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Abstract Modelling of ultrasonic bulk wave scattering by
an internal, infinitely long, axial crack in a thick-walled pipe
is considered. The problem is formulated as a hypersingular
integral equation for the crack-opening displacement (COD),
the hypersingularity arises in the Green’s tensor. The COD
is expanded in Chebyshev functions which have the cor-
rect square-root singularity along the crack edges, thereby
regularizing the integral equation. To discretize the integral
equation it is likewise projected onto the same Chebyshev
functions. A model of an ultrasonic rectangular vertically
polarized shear wave contact probe is developed, and the
signal response is calculated using a reciprocity argument.
Some numerical examples demonstrate the possible applica-
tion of the method, in particular investigating the importance
of the pipe curvature.

Keywords Non-destructive testing · Wave propagation ·
Cylindrical geometry · Pipe · Crack

1 Introduction

Ultrasonic nondestructive testing (NDT) is routinely used in
some branches of industry, examples being aerospace and
nuclear power industries. For a few decades mathematical
models of the testing have led to more or less refined theo-
ries for varying test situations. There are many benefits from a
reliable and validated model. It is easy to perform parametric
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studies with a model, and it is thus a useful tool in the devel-
opment of testing procedures. A model can also enhance the
physical “feeling”, i.e. to know a priori when certain param-
eters are important, and be a useful educational tool. A good
model is also a prerequisite when attempting to solve inverse
problems.

One important area of application of ultrasonic NDT is the
testing of pipes. This can involve the long-range investiga-
tion of corrosion and cracks in pipelines. Then guided waves
of relatively low frequencies are used, and in this field a lot
of work has been performed, see e.g. Bai et al. [3], Benmed-
dour et al. [4], Fletcher et al. [9] and Duan and Kirby [8].
It should be noted that the field of guided waves has been
active for quite some time, i.e. Rose et. al [11]. Velichko
and Wilcox [13] have investigated the relationship between
guided wave solutions for plates and pipes. However, there is
also an interest in testing of pipes at higher frequencies where
guided waves are no longer a useful concept. This is, in par-
ticular, of importance in the nuclear power industry where
a lot of thick-walled pipes are being tested. For modelling
purposes this testing is often approximated as taking place
in a plate, but this is not always a valid approximation. Thus
there is an interest in modelling ultrasonic testing for defects
in pipes when the frequency is in an intermediate range so
that neither a guided wave approach nor a plate approxima-
tion is applicable. Very little work seems to have been done
in this area, although Olsson [10] considers the scattering by
a defect in a pipe at low and intermediate frequencies using
what may be called a T matrix approach. This work consid-
ers the wave scattering inside a thick-walled cylinder by a
spherical cavity, excited by a point force.

In the present paper a model of ultrasonic testing for an
interior axial crack in a pipe is developed using an inte-
gral equation approach. The crack is for simplicity taken
as infinitely long in the axial direction, but in practice it
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is enough if the crack is longer than the width of the lobe
from the transmitting ultrasonic probe. A realistic model
of an ordinary contact probe is used, both in transmission
and reception, the latter through a reciprocity argument. The
method starts from a hypersingular integral equation over
the crack which contains the Green’s tensor of the pipe.
The free (singular) part of this Green’s tensor is expanded
in plane waves in the crack coordinate system whereas the
part added to fulfill the boundary conditions on the pipe walls
are expanded in cylindrical waves. This type of approach has
large similarities with the work by Bövik and Boström [7]
where the same approach is taken for a crack in a plate.

The method used in this article can be summarized as
starting from an integral representation, Eq. (4), contains the
Green’s tensor for the pipe, Eq. (16) and the crack opening
displacement (COD). The traction operator is applied to the
integral representation and the field point is taken to the crack
surface, however, if the limit is taken inside the integral the
integral become improper, Eq. (17). To regularize the inte-
gral, and allowing the limit to be taken inside the integral, the
integral equation is projected on a set of Chebyshev functions
and as a Fourier transform. The COD is expanded in a similar
manner. The projection of the integral equation and expan-
sion of the COD integration over the crack surface leads to
an equation for the unknown coefficients for the COD, Eq.
(29). The incoming field is modelled using a probe model,
Eq. (32), derived by Boström and Wirdelius. When the COD
and incoming field are fully known a reciprocal argument is
used to calculate the signal response in Eq. (40).

