. The second moment

After having introduced the stochastic partial differential equation of interest and its mild 
solution in Section 2, the aim of this section is to derive a well-posed deterministic variational 
problem, which is satisfied by the second moment of the mild solution.

The second moment of a random variable Y ∈ L2(�; H1) taking values in a Hilbert space 
H1 is denoted by M(2)Y := E[Y ⊗ Y ]. We recall the Bochner spaces W = L2(T; H), X =
L2(T; V ) and Y = L2(T; V ) ∩ H 1

0,{T }(T; V ∗). It follows immediately from the definition of 

the mild solution that its second moment is an element of the tensor space W(2). Under the 
assumptions made above we can prove even more regularity.

Theorem 4.1. Let Assumption 2.1 (i)–(iv) be satisfied. Then the second moment of the mild 
solution X defined in (2.3) satisfies M(2)X ∈ X (π) =X ⊗̂π X .
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Proof. First, we remark that

‖M(2)X‖X (π) = ‖E[X ⊗ X]‖X (π) ≤ E‖X ⊗ X‖X (π) = E

[
‖X‖2

X
]
.

Hence, we may estimate as follows:

‖M(2)X‖X (π) ≤ E

T∫
0

∥∥∥S(t)X0 +
t∫

0

S(t − s)G(X(s))dL(s)

∥∥∥2

V
dt

≤ 2E

T∫
0

[
‖S(t)X0‖2

V +
∥∥∥ t∫

0

S(t − s)G(X(s))dL(s)

∥∥∥2

V

]
dt

= 2E

[ T∫
0

‖A 1
2 S(t)X0‖2

H dt

]
+ 2

T∫
0

E

∥∥∥ t∫
0

A
1
2 S(t − s)G(X(s))dL(s)

∥∥∥2

H
dt.

Since the generator −A of the semigroup (S(t), t ≥ 0) is self-adjoint and negative definite, we 
can bound the first integral from above by using the inequality

T∫
0

‖A 1
2 S(t)ϕ‖2

H dt ≤ 1

2
‖ϕ‖2

H , ϕ ∈ H, (4.1)

and for the second term we use Itô’s isometry, cf. [8, Corollary 8.17], as well as the affine struc-
ture of the operator G to obtain

‖M(2)X‖X (π) ≤ E‖X0‖2
H + 2

T∫
0

E

t∫
0

‖A 1
2 S(t − s)G(X(s))‖2

L2(H;H) ds dt

≤ E‖X0‖2
H + 4

T∫
0

t∫
0

‖A 1
2 S(t − s)G2‖2

L2(H;H) ds dt

+ 4

T∫
0

E

t∫
0

‖A 1
2 S(t − s)G1(X(s))‖2

L2(H;H) ds dt.

By Assumption 2.1 (i)–(iii) as well as Theorem 2.3 there exists a regularity exponent r ∈ [0, 1]
such that the mild solution satisfies X ∈ L∞(T; L2(�; Ḣ r )). In addition, by Assumption 2.1 (iv) 
it holds that A1/2S(·)G1 ∈ L2(T; L(Ḣ r ; L2(H; H))). Then we estimate as follows,

‖M(2)X‖X (π) ≤ E‖X0‖2
H + 4

∑
n∈N

T∫ t∫
‖A 1

2 S(t − s)G2fn‖2
H ds dt
0 0
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+ 4

T∫
0

t∫
0

‖A 1
2 S(t − s)G1‖2

L(Ḣ r ;L2(H;H))
E‖X(s)‖2

Ḣ r ds dt

for an orthonormal basis (fn)n∈N of H. Applying (4.1) again with upper integral bound t instead 
of T yields

‖M(2)X‖X (π) ≤ ‖X0‖2
L2(�;H)

+ 2T ‖G2‖2
L2(H;H)

+ 4T ‖X‖2
L∞(T;L2(�;Ḣ r ))

