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Abstract

The characterization of the covariance function of the solution process to a stochastic partial differential
equation is considered in the parabolic case with multiplicative Lévy noise of affine type. For the second
moment of the mild solution, a well-posed deterministic space—time variational problem posed on projective
and injective tensor product spaces is derived, which subsequently leads to a deterministic equation for the
covariance function.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The covariance function of a stochastic process is an interesting quantity for the following
reasons: It provides information about the correlation of the process with itself at pairs of time
points. In addition, it shows if this relation is stationary, i.e., whether or not it changes when
shifted in time, and if it follows a trend. In [6] the covariance of the solution process to a
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parabolic stochastic partial differential equation driven by an additive Q-Wiener process has
been described as the solution to a deterministic, tensorized evolution equation. In this case the
solution process is also Gaussian with mean zero and therefore completely characterized by its
covariance. It is now natural to ask whether it is possible to establish such an equation also for co-
variance functions of solutions to stochastic partial differential equations driven by multiplicative
noise.

In the present paper, we extend the study of the covariance function to solution processes
of parabolic stochastic partial differential equations driven by multiplicative Lévy noise in the
framework of [8]. In this case the solution process is no longer fully characterized by the co-
variance, but the covariance function is still of interest as mentioned above. We emphasize that
it is the extension to multiplicative noise which is the main motivation and challenge here; the
extension to Lévy noise is rather straightforward since the theory of the corresponding Itd in-
tegral is more or less parallel to the Wiener case. The multiplicative operator is assumed to be
affine. Clearly, under appropriate assumptions on the driving Lévy process, the mean function
of the mild solution satisfies the corresponding deterministic, parabolic evolution equation as
in the case of additive Wiener noise, since in both cases the stochastic integral has expectation
zero. However, the presence of a multiplicative term changes the behavior of the second moment
and the covariance. We prove that also in this case the second moment as well as the covari-
ance of the square-integrable mild solution satisfy deterministic space—time variational problems
posed on tensor products of Bochner spaces. In contrast to the case of additive Wiener noise
considered in [6], the trial and the test space are not Hilbert tensor product spaces. Instead we
use different notions of tensor product spaces to obtain well-posed variational problems. These
tensor product spaces are non-reflexive Banach spaces. In addition, the resulting bilinear form
in the variational problem does not arise from taking the tensor product of the corresponding
deterministic parabolic operator with itself, but it involves a non-separable operator mapping to
the dual space of the test space. For these reasons, well-posedness of the derived deterministic
variational problems is not an immediate consequence, and operator theory on the tensor product
spaces is used to derive it. We emphasize that, although the present manuscript is rather abstract,
numerical methods based on this variational problem are currently under investigation [1].

The structure of the present paper is as follows: In Section 2 we present the parabolic stochas-
tic differential equation and its mild solution, whose covariance function we aim to describe. The
results formulated in Section 3 will be used for proving the main results of this paper in Sec-
tions 4—6. More precisely, in Subsections 3.1-3.3 we present different notions of tensor product
spaces and several operators arising in the variational problems satisfied by the second moment
and the covariance of the mild solution. The weak It6 isometry, which we introduce in Subsec-
tion 3.4, is crucial for the derivation of the deterministic variational problems. Theorems 4.2
and 5.5 in Sections 4 and 5 provide the main results of this paper: In Theorem 4.2 we show that
the second moment of the mild solution satisfies a deterministic space—time variational problem
posed on non-reflexive tensor product spaces. In order to be able to formulate this variational
problem, we need some additional regularity of the second moment which we prove first. The
aim of Section 5 is to establish well-posedness of the derived variational problem. Since the
variational problem is posed on non-reflexive Banach spaces, it is not possible to apply standard
inf-sup theory to achieve this goal. Instead, we show that the operator associated with the bilin-
ear form appearing in the variational problem is bounded from below, which implies uniqueness
of the solution to the variational problem. Finally, in Section 6 we use the results of the previ-
ous sections to obtain a well-posed space—time variational problem satisfied by the covariance
function of the mild solution.
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2. The stochastic partial differential equation

In this section the investigated stochastic partial differential equation as well as the setting
that we impose on it are presented. In addition, we formulate the definition as well as existence,
uniqueness, and regularity results of the mild solution to this equation in Definition 2.2 and
Theorem 2.3. Finally, in Lemma 2.4 we state a property of the mild solution which will be
essential for the derivation of the deterministic equation satisfied by its second moment and its
covariance function in Sections 4 and 6, respectively.

For two Banach spaces E| and E;, we denote by L(E; E3) the space of bounded linear
operators mapping from Ej to E5. In addition, we write £, (Hy; H>) for the space of Schatten
class operators of p-th order mapping from H; to H, where Hj and H, are separable Hilbert
spaces. Here, for 1 < p < oo, an operator T € L(H1; H>) is called a Schatten-class operator of
p-th order, if T has a finite p-th Schatten norm, i.e.,

1
P
1T,y 1y = (anm") < o0,

neN

where s1(T) > s2(T) > ... > s5,(T) > ... > 0 are the singular values of T, i.e., the eigenvalues
of the operator (T*T)'/? and T* € L(H>; Hy) denotes the adjoint of T. If Hj = H, = H, we
abbreviate £,(H; H) by L, (H). For the case p =1 and a separable Hilbert space H with inner
product (-, -) y and orthonormal basis (e,),eN, We introduce the trace of an operator T € L1 (H)
by

tr(T) := Z(Tenv en)H-

neN

The trace tr(T) is independent of the choice of the orthonormal basis and it satisfies | tr(7)| <
I T\l z, > cf. [2, Proposition C.1]. By ET(H) we denote the space of all nonnegative, symmetric
trace class operators on H, i.e.,

LY(H):={T € Li(H): (Tg,0)u = 0,(To, ¥)u = (0. TV)u Vo, ¥ € H}.

For p =2, the norm ||T|| z,(H,: B, coincides with the Hilbert—Schmidt norm.

In the following, U and H denote separable Hilbert spaces with norms || - ||y and || - ||z
induced by the inner products (-, -}y and (-, -) i, respectively.

Let L := (L(t),t > 0) be an adapted, square-integrable, U-valued Lévy process defined on a
complete filtered probability space (2, A, (F;):>0, P). More precisely, we assume that

(i) L has independent increments, i.e., for all 0 <17y <t} < ... <t, the U-valued random
variables L(t1) — L(tp), L(t2) — L(t1), ..., L(t,) — L(t,—1) are independent;
(i) L has stationary increments, i.e., the distribution of L(¢) — L(s), s < t, depends only on the
difference t — s;
(iii) L(0) = 0 P-almost surely;
(iv) L is stochastically continuous, i.e.,

lim P(IL(®) — L)y > €) =0 Ve >0, Vr=0;
§—>

s>0
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(v) L is adapted, i.e., L(¢) is F;-measurable for all # > 0;
(vi) L is square-integrable, i.e., E [||L(t)||%]] < oo forall t > 0.

Furthermore, we assume that, for ¢t > s > 0, the increment L(#) — L(s) is independent of F;
and that L has zero mean and covariance operator Q € ET(U ),i.e., foralls,r>0and x,y e U
it holds: E(L(¢), x)y = 0 and

E [(L(s), x)u (L), y)v] = min{s, 1} (Qx, y)v, 2.1

cf. [8, Theorem 4.44]. Note that under these assumptions, the Lévy process L is a martingale
with respect to the filtration (F;);>0 by [8, Proposition 3.25].

In addition, since Q € Efr( U) is a nonnegative, symmetric trace class operator, there exists an
orthonormal eigenbasis (e,),eny C U of Q with corresponding eigenvalues (y,)nen C R>o, i.e.,
Qe = ynen forall n € N, and for x € U we may define the fractional operator Q'/2 by

1 1
Q2x:= Zynz (x,en)uen

neN

as well as its pseudo-inverse Q~!/2 by

1 _1
O 2x:= Z Yn “(x,en)uen.

neN: y,#0

We introduce the vector space £ := Q'/>U. Then H is a Hilbert space with respect to the inner
product (-, -)3 :=(Q~'/%., 071/%)y.