2 Formulation of the Scattering Problem

This section contains the statement of the scattering problem
and the introduction of the cylindrical basis functions and the
integral representation. First consider the geometry, which is
a cylindrical pipe with inner and outer surfaces at radii ri and
ro on surfaces Si and So. Both Cartesian coordinates x, y, z
and cylindrical coordinates r, ϕ, z are used. The open internal
crack is infinitely long in the axial direction and is placed at
ϕ = 0 between r = a and r = b, and the crack surface is
denoted Sc, see Fig. 1. The material of the pipe is assumed to
be isotropic and homogeneous with Lamé parameters λ and
μ and density ρ. The equation of motion for the displacement
field, u, in an elastic solid is (Achenbach [1]),

k−2
p ∇∇ · u(r) − k−2

s ∇ ∧ ∇∧ u(r) + u(r) = 0. (1)

It should be noted that only a single frequency, ω, is con-
sidered and that the factor exp(−iωt) is suppressed. The
longitudinal wave number is k2

p = ρω2/(2μ + λ) and the
transverse is k2

s = ρω2/μ. The displacement field can be
divided into an incoming part and a scattered part

ϕ

r

x

y

a b
z

ri

ro

Si

Sc

So

Fig. 1 The geometry of the pipe with inner radius ri and outer radius
ro and the crack situated on the x axis between x = a and x = b

u = uin + usc, (2)

where the incoming part uin is the field that exists in the
pipe in the absence of the crack and the scattered part usc is
the extra field needed to satisfy the boundary condition on
the crack. The fields in the pipe are excited by an ultrasonic
probe on the outer surface of the pipe, and this is modelled
as a traction boundary condition, discussed in detail later.
Otherwise all the surfaces of the pipe and the crack surface
are traction free. To completely specify the problem radiation
conditions are also needed, these state that energy must be
outgoing far away from the probe.

Solutions in the form of outgoing cylindrical vector wave
functions to the equation of motion (1) in cylindrical coordi-
nates can be expressed as [6]

χ1σm(h; r) =
√

εm

8π

1

qs
∇∧

(
ẑHm(rqs)e

ihz
{

sin(mϕ)

cos(mϕ)

})
,

χ2σm(h; r) =
√

εm

8π

× 1

qsks
∇∧ ∇∧

(
ẑHm(rqs)e

ihz
{

sin(mϕ)

cos(mϕ)

})
,

χ3σm(h; r) =
√

εm

8π

kp
k3
s
∇

(
Hm(rqp)e

ihz
{

sin(mϕ)

cos(mϕ)

})
. (3)

Here, Hm is a Hankel function of the first kind and of order
m, this set of basis functions represents outwards traveling
waves. There are also regular waves (Reχ τσm), which are
obtained by replacing the Hankel functions with Bessel func-
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tions, Jm . The Neumann factor is defined as εm = 2 − δm0,
h is the axial wave number and the radial wave numbers are
defined as qi = (k2

i −h2)1/2, i = p, s. The radial wave num-
bers are chosen to have a non-negative imaginary part. The
basis functions have several indices that represent the mode
(τ = 1, 2, 3), parity (σ = o, e) and order (m = 0, 1, 2 . . .),
which are combined to a multi-index, χk ≡ χ τσm . The first
two modes are shear waves (τ = 1, 2) and the third is a pres-
sure wave (τ = 3), the parity is determined by the parity
of the trigonometric function. These basis functions can be
divided into two groups τσ = 1o2e3e (symmetric in ϕ) and
τσ = 1e2o3o (anti-symmetric in ϕ). The basis functions
will be used to construct the Green’s tensor for the cylindri-
cal pipe and to expand the incoming field produced by the
probe.

A way to solve the scattering problem is to start with an
integral representation (see Ström [12] for a discussion of
integral formulations)

uin(r′) + ks
μ

∫
Sc

dS�u(r) · t(ϕ)(G(r, r′))

=
{

0, r′ /∈ (V )

u(r′), r′ ∈ (V )
, (4)

where r′ is the field point and r the integration variable over
the crack. The unknown crack opening displacement (COD)
�u(r) is the jump in displacement across the crack and the
traction operator is defined as

t(n)(u) = n̂λ∇ · u + 2μn̂ · ∇u + μn̂ ∧ (∇∧u). (5)

The Green’s tensor is here chosen as the one of the pipe, i.e.
it satisfies the boundary conditions on the inner and outer
surfaces of the pipe, and therefore the integral is only over
the surface of the crack Sc.

3 Green’s Tensors

In this section the Green’s tensor, G(r, r′) for the pipe is
derived. The Green’s tensor satisfies

k−2
p ∇∇ · G(r, r ′) − k−2

s ∇∧∇∧G(r, r ′) + G(r, r ′)
= −k3

s Iδ(r − r ′), (6)

and the traction free boundary conditions on the inner and
outer surfaces of the pipe. Here I is the unit dyadic. Also the
radiation condition must be satisfied, meaning that the energy
must be outward propagating far away from the point force
that is the source for the Green’s tensor. To derive the Green’s
tensor for the pipe it is convenient to divide it into two parts.