‖A 1
2 S(·)G1‖2

L2(T;L(Ḣ r ;L2(H;H)))
,

which is finite under our assumptions and completes the proof. �
We define the bilinear form B : X ×Y →R by

B(u, v) :=
T∫

0

V 〈u(t), (−∂t + A∗)v(t)〉V ∗ dt, u ∈X , v ∈ Y, (4.2)

and the mean function m of the mild solution X in (2.3) by

m(t) := EX(t) = S(t)EX0, t ∈ T. (4.3)

Note that due to the mean zero property of the stochastic integral the mean function depends only 
on the initial value X0 and not on the operator G. Furthermore, applying inequality (4.1) shows 
the regularity m ∈X , and m can be interpreted as the unique function satisfying

m ∈ X : B(m,v) = 〈EX0, v(0)〉H ∀v ∈ Y . (4.4)

Well-posedness of this problem follows from [11, Theorem 2.3].
In addition, we introduce the operator B : X → Y ′ associated with the bilinear form B, i.e., 

Bu := B(u, ·) ∈ Y ′ for u ∈ X . Then this linear operator is bounded, B ∈ L(X , Y ′) and B ⊗
B : X ⊗X → Y ′ ⊗Y ′ defined by

(B⊗B)
( N∑

k=1

u1
k ⊗ u2

k

)
:=

N∑
k=1

Bu1
k ⊗Bu2

k =
N∑

k=1

B(u1
k, ·) ⊗B(u2

k, ·)

admits a unique extension to a bounded linear operator B(π) ∈ L(X (π); (Y ′)(π)) satisfying 
B

(π) = B ⊗ B on X ⊗X and ‖B(π)‖L(X (π);(Y ′)(π)) = ‖B‖2
L(X ;Y ′) by Lemma 3.1 (i). With these 

definitions and preliminaries we are now able to show that the second moment of the mild solu-
tion solves a deterministic variational problem.

Theorem 4.2. Let all conditions of Assumption 2.1 be satisfied and let X be the mild solution 
to (2.2). Then the second moment M(2)X ∈X (π) solves the following variational problem

u ∈ X (π) : B̃(π)(u, v) = f (v) ∀v ∈ Y(ε), (4.5)
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where for u ∈X (π) and v ∈ Y(ε)

B̃(π)(u, v) := B
(π)(u)v − Tδ((G1 ⊗ G1)(u)q)v, (4.6)

f (v) := R0,0
(
M

(2)X0
)
v + Tδ((G1(m) ⊗ G2)q)v

+ Tδ((G2 ⊗ G1(m))q)v + Tδ((G2 ⊗ G2)q)v

with the operators Tδ and R0,0 defined in (3.5) and (3.7) and the mean function m ∈X in (4.3).

Proof. First, we remark that B̃(π)(u, v) is well-defined for u ∈ X (π) and v ∈ Y(ε), since the 
tensor spaces Y ′ ⊗̂π Y ′ and (Y ⊗̂ε Y)′ are isometrically isomorphic by Lemma 3.2 and, hence, 
B

(π)u −Tδ((G1 ⊗G1)(u)q) ∈ Y(ε)′ for all u ∈X (π) by the definition of B(π) and Proposition 3.8.
Let v1, v2 ∈ C1

0,{T }(T; D(A∗)) = {φ ∈ C1(T; D(A∗)) : φ(T ) = 0}. Then we obtain

B
(π)

(
M

(2)X
)
(v1 ⊗ v2) = B

(π)(E[X ⊗ X])(v1 ⊗ v2) = E
[
B

(π)(X ⊗ X)(v1 ⊗ v2)
]

= E
[
(B(X) ⊗B(X))(v1 ⊗ v2)

]= E[B(X,v1)B(X,v2)]
= E

[〈X, (−∂t + A∗)v1〉L2(T;H)〈X, (−∂t + A∗)v2〉L2(T;H)

]
.