Furthermore, let A: D(A) C H — H be a densely defined, self-adjoint, positive definite lin-
ear operator, which is not necessarily bounded but which has a compact inverse. In this case —A
is the generator of an analytic semigroup of contractions (S(¢), t > 0) and for r > 0 the fractional
power operator A”/? is well-defined on a domain D(A"/?) C H, cf. [7, Chapter 2]. We define the
Hilbert space H' as the completion of D(A’/?) equipped with the inner product

(@, V) gr = (A2, A2y

and obtain a scale of Hilbert spaces with HS CH" c H'=H for0 <r=s. Its role is to measure
spatial regularity. We denote the special case when r = 1 by V := H'. In this way we obtain a
Gelfand triple

Ves HEXH* < V*,

where we use * to denote the identification of the dual spaces of H and V with respect to the
pivot space H. Later on, the notation ’ will be used when addressing the dual space in its classical
sense, i.e., as the space of all linear continuous mappings to R. In addition, although the operator
A is assumed to be self-adjoint, we denote by A*: V — V* its adjoint for clarification whenever
we consider the adjoint instead of the operator itself. With these definitions, the operator A and
its adjoint are bounded, i.e., A, A* € L(V; V*), since for ¢, ¢ € V it holds
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ve(Ag, ¥y = (A2, AV2y) g = (@, ¥)v = vip, A¥Y) v,

where v+ (-,-)y and y (-, -)y+ denote dual pairings between V and V*.
We consider the stochastic partial differential equation

dX(@)+AX(1)dt =G(X(t))dL(t), teT:=[0,T],

(2.2)
X (0) = Xo,

for finite 7 > 0. In order to obtain existence and uniqueness of a solution to this problem as well
as additional regularity for its second moment, which will be needed later on, we impose the
following assumptions on the initial value X and the operator G.

Assumption 2.1. The initial value X and the operator G in (2.2) satisfy:

(i) Xo is a square-integrable, H-valued random variable, i.e., Xg € LZ(Q; H), which is
JFo-measurable;
(i) G: H — L>(H; H) is an affine operator, i.e., G(¢) = G(¢) + G, with operators G| €
L(H,Ly(H; H)) and Gy € Lr(H; H);
(iii) There exists a regularity exponent r € [0, 1] such that Xo € L>($; H") and A”/2S()G; €
LX(T; L(H"; Lo(H; H))). ie.,

T

r 2 .
[ IAESOGIE: e,y 2 < o5
0

(iv) AY2S()G € LX(T; L(H"; L2(H; H))), i.e.,

T

1 2
/ 1A28() G, ”L‘,(H’;Ez(?—[;H)) dr < o0,
0

with the same value for r € [0, 1] as in (iii);
v) Gie L(V,LWU; H)) and G, € L(U; H).

Note that the assumption on G in part (iv) implies the one in part (iii). Conditions (i)—(iii)
guarantee H' regularity of the mild solution (cf. Theorem 2.3), but we need all five assumptions
for our main results in Sections 4 and 6.

Before we derive the deterministic variational problems satisfied by the second moment and
the covariance of the solution X to (2.2) in Sections 4 and 6, we have to specify which kind of
solvability we consider. In addition, existence and uniqueness of this solution must be guaranteed.

Definition 2.2. A predictable process X: Q x T — H is called a mild solution to (2.2), if
SUP;eT ||X(t)||L2(Q;H) < 00 and

t
X(t)=S@{)Xo+ / S(t—s)G(X(s))dL(s), teT. (2.3)
0
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It is a well-known result that there exists a unique mild solution to equations driven by affine
multiplicative noise as considered above. More precisely, we have the following theorem.

Theorem 2.3. Under Assumption 2.1 (i)—(ii) there exists (up to modification) a unique mild so-
lution X of (2.2). If additionally Condition (iii) of Assumption 2.1 holds, then the mild solution
satisfies

sup ||X(t)||Lz(Q;Hr) < 00,
teT

ie, X € L®(T; L2(Q; H)).

Proof. The first part of the theorem follows from [8, Theorem 9.29]. Suppose now that Condi-
tion (iii) is satisfied. By the dominated convergence theorem, the sequence of integrals

T
[ 145G, .,y L0 (D)
0

where n € N and 19,7/,) denotes the indicator function on the interval (0, T'/n), converges to
zero as n — 0o. Therefore, there exists T € (0, T'] such that

7
2 ::/||A7S(I)G1||2£(H,;£2(H;H))dr< 1.
0

Define T := [0, T], Z := L®(T; L*(; H")) and

t
T:Z2— 2, Y2Z)):= S(t)X0+/S(t—s)G(Z(s))dL(s), reT.
0

Then Y is a contraction: For every ¢ € T and Z 1, Z> € Z we have

t
2
1200 =~ Y@ O g, =E| [ 0 = 961216) - zasn Lo,
0

t
=1EH/A%S(z — )G (Z(s) — Zz(s))dL(s)HiI,
0

since A and, hence, A’/? are closed operators. Now the application of Itd’s isometry for the case
of a Lévy process, cf. [8, Corollary 8.17], yields
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t
ITZD@ = Y(Z) O 0 o, =F / IA2S( = )G1(Z1(5) — Za() I, 3.y ds
0

t
< / 143G = )G 1 gy e B 1160 = Z2) 1, ] ds,
0

where the interchanging of the expectation and the time integral is justified by Tonelli’s theorem.
Therefore, we obtain the estimate

ITZD() = T(ZD O} 2, vy < K7 SUPENZ1(5) = Z2() 13,
seT

forallt € T and || Y(Z1) — Y(Z2)|lz <«kl||Z1 — Z3]| z, which shows that Y is a contraction. By
the Banach fixed point theorem, there gxists a unique fixed point X, of T in Z. Hence, X = X,
is the unique mild solution to (2.2) on T and

IX11% = supE[ X (1)]|%, < o.
teT

The claim of the theorem follows from iterating the same argument on the intervals
[n — DT, min{mT,T}], mell,2,....[7/T]}. o

Lemma 2.4 relates the concepts of weak and mild solutions of stochastic partial differential
equations, cf. [8, Section 9.3], and provides the basis for establishing the connection between
the second moment of the mild solution and a space—time variational problem. In order to state
it, we first have to define the differential operator d; and the weak stochastic integral. For a
vector-valued function u: T — H taking values in a Hilbert space H we define the distributional
derivative d,u as the H-valued distribution satisfying

T

d
(@r)(w), @) = —f O, o) di
0

forall ¢ € H and w € C3°(T; R), cf. [3, Definition 3 in §XVIIL1].

In the following, we consider the spaces L3(Q x T; Lo(H; H)) as well as L2( x T;
L(U; H)) of square-integrable functions taking values in £Lo(H; H) and L(U; H), respectively,
with respect to the measure space (2 x T, Pr,P ® X), where Pr denotes the o-algebra of
predictable subsets of €2 x T and A the Lebesgue measure on T. For a predictable process
® e L>(Q x T; L2(H: H)) and a continuous H-valued function v € CO(T; H), we define the
stochastic process W € L2(Q2 x T; Lo(H; R)) by

W(it): z=> (v(@), P()z)g YVzeH,

for all # € T. The predictability of W follows from the continuity of v on T and the predictability
of ®.
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The weak stochastic integral fOT (v(t), @(¢)dL(¢))y is then defined as the stochastic integral
with respect to the integrand W, i.e.,

T

T
/(v(t),CD(t)dL(t))H :=/W(t) dL(t) P-as., 24)
0

0

cf. [8, p. 151]. Its properties imply by [8, Equation (9.20)] the following lemma.

Lemma 2.4. Let Assumption 2.1 (i)—(ii) be satisfied and let X be the mild solution to (2.2). Then
it holds P-almost surely that

T
(X, (=9 + A")) 1207, gy = (X0, v(0)) +/<v(t),G(X(t))dL(t))H
0

forallv e cg,m(ﬂr; D(A*)) :={w € CY(T, D(A*)) : w(T) = 0}.
3. Auxiliary results

The aim of this section is to prove some auxiliary results that will be needed later on to derive
the main results in Sections 4, 5, and 6.

In Subsection 3.1 we introduce different notions of tensor product spaces and some of their
properties. The deterministic equations satisfied by the second moment and the covariance will
be posed on these kinds of spaces.