The first part is the free space Green’s tensor that takes care
of the singularity and the other part is the regular part that
is needed to fulfil the boundary conditions on the pipe. The
boundary conditions for the free space Green’s tensor are
radiation conditions, and the free space Green’s tensor can
be expressed as [7]

Gsing(r, r ′)

= 2i
3∑
j=1

∫ ∞

−∞

∫ ∞

−∞
dq dp

k j h j
f j f∗j ei(h j |y−y′|+q(z−z′)+p(x−x ′)),

(7)

using Cartesian coordinates, where the x-coordinate is
aligned with the crack as seen in Fig. 1. The quantities f jn ,
f ∗
jn are defined as

f1 = i

4πs
(p, 0, q) , (8)

f2 = 1

4πsks

(
qhs,−s2,−phs

)
, (9)

f3 = i

4π

√
kp
k3
s

(−q,−h p, p
)
. (10)

(It should be noted that these are not the same as in Bövik and
Boström [7], the order has been permuted since the coordi-
nate axes are different.) The quantity ki is the wave number

kp or ks which is used to define h j =
√
k2
j − s2, where the

branch cut Im(h j ) > 0 is chosen. This is a double Fourier
transform representation in x and z of the Green’s tensor.

The free space Green’s tensor can also be expressed as in
cylindrical coordinates [6]

Gsing(r, r ′) = i
∑
k

∫ ∞

−∞
dh

ks
χk(h; r>)Reχ†

k(h; r<), (11)

where the outgoing and regular cylindrical wave functions
defined in Eq. (3) are used. The dagger symbol (†) represents
a change of sign of i to −i in the basis functions and r> (r<)
is the choice of r or r′ with the largest (smallest) radial com-
ponent. These two representations for the free space Green’s
tensors are used to create the Green’s tensor for the pipe.
The two representations of the free space Green’s tensors are
used since the crack is best expressed in rectangular coordi-
nates while it is necessary to calculate the reflections from
the cylinder walls in cylindrical coordinates.

To find an expression for the regular part of the Green’s
tensor a method for deriving the reflections for an elastic
displacement field within a cylindrical pipe is considered.
Olsson [10] derived an expression for the reflected displace-
ment field, urefl, for any excitation
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urefl(r) =
∑
kk′

∫ ∞

−∞
dh

ks

(
−χk(h; r )M3

kk′(h)a0
k′(h)

+χk(h; r )M4
kk′(h)a2

k′(h)

+ Reχk(h; r )M1
kk′(h)a0

k′(h)

− Reχk(h; r )M2
kk′(h)a2

k′(h)
)
. (12)

Here Mν
kk′ (ν = 1, 2, 3, 4) are matrices defined by Olsson

[10] and the geometrical interpretation of them are reflec-
tions for the different waves starting from either the inner or
outer surface. The quantities a0

k and a2
k are quantities from

an expansion of the excitation in the cylindrical waves. The
expansion in a0

k is valid inside the inner surface of the cylin-
der, where r < ri , whereas the expansion in a2

k is valid
outside the outer surface, r > ro. As the source for the
Green’s tensor is a point force, its expansion in cylindrical
waves is exactly the free space Green’s tensor (11), so the
following expansion coefficients are obtained

a0
k = iχ†

k(r
′), (13)

a2
k = iReχ†

k(r
′). (14)

It should be noted that there are some differences compared
to Olsson [10] due to different normalizations. The regular
part of the Green’s tensor thus becomes

Greg(r; r ′)

= i
∑
kk′

∫ ∞

−∞
dh

kτ

(
−χk(h; r )M3

kk′(h)χ
†
k′(h; r ′)

+ χk(h; r )M4
kk′(h)Reχ†

k′(h; r ′)
+ Reχk(h; r )M1

kk′(h)χ
†
k′(h; r ′)

− Reχk(h; r )M2
kk′(h)Reχ†

k′(h; r ′)
)

. (15)

The total Green’s tensor for the pipe can now be constructed
as the sum of (7) and (15) as

G(r; r ′) = Gsing(r; r ′) + Greg(r; r ′). (16)

4 The Integral Equation

To solve the scattering problem an integral equation on the
crack is now derived from the integral representation Eq. (4).
Applying the traction operator to the integral representation
and letting the field point approach the crack surface gives

t(ϕ)(uin(r ′, 0, z′))

= − lim
ϕ′→0

ks
μ

∫
Sc

dS �u(r) · (r, 0, z; r ′, ϕ′, z′), (17)

Here  is the double stress tensor which is obtained by apply-
ing the traction operator twice to the Green’s tensor with
respect to both the primed and the unprimed coordinates.
Note that the integral equation is of hypersingular type; it
is thus not possible to take the limit inside the integral. The
singular part of the double stress tensor is

sing(r; r ′)