Due to the regularity of v1 and v2 we may take the inner product on L2(T; H) in this calculation. 
Now, since X is the mild solution of (2.2), Lemma 2.4 yields

B
(π)

(
M

(2)X
)
(v1 ⊗ v2) = E

[(
〈X0, v1(0)〉H +

T∫
0

〈v1(s),G(X(s))dL(s)〉H
)

·
(
〈X0, v2(0)〉H +

T∫
0

〈v2(t),G(X(t))dL(t)〉H
)]

= E [〈X0, v1(0)〉H 〈X0, v2(0)〉H ]

+E

[
〈X0, v1(0)〉H

T∫
0

〈v2(t),G(X(t))dL(t)〉H
]

+E

[
〈X0, v2(0)〉H

T∫
0

〈v1(s),G(X(s))dL(s)〉H
]

+E

[ T∫
0

〈v1(s),G(X(s))dL(s)〉H
T∫

0

〈v2(t),G(X(t))dL(t)〉H
]
.

The F0-measurability of X0 ∈ L2(�; H) along with the independence of the stochastic integral 
with respect to F0 and its mean zero property imply that the second and the third term vanish: 
For � ∈ {1, 2} we define the L2(H; R)-valued stochastic process �� P-almost surely by

��(t) : w �→ 〈v�(t),G(X(t))w〉H ∀w ∈H
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for t ∈ T. Then we obtain ‖��(t)‖2
L2(H;R)

= ‖G(X(t))∗v�(t)‖2
H P-almost surely with the adjoint 

G(X(t))∗ ∈ L(H ; H) of G(X(t)) and

E

[
〈X0, v�(0)〉H

T∫
0

〈v�(t),G(X(t))dL(t)〉H
]

= E

[
〈X0, v�(0)〉H

T∫
0

��(t)dL(t)
]

= E

[
〈X0, v�(0)〉HE

[ T∫
0

��(t)dL(t)

∣∣∣F0

]]
= 0

by the definition of the weak stochastic integral, cf. [8, p. 151], the independence of the 
stochastic integral with respect to F0, and the fact that the stochastic integral has mean zero. 
For the first term we calculate by using the operator R0,0 defined in (3.7) and its continuity 
R0,0 ∈ L(H (π); Y(ε)′), cf. Lemma 3.9,

E[〈X0, v1(0)〉H 〈X0, v2(0)〉H ] = E
[
R0,0(X0 ⊗ X0)(v1 ⊗ v2)

]= R0,0(E[X0 ⊗ X0])(v1 ⊗ v2)

= R0,0
(
M

(2)X0
)
(v1 ⊗ v2).

Finally, the predictability of X together with the continuity assumptions on G imply the pre-
dictability of G(X) and we may use Lemma 3.10 for the last term yielding

E

[ T∫
0

〈v1(s),G(X(s))dL(s)〉H
T∫

0

〈v2(t),G(X(t))dL(t)〉H
]

= Tδ(E[G(X) ⊗ G(X)]q)(v1 ⊗ v2)

= Tδ(E[G1(X) ⊗ G1(X)]q)(v1 ⊗ v2) + Tδ((E[G1(X)] ⊗ G2)q)(v1 ⊗ v2)

+ Tδ((G2 ⊗E[G1(X)])q)(v1 ⊗ v2) + Tδ((G2 ⊗ G2)q)(v1 ⊗ v2)

= Tδ((G1 ⊗ G1)(M
(2)X)q)(v1 ⊗ v2) + Tδ((G1(m) ⊗ G2)q)(v1 ⊗ v2)

+ Tδ((G2 ⊗ G1(m))q)(v1 ⊗ v2) + Tδ((G2 ⊗ G2)q)(v1 ⊗ v2).

Since C1
0,{T }(T; D(A∗)) ⊂ Y is a dense subset, the claim follows. �

5. Existence and uniqueness

Before we extend the results of Section 4 for the second moment to the covariance of the 
mild solution in Section 6, we investigate in this section well-posedness of the variational prob-
lem (4.5) satisfied by the second moment.