Next, in Subsection 3.2, we use these tensor product spaces to define the covariance kernel
associated with the driving Lévy process L and derive some additional results for the interaction
of this covariance kernel with the operators G| and G, see Lemmas 3.4 and 3.5.

In order to formulate our main results in Sections 4-6 in a compact way, we introduce
two operators in Subsection 3.3. These operators appear in the deterministic equations in Sec-
tions 4 and 6 and the results of this subsection provide the basis for proving their well-posedness
in Section 5.

Finally, Subsection 3.4 is devoted to an Itd isometry for the weak stochastic integral driven by
a Lévy process L.

3.1. Tensor product spaces

Before we formulate the first result, we have to introduce some definitions and notation: For
two Banach spaces E| and E3, we denote the algebraic tensor product, i.e., the tensor product
of E1 and E; as vector spaces, by E1 ® E;. The algebraic tensor product E1 ® E» consists of all
finite sums of the form

N

Y o®yn, @r€EL YxeEyk=1,...,N.
k=1

There are several ways to define a norm on this space. Here we introduce three of them:
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(i) Projective tensor product: By taking the completion of the algebraic tensor product E; ® E»
with respect to the projective norm defined for x € E1 ® E» by

N N
Ixlg 8, £, :=inf{2 loelle ¥l sx =Y o ® m} ,

k=1 k=1

the projective tensor product space E| ®, E, is obtained. We abbreviate E™) := E &, E,
whenever E| = E> = E.

(1) Injective tensor product: The injective norm of an element x in the algebraic tensor product
space E1 ® E is defined as

N
Xl g8, £, = SuP“Zf((/)k)g(wk)‘ :feBg.g¢€ BEé} ;

k=1

where BEi s BEQ denote the closed unit balls in the dual spaces E; =LE;R), j=1,2,

and Z,]cvzl or @ Yy is any representation of x € E1 @ E;. Note that the value of the supre-
mum is independent of the choice of the representation of x, cf. [9, p. 45]. The completion
of E1 ® E; with respect to this norm is called injective tensor product space and denoted by
E| &, E». If E| = E; = E, the abbreviation E® := E &, E is used.

(iii) Hilbert tensor product: If E| and E, are Hilbert spaces with inner products (-, -)g, and
(-, )E,, the tensor product E} ® E, is defined as the completion of the algebraic tensor
product E1 ® Ey with respect to the norm induced by the inner product

N M

X e = D D 0k D0 B (Vs Xe) s

k=1¢=1

where x = 21](\121 Ok @ Yy and y = Z/IZVI:I ¢ ® x¢ are representations of x, y € E1 ® E».
ForE\,=E,=E,set E? .= EQE.

In the latter case, we obtain again a Hilbert space, whereas the vector spaces in (i) and (ii) are
Banach spaces, which are in general not reflexive, cf. [9, Theorem 4.21]. The following lemma
is an immediate consequence of the definitions above.

Lemma 3.1. Let E1, E», F1, F> be Banach spaces and Hy, Hy, U1, U, be Hilbert spaces.

(1) For bounded linear operators S € L(E1; F1) and T € L(E;; F,), there exists a unique
bounded linear operator S Qn T :E|1 &y Ex — F| & F» such that (S ®, T)(x ® y) =
(Sx) ® (Ty) for every x € E1, y € E5 and it holds

IS ®x T\l 2(g,65 Ex: Fi&y Fy) = IS 2y PO INT N 2By By -

(ii) For bounded linear operators S € L(Hy; Uy) and T € L(Hy; Us), there exists a unique
bounded linear operator S QT :H ® Hi — U ® Uy such that (S® T)(x ® V=X
(Ty) for every x € Hy, y € Hy and it holds
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1S & Tl 2yt 160 = IS £t I T L i)

(iii) The following chain of continuous embeddings holds:
Hi &z Hy — H| & H, — H) ®; Ha,
where all embedding constants are equal to 1.

Proof. For (i) see [9, Proposition 2.3].

To see that S ® T is a bounded mapping with respect to the Hilbert tensor products in (ii), one
may proceed as in [5, Section 1.2.3] — there for the case H; = U; and H = U;. We may write
S®T asS®T =y, ® T)(S® Ip,) and for x € Hy ® Hy we can choose a representation
Z,i\]:] ©r @ Y of x, such that the vectors {wk},ivzl are orthonormal in H;. Then we obtain

N N
2
S®I1 2 = H S ” = Sei||?
1S @ T,) XNy, ¢, kE:I Pk ® Vi U6 H, kE=1 ISelly,

2 2 2 2
< IS0 a0 2 Nor i = ISUZ a0 10, &,
k=1

and, thus,

1S @ T)xlly, gy < IS 2erson 1, o,

for all x € H| ® H;. In the same way, one can prove that

Iy, ® T)ylly,au, < 1T 1Y 1,6,

for every y € U1 ® Hj and conclude for x € Hy ® H;
1S ® T)xlly,eu, = Tl ;v IS @ Tu)x Iy, g1, = NT I £ty un IS 2y un 11X gy & -

Therefore, there exists a unique continuous extension S ® T € L(H, ® Hy; U; ® Up) with

IS ® T\l 2 émy:0,60y) = IS 2ca;un 1T £k 0,) -
In order to prove (iii), let x € H; ® H>. Then we estimate

N N N
lmem =[S eoc@v] . < lok® vl am =3 Iorlm 1l
k=1 k=1 k=1

H\®H,

for any representation le{vzl ok ® Y of x. This shows that ||x||Hl®H2 <|x ||H] & Hy for all x €
Hi ® H and, thus, H| ®, H, < Hj ® H, with embedding constant 1.
Furthermore, by the Riesz representation theorem, for f € B H] and g € B H; there exist x r €

By, and x, € By, such that (x 7, ¢)g, = f(®), (Xg. V) H, g(l//) for all ¢ € Hy, ¥ € H;. This
yields
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N 2
Z Xf> 9k H (Xg» Yk) Hy
k=1

N
‘Z f((ﬂk)g(l”k)‘
k=1

Il
™M=
M=

X o0 B Xg» Vi) B X F> 0e) B (Xg» Vo) Hy

~
Il
o~
I

Il
M=
M=

<<Xf’ ¢Z>H1 Xf>s @k)Hl <(ng 1/f€>H2ng wk}Hz

~
Il
<N
~
Il
—-

Il
M=
M =

(Py 00 @) X 1, (P Ve Vi, 1 X

~
Il
_
o~
I
-

where Py, and Py, denote the orthogonal projections on the subspaces span{y s} :={a xr 1 €
R} C Hy and span{y,} :={a xg :a € R} C Hp, i.e,,

(xs.9)m (Xg: V)1
Px,(/’i:fizl)(f, ¢ € Hi, Py =502y, Y eH.
1 f 1, 1¢I5,

By using the properties of orthogonal projections we estimate

\Zf(wk)g(wk)) _||Xf||H]||Xg||HZZZ Py 90, Py i) 1, (Pyg e, Py Vi) iy

k=1 £=1

= llxrll, ||xg||%,ZZZ Py, 00 ® Py e, Py 0t ® Py Vi) 1 6oy
k=1¢=1

N

N
= lxsl%, ||xg||%,2(z Pyroe ® Py Ve, Y Py,gp ® ngwk> o
]
k=1

=1
N
= 1 g1, Z s 0k ® Py, H

N
2
_ 2 2 5
= 11, g || (P © ng>];¢k ® wkHH@Hz,

where P, 7 &® P denotes the extension of P, ;® Px to H; ® H», which has been introduced in
Lemma 3.1 (ii). This lemma and xrlle < 1 ||Xg||H2 <1yield

\Z @0 8@0| <184, @ P s
k=1

Z@k@”/kaH S,

_ _ 2
= [1Py, IIg(Hl;Hl)IIngllg(Hz;Hz)IIXIIH]®H2 = xIy ¢ 1
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for any representation Z,Z(V: 19k @ Y of x € H ® Hy. Since f € B H] and ge B Hj Were arbi-
trarily chosen we obtain

N
111 11, , 1, = SUP { \Z f(w)g(W)) f€By, g€ BHé} <15 gy 61,
k=1

This yields H; & H, — H; ®, H, with embedding constant 1 and completes the proof. O

For our purpose — formulating variational problems on tensor product spaces for the second
moment and the covariance of the mild solution to the stochastic partial differential equation —
the following result on the dual space of the injective tensor product of separable Hilbert spaces
will be important.