= 2i
3∑
j=1

∫ ∞

−∞

∫ ∞

−∞
dq dp

k j h j
F jF∗

j e
i(h j |y−y′|+q(z−z′)+p(x−x ′)),

(18)

where (again permuted components as compared to Bövik
and Boström [7] since the coordinates are permuted)

F1 = 1

4πs
(phs, 0, qhs) , (19)

F2 = i

4πsks

(
qK ,−2s2hs,−pK

)
, (20)

F3 = 1

4π

√
kp
k3
s

(−2qh p,−K , 2ph p
)
, (21)

K = 2s2 − k2
s . (22)

The regular part of the double stress tensor directly becomes

reg(r; r ′)

= i
∑
kk′

∫ ∞

−∞
dh

ks

(
− t(ϕ

′)(χk(h; r ′))M3
kk′(h)t(ϕ)(χ

†
k′(h; r))

(23)

+ t(ϕ
′)(χk(h; r ′))M4

kk′(h)t(ϕ)(Reχ†
k′(h; r))

+ t(ϕ
′)(Reχk(h; r ′))M1

kk′(h)t(ϕ)(χ
†
k′(h; r))

− t(ϕ
′)(Reχk(h; r ′))M2

kk′(h)t(ϕ)(Reχ†
k′(h; r))

)
(24)

The tractions of the cylindrical wave functions are straight-
forward to calculate. The double stress tensor in Eq. (17) is
then obtained by adding the singular and regular parts.

The singular part of the pipe’s Green’s tensor Eq. (7)
gives a hypersingular part in the integral equation, Eq. (17),
which must be handled before the limit can be moved inside
the integral. To this end the crack opening displacement is
expanded in the following set of functions (defined on the
interval [−1, 1])

ψm(s) =
{

− 1
πm cos(m arcsin(s)), m = 1, 3, . . .

i
πm sin(m arcsin(s)), m = 2, 4, . . .

, (25)

These Chebyshev functions constitute an orthogonal set of
functions and they have the same square root behavior [7]
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at the edges of the crack as the COD should have. Another
reason for using them is the following convenient property

∫ 1

−1
ds ψm(s)eiγ s = −1

γ
Jm(γ ), (26)

where γ is any complex number. The COD, �u, is thus
expanded in a series in Chebyshev functions, and also as
a Fourier transform in z, in the following way

�u =
∞∑
n=1

∫ ∞

−∞
dp

ks
βn(p)ψn(g(r))e

ipz, (27)

where βnj are the unknown expansion functions to be
determined. The function g(r) takes care of the linear trans-
formation from the interval [−1, 1] to the crack interval
[a, b].

The integral equation is projected onto the Chebyshev
functions and a Fourier transform in z is also taken to yield
∫
Sc

dS ψn(g(r
′))e−ipz′ t(ϕ)(uin(r ′, 0, z′))

= −ks
μ

∫
Sc

dS ψn(g(r
′))e−ipz′

× lim
ϕ′→0

∫
Sc

dS
∞∑

n′=1

∫ ∞

−∞
dp′

ks
βn′(p′)ψn′(g(r))eip′z

· (r, 0, z; r ′, ϕ′, z′). (28)

In this process the singularity of the Green’s tensor is regular-
ized and the limit can be taken inside the integral. It is now
possible to evaluate some of the integrals and after some
manipulations a system of equations for the COD coeffi-
cients, βnj (p) can be establish as follows

∑
n′ j ′

Qnjn′ j ′(p)βn′ j ′(p) = Unj (p), (29)

where the system matrix is

Qnjn′ j ′ = 8π2iks

3∑
l=1

∫ ∞

−∞
dq

klhlq2 Fjl Fj ′l

× Jn

(
q(b − a)

2

)
Jn′

(
q(b − a)

2

)

+ 4π2i

μ2

∑
kk′

∫ b

a

∫ b

a
dr ′drψn′(g(r))ψn(g(r

′))

×
(

− T+
jk(−p, r ′)M3

kk′(−p)T
+
j ′k′(−p, r)

+ T+
jk(−p, r ′)M4

kk′(−p)T
0
j ′k′(−p, r)

+ T 0
jk(−p, r ′)M1

kk′(−p)T
+
j ′k′(−p, r)

− T 0
jk(−p, r ′)M2

kk′(−p)T
0
j ′k′(−p, r)

)
, (30)

and the right-hand side is

Ujn(p) = ks
μ

∫ ∞

−∞

∫ b

a
dz′dr ′ t (ϕ)

j (uin)ψn(g(r
′))e−ipz′ .