To this end, we first take a closer look at the variational problem (4.4) satisfied by the mean 
function m = EX of the solution process X. The bilinear form B arising in this problem is 
known to satisfy an inf-sup and a surjectivity condition on X × Y , cf. the second part of [11, 
Theorem 2.2].
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Theorem 5.1. For the bilinear form B in (4.2) the following hold:

β := inf
u∈X \{0}

sup
v∈Y\{0}

B(u, v)

‖u‖X ‖v‖Y > 0, (5.1)

∀v ∈ Y \ {0} : sup
u∈X

B(u, v) > 0.

For proving well-posedness of the variational problem (4.5) satisfied by the second moment 
of the mild solution, we need a lower bound on the inf-sup constant β in (5.1). In order to derive 
this bound, we first recall the Nečas theorem, cf. [4, Theorem 2.2, p. 422].

Theorem 5.2 (Nečas theorem). Let H1 and H2 be two separable Hilbert spaces and B : H1 ×
H2 →R a continuous bilinear form. Then the variational problem

u ∈ H1 : B(u, v) = f (v) ∀v ∈ H2 (5.2)

admits a unique solution u ∈ H1 for all f ∈ H ′
2, which depends continuously on f , if and only if 

the bilinear form B satisfies one of the following equivalent inf-sup conditions:

(i) It holds

inf
v1∈H1\{0} sup

v2∈H2\{0}
B(v1, v2)

‖v1‖H1‖v2‖H2

> 0, inf
v2∈H2\{0} sup

v1∈H1\{0}
B(v1, v2)

‖v1‖H1‖v2‖H2

> 0.

(ii) There exists γ > 0 such that

inf
v1∈H1\{0} sup

v2∈H2\{0}
B(v1, v2)

‖v1‖H1‖v2‖H2

= inf
v2∈H2\{0} sup

v1∈H1\{0}
B(v1, v2)

‖v1‖H1‖v2‖H2

= γ.

In addition, the solution u of (5.2) satisfies the stability estimate

‖u‖H1 ≤ γ −1‖f ‖H ′
2
.

By using the equivalence of the Conditions (i) and (ii) in the Nečas theorem we are able to 
calculate a lower bound on β in the following lemma.

Lemma 5.3. The inf-sup constant β in (5.1) satisfies β ≥ 1.

Proof. Combining the results of Theorem 5.1 with the equivalence of (i) and (ii) in Theorem 5.2
yields the equality

β = inf
u∈X \{0}

sup
v∈Y\{0}

B(u, v)

‖u‖X ‖v‖Y = inf
v∈Y\{0}

sup
u∈X \{0}

B(u, v)

‖u‖X ‖v‖Y .

To derive a lower bound for β , we proceed as in [10,12]. Fix v ∈ Y \ {0}, and define u :=
v − (A∗)−1∂tv, where (A∗)−1 is the right-inverse of the surjection A∗ ∈ L(V ; V ∗). Then u ∈
X = L2(T; V ), since (A∗)−1 ∈ L(V ∗; V ), and we calculate as follows:
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‖u‖2
X =

T∫
0

‖u(t)‖2
V dt =

T∫
0

V 〈u(t),A∗u(t)〉V ∗ dt

=
T∫

0

V 〈v(t) − (A∗)−1∂tv(t),A∗v(t) − ∂tv(t)〉V ∗ dt

=
T∫

0

V 〈v(t),A∗v(t)〉V ∗ dt +
T∫

0

V 〈(A∗)−1∂tv(t), ∂t v(t)〉V ∗ dt

−
T∫

0

V 〈v(t), ∂t v(t)〉V ∗ dt −
T∫

0

V 〈(A∗)−1∂tv(t),A∗v(t)〉V ∗ dt.