Lemma 3.2. Let H| and H> be separable Hilbert spaces. Then the dual space of the injective
tensor product space is isometrically isomorphic to the projective tensor product of the dual
spaces, i.e., (H| @, Hy) = H| R H;.

Proof. The proof can be extracted from [9] as follows: The dual space of the injective tensor
product space can be identified with the Banach space of integral bilinear forms on H; x H; by [9,
Proposition 3.14]. In addition, since H; and H, are separable Hilbert spaces, the dual spaces
H{ and H; have the so-called approximation property, which implies that the projective tensor
product of them can be identified with the Banach space of nuclear bilinear forms on H; x H»
by [9, Corollary 4.8 (b)]. In general, the space of nuclear bilinear forms is only a subspace of the
space of integral bilinear forms. Since we assume that H; and H; are separable Hilbert spaces,
they have monotone shrinking Schauder bases and this fact implies that every integral bilinear
form on H; x Hj is nuclear and the integral and nuclear norms coincide, cf. [9, Corollary 4.29].
Hence, the spaces (H ®¢ Hp) and H 1/ O Hé are isometrically isomorphic. O

3.2. The covariance kernel and the multiplicative noise

For a U-valued Lévy process L with covariance operator Q as considered in Section 2, we
define the covariance kernel g € U® as the unique element in the tensor space U ?) satisfying

(g, x®y)yo» =(0x, y)u 3.1

for all x, y € U. Note that for an orthonormal eigenbasis (e,),eny C U of Q with corresponding
eigenvalues (y,)neN We may expand

3= (g en®en)yeren@em)= Y Vi(en ®em) (32)

neNmeN meN

with convergence of the series in U @, since (e, ® em)n.meN 18 an orthonormal basis of U @
and (g, e, ® en)y@ = YmOum, Where &, denotes the Kronecker delta. In addition, we obtain
convergence of the series also with respect to U () which is shown in the following lemma.
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Lemma 3.3. The series in (3.2) converges in U™ e,

M
o Enmieoen],, =0
m=

Proof. For M € N define

M
au =Y Vin(em ® em). (3.3)

m=1

The trace class property of Q implies that ), _n¥m < 00. Hence, for any € > 0 there exists
No € N such that ZZ:MH ym <€ forall L > M > Ny and (gy)men is a Cauchy sequence in
U™ since for any L > M > Ny we obtain

L
||QL _QM“U(?T) = H Z Vm(em ®en)

L
< Y <e.
Uy — Ym
m=M+1 m=M+1

The completeness of the space U™ implies the existence of g, € U™ such that Mlim lgap —
—00
g« |y = 0. The convergence Mlim gu = ¢q in U® and the continuous embedding U™ —
— 00
U@, cf. Lemma 3.1 (iii), yield g = ¢, e U™ . O
The bilinear form and the right-hand side appearing in the deterministic variational problems
in Sections 4 and 6, contain several terms depending on the operators G and G, as well as on

the kernel ¢ that is associated with the covariance operator Q via (3.1). To verify that they are
well-defined we introduce the following Bochner spaces as well as their inner products

T

W= L*(T; H), (U1, u2)yy == f<u1(r>, un (1)) p dt,
0
T

X :=LXT; V), (vi, v)x == / (v1(1), v2 (1)) dt
0

and derive the results of the two lemmas below.
Lemma 3.4. For operators G| and G, satisfying Assumption 2.1 (v) the following hold.:
(1) The linear operator G1 @ G1: U QU — L(X; W) Q L(X; W),
M M
Yol @ei > Gi()e ® Gi()g}
(=1 (=1

admits a unique extension G| ®; G1 € LU; LX) Wiy),
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(ii) The linear operators G1 ® G2: UQU — L(X; W)QRH and G, G1: UQRU - H®
L(X;W),

M M M M
Yol @i Y GOl ®Gagt. Y 0t ®@wi > Y Gapl ® Gi()e}
=1 =1 =1 =1

admit unique extensions G| @y Gy € LU LIX; W &, H)) and G, &, Gy € LU,
L(X; H®; W)).
(iii) The linear operator G, @ Go: U QU — HQ H,

M M

Z(p,} ®¢; Z G2, ® G2}
=1 =1

admits a unique extension G ®; G, € L(U); H™).
Proof. We first note that G| € L(V; L(U; H)) implies that G can be identified with an element

in L(U; L(X;W)), because for any ¢ € U we estimate

1

2

T
1G1O¢llcceswy = sup  1Giwelw = sup, /”Gl(”(l‘))QO”%{dt

ueX ue
llull =1 lull x=1 \O
1
2

T
<lglly sup /IIGI(”U))”%:(U;md’
0

ueX
[leell =1
1
T 2
2
<ll¢lly sup 1G Uz . mplle®Iy At | <Gl zv:cw:myllello.

weX (V;L(U;H))
llull x=1 \O

This inequality shows that

G e LW; LX), NGillcw.ccxswy = WGillcvicw:my-
In order to prove (i), note that by Lemma 3.1 (i) for two vectors q)l, g02 € U there exists a
unique operator G1(-)¢' &, G1(-)¢?: X — W satisfying
N
(G10)¢! &1 G1O)6?) ) =Y Giwhe' ® G 1D
k=1

for any representation Z,]{\/:l ”11< ® u% of u e X ® X. This operator is bounded because

1G1()¢" &7 G1(O)Q? |l £ wimy = 1G1O@ e 1GLOQ N 2wy
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In addition, for a representation Zéw:l cpé ® (p,? of ¢ € U ® U we may extend

M
GIO®GINe =) Gi(Hp; ®Gi1()g: X QX > WRW
=1

to a bounded linear operator (G1(-) &, G1(-))¢ € L(X™; W) since

M

1(G1() ® GiN@ll vy < Y I1G1(9f ® GL(IG7 | vem i
=1

M M
=Y 1G1O¢lccxmIG1OGE lccxwy UG 2w cw:my 2 e Tulle?llu
=1 =1

by the observations above. Therefore, (G1(-) ® G1(-))¢ € LX) ; W) forall ¢ € U ® U with

1(Gi1() ® Gl('))fpﬂc(;((n);wm) <G ”%l(V;ﬁ(U;H)) ||§0||U(7r)-

This estimate shows that G| ® G1: U QU — L(X; W) ® L(X; W) admits a unique continuous
extension to an operator G| ®; G € LIU™; LX) ; W),

For part (ii), let ZQ/I: 1 (p} ® go% be again a representation of ¢ € U ® U. Then, for u € X, we
calculate

M
> ciweieai], . 1G 1@t IwIGag
=1 "

M
<
H - Z
=1
M
1 2
< IG1O@ e lullx 1Gallcw: my 97l
=1
M

1 2
<Gillcw:.cw:mplGallcw:mlullx D e lule?llu-
=1

This calculation implies that (G () ® G2)p € L(X; W ®, H) forany ¢ € U ® U with

1(G1() ® G290l L xowe, 1y S NCillcvcw:mplGlicw: mllellye.

and that there exists a unique extension G Qr Gr € LWU™; L(X;W &, H)). It is obvi-
ous that the same argumentation yields existence and uniqueness of an extension G; ®; G €
LWU™; L(X; H®z W)) of G, ® G.

Assertion (iii) follows immediately, since G, € L(U; H) implies the existence of G, ®r Go €
LWU™; H™) by Lemma 3.1 (i). O

Lemma 3.5. Define g € U asin (3.1) and let G and G, satisfy Assumption 2.1 (v).
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() (G1®G1)(g: X - W™ is bounded and

1G1 ® GOl ey NG Ty o 1y (34)

(i) (G1(-) ® G2)q € LIX; W &5 H) and (G2 ® G1(-))g € L(X; H® W);
(i) (G2® Ga)g e H™.

Proof. The results (G ® G1)(-)g € LX) ; W), (G1() ® G2)g € LIX; W Rz H), (G2 ®
G1())q € L(X; H®; W) and (G2 ® G2)q € H™ are immediate consequences of Lemma 3.4,
since ¢ € U™ by Lemma 3.3.