(31)

Here the following notation is introduced: T+
jk(p; r) =

t (nϕ)(χk(p; r))|z=ϕ=0; the outgoing waves are identified with
a plus sign, incoming waves are identified with a zero, and
the dagger operator is indicated with an overline. It can be
noted that for the singular part the integral property in (26)
has been used twice. The right-hand side Ujn(p) is due to
the traction on the crack from the incoming field uin, i.e. the
field in the absence of the crack, and this is discussed in the
next section. Solving the system of linear equations for the
COD expansion coefficients βn′, j ′(p) fully determines the
COD and thus the scattered field.

5 Transmitting and receiving probes

The model of the transmitting probe is similar to the one
used by Boström and Wirdelius [5] to model a probe on a
planar surface. The action of the probe is thus modelled as
an applied traction as the boundary condition where the probe
is located. The field from the transmitting probe is obtained
by determining the displacement field induced by this given
set of boundary conditions, in the absence of a defect.

Here this model is modified to a cylindrical surface. The
boundary conditions for the incoming field (uin, i.e. the field
in the absence of the crack, is thus

t(r)(uin(r)) =
{
r̂ iμks exp(−iksro sin(γ )(ϕ − ϕ0)), r ∈ S1

0, r /∈ S1
,

(32)

S1 = {ϕ ∈ [ϕ0 − δ, ϕ0 + δ], z ∈ [−ζ, ζ ]} ,

Note that only the normal component (pressure) is taken
as nonzero (although there is no difficulty to include also
tangential components, see Boström and Wirdelius [5]), the
other components and the traction on the inner surface of
the pipe are zero. Here ζ is the half length of the probe in
the axial direction, δ is the half width of the probe in the
angular direction, and ϕ0 is the probe position, see Fig. 2.
The variable γ is the angle of the probe as measured from
the normal direction, see Fig. 2. The probe model can be
changed from a shear probe to a pressure probe by change
the shear wave number (ks) to the pressure wave number (kp)
in the exponential.
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ϕ0
x

y

z

ri

ro

γ

δ

rmin

Fig. 2 The probe is placed at the outer surface at the angle ϕ0, the
angle of the probe is γ , the width of the probe is 2δ and the length of
the probe is 2ζ in the axial direction

To obtain the incoming displacement field, uin, from these
boundary condition the following ansatz for the displacement
field is made

uin =
∑
k

∫ ∞

−∞
dh

kτ

(
ξ1
k χk + ξ2

k Reχk

)
, (33)

where the coefficients ξ1
k and ξ2

k are to be determined. To
solve for these unknowns the traction operator in the normal
direction is applied and the boundary conditions are used to
obtain

∑
k

∫ ∞

−∞
dh

kτ

(
ξ1
k t

(r)(χk) + ξ2
k t

(r)(Reχk)
)

= t(r)(uin), r = ro, (34)
∑
k

∫ ∞

−∞
dh

kτ

(
ξ1
k t

(r)(χk) + ξ2
k t

(r)(Reχk)
)

= 0, r = ri . (35)

Expanding the right-hand side of these equations in a Fourier
series in the angular direction and a Fourier transform in the
axial direction the following system of equations is obtained
for the coefficients on the outer pipe surface r = ro

ξ1
1omT

+
1orm + ξ1

2emT
+
2erm + ξ1

3emT
+
3erm + ξ2

1omT
0
1orm

+ ξ2
2emT

0
2erm + ξ2

3emT
0
3erm = Aem,

ξ1
1emT

+
1erm + ξ1

2omT
+
2orm + ξ1

3omT
+
3orm + ξ2

1emT
0
1erm

+ ξ2
2omT

0
2orm + ξ2

3omT
0

3orm = Aom,

ξ1
1emT

+
1eϕm + ξ1

2omT
+
2oϕm + ξ1

3omT
+
3oϕm + ξ2

1emT
0
1eϕm

+ ξ2
2omT

0
2oϕm + ξ2

3omT
0
3oϕm = 0,

ξ1
1omT

+
1oϕm + ξ1

2emT
+
2eϕm + ξ1

3emT
+
3eϕm + ξ2

1omT
0
1oϕm

+ ξ2
2emT

0
2eϕm + ξ2

3emT
0
3eϕm = 0,

ξ1
1emT

+
1ezm + ξ1

2omT
+
2ozm + ξ1

3omT
+
3ozm + ξ2

1emT
0
1ezm

+ ξ2
2omT

0
2ozm + ξ2

3omT
0
3ozm = 0,

ξ1
1omT

+
1ozm + ξ1

2emT
+
2ezm + ξ1

3emT
+
3ezm + ξ2

1omT
0
1ozm

+ ξ2
2emT

0
2ezm + ξ2

3emT
0
3ezm = 0.