Now the symmetry of the inner product 〈·, ·〉V on V yields

V 〈(A∗)−1∂tv(t),A∗v(t)〉V ∗ = 〈(A∗)−1∂tv(t), v(t)〉V = 〈v(t), (A∗)−1∂tv(t)〉V
= V 〈v(t), ∂t v(t)〉V ∗ ,

and by inserting the identity A∗(A∗)−1, using d
dt

‖v(t)‖2
H = 2 V 〈v(t), ∂tv(t)〉V ∗ and v(T ) = 0 we 

obtain

‖u‖2
X = ‖v‖2

X + ‖(A∗)−1∂tv‖2
X −

T∫
0

2 V 〈v(t), ∂t v(t)〉V ∗ dt

= ‖v‖2
X + ‖(A∗)−1∂tv‖2

X + ‖v(0)‖2
H

≥ ‖v‖2
X + ‖(A∗)−1∂tv‖2

X = ‖v‖2
X + ‖∂tv‖2

L2(T;V ∗) = ‖v‖2
Y .

In the last line, we used that ‖w‖V ∗ = ‖(A∗)−1w‖V for every w ∈ V ∗, since

‖w‖V ∗ = sup
v∈V \{0}

V 〈v,w〉V ∗

‖v‖V

= sup
v∈V \{0}

V 〈v,A∗((A∗)−1w)〉V ∗

‖v‖V

= sup
v∈V \{0}

〈v, (A∗)−1w〉V
‖v‖V

= ‖(A∗)−1w‖V .

Hence, we obtain for any fixed v ∈ Y and u = v − (A∗)−1∂tv that ‖u‖X ≥ ‖v‖Y . In addition, we 
estimate

B(u, v) =
T∫

V 〈u(t), (−∂t + A∗)v(t)〉V ∗ dt
0
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=
T∫

0

V 〈v(t) − (A∗)−1∂tv(t),A∗(v(t) − (A∗)−1∂tv(t))〉V ∗ dt

=
T∫

0

‖v(t) − (A∗)−1∂tv(t)‖2
V dt = ‖v − (A∗)−1∂tv‖2

X = ‖u‖2
X ≥ ‖u‖X ‖v‖Y

and, therefore,

sup
w∈X \{0}

B(w,v)

‖w‖X ≥ ‖v‖Y ∀v ∈ Y .

This shows the assertion

β = inf
w∈X \{0}

sup
v∈Y\{0}

B(w,v)

‖w‖X ‖v‖Y = inf
v∈Y\{0}

sup
w∈X \{0}

B(w,v)

‖w‖X ‖v‖Y ≥ 1. �
The result on the inf-sup constant β in Lemma 5.3 above can be formulated in terms of the 

operator B ∈ L(X ; Y ′) associated with the bilinear form B as follows: For every u ∈X it holds

‖Bu‖Y ′ = sup
v∈Y\{0}

B(u, v)

‖v‖Y ≥ ‖u‖X , (5.3)

i.e., B is injective and by Theorem 5.1 also surjective and, hence, boundedly invertible with 
‖B−1‖L(Y ′;X ) ≤ 1.

These preliminary observations on the operator B associated with the bilinear form B yield 
the following result on the operator B(π) = B ⊗̂π B mapping from the tensor product space X (π)

to the tensor product space (Y ′)(π).

Lemma 5.4. The unique operator B(π) ∈ L(X (π); (Y ′)(π)) satisfying B(π)(u1 ⊗u2) = Bu1 ⊗Bu2

for all u1, u2 ∈X is injective and, moreover, it holds

‖B(π)(u)‖(Y ′)(π) ≥ ‖u‖X (π) (5.4)

for all u ∈X (π).

Proof. Let u ∈ X ⊗ X and 
∑N

k=1 u1
k ⊗ u2

k be a representation of u and 
∑M

�=1 f 1
� ⊗ f 2

� be a 
representation of B(π)u.