In order to prove the bound in (3.4), let M € N and define gy € U ® U as in (3.3). Set
Sm = /VYmem, m €N, and let Z,?’Zl u,lc ® u,% be a representation of u € X ® X'. Then we have

N M
1(G1 &= G Wamlwem <Y Y I1G1@) fnlWIIG1 ) finllw
k=1 m=1

1

N /M M :
<> (Z ||Gl(u,£)fmniv> (Z ||Gl<u,%)fm||%v>
k=1

m=1 m=1

N
2 1 2
NG Z vy 2 il xllugllx,
k=1

since for v € X’ we obtain
M T M T
Z||Gl(v>fm||%v=/z||G1(v(r>)fm||%1dzs/nGl(v(t)n&z(H;H)dt,
m=1 o m=l 0

where the last inequality follows from the fact that the set {f; : j € N, y; # 0} forms an or-
thonormal basis of H. Therefore,

T

M
2 2 2 2
Z ”Gl(v)fm”W = ||G1||£(V;£2(H;H))/ lv@®lly dt = ||Gl||£(v;52(7.[;[-[))”v”%\/
m=1
0

and, hence, (G| ® G1)()gyu € LX) ; W) for all M € N with

16G1 ® GOYOamll cxm.wiry, < NGHIZ v 004 1y

The bound for (G; ®,; G1)(-)g in (3.4) follows from Lemmas 3.3 and 3.4 (i), since
limy oo gy =q in U™ and G| &, G € LWU™; LXTD; W), 0O
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3.3. The diagonal trace operator
We introduce the spaces HOI{T}(’]I‘; V) = {v e HY(T; v*) : v(T) :0} as well as ) =
L¥(T; V)N HOl,{T} (T; V*), which is a Hilbert space with respect to the inner product
(vr, U2>y = (vy, Uz)LZ(T;v) + (0, vy, 3:”2)L2(T;v*), vy, 02 €.

Moreover, we obtain the following two continuous embeddings.

Lemma 3.6. It holds that Y < C°(T; H) with embedding constant C < 1, i.e., sup [[v(S)||g <
seT
lvily for every v e Y.

Proof. Foreveryve) = L¥(T; V)N H, 0 (7} (TI‘ V*) we have the relation

r

lv)I3; — llv) 1% = / 2y (@u@), v())yd, rseT, r>s,

N

cf. [3, §XVIIIL.1, Theorem 2]. Choosing » = T and observing that v(T) = 0 leads to
I <2080l 20y 2 yy U020 pey + W15 200y = 013 O

Lemma 3.7. The injective tensor product space satisfies Y© < CO(T; H)® with embedding
constant C < 1.

Proof. The continuous embedding of Lemma 3.6 implies that [glly < llgllcocr. mry for all
g € C%T; H)'. Therefore, the unit balls of the dual spaces satisfy Beo(r.y C By’ and the

embedding of the injective tensor product spaces follows, since for Z,/(V:] v,i ® v,f €YY we
obtain

N
HZvé ® v,%’
k=1

N
COCT: H)® = sup { ’Z f(v,i) g(v%)) . f, g e Bco(T;H)/}
’ k=1

S [ SR AET ) S ET W

In the deterministic equations satisfied by the second moment and the covariance, an operator
associated with the diagonal trace will play an important role. Foru e W @ W, v e Y ® Y and
representations Z,ivzl u ,i ® u,% and ZQL 1 vl} ® v% of u and v, respectively, we define

N M T
Ta(u)v::ZZf (b (), vE )Y m U2 (@), v2 (1)) g dr. (3.5)
0

k=1 t=1
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In addition, for u € W ® H and i € H ® VV with representations Z,Z(V: | Uk ® ¢k, and Z,ivzl O ®

up, ux €W, o € H, respectively, as well as ¢ € H ® H with representation Z/ZL 1 (p,l ® go,% we
define Ts accordingly,

N M T

Ty (iiyv = ZZ/ (i (1), v} (1)) (o vF (D) i,
k=1£=1}
N M T

T3 (i)v :=ZZ/(wk,v;(r)m(uk(n,vz(n)ydr,
k=1£=1}
N M T

Ts(p)v :=ZZ/@;,vé(r»H(w,%,v%(t))Hdr.
k=1t=1}

With these definitions, 75 admits unique extensions to bounded linear operators mapping from
the projective tensor product spaces W ®; W, W &, H, H ®, W, and H ®n H, respectively,
to the dual space Y = L()Y®); R) of the injective tensor product space ) ®. ) as we prove in
the following proposition.

Proposition 3.8. The operator Ts: (W Q W) x (Y ® V) — R defined in (3.5) admits a unique
extension to a bounded linear operator Ts € LONT); Y'Y with || Ts l cove . yery < 1. Further-
more, Ts as an operator acting on W Q H, H @ W, and H @ H admits unique extensions to
Ts € LON &y H; YO, Ts € LIH & W; V), and Ts € LHT); Y, respectively.

Proof. Let u € W ® W and v € Y ® Y with representations u = Z,](V:l u,i ® u% and v =
224:1 v} ® v2 be given. Then we obtain

|Ts (u)v| =

N M T
>3 [k stonutdo. d o ]
0

k=1 ¢=1

x-
I
—

=

,_.

T
/\ el 0), v} ) e 0. 03 ) a
0

Mz

T M
=3 [dotadon |y o odo],,
0 (=1

w-
I
—

since (¢, )y € By’ for ¢ € By . Therefore,

N T
o 2 / e N el ()11 de
k=1
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M N
<sup sup |0 (0l ®) g(03®)] D lub il Iw
k=1

teT f.geBy =1

M N
= sup sup |30 £ (8:0D) g(6:D)| X luk il Iow,
k=1

s,t€T f.geByr 'y

where 8;: CO(T: H) — H denotes the evaluation functional in ¢ € T, i.e., 8;(v) := v(r). We
obtain the estimate

M N
Lol < swp 3D 03| X lutlwilidiw,
f8€BLo(. yy =1 k=1

because f 08, € Beocr.yyy for f € By and ¢ € T. Hence,

| Ts@)v| < vl coer: myo lullyye < vllye lullyye,
since Y — C%(T; H)® with embedding constant 1 by Lemma 3.7, and T3 admits a unique
extension Ty € LONVT); Y©y.

For e W® H and i € H ® VW with representations Z}I{V:l up ® g and Z,,]{vzl or ® u,%,
respectively, one can prove in the same way as above that

ITs@v] < VT llyolillwe, g 1Ts@v < VT [vllye lillgg, w

for all v € Y®. Finally, for ¢ € H ® H with representation Z,ICVZI go,} ® go,% we obtain for all
veY®

I Ts(@v| < T [lvllye 1@l oo -

The last three estimates show that there exist unique extensions 75 € LV Q5 H: VO, Ty €
L(H ®; W; Y@, and Ts € L(H; V) and complete the proof. O

In addition to Ts we define the operator R;: H — ) fort € T by
Ri(@v:=(p,v(®))n, veD. (3.6)

The next lemma shows that we obtain a well-defined operator R, ; € L(H (M) Yy by setting
Rs;:=R; ®; R, fors,t e T.

Lemma 3.9. The operator R, defined for t € T in (3.6) is bounded and satisfies | R;|| z(q.yy < 1.
Furthermore, for s,t € T the operator Rs; : H® H — )’ ® Y’ defined for p € H ® H by

N
Rs.1(¢) = (Ry ® R)(9) = Y Ry(9) ® Ri(9}), 3.7)
k=1
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where lecvzl 9011 ® ‘P/% is a representation of ¢ € H ® H, admits a unique extension to a bounded
linear operator Ry, € L(H™; Y,

Proof. For t € T and ¢ € H we calculate by using the Cauchy—Schwarz inequality and
Lemma 3.6,

IR (@)v] =g, vO))ul| < llellallvO)la < llellalvicom ) < llellalviy

for all v € Y. This proves that R, (¢) € )’ for all ¢ € H with || R;(¢) ||y < l¢ |l &, which implies
the assertion R, € L(H; Y') with | R || zcu.yy <1 forall t € T.

By Lemma 3.1 (i) there exists a unique continuous extension Ry, € L(H ®, H; Y ®z V')
of Ry;: H® H— Y ® ) defined in (3.7) for s, t € T. The fact that V@’ is isometrically
isomorphic to )’ ®, ), cf. Lemma 3.2, completes the proof. O

3.4. A weak It6 isometry

In this subsection the diagonal trace operator is used to formulate an isometry for the expec-
tation of the product of two weak stochastic integrals driven by the same Lévy process. This
isometry is an essential component in the derivation of the deterministic variational problems for
the second moment and the covariance in Sections 4 and 6.