Here the dependence from the wave functions is contained
in T+

τσ jm , the radial dependence is omitted for brevity (but it
is important to note that the equations are valid on the outer
surface of the cylinder). There is no significant difference
on the inner surface of the cylinder except that the radial
coordinate is different and that the right-hand side is zero.
The right-hand side can be written as

Aom = [
im cos(m(ϕ0 + δ))

+ exp(2iAδ)
{ − im cos(m(ϕ0 − δ)) (36)

+ A sin(m(ϕ0 − δ))
}

− A sin(m(ϕ0 + δ))
]2B sin(hζ )

h

exp(−iAδ)

A2 − m2 .

Aem = [ − A cos(m(ϕ0 + δ))

+ exp(2iAδ)
{
A cos(m(+ϕ0 − δ))

+ im sin(m(−ϕ0 + δ))
}

− im sin(m(ϕ0 + δ))
]2B sin(hζ )

h

exp(−iAδ)

A2 − m2 , (37)

where A = ksro sin(γ ) and B = iμks , m is the Fourier
series number, andh is the Fourier transform variable. Twelve
equations are thus obtained to solve for the twelve expansion
coefficients ξ1

k and ξ2
k .

To model a receiving probe the reciprocal argument devel-
oped by Auld [2] is very useful. In the reciprocal argument
two elastodynamic states are used, one with the defect present
(state 1) and one without the defect (state 2), but both with
the pipe present. In state 1 the actual transmitter is acting as
transmitter but in state 2 the receiving transmitter is acting
as transmitter. The reciprocal argument gives the change in
electrical reflection coefficient δ� of the receiving probe due
to the defect, i.e. more or less the quantity measured, on the
following form

δ� = iω

4P

∫
S

dS(u1 · t(n)(u2) − u2 · t(n)(u1)). (38)

Here the surface integral is over a surface surrounding the
crack, the normal vector is in the outward direction, and P
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is the electric power exciting the elastodynamic field. Col-
lapsing the surface to the crack and using the traction free
boundary condition on the crack this is further simplified to

δ� = iω

4P

∫
Sc

dS�u · t(ϕ)(uin). (39)

Inserting the expansions of the incoming field Eq. (33) and
the COD Eq. (27), and formally solving the system of equa-
tions Eq. (29) this can be further developed

δ�(ω) = iωπ2

4Pμ

∑
n,n′, j, j ′

∫ ∞

−∞
dp I jn(p)Q

−1
njn′ j ′(p)I j ′n′(−p).

(40)

The integrals

I jn(p) =
∑
k

∫ b

a
drψn(g(r))

(
ξ1
k (p)T+

k j (p) + ξ2
k (p)T 0

k j (p)
)

,

(41)

where T+
k j (p) and T 0

k j (p) are defined in Eq. (31), are related
to the receiving and transmitting probes. This gives a nice
division of the received signal Eq. (40) into three parts, where
the first part in the integrand is due to the receiving probe, the
second to the crack, and the third to the transmitting probe. As
written the reciprocal argument is used with the same probe
as both transmitter and receiver, i.e. pulse echo testing, but
the same formulation is of course valid if the transmitting and
receiving probes are different, but there will be two different
I j,n(p) in Eq. (40), one for the transmitter and one for the
receiver. It should be noted that only the extra field due to
the presence of the crack is included; the field in the pipe
in the absence of the crack is thus not present and require
additional computations if wanted, but this is not pursued
here. The omitted field can of course be important, but the
present calculations correspond to a baseline measurement
where the deviations from a perfect pipe are monitored.

6 Numerical Examples

A few numerical examples are now provided to illustrate
the method presented in this article. Most of the numerics is
straightforward, the only part where caution is required is the
computation of the q integral in the first term in (30). Due to
branch cuts the integral is extended into the complex plane,
and the curve which is integrated along is chosen as

h = t (1 − αie−β|t |), t ∈ (−∞,∞). (42)

As the absolute value function is not analytic, the integral
has been divided into two integrals at t = 0. The two param-
eters are taken as α = 1 and β = Re(ks)−1 as this gives

Table 1 Minimum radii for the nominal probe ray (rmin in Fig. 2) for
different probe angles and outer radii, all units are in millimeters

ro rmin for γ 30◦ 45◦ 60◦

40 20.0 28.3 34.6

50 25.0 35.3 43.3

60 30.0 42.4 52.0

a curve that avoids the branch points sufficiently without
going too far into the second and fourth quadrant (where
the integrand increases exponentially). Up to 800 integra-
tion points are needed in a Gauss-Legendre quadrature. The
integrals over the radial coordinates r and r ′ in (30) are eval-
uated using a Gauss-Legendre scheme with 50 points. The
sums over m that appear in some places are truncated at
mmax = roRe(ks) + 5.