Since B is boundedly invertible, 
∑M

�=1 B
−1f 1

� ⊗ B
−1f 2

� is a well-defined element in X ⊗X
and, furthermore, it is a representation of u, since

u =
N∑

k=1

u1
k ⊗ u2

k =
N∑

k=1

(
B

−1
Bu1

k

)
⊗
(
B

−1
Bu2

k

)
=
(
B

−1 ⊗B
−1
)( N∑

k=1

Bu1
k ⊗Bu2

k

)

=
(
B

−1 ⊗B
−1
)(

B
(π)u

)=
(
B

−1 ⊗B
−1
)( M∑

�=1

f 1
� ⊗ f 2

�

)
=

M∑
�=1

B
−1f 1

� ⊗B
−1f 2

� .
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With this observation we can estimate

‖u‖X (π) ≤
M∑

�=1

‖B−1f 1
� ‖X ‖B−1f 2

� ‖X ≤
M∑

�=1

‖f 1
� ‖Y ′‖f 2

� ‖Y ′,

since ‖B−1‖L(Y ′;X ) ≤ 1. This calculation shows ‖u‖X (π) ≤ ‖B(π)u‖(Y ′)(π) for all u ∈ X (π) and 
the assertion is proven. �

By using this lemma together with the properties of the operator Tδ , which we have derived 
in Section 3.3, we now prove well-posedness of the variational problem satisfied by the second 
moment of the mild solution.

Theorem 5.5. Suppose that

‖G1‖L(V ;L2(H;H)) < 1. (5.5)

Then the variational problem

w ∈X (π) : B̃(π)(w, v) = f (v) ∀v ∈ Y(ε) (5.6)

admits at most one solution w ∈ X (π) for every f ∈ Y(ε)′. In particular, there exists a unique 
solution u ∈X (π) satisfying (4.5).

Proof. It suffices to show that only u = 0 solves the homogeneous problem

u ∈X (π) : B̃(π)(u, v) = 0 ∀v ∈ Y(ε).

For this purpose, let u ∈X (π) be a solution to the homogeneous problem. Then it holds

0 = B̃(π)(u, v) = B
(π)(u)v − Tδ((G1 ⊗ G1)(u)q)v

for all v ∈ Y (ε) and, hence,

‖B(π)u − Tδ((G1 ⊗ G1)(u)q)‖Y (ε)′ = 0.

We calculate by using the estimate (5.4) of Lemma 5.4 as well as Lemma 3.2 as follows,

‖u‖X (π) ≤ ‖B(π)u‖(Y ′)(π) = ‖B(π)u‖Y (ε)′

≤ ‖B(π)u − Tδ((G1 ⊗ G1)(u)q)‖Y (ε)′ + ‖Tδ((G1 ⊗ G1)(u)q)‖Y (ε)′

= ‖Tδ((G1 ⊗ G1)(u)q)‖Y (ε)′

In addition, Proposition 3.8 and Estimate (3.4) in Lemma 3.5 (i) yield

‖u‖X (π) ≤ ‖Tδ‖L(W (π);Y (ε)′)‖(G1 ⊗ G1)(u)q‖W (π)

≤ ‖(G1 ⊗ G1)(·)q‖L(X (π);W (π))‖u‖X (π) ≤ ‖G1‖2
L(V ;L2(H;H))‖u‖X (π) .
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Therefore, u = 0, if G1 satisfies Condition (5.5), and the variational problem (5.6) has at most 
one solution. Under Assumption 2.1 on X0 and the affine operator G(·) = G1(·) + G2 there 
exists a unique (up to modification) mild solution X to the stochastic partial differential equa-
tion (2.2) with second moment M(2)X ∈ X (π) satisfying the variational problem (4.5), cf. Theo-
rems 2.3, 4.1, and 4.2. Therefore, we obtain existence and uniqueness of a solution to (5.6) for 
the right-hand side

f (v) = R0,0
(
M

(2)X0
)
v + Tδ((G1(m) ⊗ G2)q)v

+ Tδ((G2 ⊗ G1(m))q)v + Tδ((G2 ⊗ G2)q)v,

where m = EX and the variational problem (4.5) is well-posed. �
To conclude, we have shown in this section that there exists a variational problem that has the 

second moment of the mild solution (2.3) as its unique solution.