Lemma 3.10. For a predictable process ® € L2(Q x T; L(U; H)) and the covariance kernel

qe€ U® in(3.1) the function E[® () ® ®(-)]q is a well-defined element in the space W) The
weak stochastic integral, cf. (2.4), satisfies for v, vy € Y

T T
E[/(Ul(S), ¢(S)dL(S))Hf(v2(l), cb(t)dL(t))H:| =T(E[P() ® P()]g)(v1 ® v2).
0 0

Proof. In order to prove that E[® () ® ®(-)]g is a well-defined element in the space we,
it suffices to show that ®(-) ® ®(-) € L1 (Q; LWU™; W™)), and, hence, E[®(-) @ ®(-)] €
LU, W(”)), since g € 0452 by Lemma 3.3. To this end, we estimate

190 ® POl @ucwmminy =E[I190) 8 SOl cumaven | =E 190120 ]

i T T
=E| sup /ncb(r)wn%,dr <E / sup (| D)y 17 d
yeu velU
Llyly=10 0 Jylu=1
- T
=E / PO Z .y 4t | = 1PUT 2 e 0 ) < O
LO

In order to justify that the weak stochastic integrals are well-defined, we note that the following
embedding holds,

L*(Q x T; L(U: H)) < L*(Q x T; L2(H; H))
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with embedding constant +/tr(Q) < oo, since

T T
1PN 2@ 220119 = E / 1D OIZ, 34 1y dt =E f D I @) fill7 de

T

sEfZIICD(t)IIf;(U;H)IIijI%/dt
0 jEI

T
=t(Q)E / 1RO Z . 1y dt = 0D IPN7 2 e £ 1y
0

where f, := /vne, and T :={j € N: y; # 0} for an orthonormal eigenbasis (e,),eny C U
of Q with corresponding eigenvalues (y,),en. For this reason, the weak stochastic integrals

fOT(w (1), ®(t)dL(t)) g are well-defined for vy € Y ¢ CU(T; H), £ € {1,2}. Recalling the defi-
nition of the weak stochastic integral in (2.4) yields the equality

T

T
/(ve(t)»@(l)dL(t)m=/‘I’z(t)dL(t), £=1,2,
0

0
where for £ € {1, 2} the stochastic process W, € L2(Q x T; £L(U; R)) is defined by
Wet): 2> (ve(0), ®(N)z)y VzeH

forallt € T. Applying Itd’s isometry, see [8, Corollary 8.17], along with the polarization identity,
yields

T T

T
E[/ ‘Pl(t)dL(t)/‘Pz(t)dL(t)} =/E[<‘P1(t),‘I’z(t)>£2(H;R)]dt,
0 0 0

where (-, -) £, (#;Rr) denotes the Hilbert—Schmidt inner product, i.e.,

(W) £, 0000 = Y D) U (o)

neN

for®, U e Lr(H; R), where ( ﬂ)neN is an orthonormal basis of . By choosing the orthonormal
basis (f}) jez from above we obtain

T T T
E[/(vl(S), <I>(S)dL(S)>H/(v2(t), cI>(t)dL(f))H] :/E[(\I’l([)a“I/Z(I»EZ(’H;R)] dr
0 0 0
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D i), @) fi) m (v2(0), <1><r>f,~>H} dt

-jel

Z)/le(t), P (t)en) u{v2(1), q)(t)en)H] dr

-neN

> 010 @ v2(0). [0(1) ® (1) lya(en ® en»Hm] dr

-neN

(W10 @ 1a(D), [P ® D) D Yulen ® en)>H<z>] dr

- neN

[(v1(1) ® v2(1), [P(1) ® P(1)]g) g ] dt.

5917

By Proposition 3.8 the diagonal trace Ts5(E[P(-) ® ®(-)]g)(v1 ® v2) is well-defined, since
E[®(-) ® ®(-)]g € W . With the introduced notion of the operator Ty we can rewrite the above

expression as

T T
]E[/(M(S), q)(s)dL(S))H/(W(f)s CD(t)dL(t)m]
0 0

T
= /(vl(t) Q v2(1), E[® (1) @ ®(1)lg) gy dt = Ts(E[P () ® P()]g)(vi ® v2),
0

which completes the proof. O

4. The second moment

After having introduced the stochastic partial differential equation of interest and its mild
solution in Section 2, the aim of this section is to derive a well-posed deterministic variational
problem, which is satisfied by the second moment of the mild solution.

The second moment of a random variable Y € L2(Q2: H;) taking values in a Hilbert space
Hj is denoted by M®Y := E[Y ® Y]. We recall the Bochner spaces W = L(T; H), X =
LZ(T; V)and Y = Lz(']I‘; Vyn Holy {T}(’]I‘; V*). It follows immediately from the definition of
the mild solution that its second moment is an element of the tensor space W®. Under the
assumptions made above we can prove even more regularity.

Theorem 4.1. Let Assumption 2.1 (i)—(iv) be satisfied. Then the second moment of the mild
solution X defined in (2.3) satisfies MP X e X = X &, X.
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Proof. First, we remark that
IMPX |y = IE[X ® X[l yo <EIX ® X[y =E [||X||%{] :

Hence, we may estimate as follows:

t

T
2
IM®@X]| p 5]E/Hs(;)x0+/5(t —s)G(X(s))dL(S)”le
0 0

T t
2
<2E / [nsmxeu% +| / S(t — )G (X () dL(s) V}dt
0 0
T T t

=2E[/ ||A%S(t)Xo||%1dl‘:| +2/IEH/A%S(t—s)G(X(s))dL(s)HiIdt.
0 0o 0

Since the generator —A of the semigroup (S(¢), ¢t > 0) is self-adjoint and negative definite, we
can bound the first integral from above by using the inequality

T

1 1
/IIAZS(t)wllidtsillwlli, peH, 4.1)
0

and for the second term we use Itd’s isometry, cf. [8, Corollary 8.17], as well as the affine struc-
ture of the operator G to obtain

T ¢
1
IM® X || per) < Ell XollZ; + 2/E/ IA2 S = )G (X (N7, (34: 1) ds dt
0 0
T t
1
<E| Xol} +4// A28t = $)GallZ, 34,11y ds dt
0 0
T ¢
1
+4/ ]E/ |A2S(t —5)G (X(s))||2Lz(H;H) ds dz.
0 0
By Assumption 2.1 (i)—(iii) as well as Theorem 2.3 there exists a regularity exponent » € [0, 1]
such that the mild solution satisfies X € L>(T; L?($2; H")). In addition, by Assumption 2.1 (iv)
it holds that AY2S(-)G1 € L3(T; L(H"; L2(H; H))). Then we estimate as follows,
T ¢

1
IMP X |y < E[Xol3 +4Z// IAZS(t = 5)Ga fy I3y ds de
neNO 0
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t

T
1
[ [1AESC =961 1y EVX O dc
00

for an orthonormal basis ( f),en of H. Applying (4.1) again with upper integral bound ¢ instead
of T yields

||M(2)X||X(7r) =< ||X0||iZ(Q;H) + ZT“Gz”%Z(H;H)

2 1 2
+ 4T ”X”LOO(T;Lz(Q;H’)) “A 2 S()Gl Ile(T;E(Hr;Ez(H; H))’

which is finite under our assumptions and completes the proof. O
We define the bilinear form B: X x ) — R by

T

B(u, v) :=/ vi{u(@), (=0 + A*)v(r)) v+ dt, ueX,ve), 4.2)
0

and the mean function m of the mild solution X in (2.3) by
m@):=EX@#)=St)EXy, teT. 4.3)

Note that due to the mean zero property of the stochastic integral the mean function depends only
on the initial value X and not on the operator G. Furthermore, applying inequality (4.1) shows
the regularity m € X', and m can be interpreted as the unique function satisfying

meX: B@m,v)=(EXyv0)y Yve). 4.4)

Well-posedness of this problem follows from [11, Theorem 2.3].