The material of the pipe is kept fixed and is chosen as
steel with the following material properties: μ� = 79.3GPa,
λ� = 86.6GPa and ρ = 7800kgm−3. As this is more realistic
and as it increases the convergence damping is assumed to
be present in the form μ = μ�(1 + iε) and λ = λ�(1 +
iε), where ε = 0.01 is chosen. The probe is scanning in
pulse-echo along a quarter circle on the outer surface of the
cylinder at 700 positions. The probe is of shear wave type
approximately t10mm by 10mm and is operating at the fixed
frequency 1MHz. The angle of the probe, γ , is set to 30 ◦,
45◦, or 60◦. The signal response is normalized with the largest
value for each probe with the same angle, although strictly
speaking the probes are not completely identical for different
radii of the outer pipe wall. The crack width in the radial
direction is chosen as 5mm and it is placed 1mm from the
inner wall, so it is practically surface-breaking. To investigate
the influence of the curvature of the wall the wall thickness
is kept constant and the inner and outer radii are varied. This
has been performed for two different wall thicknesses, 10mm
and 20mm, and several different inner and outer radii.

A new feature of a pipe, as compared to a plate, is that the
ultrasound from an angled probe can only penetrate to a finite
depth. Considering the ray in the nominal direction from the
probe it can only reach down to the radius rmin = ro sin(γ ),
where as before ro is the radius of the outer pipe surface
and γ the angle of the probe. This minimum radius is shown
in Table 1 for the outer radii and probe angles considered
below in the numerical examples. Particularly for γ = 60◦
the penetration depth is quite moderate, and might for thick-
walled pipes be a limiting factor of the usefulness of such a
probe.

In Figs. 3, 4, and 5 signal responses are given for pipes
with wall thickness 10 mm for probe angles 30◦, 45◦, and 60◦,
respectively. Three different outer radii are shown in each fig-
ure, namely 40, 50, and 60 mm, and as the wall thickness is
constant the corresponding inner radii are 30, 40, and 50 mm,
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Fig. 3 The signal response δ� as a function of the probe position ϕ0 for
a probe with angle 30◦; wall thickness 10mm and outer radius between
40mm and 60mm
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Fig. 4 The signal response δ� as a function of the probe position ϕ0 for
a probe with angle 45◦; wall thickness 10mm and outer radius between
40mm and 60mm

respectively. As noted above the normalization is such that
each probe with a particular angle is normalized separately
with the maximum value recorded in any figure, so the max-
imum in each figure is 0 dB. There are differences between
the curves in each figure, but the peaks differ only by a few
dB and the general trend is that there is a smaller difference
between outer radii 50 and 60 mm than between outer radii
40, and 50 mm, particularly in the Fig. 5. It thus is expected
that the curves for the largest outer radius 60 mm is not far
from that for a plate. For the smallest outer radius 40 mm in

0 10 20 30 40 50 60 70 80 90
ϕ0, [◦]

−50

−40

−30

−20

−10

0

δΓ
,
no

rm
al
iz
ed

[d
B]

wall thickness: 10, [mm]

Outer radius [mm]
40.0
50.0
60.0

Fig. 5 The signal response δ� as a function of the probe position ϕ0 for
a probe with angle 60◦; wall thickness 10mm and outer radius between
40mm and 60mm
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Fig. 6 The signal response δ� as a function of the probe position ϕ0 for
a probe with angle 30◦; wall thickness 20 mm and outer radius between
40 and 60 mm

Figs. 3, 4, and 5 there is a second peak around ϕ ≈ 65◦ and
this is most likely due to a reflection by the inner pipe wall.

Figures 6, 7, and 8 show the same type of curves with the
same outer radii but with the doubled wall thickness 20 mm.
In these cases the crack is situated further from the scan-
ning surface and the values therefore generally decrease (the
normalization is still performed with largest value for a par-
ticular probe and these appear in Figs. 3, 4, 5). This decrease
is largest in Fig. 8 where the probe angle is 60◦. Particularly
for the smallest outer radius 40 mm the drop in peak value
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Fig. 7 The signal response δ� as a function of the probe position ϕ0 for
a probe with angle 45◦; wall thickness 20 mm and outer radius between
40 and 60 mm
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Fig. 8 The signal response δ� as a function of the probe position ϕ0 for
a probe with angle 60◦; wall thickness 20 mm and outer radius between
40 and 60 mm

is about 30 dB as compared with the corresponding curve in
Fig. 5 for the smaller wall thickness. The reason for this is
that the ray from the probe completely misses the crack in
this case as it only goes down to the radius 34.6 mm whereas
the crack only extends out to 26 mm.

The present results have not been validated with indepen-
dent results with some other method. One possibility is to
perform an experimental investigation and this is of course a
very good way. Another way is to perform numerical work by
some different method, the method that first comes to mind

is the finite element method (FEM), but in the present fully
3D case this will be quite demanding, although it is feasible
at least for lower frequencies.