6. From the second moment to the covariance

In the previous sections, we have seen that the second moment M(2)X of the mild solution X
to the stochastic partial differential equation (2.2) satisfies a well-posed deterministic variational 
problem. As a consequence of this result we derive another deterministic problem in this section, 
which is satisfied by the covariance Cov(X) of the solution process. For this purpose, we remark 
first that

Cov(X) = E [(X −EX) ⊗ (X −EX)]

= E [(X ⊗ X) − (EX ⊗ X) − (X ⊗EX) + (EX ⊗EX)]

=M
(2)X −EX ⊗EX

and Cov(X) ∈ X (π), since M(2)X ∈ X (π) by Theorem 4.1 and m = EX ∈ X . By using this 
relation we can immediately deduce the following result for the covariance Cov(X) of the mild 
solution.

Theorem 6.1. Let all conditions of Assumption 2.1 be satisfied and let X be the mild solution 
to (2.2). Then the covariance Cov(X) ∈ X (π) solves the well-posed problem

u ∈X (π) : B̃(π)(u, v) = g(v) ∀v ∈ Y(ε) (6.1)

with B̃(π) as in (4.6) and for v ∈ Y (ε)

g(v) := R0,0(Cov(X0))v + Tδ((G(m) ⊗ G(m))q)v,

where Tδ and R0,0 are the operators defined in (3.5) and (3.7) and m ∈ X denotes the mean 
function introduced in (4.3).

Proof. The covariance of the mild solution satisfies that Cov(X) = M
(2)X − EX ⊗ EX by the 

remark above. By using the result of Theorem 4.2 for the second moment M(2)X as well as (4.4)
for the mean function m = EX we calculate for v1, v2 ∈ Y :
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B̃(π)(Cov(X), v1 ⊗ v2) = B̃(π)(M(2)X, v1 ⊗ v2) − B̃(π)(EX ⊗EX,v1 ⊗ v2)

= R0,0
(
M

(2)X0
)
(v1 ⊗ v2) + Tδ((G2 ⊗ G2)q)(v1 ⊗ v2)

+ Tδ((G1(m) ⊗ G2)q)(v1 ⊗ v2)as + Tδ((G2 ⊗ G1(m))q)(v1 ⊗ v2)

− 〈EX0, v1(0)〉H 〈EX0, v2(0)〉H + Tδ((G1(m) ⊗ G1(m))q)(v1 ⊗ v2)

= R0,0
(
M

(2)X0
)
(v1 ⊗ v2) − R0,0(EX0 ⊗EX0)(v1 ⊗ v2) + Tδ((G(m) ⊗ G(m))q)(v1 ⊗ v2).

Hence,

B̃(π)(Cov(X), v1 ⊗ v2) = g(v1 ⊗ v2) ∀v1, v2 ∈ Y

and this observation completes the proof, since the subset span{v1 ⊗ v2 : v1, v2 ∈ Y} ⊂ Y(ε) is 
dense and well-posedness of (6.1) follows from the existence of the mild solution X to (2.2) as 
well as its covariance Cov(X) ∈X (π) and Theorem 5.5. �
Remark 6.2. Theorem 6.1 shows that, if only the covariance of the mild solution to the stochas-
tic partial differential equation (2.2) needs to be computed, then one can do this by solving 
sequentially two deterministic variational problems: first, the more or less standard parabolic 
problem (4.4) for the mean function and afterwards problem (6.1) for the covariance, which is 
posed on non-reflexive tensor product spaces.
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