In addition, we introduce the operator B: X — )’ associated with the bilinear form B, i.e.,
Bu := B(u,-) € )’ for u € X. Then this linear operator is bounded, B € £(X,)’) and B ®
B: XX — ) ®) defined by

N N N
B ®B)(;u}( ® u%) = ];Bu,i ®IB%u,% = ;B(u,l, IR B(u,%, 2

admits a unique extension to a bounded linear operator B e £(X); ())™) satisfying
B =B®Bon X ®X and B £, yryomy = ||IBS||2£( x5y by Lemma 3.1 (i). With these
definitions and preliminaries we are now able to show that the second moment of the mild solu-
tion solves a deterministic variational problem.

Theorem 4.2. Let all conditions of Assumption 2.1 be satisfied and let X be the mild solution
to (2.2). Then the second moment M® X € X solves the following variational problem

ue X BOw )= fv) Vvey®, (4.5)



5920 K. Kirchner et al. / J. Differential Equations 262 (2017) 5896-5927

where for u € X and v € Y©®

B (u, v) :=B™ w)v — Ts((G1 ® G1)(w)q)v, (4.6)
f () = Roo(MP X0)v + T5((G1(m) ® G2)g)v
+T5((G2 ® G1(m))g)v + T5((G2 ® G2)g)v

with the operators Ts and Ry defined in (3.5) and (3.7) and the mean function m € X in (4.3).

Proof. First, we remark that B )(u, v) is well-defined for u € X @) and v € Y@, since the
tensor spaces )’ ®, )’ and (J ®, V)’ are isometrically isomorphic by Lemma 3.2 and, hence,
Bu—T5((G1®G1)(u)g) € Y@ forall u € X by the definition of B and Proposition 3.8.
Let vy, vs € C&{T}(T; D(A*)) = {¢p € C1(T; D(A*)) : ¢(T) = 0}. Then we obtain
B (M X) (1 ® v2) = BT (EIX @ XD(v1 @ v2) = E[B™ (X ® X)(v1 @ v2)]
=E[BX) @ B(X))(vi ® v2)| =E[B(X, v1) B(X, v2)]
=E [(X, (—3, + A*)v1>L2(T;H) (X, (—8t + A*)UZ)LZ(T;H)] .

Due to the regularity of v; and v> we may take the inner product on L?(T; H) in this calculation.
Now, since X is the mild solution of (2.2), Lemma 2.4 yields

T
B (M@ X) (01 @ v2) = E[((Xo, V1O + / (W1(5), GX () L) )
0

T

(%0220 + [ (2t G(X(z))dL(t»H)}
0

=E[(X0,v1(0)) g (X0, v2(0)) ]
T

+ B[ o) [ (020, GCX ) AL ]

+E[(Xo, 02000} n [ (1), GX () dL () ]

oY—— 4 °

T T
+5[ [ 0. 6N Lo [a0. 60 dL@n].
0 0

The JFo-measurability of Xo € L?(Q2; H) along with the independence of the stochastic integral
with respect to Fp and its mean zero property imply that the second and the third term vanish:
For ¢ € {1, 2} we define the £, (H; R)-valued stochastic process W, P-almost surely by

We(t): w (ve(t), GX@)w)y YweH
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for t € T. Then we obtain || W, (z) ”2L2(7-L-R) =|1G(X (@) ve(2) ||%{ P-almost surely with the adjoint
G(X(t))* € L(H;H) of G(X(t)) and

T T

[ (Xo. v [ (000, GX )AL ] = B[ (X0, e [ weraL )]
0 0
T
— [ (X0, v [ | w0 aLo | 7] | o
0

by the definition of the weak stochastic integral, cf. [8, p. 151], the independence of the
stochastic integral with respect to Jp, and the fact that the stochastic integral has mean zero.
For the first term we calculate by using the operator Ry ¢ defined in (3.7) and its continuity
Roo € L(H™; Y cf. Lemma 3.9,
E[(Xo, v1(0)) & (X0, v2(0)) ] =E [Ro,0(X0 ® X0)(v1 ® v2)] = Ro,0(E[Xo ® Xo]) (v ® v2)
= Ro,0(M® Xo)(v1 ® v2).

Finally, the predictability of X together with the continuity assumptions on G imply the pre-
dictability of G(X) and we may use Lemma 3.10 for the last term yielding

T T
B [ (150, 660 AL [ 0200, G0 AL} ]
0 0

= T3E[G(X) ® G(X)Ig)(v1 ® v2)
=T(E[G1(X) ® G1(X)]g)(v1 ® v2) + T5((E[G1(X)] ® G2)g)(v1 ® v2)
+ T5((G2 ® E[G1(X)Dg) (1 ® v2) + T5((G2 ® G2)q) (v1 ® v2)
=T5((G1 ® G)YMP X)) (v1 ® v2) + T5((G1(m) ® G2)g)(v1 ® v2)
+ T5((G2 ® G1(m))q) (v1 ® v2) + T5((G2 ® G2)q) (v1 ® v2).

Since Cé’{T}(T; D(A*)) C )V is a dense subset, the claim follows. O
5. Existence and uniqueness

Before we extend the results of Section 4 for the second moment to the covariance of the
mild solution in Section 6, we investigate in this section well-posedness of the variational prob-
lem (4.5) satisfied by the second moment.

To this end, we first take a closer look at the variational problem (4.4) satisfied by the mean
function m = EX of the solution process X. The bilinear form B arising in this problem is
known to satisfy an inf-sup and a surjectivity condition on X x ), cf. the second part of [11,
Theorem 2.2].
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Theorem 5.1. For the bilinear form B in (4.2) the following hold:

B
Bim inf  suyp oYy (5.1)
ueX\{O}vgy\ lullxllvlly

Yve Y\ {0}: sup B(u,v)>0.
ueX

For proving well-posedness of the variational problem (4.5) satisfied by the second moment
of the mild solution, we need a lower bound on the inf-sup constant § in (5.1). In order to derive
this bound, we first recall the Necas theorem, cf. [4, Theorem 2.2, p. 422].

Theorem 5.2 (Necas theorem). Let Hy and H> be two separable Hilbert spaces and B: Hy x
Hy — R a continuous bilinear form. Then the variational problem

ueH : Bu,v)=fw) YveH 5.2)

admits a unique solution u € Hy for all f € H,, which depends continuously on f, if and only if
the bilinear form 8B satisfies one of the following equivalent inf-sup conditions:

() It holds

By, v2) B(vi, v2)
inf sup ————— >0, inf sup ————
vieHI\O) yye o\ 0y 1YL Iy T2l B, veH\0 e\ (o) 1V1 1l ey 12l B,

(ii) There exists y > 0 such that

B(vy, v2) B(vi, v2)
inf sup ——— = inf sup —————
leHI\{O} vem\(0) V1l llv2ll vzeHz\{O} o) v lla lvalle

In addition, the solution u of (5.2) satisfies the stability estimate

-1
lall iy < v~ A N

By using the equivalence of the Conditions (i) and (ii) in the Necas theorem we are able to
calculate a lower bound on g in the following lemma.

Lemma 5.3. The inf-sup constant B in (5.1) satisfies 8 > 1.