7 Conclusions

This paper gives a model to determine the signal response
from an infinite axial crack in a thick-walled pipe. A hyper-
singular integral equation for the COD is used and it is crucial
that the COD is expanded in a system that has the right singu-
larity along the crack edges. A model of an ultrasonic probe
on a curved surface is used together with reciprocity to obtain
the signal response. As compared to a plate the signals are
generally more difficult to interpret, and it is also noted that
there is only a finite penetration depth for angled probes in a
pipe.

This work shows that there are some interesting effects
when investigating the scattering of a crack in an pipe. Thus
there is an interest in extending the present work to other
crack types in a pipe, as a rectangular (as the present paper
but finite in the axial direction), but still axial, crack, or a
radial crack.

Acknowledgements This work is supported by the Swedish Radia-
tion Safety Authority (SSM) and this is gratefully acknowledged. The
authors would like to thank Associated Professor Per-Å ke Jansson for
the help provided.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-
Holland, New York (1973)

2. Auld, B.A.: General electromechanical reciprocity rela-
tions applied to the calculation of elastic wave scattering
coefficients. Wave Motion 1(1), 3–10 (1979). doi:10.1016/
0165-2125(79)90020-9

3. Bai, H., Shah, A., Popplewell, N., Datta, S.: Scattering of guided
waves by circumferential cracks in steel pipes. Appl. Mech. 68(4),
619–631 (2001)

4. Benmeddour, F., Treyssède, F., Laguerre, L.: Numerical modeling
of guided wave interaction with non-axisymmetric cracks in elastic
cylinders. Int. J. Solids Struct. 48(5), 764–774 (2011)

5. Boström, A., Wirdelius, H.: Ultrasonic probe modeling and non-
destructive crack detection. J. Acoust. Soc. Am. 97(5), 2836–2848
(1995). doi:10.1121/1.411850

6. Boström, A., Kristensson, G., Ström, S.: Transformation properties
of plane, spherical and cylindrical scalar and vector wave functions.
In: Varadan, V.V., Lakhtakia, A., Varadan, V.K. (eds.) Field Rep-
resentations and Introduction to Scattering, pp. 165–209. Elsevier,
Amsterdam (2000)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0165-2125(79)90020-9
http://dx.doi.org/10.1016/0165-2125(79)90020-9
http://dx.doi.org/10.1121/1.411850


19 Page 10 of 10 J Nondestruct Eval (2017) 36 :19

7. Bövik, P., Boström, A.: A model of ultrasonic nondestructive test-
ing for internal and subsurface cracks. J. Acoust. Soc. Am. 102(5),
2723–2733 (1997). doi:10.1121/1.420326

8. Duan, W., Kirby, R.: A numerical model for the scattering of elastic
waves from a non-axisymmetric defect in a pipe. Finite Elem. Anal.
Des. 100, 28–40 (2015)

9. Fletcher, S., Lowe, M.J., Ratassepp, M., Brett, C.: Detection of
axial cracks in pipes using focused guided waves. J. Nondestruct.
Eval. 31(1), 56–64 (2012)

10. Olsson, S.: Point force excitation of a thick-walled elastic infinite
pipe with an embedded inhomogeneity. J. Eng. Math. 28(4), 311–
325 (1994). doi:10.1007/BF00128750

11. Rose, J., Ditri, J., Pilarski, A., Rajana, K., Carr, F.: A guided wave
inspection technique for nuclear steam generator tubing. NDT E
Int. 27(6), 307–310 (1994). doi:10.1016/0963-8695(94)90211-9

12. Ström, S.: Introduction to integral representations and integral
equations for time-harmonic acoustic, electromagnetic and elas-
todynamic wave fields. In: Varadan, V.V., Lakhtakia, A., Varadan,
V.K. (eds.) Field Representations and Introduction to Scattering,
pp. 37–143. Elsevier, Amsterdam (2000)

13. Velichko, A., Wilcox, P.D.: Excitation and scattering of guided
waves: relationships between solutions for plates and pipes. J.
Acoust. Soc. Am. 125(6), 3623–3631 (2009)

123

http://dx.doi.org/10.1121/1.420326
http://dx.doi.org/10.1007/BF00128750
http://dx.doi.org/10.1016/0963-8695(94)90211-9

	Modelling of Ultrasonic Bulk Wave Scattering by an Axial Crack in a Pipe
	Abstract
	1 Introduction
	2 Formulation of the Scattering Problem
	3 Green's Tensors
	4 The Integral Equation
	5 Transmitting and receiving probes
	6 Numerical Examples
	7 Conclusions
	Acknowledgements
	References




