AUP1 (Ancient Ubiquitous Protein 1): A Molecular Link Between Hepatic Lipid Mobilization and VLDL Secretion

Citation for the original published paper (version of record):

N.B. When citing this work, cite the original published paper.
AUP1 (Ancient Ubiquitous Protein 1): A Molecular Link Between Hepatic Lipid Mobilization and VLDL Secretion

Adil Mardinoglu, Jan Borén

Cardiovascular disease remains the leading cause of death around the world.1 A major cause is atherogenic dyslipidemia, which is characterized by increased concentrations of triglyceride-rich lipoproteins and is seen in subjects with obesity and type 2 diabetes mellitus. Increased hepatic secretion of triglyceride-rich very-low-density lipoproteins (VLDL) is a major determinant of the hypertriglyceridemia.2 The production of VLDL from the liver is a complex process. It starts with the formation of nascent lipoprotein particles that are further lipilated in the secretory pathway, resulting in the generation of triglyceride-rich VLDL particles that are secreted from the liver.3 It is therefore not surprising that VLDL secretion—and thus the concentration of plasma triglycerides—is highly dependent on the availability of hepatic lipids.4,5

See accompanying article on page 633

Cellular lipids are stored in lipid droplets (LDs) consisting of a core of neutral lipids (mainly triglycerides and cholesterol esters), surrounded by phospholipids and proteins.3 Both lipids and proteins are synthesized in a membranous structure of the cell called the endoplasmic reticulum (ER). The ER compartment is also involved in quality control, as it identifies misfolded proteins that are degraded through ER-associated degradation or autophagic degradation.6

Interestingly, recent studies have shown that LDs are not only involved in lipid storage but are also important for proteasomal protein degradation and autophagy.7 The AUP1 (ancient ubiquitous protein 1) was identified as the first LD-associated protein involved in ER-associated degradation.7 The carboxyl terminus of AUP1 binds the E2 ubiquitin conjugases.8 Thus, AUP1 provides a direct molecular link between LDs and ubiquitination-mediated degradation of misfolded ER proteins. In addition, AUP1 also controls lipid synthesis as it induces ubiquitination and the subsequent degradation of several key regulators of lipid biosynthesis, such as the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase.9 The expression of AUP1, therefore, affects the amount and size of LDs. Thus, AUP1 has dual roles in protein quality control and LD regulation.7

In this issue of Arteriosclerosis, Thrombosis, and Vascular Biology, Zhang et al10 significantly extend these studies and for the first time demonstrated that AUP1 is a key determinant of hepatic VLDL assembly and secretion. AUP1 was found to interact with apolipoprotein B100 (apo B100), and suppression of AUP1 increased triglyceride biosynthesis and the average size of cytosolic LDs, decreased post-translational degradation of apoB100, and enhanced section of mature triglyceride-rich VLDL from the human hepatoma cells HepG2 (Figure). These cells normally secrete smaller under-lipilated apoB-containing lipoproteins instead of fully lipidated VLDL particles, and suppression of AUP1 corrected this metabolic defect. Thus, AUP1 plays critical roles in intracellular lipid metabolism, apoB stability, and VLDL assembly and secretion. How does suppression of AUP1 correct the defective VLDL assembly in HepG2 cells? The conversion of triglyceride-poor to triglyceride-rich VLDL has been proposed to require a bulk addition of triglycerides derived from cytosolic LDs.11-14 Thus, it could be hypothesized that to retain lipids intracellularly instead of secreting triglyceride-rich VLDL, HepG2 hepatoma cells overexpress AUP1, which accumulates on LDs in the later part of the secretory pathway. Accumulation of AUP1 in LDs would hamper VLDL assembly.

Does AUP1 play a physiological role in VLDL secretion in nonhepatoma cells? This was not analyzed in this study. However, the expression of AUP1 has been measured in human liver samples obtained from a separate cohort of 12 obese subjects with increased liver fat content who underwent bariatric surgery,15 and compared with AUP1 gene expression in liver samples obtained from 7 healthy individuals.16 This comparison showed that the mRNA expression of AUP1 was significantly lower in liver from obese subjects than from healthy subjects (adjusted P value <0.05). These results may indicate that the regulation of AUP1 is impaired in subjects with nonalcoholic fatty liver disease and type 2 diabetes mellitus. Future studies are needed to address this in detail and to clarify whether AUP1 is linked to the altered hepatic lipid metabolism and increased VLDL secretion seen in subjects with nonalcoholic fatty liver disease and type 2 diabetes mellitus. If this turns out to be the case, AUP1 might become a drug target for preventing the diabetic dyslipidemia.

Disclosures

None.
References


5. Olofsson SO, Borén J. Apolipoprotein B secretory regulation by degradation.


Key Words: Editorials • autophagy • cause of death • endoplasmic reticulum • lipid droplets • obesity