Proof. Combining the results of Theorem 5.1 with the equivalence of (i) and (ii) in Theorem 5.2
yields the equality

B(u, v) ) B(u,v)

inf ~ sup inf =~ sup o
~ uel\0) ey o) el iy vl exyo Tellelvly”

To derive a lower bound for 8, we proceed as in [10,12]. Fix v € Y \ {0}, and define u :=
v — (A*)719,v, where (A*)~! is the right-inverse of the surjection A* € £(V; V*). Then u €
X = L%(T; V), since (A*)~! € £L(V*; V), and we calculate as follows:
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T

T
||u||3(=/||u(r>||2vdr=/ v (), A*u())ye dr
0

0

T
_ / v (0() = (A% 3,000, A*(1) — d0(D) v di
0

T

T
=/ V(U(f),A*v(t))v*dt—l-/ V(A7 900, B(1)) v+ dr
0 0

T T
—/ v(v(l),f)zv(t))v*dl—f v (A" 100 (), A¥v(0)y+ dr.
0 0

Now the symmetry of the inner product (-, -)y on V yields

VAN (), A*u)ve = (A 0(), v(@) v = (v(1), (A*) ' u(0)y
= v {(v(®), Bv(D)) v,
and by inserting the identity A*(A*)~!, using % ||v(t)||%1 =2y {v(), d;v())yx and v(T) =0 we
obtain

T

lull% = Ivlli% + 1A 915 —/2 y (), u(r)) v+ dr
0

= [vll% + 1AH 3 vl3 + v O)]1%

= vl + 1A 1Bl = 1 + 18017200, ey = 015

In the last line, we used that |Jw]|y+ = || (A*) " w]|y for every w € V*, since

v{v, w)yx
wlly*= sup ————
venrioy  llvlly
v (v, A*((A*) " w))y= (v, (AHw)y _
= sup = 1 AaH wlly.
veV\{0} lvllv veV\{0} lvlly

Hence, we obtain for any fixedve Y andu =v — (A*)~19,v that |u| x > [[lv]ly. In addition, we
estimate

T
B(u,v) = / v{u(®), (=3 + Av(®))y=dt
0
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T
= / v (u(t) — (A" 13 u(r), A*(v(r) — (A") 1 80(r))) v+ dr
0
T

= / () — (AH T BN} dr = [lv — (A w13 = lull? = lullxlvlly
0

and, therefore,

B(w, v)
sup
wex\foy lwllx

> lvlly Yvel.

This shows the assertion

B(w, v) . B(w, v)

= in sup = i sup ———— > 1.
weX\[0} yeyr (o) IWllxllVly  ved\ (0} wearjoy lwllxllvily

The result on the inf-sup constant 8 in Lemma 5.3 above can be formulated in terms of the
operator B € L(X; ') associated with the bilinear form B as follows: For every u € X it holds

B(u,v)
[Bully» = sup
venvioy Ivlly

> Jlullx, (5.3)

i.e., B is injective and by Theorem 5.1 also surjective and, hence, boundedly invertible with
B~ corx) < 1.

These preliminary observations on the operator B associated with the bilinear form B yield
the following result on the operator B = B &, B mapping from the tensor product space X ™)
to the tensor product space ())").

Lemma 5.4. The unique operator B™ e £L(X™; (V)™ satisfying B™ (u' @ u?) = Bu' @ Bu?
forall u', u? € X is injective and, moreover, it holds

IB™ @)l e > llaell oo (5.4)
forallu e X,

Proof. Let u € X ® X and Z,]{V:] u; ® uj be a representation of u and Zéw:] f} ® ff bea
representation of BTy,

Since B is boundedly invertible, nyzl B! le QB! fg2 is a well-defined element in X @ X
and, furthermore, it is a representation of u, since

Y 1 2= Y -1 1 —1 2 — -1 —1 <N 1 2)
Y ul®ul ];(IB Buk)@)(IB% ]B%uk) (IB ®B ) ;Bukmsauk

=1

u

=

M M
(B—l ®IB‘1) (B™u) = (B—l ®IB‘1) <Z fle fez) _ ZE—lle QB! 2.
=1

=1



K. Kirchner et al. / J. Differential Equations 262 (2017) 5896-5927 5925

With this observation we can estimate
M M
—1 ,1 —1 22 1 2
Il e < D IBT FAIBT L < Y 1A Iy I Ny
=1 =1

since B!l £(37;x) < 1. This calculation shows [[u]| i < B ul|yre for all u € X and
the assertion is proven. O

By using this lemma together with the properties of the operator Ty, which we have derived
in Section 3.3, we now prove well-posedness of the variational problem satisfied by the second
moment of the mild solution.

Theorem 5.5. Suppose that
1G1llev;cortsmy < 1. (5.5)
Then the variational problem

weX™: BWw,v)=rfw Vvey® (5.6)

admits at most one solution w € X@ for every f € Y©. In particular, there exists a unique
solution u € X satisfying (4.5).

Proof. It suffices to show that only u = 0 solves the homogeneous problem
ueX™: BMwu,v)=0 vuey®.
For this purpose, let u € X be a solution to the homogeneous problem. Then it holds
0=B"(,v) =B® v — (G @ G g
for all v € Y® and, hence,
IB™u — T5((G1 ® G1)()q) || yer =0.
We calculate by using the estimate (5.4) of Lemma 5.4 as well as Lemma 3.2 as follows,
lull ey < 1B ull (yryenr = 1B ulyeer
< IB™u — T5((G1 ® G llyer + IT5(G1 & G (@) llyer
= T:((G1 ® G1)(W)@)llyer
In addition, Proposition 3.8 and Estimate (3.4) in Lemma 3.5 (i) yield
lull xoor < I T51l Loy yen 1(G1 & G1) (W) llyye

<G ® GOl g wen lull v NG Z (v o34 1y 12 -
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Therefore, u = 0, if G satisfies Condition (5.5), and the variational problem (5.6) has at most
one solution. Under Assumption 2.1 on X¢ and the affine operator G(-) = G1(-) + G» there
exists a unique (up to modification) mild solution X to the stochastic partial differential equa-
tion (2.2) with second moment M X € X" satisfying the variational problem (4.5), cf. Theo-
rems 2.3, 4.1, and 4.2. Therefore, we obtain existence and uniqueness of a solution to (5.6) for
the right-hand side

F@) = Roo(MPXo)v + T5((G1(m) ® G2)q)v
+T5((G2 ® G1(m))q)v + T5((G2 @ Ga)g)v,

where m = [EX and the variational problem (4.5) is well-posed. O

To conclude, we have shown in this section that there exists a variational problem that has the
second moment of the mild solution (2.3) as its unique solution.

6. From the second moment to the covariance

In the previous sections, we have seen that the second moment M® X of the mild solution X
to the stochastic partial differential equation (2.2) satisfies a well-posed deterministic variational
problem. As a consequence of this result we derive another deterministic problem in this section,
which is satisfied by the covariance Cov(X) of the solution process. For this purpose, we remark
first that

Cov(X)=E[(X —EX) ® (X — EX)]
=E[(X®X)—EX®X) - (XQEX)+ (EX ® EX)]
=MPX —EX®EX

and Cov(X) € X, since MP X € X by Theorem 4.1 and m = EX € X. By using this
relation we can immediately deduce the following result for the covariance Cov(X) of the mild
solution.

Theorem 6.1. Let all conditions of Assumption 2.1 be satisfied and let X be the mild solution
t0 (2.2). Then the covariance Cov(X) € X solves the well-posed problem

ue X . g(”)(u’v)=g(v) vy e Y© (6.1)
with B™ as in (4.6) and for v e Y©
g) := Ro,0(Cov(Xo))v + T5((G(m) ® G(m))q)v,

where Ts and Ry are the operators defined in (3.5) and (3.7) and m € X denotes the mean
function introduced in (4.3).

Proof. The covariance of the mild solution satisfies that Cov(X) = M® X — EX ® EX by the
remark above. By using the result of Theorem 4.2 for the second moment M® X as well as (4.4)
for the mean function m = [EX we calculate for vi, vy € V-
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B (Cov(X), v @ v2) = BPMPX, v; ® vp) — BP([EX @ EX, v ® v2)
= Ro,0(M@X0)(v1 ® v2) + T5((G2 ® G2)q) (v @ v2)
+ T5((G1(m) ® G2)q)(v1 @ v2)as + Ts((G2 ® G1(m))q) (v ® v2)
—(EXo, v1(0)) g (EXo, v2(0))  + T5((G1(m) @ G1(m))q)(vi @ v2)
= Ro,0(M®X0)(v1 ® v2) — Ro,0(EXo ® EX0)(v1 ® v2) + Ts((G(m) ® G(m))q)(v1 ® v2).

Hence,

BT (Cov(X),v1 @ v2) =g(v; @ v2) Yvi, €Y

and this observation completes the proof, since the subset span{v; ® vy : v, v2 € Y} C Ve jg
dense and well-posedness of (6.1) follows from the existence of the mild solution X to (2.2) as
well as its covariance Cov(X) € X and Theorem 5.5. O

Remark 6.2. Theorem 6.1 shows that, if only the covariance of the mild solution to the stochas-
tic partial differential equation (2.2) needs to be computed, then one can do this by solving
sequentially two deterministic variational problems: first, the more or less standard parabolic
problem (4.4) for the mean function and afterwards problem (6.1) for the covariance, which is
posed on non-reflexive tensor product spaces.
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